Home | History | Annotate | Download | only in arm
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // A Disassembler object is used to disassemble a block of code instruction by
     29 // instruction. The default implementation of the NameConverter object can be
     30 // overriden to modify register names or to do symbol lookup on addresses.
     31 //
     32 // The example below will disassemble a block of code and print it to stdout.
     33 //
     34 //   NameConverter converter;
     35 //   Disassembler d(converter);
     36 //   for (byte* pc = begin; pc < end;) {
     37 //     char buffer[128];
     38 //     buffer[0] = '\0';
     39 //     byte* prev_pc = pc;
     40 //     pc += d.InstructionDecode(buffer, sizeof buffer, pc);
     41 //     printf("%p    %08x      %s\n",
     42 //            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
     43 //   }
     44 //
     45 // The Disassembler class also has a convenience method to disassemble a block
     46 // of code into a FILE*, meaning that the above functionality could also be
     47 // achieved by just calling Disassembler::Disassemble(stdout, begin, end);
     48 
     49 
     50 #include <assert.h>
     51 #include <stdio.h>
     52 #include <stdarg.h>
     53 #include <string.h>
     54 #ifndef WIN32
     55 #include <stdint.h>
     56 #endif
     57 
     58 #include "v8.h"
     59 
     60 #include "constants-arm.h"
     61 #include "disasm.h"
     62 #include "macro-assembler.h"
     63 #include "platform.h"
     64 
     65 
     66 namespace assembler {
     67 namespace arm {
     68 
     69 namespace v8i = v8::internal;
     70 
     71 
     72 //------------------------------------------------------------------------------
     73 
     74 // Decoder decodes and disassembles instructions into an output buffer.
     75 // It uses the converter to convert register names and call destinations into
     76 // more informative description.
     77 class Decoder {
     78  public:
     79   Decoder(const disasm::NameConverter& converter,
     80           v8::internal::Vector<char> out_buffer)
     81     : converter_(converter),
     82       out_buffer_(out_buffer),
     83       out_buffer_pos_(0) {
     84     out_buffer_[out_buffer_pos_] = '\0';
     85   }
     86 
     87   ~Decoder() {}
     88 
     89   // Writes one disassembled instruction into 'buffer' (0-terminated).
     90   // Returns the length of the disassembled machine instruction in bytes.
     91   int InstructionDecode(byte* instruction);
     92 
     93  private:
     94   // Bottleneck functions to print into the out_buffer.
     95   void PrintChar(const char ch);
     96   void Print(const char* str);
     97 
     98   // Printing of common values.
     99   void PrintRegister(int reg);
    100   void PrintSRegister(int reg);
    101   void PrintDRegister(int reg);
    102   int FormatVFPRegister(Instr* instr, const char* format);
    103   int FormatVFPinstruction(Instr* instr, const char* format);
    104   void PrintCondition(Instr* instr);
    105   void PrintShiftRm(Instr* instr);
    106   void PrintShiftImm(Instr* instr);
    107   void PrintPU(Instr* instr);
    108   void PrintSoftwareInterrupt(SoftwareInterruptCodes swi);
    109 
    110   // Handle formatting of instructions and their options.
    111   int FormatRegister(Instr* instr, const char* option);
    112   int FormatOption(Instr* instr, const char* option);
    113   void Format(Instr* instr, const char* format);
    114   void Unknown(Instr* instr);
    115 
    116   // Each of these functions decodes one particular instruction type, a 3-bit
    117   // field in the instruction encoding.
    118   // Types 0 and 1 are combined as they are largely the same except for the way
    119   // they interpret the shifter operand.
    120   void DecodeType01(Instr* instr);
    121   void DecodeType2(Instr* instr);
    122   void DecodeType3(Instr* instr);
    123   void DecodeType4(Instr* instr);
    124   void DecodeType5(Instr* instr);
    125   void DecodeType6(Instr* instr);
    126   void DecodeType7(Instr* instr);
    127   void DecodeUnconditional(Instr* instr);
    128   // For VFP support.
    129   void DecodeTypeVFP(Instr* instr);
    130   void DecodeType6CoprocessorIns(Instr* instr);
    131 
    132 
    133   const disasm::NameConverter& converter_;
    134   v8::internal::Vector<char> out_buffer_;
    135   int out_buffer_pos_;
    136 
    137   DISALLOW_COPY_AND_ASSIGN(Decoder);
    138 };
    139 
    140 
    141 // Support for assertions in the Decoder formatting functions.
    142 #define STRING_STARTS_WITH(string, compare_string) \
    143   (strncmp(string, compare_string, strlen(compare_string)) == 0)
    144 
    145 
    146 // Append the ch to the output buffer.
    147 void Decoder::PrintChar(const char ch) {
    148   out_buffer_[out_buffer_pos_++] = ch;
    149 }
    150 
    151 
    152 // Append the str to the output buffer.
    153 void Decoder::Print(const char* str) {
    154   char cur = *str++;
    155   while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    156     PrintChar(cur);
    157     cur = *str++;
    158   }
    159   out_buffer_[out_buffer_pos_] = 0;
    160 }
    161 
    162 
    163 // These condition names are defined in a way to match the native disassembler
    164 // formatting. See for example the command "objdump -d <binary file>".
    165 static const char* cond_names[max_condition] = {
    166   "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
    167   "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
    168 };
    169 
    170 
    171 // Print the condition guarding the instruction.
    172 void Decoder::PrintCondition(Instr* instr) {
    173   Print(cond_names[instr->ConditionField()]);
    174 }
    175 
    176 
    177 // Print the register name according to the active name converter.
    178 void Decoder::PrintRegister(int reg) {
    179   Print(converter_.NameOfCPURegister(reg));
    180 }
    181 
    182 // Print the VFP S register name according to the active name converter.
    183 void Decoder::PrintSRegister(int reg) {
    184   Print(assembler::arm::VFPRegisters::Name(reg));
    185 }
    186 
    187 // Print the  VFP D register name according to the active name converter.
    188 void Decoder::PrintDRegister(int reg) {
    189   Print(assembler::arm::VFPRegisters::Name(reg + 32));
    190 }
    191 
    192 
    193 // These shift names are defined in a way to match the native disassembler
    194 // formatting. See for example the command "objdump -d <binary file>".
    195 static const char* shift_names[max_shift] = {
    196   "lsl", "lsr", "asr", "ror"
    197 };
    198 
    199 
    200 // Print the register shift operands for the instruction. Generally used for
    201 // data processing instructions.
    202 void Decoder::PrintShiftRm(Instr* instr) {
    203   Shift shift = instr->ShiftField();
    204   int shift_amount = instr->ShiftAmountField();
    205   int rm = instr->RmField();
    206 
    207   PrintRegister(rm);
    208 
    209   if ((instr->RegShiftField() == 0) && (shift == LSL) && (shift_amount == 0)) {
    210     // Special case for using rm only.
    211     return;
    212   }
    213   if (instr->RegShiftField() == 0) {
    214     // by immediate
    215     if ((shift == ROR) && (shift_amount == 0)) {
    216       Print(", RRX");
    217       return;
    218     } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
    219       shift_amount = 32;
    220     }
    221     out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    222                                          ", %s #%d",
    223                                          shift_names[shift], shift_amount);
    224   } else {
    225     // by register
    226     int rs = instr->RsField();
    227     out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    228                                          ", %s ", shift_names[shift]);
    229     PrintRegister(rs);
    230   }
    231 }
    232 
    233 
    234 // Print the immediate operand for the instruction. Generally used for data
    235 // processing instructions.
    236 void Decoder::PrintShiftImm(Instr* instr) {
    237   int rotate = instr->RotateField() * 2;
    238   int immed8 = instr->Immed8Field();
    239   int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
    240   out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    241                                        "#%d", imm);
    242 }
    243 
    244 
    245 // Print PU formatting to reduce complexity of FormatOption.
    246 void Decoder::PrintPU(Instr* instr) {
    247   switch (instr->PUField()) {
    248     case 0: {
    249       Print("da");
    250       break;
    251     }
    252     case 1: {
    253       Print("ia");
    254       break;
    255     }
    256     case 2: {
    257       Print("db");
    258       break;
    259     }
    260     case 3: {
    261       Print("ib");
    262       break;
    263     }
    264     default: {
    265       UNREACHABLE();
    266       break;
    267     }
    268   }
    269 }
    270 
    271 
    272 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
    273 // the FormatOption method.
    274 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes swi) {
    275   switch (swi) {
    276     case call_rt_redirected:
    277       Print("call_rt_redirected");
    278       return;
    279     case break_point:
    280       Print("break_point");
    281       return;
    282     default:
    283       out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    284                                            "%d",
    285                                            swi);
    286       return;
    287   }
    288 }
    289 
    290 
    291 // Handle all register based formatting in this function to reduce the
    292 // complexity of FormatOption.
    293 int Decoder::FormatRegister(Instr* instr, const char* format) {
    294   ASSERT(format[0] == 'r');
    295   if (format[1] == 'n') {  // 'rn: Rn register
    296     int reg = instr->RnField();
    297     PrintRegister(reg);
    298     return 2;
    299   } else if (format[1] == 'd') {  // 'rd: Rd register
    300     int reg = instr->RdField();
    301     PrintRegister(reg);
    302     return 2;
    303   } else if (format[1] == 's') {  // 'rs: Rs register
    304     int reg = instr->RsField();
    305     PrintRegister(reg);
    306     return 2;
    307   } else if (format[1] == 'm') {  // 'rm: Rm register
    308     int reg = instr->RmField();
    309     PrintRegister(reg);
    310     return 2;
    311   } else if (format[1] == 't') {  // 'rt: Rt register
    312     int reg = instr->RtField();
    313     PrintRegister(reg);
    314     return 2;
    315   } else if (format[1] == 'l') {
    316     // 'rlist: register list for load and store multiple instructions
    317     ASSERT(STRING_STARTS_WITH(format, "rlist"));
    318     int rlist = instr->RlistField();
    319     int reg = 0;
    320     Print("{");
    321     // Print register list in ascending order, by scanning the bit mask.
    322     while (rlist != 0) {
    323       if ((rlist & 1) != 0) {
    324         PrintRegister(reg);
    325         if ((rlist >> 1) != 0) {
    326           Print(", ");
    327         }
    328       }
    329       reg++;
    330       rlist >>= 1;
    331     }
    332     Print("}");
    333     return 5;
    334   }
    335   UNREACHABLE();
    336   return -1;
    337 }
    338 
    339 
    340 // Handle all VFP register based formatting in this function to reduce the
    341 // complexity of FormatOption.
    342 int Decoder::FormatVFPRegister(Instr* instr, const char* format) {
    343   ASSERT((format[0] == 'S') || (format[0] == 'D'));
    344 
    345   if (format[1] == 'n') {
    346     int reg = instr->VnField();
    347     if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->NField()));
    348     if (format[0] == 'D') PrintDRegister(reg);
    349     return 2;
    350   } else if (format[1] == 'm') {
    351     int reg = instr->VmField();
    352     if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->MField()));
    353     if (format[0] == 'D') PrintDRegister(reg);
    354     return 2;
    355   } else if (format[1] == 'd') {
    356     int reg = instr->VdField();
    357     if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->DField()));
    358     if (format[0] == 'D') PrintDRegister(reg);
    359     return 2;
    360   }
    361 
    362   UNREACHABLE();
    363   return -1;
    364 }
    365 
    366 
    367 int Decoder::FormatVFPinstruction(Instr* instr, const char* format) {
    368     Print(format);
    369     return 0;
    370 }
    371 
    372 
    373 // FormatOption takes a formatting string and interprets it based on
    374 // the current instructions. The format string points to the first
    375 // character of the option string (the option escape has already been
    376 // consumed by the caller.)  FormatOption returns the number of
    377 // characters that were consumed from the formatting string.
    378 int Decoder::FormatOption(Instr* instr, const char* format) {
    379   switch (format[0]) {
    380     case 'a': {  // 'a: accumulate multiplies
    381       if (instr->Bit(21) == 0) {
    382         Print("ul");
    383       } else {
    384         Print("la");
    385       }
    386       return 1;
    387     }
    388     case 'b': {  // 'b: byte loads or stores
    389       if (instr->HasB()) {
    390         Print("b");
    391       }
    392       return 1;
    393     }
    394     case 'c': {  // 'cond: conditional execution
    395       ASSERT(STRING_STARTS_WITH(format, "cond"));
    396       PrintCondition(instr);
    397       return 4;
    398     }
    399     case 'h': {  // 'h: halfword operation for extra loads and stores
    400       if (instr->HasH()) {
    401         Print("h");
    402       } else {
    403         Print("b");
    404       }
    405       return 1;
    406     }
    407     case 'l': {  // 'l: branch and link
    408       if (instr->HasLink()) {
    409         Print("l");
    410       }
    411       return 1;
    412     }
    413     case 'm': {
    414       if (format[1] == 'e') {  // 'memop: load/store instructions
    415         ASSERT(STRING_STARTS_WITH(format, "memop"));
    416         if (instr->HasL()) {
    417           Print("ldr");
    418         } else {
    419           Print("str");
    420         }
    421         return 5;
    422       }
    423       // 'msg: for simulator break instructions
    424       ASSERT(STRING_STARTS_WITH(format, "msg"));
    425       byte* str =
    426           reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
    427       out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    428                                            "%s", converter_.NameInCode(str));
    429       return 3;
    430     }
    431     case 'o': {
    432       if ((format[3] == '1') && (format[4] == '2')) {
    433         // 'off12: 12-bit offset for load and store instructions
    434         ASSERT(STRING_STARTS_WITH(format, "off12"));
    435         out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    436                                              "%d", instr->Offset12Field());
    437         return 5;
    438       } else if ((format[3] == '1') && (format[4] == '6')) {
    439         ASSERT(STRING_STARTS_WITH(format, "off16to20"));
    440         out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    441                                            "%d", instr->Bits(20, 16) +1);
    442         return 9;
    443       } else if (format[3] == '7') {
    444         ASSERT(STRING_STARTS_WITH(format, "off7to11"));
    445         out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    446                                             "%d", instr->ShiftAmountField());
    447         return 8;
    448       }
    449       // 'off8: 8-bit offset for extra load and store instructions
    450       ASSERT(STRING_STARTS_WITH(format, "off8"));
    451       int offs8 = (instr->ImmedHField() << 4) | instr->ImmedLField();
    452       out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    453                                            "%d", offs8);
    454       return 4;
    455     }
    456     case 'p': {  // 'pu: P and U bits for load and store instructions
    457       ASSERT(STRING_STARTS_WITH(format, "pu"));
    458       PrintPU(instr);
    459       return 2;
    460     }
    461     case 'r': {
    462       return FormatRegister(instr, format);
    463     }
    464     case 's': {
    465       if (format[1] == 'h') {  // 'shift_op or 'shift_rm
    466         if (format[6] == 'o') {  // 'shift_op
    467           ASSERT(STRING_STARTS_WITH(format, "shift_op"));
    468           if (instr->TypeField() == 0) {
    469             PrintShiftRm(instr);
    470           } else {
    471             ASSERT(instr->TypeField() == 1);
    472             PrintShiftImm(instr);
    473           }
    474           return 8;
    475         } else {  // 'shift_rm
    476           ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
    477           PrintShiftRm(instr);
    478           return 8;
    479         }
    480       } else if (format[1] == 'w') {  // 'swi
    481         ASSERT(STRING_STARTS_WITH(format, "swi"));
    482         PrintSoftwareInterrupt(instr->SwiField());
    483         return 3;
    484       } else if (format[1] == 'i') {  // 'sign: signed extra loads and stores
    485         ASSERT(STRING_STARTS_WITH(format, "sign"));
    486         if (instr->HasSign()) {
    487           Print("s");
    488         }
    489         return 4;
    490       }
    491       // 's: S field of data processing instructions
    492       if (instr->HasS()) {
    493         Print("s");
    494       }
    495       return 1;
    496     }
    497     case 't': {  // 'target: target of branch instructions
    498       ASSERT(STRING_STARTS_WITH(format, "target"));
    499       int off = (instr->SImmed24Field() << 2) + 8;
    500       out_buffer_pos_ += v8i::OS::SNPrintF(
    501           out_buffer_ + out_buffer_pos_,
    502           "%+d -> %s",
    503           off,
    504           converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
    505       return 6;
    506     }
    507     case 'u': {  // 'u: signed or unsigned multiplies
    508       // The manual gets the meaning of bit 22 backwards in the multiply
    509       // instruction overview on page A3.16.2.  The instructions that
    510       // exist in u and s variants are the following:
    511       // smull A4.1.87
    512       // umull A4.1.129
    513       // umlal A4.1.128
    514       // smlal A4.1.76
    515       // For these 0 means u and 1 means s.  As can be seen on their individual
    516       // pages.  The other 18 mul instructions have the bit set or unset in
    517       // arbitrary ways that are unrelated to the signedness of the instruction.
    518       // None of these 18 instructions exist in both a 'u' and an 's' variant.
    519 
    520       if (instr->Bit(22) == 0) {
    521         Print("u");
    522       } else {
    523         Print("s");
    524       }
    525       return 1;
    526     }
    527     case 'v': {
    528       return FormatVFPinstruction(instr, format);
    529     }
    530     case 'S':
    531     case 'D': {
    532       return FormatVFPRegister(instr, format);
    533     }
    534     case 'w': {  // 'w: W field of load and store instructions
    535       if (instr->HasW()) {
    536         Print("!");
    537       }
    538       return 1;
    539     }
    540     default: {
    541       UNREACHABLE();
    542       break;
    543     }
    544   }
    545   UNREACHABLE();
    546   return -1;
    547 }
    548 
    549 
    550 // Format takes a formatting string for a whole instruction and prints it into
    551 // the output buffer. All escaped options are handed to FormatOption to be
    552 // parsed further.
    553 void Decoder::Format(Instr* instr, const char* format) {
    554   char cur = *format++;
    555   while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    556     if (cur == '\'') {  // Single quote is used as the formatting escape.
    557       format += FormatOption(instr, format);
    558     } else {
    559       out_buffer_[out_buffer_pos_++] = cur;
    560     }
    561     cur = *format++;
    562   }
    563   out_buffer_[out_buffer_pos_]  = '\0';
    564 }
    565 
    566 
    567 // For currently unimplemented decodings the disassembler calls Unknown(instr)
    568 // which will just print "unknown" of the instruction bits.
    569 void Decoder::Unknown(Instr* instr) {
    570   Format(instr, "unknown");
    571 }
    572 
    573 
    574 void Decoder::DecodeType01(Instr* instr) {
    575   int type = instr->TypeField();
    576   if ((type == 0) && instr->IsSpecialType0()) {
    577     // multiply instruction or extra loads and stores
    578     if (instr->Bits(7, 4) == 9) {
    579       if (instr->Bit(24) == 0) {
    580         // multiply instructions
    581         if (instr->Bit(23) == 0) {
    582           if (instr->Bit(21) == 0) {
    583             // The MUL instruction description (A 4.1.33) refers to Rd as being
    584             // the destination for the operation, but it confusingly uses the
    585             // Rn field to encode it.
    586             Format(instr, "mul'cond's 'rn, 'rm, 'rs");
    587           } else {
    588             // The MLA instruction description (A 4.1.28) refers to the order
    589             // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
    590             // Rn field to encode the Rd register and the Rd field to encode
    591             // the Rn register.
    592             Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
    593           }
    594         } else {
    595           // The signed/long multiply instructions use the terms RdHi and RdLo
    596           // when referring to the target registers. They are mapped to the Rn
    597           // and Rd fields as follows:
    598           // RdLo == Rd field
    599           // RdHi == Rn field
    600           // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
    601           Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
    602         }
    603       } else {
    604         Unknown(instr);  // not used by V8
    605       }
    606     } else {
    607       // extra load/store instructions
    608       switch (instr->PUField()) {
    609         case 0: {
    610           if (instr->Bit(22) == 0) {
    611             Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
    612           } else {
    613             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
    614           }
    615           break;
    616         }
    617         case 1: {
    618           if (instr->Bit(22) == 0) {
    619             Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
    620           } else {
    621             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
    622           }
    623           break;
    624         }
    625         case 2: {
    626           if (instr->Bit(22) == 0) {
    627             Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
    628           } else {
    629             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
    630           }
    631           break;
    632         }
    633         case 3: {
    634           if (instr->Bit(22) == 0) {
    635             Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
    636           } else {
    637             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
    638           }
    639           break;
    640         }
    641         default: {
    642           // The PU field is a 2-bit field.
    643           UNREACHABLE();
    644           break;
    645         }
    646       }
    647       return;
    648     }
    649   } else {
    650     switch (instr->OpcodeField()) {
    651       case AND: {
    652         Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
    653         break;
    654       }
    655       case EOR: {
    656         Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
    657         break;
    658       }
    659       case SUB: {
    660         Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
    661         break;
    662       }
    663       case RSB: {
    664         Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
    665         break;
    666       }
    667       case ADD: {
    668         Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
    669         break;
    670       }
    671       case ADC: {
    672         Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
    673         break;
    674       }
    675       case SBC: {
    676         Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
    677         break;
    678       }
    679       case RSC: {
    680         Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
    681         break;
    682       }
    683       case TST: {
    684         if (instr->HasS()) {
    685           Format(instr, "tst'cond 'rn, 'shift_op");
    686         } else {
    687           Unknown(instr);  // not used by V8
    688         }
    689         break;
    690       }
    691       case TEQ: {
    692         if (instr->HasS()) {
    693           Format(instr, "teq'cond 'rn, 'shift_op");
    694         } else {
    695           switch (instr->Bits(7, 4)) {
    696             case BX:
    697               Format(instr, "bx'cond 'rm");
    698               break;
    699             case BLX:
    700               Format(instr, "blx'cond 'rm");
    701               break;
    702             default:
    703               Unknown(instr);  // not used by V8
    704               break;
    705           }
    706         }
    707         break;
    708       }
    709       case CMP: {
    710         if (instr->HasS()) {
    711           Format(instr, "cmp'cond 'rn, 'shift_op");
    712         } else {
    713           Unknown(instr);  // not used by V8
    714         }
    715         break;
    716       }
    717       case CMN: {
    718         if (instr->HasS()) {
    719           Format(instr, "cmn'cond 'rn, 'shift_op");
    720         } else {
    721           switch (instr->Bits(7, 4)) {
    722             case CLZ:
    723               Format(instr, "clz'cond 'rd, 'rm");
    724               break;
    725             default:
    726               Unknown(instr);  // not used by V8
    727               break;
    728           }
    729         }
    730         break;
    731       }
    732       case ORR: {
    733         Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
    734         break;
    735       }
    736       case MOV: {
    737         Format(instr, "mov'cond's 'rd, 'shift_op");
    738         break;
    739       }
    740       case BIC: {
    741         Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
    742         break;
    743       }
    744       case MVN: {
    745         Format(instr, "mvn'cond's 'rd, 'shift_op");
    746         break;
    747       }
    748       default: {
    749         // The Opcode field is a 4-bit field.
    750         UNREACHABLE();
    751         break;
    752       }
    753     }
    754   }
    755 }
    756 
    757 
    758 void Decoder::DecodeType2(Instr* instr) {
    759   switch (instr->PUField()) {
    760     case 0: {
    761       if (instr->HasW()) {
    762         Unknown(instr);  // not used in V8
    763       }
    764       Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
    765       break;
    766     }
    767     case 1: {
    768       if (instr->HasW()) {
    769         Unknown(instr);  // not used in V8
    770       }
    771       Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
    772       break;
    773     }
    774     case 2: {
    775       Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
    776       break;
    777     }
    778     case 3: {
    779       Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
    780       break;
    781     }
    782     default: {
    783       // The PU field is a 2-bit field.
    784       UNREACHABLE();
    785       break;
    786     }
    787   }
    788 }
    789 
    790 
    791 void Decoder::DecodeType3(Instr* instr) {
    792   switch (instr->PUField()) {
    793     case 0: {
    794       ASSERT(!instr->HasW());
    795       Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
    796       break;
    797     }
    798     case 1: {
    799       ASSERT(!instr->HasW());
    800       Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
    801       break;
    802     }
    803     case 2: {
    804       Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
    805       break;
    806     }
    807     case 3: {
    808       if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
    809         uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
    810         uint32_t lsbit = static_cast<uint32_t>(instr->ShiftAmountField());
    811         uint32_t msbit = widthminus1 + lsbit;
    812         if (msbit <= 31) {
    813           Format(instr, "ubfx'cond 'rd, 'rm, #'off7to11, #'off16to20");
    814         } else {
    815           UNREACHABLE();
    816         }
    817       } else {
    818         Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
    819       }
    820       break;
    821     }
    822     default: {
    823       // The PU field is a 2-bit field.
    824       UNREACHABLE();
    825       break;
    826     }
    827   }
    828 }
    829 
    830 
    831 void Decoder::DecodeType4(Instr* instr) {
    832   ASSERT(instr->Bit(22) == 0);  // Privileged mode currently not supported.
    833   if (instr->HasL()) {
    834     Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
    835   } else {
    836     Format(instr, "stm'cond'pu 'rn'w, 'rlist");
    837   }
    838 }
    839 
    840 
    841 void Decoder::DecodeType5(Instr* instr) {
    842   Format(instr, "b'l'cond 'target");
    843 }
    844 
    845 
    846 void Decoder::DecodeType6(Instr* instr) {
    847   DecodeType6CoprocessorIns(instr);
    848 }
    849 
    850 
    851 void Decoder::DecodeType7(Instr* instr) {
    852   if (instr->Bit(24) == 1) {
    853     Format(instr, "swi'cond 'swi");
    854   } else {
    855     DecodeTypeVFP(instr);
    856   }
    857 }
    858 
    859 void Decoder::DecodeUnconditional(Instr* instr) {
    860   if (instr->Bits(7, 4) == 0xB && instr->Bits(27, 25) == 0 && instr->HasL()) {
    861     Format(instr, "'memop'h'pu 'rd, ");
    862     bool immediate = instr->HasB();
    863     switch (instr->PUField()) {
    864       case 0: {
    865         // Post index, negative.
    866         if (instr->HasW()) {
    867           Unknown(instr);
    868           break;
    869         }
    870         if (immediate) {
    871           Format(instr, "['rn], #-'imm12");
    872         } else {
    873           Format(instr, "['rn], -'rm");
    874         }
    875         break;
    876       }
    877       case 1: {
    878         // Post index, positive.
    879         if (instr->HasW()) {
    880           Unknown(instr);
    881           break;
    882         }
    883         if (immediate) {
    884           Format(instr, "['rn], #+'imm12");
    885         } else {
    886           Format(instr, "['rn], +'rm");
    887         }
    888         break;
    889       }
    890       case 2: {
    891         // Pre index or offset, negative.
    892         if (immediate) {
    893           Format(instr, "['rn, #-'imm12]'w");
    894         } else {
    895           Format(instr, "['rn, -'rm]'w");
    896         }
    897         break;
    898       }
    899       case 3: {
    900         // Pre index or offset, positive.
    901         if (immediate) {
    902           Format(instr, "['rn, #+'imm12]'w");
    903         } else {
    904           Format(instr, "['rn, +'rm]'w");
    905         }
    906         break;
    907       }
    908       default: {
    909         // The PU field is a 2-bit field.
    910         UNREACHABLE();
    911         break;
    912       }
    913     }
    914     return;
    915   }
    916   Format(instr, "break 'msg");
    917 }
    918 
    919 
    920 // void Decoder::DecodeTypeVFP(Instr* instr)
    921 // vmov: Sn = Rt
    922 // vmov: Rt = Sn
    923 // vcvt: Dd = Sm
    924 // vcvt: Sd = Dm
    925 // Dd = vadd(Dn, Dm)
    926 // Dd = vsub(Dn, Dm)
    927 // Dd = vmul(Dn, Dm)
    928 // Dd = vdiv(Dn, Dm)
    929 // vcmp(Dd, Dm)
    930 // VMRS
    931 void Decoder::DecodeTypeVFP(Instr* instr) {
    932   ASSERT((instr->TypeField() == 7) && (instr->Bit(24) == 0x0) );
    933 
    934   if (instr->Bit(23) == 1) {
    935     if ((instr->Bits(21, 19) == 0x7) &&
    936         (instr->Bits(18, 16) == 0x5) &&
    937         (instr->Bits(11, 9) == 0x5) &&
    938         (instr->Bit(8) == 1) &&
    939         (instr->Bit(6) == 1) &&
    940         (instr->Bit(4) == 0)) {
    941       Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm");
    942     } else if ((instr->Bits(21, 19) == 0x7) &&
    943                (instr->Bits(18, 16) == 0x0) &&
    944                (instr->Bits(11, 9) == 0x5) &&
    945                (instr->Bit(8) == 1) &&
    946                (instr->Bit(7) == 1) &&
    947                (instr->Bit(6) == 1) &&
    948                (instr->Bit(4) == 0)) {
    949       Format(instr, "vcvt.f64.s32'cond 'Dd, 'Sm");
    950     } else if ((instr->Bit(21) == 0x0) &&
    951                (instr->Bit(20) == 0x0) &&
    952                (instr->Bits(11, 9) == 0x5) &&
    953                (instr->Bit(8) == 1) &&
    954                (instr->Bit(6) == 0) &&
    955                (instr->Bit(4) == 0)) {
    956         Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm");
    957     } else if ((instr->Bits(21, 20) == 0x3) &&
    958                (instr->Bits(19, 16) == 0x4) &&
    959                (instr->Bits(11, 9) == 0x5) &&
    960                (instr->Bit(8) == 0x1) &&
    961                (instr->Bit(6) == 0x1) &&
    962                (instr->Bit(4) == 0x0)) {
    963       Format(instr, "vcmp.f64'cond 'Dd, 'Dm");
    964     } else if ((instr->Bits(23, 20) == 0xF) &&
    965                (instr->Bits(19, 16) == 0x1) &&
    966                (instr->Bits(11, 8) == 0xA) &&
    967                (instr->Bits(7, 5) == 0x0) &&
    968                (instr->Bit(4) == 0x1)    &&
    969                (instr->Bits(3, 0) == 0x0)) {
    970         if (instr->Bits(15, 12) == 0xF)
    971           Format(instr, "vmrs'cond APSR, FPSCR");
    972         else
    973           Unknown(instr);  // Not used by V8.
    974     } else {
    975       Unknown(instr);  // Not used by V8.
    976     }
    977   } else if (instr->Bit(21) == 1) {
    978     if ((instr->Bit(20) == 0x1) &&
    979         (instr->Bits(11, 9) == 0x5) &&
    980         (instr->Bit(8) == 0x1) &&
    981         (instr->Bit(6) == 0) &&
    982         (instr->Bit(4) == 0)) {
    983       Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm");
    984     } else if ((instr->Bit(20) == 0x1) &&
    985                (instr->Bits(11, 9) == 0x5) &&
    986                (instr->Bit(8) == 0x1) &&
    987                (instr->Bit(6) == 1) &&
    988                (instr->Bit(4) == 0)) {
    989       Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm");
    990     } else if ((instr->Bit(20) == 0x0) &&
    991                (instr->Bits(11, 9) == 0x5) &&
    992                (instr->Bit(8) == 0x1) &&
    993                (instr->Bit(6) == 0) &&
    994                (instr->Bit(4) == 0)) {
    995       Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm");
    996     } else {
    997       Unknown(instr);  // Not used by V8.
    998     }
    999   } else {
   1000     if ((instr->Bit(20) == 0x0) &&
   1001         (instr->Bits(11, 8) == 0xA) &&
   1002         (instr->Bits(6, 5) == 0x0) &&
   1003         (instr->Bit(4) == 1) &&
   1004         (instr->Bits(3, 0) == 0x0)) {
   1005       Format(instr, "vmov'cond 'Sn, 'rt");
   1006     } else if ((instr->Bit(20) == 0x1) &&
   1007                (instr->Bits(11, 8) == 0xA) &&
   1008                (instr->Bits(6, 5) == 0x0) &&
   1009                (instr->Bit(4) == 1) &&
   1010                (instr->Bits(3, 0) == 0x0)) {
   1011       Format(instr, "vmov'cond 'rt, 'Sn");
   1012     } else {
   1013       Unknown(instr);  // Not used by V8.
   1014     }
   1015   }
   1016 }
   1017 
   1018 
   1019 // Decode Type 6 coprocessor instructions.
   1020 // Dm = vmov(Rt, Rt2)
   1021 // <Rt, Rt2> = vmov(Dm)
   1022 // Ddst = MEM(Rbase + 4*offset).
   1023 // MEM(Rbase + 4*offset) = Dsrc.
   1024 void Decoder::DecodeType6CoprocessorIns(Instr* instr) {
   1025   ASSERT((instr->TypeField() == 6));
   1026 
   1027   if (instr->CoprocessorField() != 0xB) {
   1028     Unknown(instr);  // Not used by V8.
   1029   } else {
   1030     switch (instr->OpcodeField()) {
   1031       case 0x2:
   1032         // Load and store double to two GP registers
   1033         if (instr->Bits(7, 4) != 0x1) {
   1034           Unknown(instr);  // Not used by V8.
   1035         } else if (instr->HasL()) {
   1036           Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
   1037         } else {
   1038           Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
   1039         }
   1040         break;
   1041       case 0x8:
   1042         if (instr->HasL()) {
   1043           Format(instr, "vldr'cond 'Dd, ['rn - 4*'off8]");
   1044         } else {
   1045           Format(instr, "vstr'cond 'Dd, ['rn - 4*'off8]");
   1046         }
   1047         break;
   1048       case 0xC:
   1049         if (instr->HasL()) {
   1050           Format(instr, "vldr'cond 'Dd, ['rn + 4*'off8]");
   1051         } else {
   1052           Format(instr, "vstr'cond 'Dd, ['rn + 4*'off8]");
   1053         }
   1054         break;
   1055       default:
   1056         Unknown(instr);  // Not used by V8.
   1057         break;
   1058     }
   1059   }
   1060 }
   1061 
   1062 
   1063 // Disassemble the instruction at *instr_ptr into the output buffer.
   1064 int Decoder::InstructionDecode(byte* instr_ptr) {
   1065   Instr* instr = Instr::At(instr_ptr);
   1066   // Print raw instruction bytes.
   1067   out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1068                                        "%08x       ",
   1069                                        instr->InstructionBits());
   1070   if (instr->ConditionField() == special_condition) {
   1071     DecodeUnconditional(instr);
   1072     return Instr::kInstrSize;
   1073   }
   1074   switch (instr->TypeField()) {
   1075     case 0:
   1076     case 1: {
   1077       DecodeType01(instr);
   1078       break;
   1079     }
   1080     case 2: {
   1081       DecodeType2(instr);
   1082       break;
   1083     }
   1084     case 3: {
   1085       DecodeType3(instr);
   1086       break;
   1087     }
   1088     case 4: {
   1089       DecodeType4(instr);
   1090       break;
   1091     }
   1092     case 5: {
   1093       DecodeType5(instr);
   1094       break;
   1095     }
   1096     case 6: {
   1097       DecodeType6(instr);
   1098       break;
   1099     }
   1100     case 7: {
   1101       DecodeType7(instr);
   1102       break;
   1103     }
   1104     default: {
   1105       // The type field is 3-bits in the ARM encoding.
   1106       UNREACHABLE();
   1107       break;
   1108     }
   1109   }
   1110   return Instr::kInstrSize;
   1111 }
   1112 
   1113 
   1114 } }  // namespace assembler::arm
   1115 
   1116 
   1117 
   1118 //------------------------------------------------------------------------------
   1119 
   1120 namespace disasm {
   1121 
   1122 namespace v8i = v8::internal;
   1123 
   1124 
   1125 const char* NameConverter::NameOfAddress(byte* addr) const {
   1126   static v8::internal::EmbeddedVector<char, 32> tmp_buffer;
   1127   v8::internal::OS::SNPrintF(tmp_buffer, "%p", addr);
   1128   return tmp_buffer.start();
   1129 }
   1130 
   1131 
   1132 const char* NameConverter::NameOfConstant(byte* addr) const {
   1133   return NameOfAddress(addr);
   1134 }
   1135 
   1136 
   1137 const char* NameConverter::NameOfCPURegister(int reg) const {
   1138   return assembler::arm::Registers::Name(reg);
   1139 }
   1140 
   1141 
   1142 const char* NameConverter::NameOfByteCPURegister(int reg) const {
   1143   UNREACHABLE();  // ARM does not have the concept of a byte register
   1144   return "nobytereg";
   1145 }
   1146 
   1147 
   1148 const char* NameConverter::NameOfXMMRegister(int reg) const {
   1149   UNREACHABLE();  // ARM does not have any XMM registers
   1150   return "noxmmreg";
   1151 }
   1152 
   1153 
   1154 const char* NameConverter::NameInCode(byte* addr) const {
   1155   // The default name converter is called for unknown code. So we will not try
   1156   // to access any memory.
   1157   return "";
   1158 }
   1159 
   1160 
   1161 //------------------------------------------------------------------------------
   1162 
   1163 Disassembler::Disassembler(const NameConverter& converter)
   1164     : converter_(converter) {}
   1165 
   1166 
   1167 Disassembler::~Disassembler() {}
   1168 
   1169 
   1170 int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
   1171                                     byte* instruction) {
   1172   assembler::arm::Decoder d(converter_, buffer);
   1173   return d.InstructionDecode(instruction);
   1174 }
   1175 
   1176 
   1177 int Disassembler::ConstantPoolSizeAt(byte* instruction) {
   1178   int instruction_bits = *(reinterpret_cast<int*>(instruction));
   1179   if ((instruction_bits & 0xfff00000) == 0x03000000) {
   1180     return instruction_bits & 0x0000ffff;
   1181   } else {
   1182     return -1;
   1183   }
   1184 }
   1185 
   1186 
   1187 void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
   1188   NameConverter converter;
   1189   Disassembler d(converter);
   1190   for (byte* pc = begin; pc < end;) {
   1191     v8::internal::EmbeddedVector<char, 128> buffer;
   1192     buffer[0] = '\0';
   1193     byte* prev_pc = pc;
   1194     pc += d.InstructionDecode(buffer, pc);
   1195     fprintf(f, "%p    %08x      %s\n",
   1196             prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
   1197   }
   1198 }
   1199 
   1200 
   1201 }  // namespace disasm
   1202