Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // Platform specific code for Win32.
     29 #ifndef WIN32_LEAN_AND_MEAN
     30 // WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
     31 #define WIN32_LEAN_AND_MEAN
     32 #endif
     33 #ifndef NOMINMAX
     34 #define NOMINMAX
     35 #endif
     36 #ifndef NOKERNEL
     37 #define NOKERNEL
     38 #endif
     39 #ifndef NOUSER
     40 #define NOUSER
     41 #endif
     42 #ifndef NOSERVICE
     43 #define NOSERVICE
     44 #endif
     45 #ifndef NOSOUND
     46 #define NOSOUND
     47 #endif
     48 #ifndef NOMCX
     49 #define NOMCX
     50 #endif
     51 // Require Windows XP or higher (this is required for the RtlCaptureContext
     52 // function to be present).
     53 #ifndef _WIN32_WINNT
     54 #define _WIN32_WINNT 0x501
     55 #endif
     56 
     57 #include <windows.h>
     58 
     59 #include <time.h>  // For LocalOffset() implementation.
     60 #include <mmsystem.h>  // For timeGetTime().
     61 #ifdef __MINGW32__
     62 // Require Windows XP or higher when compiling with MinGW. This is for MinGW
     63 // header files to expose getaddrinfo.
     64 #undef _WIN32_WINNT
     65 #define _WIN32_WINNT 0x501
     66 #endif  // __MINGW32__
     67 #ifndef __MINGW32__
     68 #include <dbghelp.h>  // For SymLoadModule64 and al.
     69 #endif  // __MINGW32__
     70 #include <limits.h>  // For INT_MAX and al.
     71 #include <tlhelp32.h>  // For Module32First and al.
     72 
     73 // These additional WIN32 includes have to be right here as the #undef's below
     74 // makes it impossible to have them elsewhere.
     75 #include <winsock2.h>
     76 #include <ws2tcpip.h>
     77 #include <process.h>  // for _beginthreadex()
     78 #include <stdlib.h>
     79 
     80 #undef VOID
     81 #undef DELETE
     82 #undef IN
     83 #undef THIS
     84 #undef CONST
     85 #undef NAN
     86 #undef GetObject
     87 #undef CreateMutex
     88 #undef CreateSemaphore
     89 
     90 #include "v8.h"
     91 
     92 #include "platform.h"
     93 
     94 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
     95 // refer to The Open Group Base Specification for specification of the correct
     96 // semantics for these functions.
     97 // (http://www.opengroup.org/onlinepubs/000095399/)
     98 #ifdef _MSC_VER
     99 
    100 namespace v8 {
    101 namespace internal {
    102 
    103 // Test for finite value - usually defined in math.h
    104 int isfinite(double x) {
    105   return _finite(x);
    106 }
    107 
    108 }  // namespace v8
    109 }  // namespace internal
    110 
    111 // Test for a NaN (not a number) value - usually defined in math.h
    112 int isnan(double x) {
    113   return _isnan(x);
    114 }
    115 
    116 
    117 // Test for infinity - usually defined in math.h
    118 int isinf(double x) {
    119   return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
    120 }
    121 
    122 
    123 // Test if x is less than y and both nominal - usually defined in math.h
    124 int isless(double x, double y) {
    125   return isnan(x) || isnan(y) ? 0 : x < y;
    126 }
    127 
    128 
    129 // Test if x is greater than y and both nominal - usually defined in math.h
    130 int isgreater(double x, double y) {
    131   return isnan(x) || isnan(y) ? 0 : x > y;
    132 }
    133 
    134 
    135 // Classify floating point number - usually defined in math.h
    136 int fpclassify(double x) {
    137   // Use the MS-specific _fpclass() for classification.
    138   int flags = _fpclass(x);
    139 
    140   // Determine class. We cannot use a switch statement because
    141   // the _FPCLASS_ constants are defined as flags.
    142   if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
    143   if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
    144   if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
    145   if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
    146 
    147   // All cases should be covered by the code above.
    148   ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
    149   return FP_NAN;
    150 }
    151 
    152 
    153 // Test sign - usually defined in math.h
    154 int signbit(double x) {
    155   // We need to take care of the special case of both positive
    156   // and negative versions of zero.
    157   if (x == 0)
    158     return _fpclass(x) & _FPCLASS_NZ;
    159   else
    160     return x < 0;
    161 }
    162 
    163 
    164 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
    165 // defined in strings.h.
    166 int strncasecmp(const char* s1, const char* s2, int n) {
    167   return _strnicmp(s1, s2, n);
    168 }
    169 
    170 #endif  // _MSC_VER
    171 
    172 
    173 // Extra functions for MinGW. Most of these are the _s functions which are in
    174 // the Microsoft Visual Studio C++ CRT.
    175 #ifdef __MINGW32__
    176 
    177 int localtime_s(tm* out_tm, const time_t* time) {
    178   tm* posix_local_time_struct = localtime(time);
    179   if (posix_local_time_struct == NULL) return 1;
    180   *out_tm = *posix_local_time_struct;
    181   return 0;
    182 }
    183 
    184 
    185 // Not sure this the correct interpretation of _mkgmtime
    186 time_t _mkgmtime(tm* timeptr) {
    187   return mktime(timeptr);
    188 }
    189 
    190 
    191 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
    192   *pFile = fopen(filename, mode);
    193   return *pFile != NULL ? 0 : 1;
    194 }
    195 
    196 
    197 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
    198                  const char* format, va_list argptr) {
    199   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
    200 }
    201 #define _TRUNCATE 0
    202 
    203 
    204 int strncpy_s(char* strDest, size_t numberOfElements,
    205               const char* strSource, size_t count) {
    206   strncpy(strDest, strSource, count);
    207   return 0;
    208 }
    209 
    210 #endif  // __MINGW32__
    211 
    212 // Generate a pseudo-random number in the range 0-2^31-1. Usually
    213 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
    214 int random() {
    215   return rand();
    216 }
    217 
    218 
    219 namespace v8 {
    220 namespace internal {
    221 
    222 double ceiling(double x) {
    223   return ceil(x);
    224 }
    225 
    226 #ifdef _WIN64
    227 typedef double (*ModuloFunction)(double, double);
    228 
    229 // Defined in codegen-x64.cc.
    230 ModuloFunction CreateModuloFunction();
    231 
    232 double modulo(double x, double y) {
    233   static ModuloFunction function = CreateModuloFunction();
    234   return function(x, y);
    235 }
    236 #else  // Win32
    237 
    238 double modulo(double x, double y) {
    239   // Workaround MS fmod bugs. ECMA-262 says:
    240   // dividend is finite and divisor is an infinity => result equals dividend
    241   // dividend is a zero and divisor is nonzero finite => result equals dividend
    242   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
    243       !(x == 0 && (y != 0 && isfinite(y)))) {
    244     x = fmod(x, y);
    245   }
    246   return x;
    247 }
    248 
    249 #endif  // _WIN64
    250 
    251 // ----------------------------------------------------------------------------
    252 // The Time class represents time on win32. A timestamp is represented as
    253 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
    254 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    255 // January 1, 1970.
    256 
    257 class Time {
    258  public:
    259   // Constructors.
    260   Time();
    261   explicit Time(double jstime);
    262   Time(int year, int mon, int day, int hour, int min, int sec);
    263 
    264   // Convert timestamp to JavaScript representation.
    265   double ToJSTime();
    266 
    267   // Set timestamp to current time.
    268   void SetToCurrentTime();
    269 
    270   // Returns the local timezone offset in milliseconds east of UTC. This is
    271   // the number of milliseconds you must add to UTC to get local time, i.e.
    272   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    273   // routine also takes into account whether daylight saving is effect
    274   // at the time.
    275   int64_t LocalOffset();
    276 
    277   // Returns the daylight savings time offset for the time in milliseconds.
    278   int64_t DaylightSavingsOffset();
    279 
    280   // Returns a string identifying the current timezone for the
    281   // timestamp taking into account daylight saving.
    282   char* LocalTimezone();
    283 
    284  private:
    285   // Constants for time conversion.
    286   static const int64_t kTimeEpoc = 116444736000000000LL;
    287   static const int64_t kTimeScaler = 10000;
    288   static const int64_t kMsPerMinute = 60000;
    289 
    290   // Constants for timezone information.
    291   static const int kTzNameSize = 128;
    292   static const bool kShortTzNames = false;
    293 
    294   // Timezone information. We need to have static buffers for the
    295   // timezone names because we return pointers to these in
    296   // LocalTimezone().
    297   static bool tz_initialized_;
    298   static TIME_ZONE_INFORMATION tzinfo_;
    299   static char std_tz_name_[kTzNameSize];
    300   static char dst_tz_name_[kTzNameSize];
    301 
    302   // Initialize the timezone information (if not already done).
    303   static void TzSet();
    304 
    305   // Guess the name of the timezone from the bias.
    306   static const char* GuessTimezoneNameFromBias(int bias);
    307 
    308   // Return whether or not daylight savings time is in effect at this time.
    309   bool InDST();
    310 
    311   // Return the difference (in milliseconds) between this timestamp and
    312   // another timestamp.
    313   int64_t Diff(Time* other);
    314 
    315   // Accessor for FILETIME representation.
    316   FILETIME& ft() { return time_.ft_; }
    317 
    318   // Accessor for integer representation.
    319   int64_t& t() { return time_.t_; }
    320 
    321   // Although win32 uses 64-bit integers for representing timestamps,
    322   // these are packed into a FILETIME structure. The FILETIME structure
    323   // is just a struct representing a 64-bit integer. The TimeStamp union
    324   // allows access to both a FILETIME and an integer representation of
    325   // the timestamp.
    326   union TimeStamp {
    327     FILETIME ft_;
    328     int64_t t_;
    329   };
    330 
    331   TimeStamp time_;
    332 };
    333 
    334 // Static variables.
    335 bool Time::tz_initialized_ = false;
    336 TIME_ZONE_INFORMATION Time::tzinfo_;
    337 char Time::std_tz_name_[kTzNameSize];
    338 char Time::dst_tz_name_[kTzNameSize];
    339 
    340 
    341 // Initialize timestamp to start of epoc.
    342 Time::Time() {
    343   t() = 0;
    344 }
    345 
    346 
    347 // Initialize timestamp from a JavaScript timestamp.
    348 Time::Time(double jstime) {
    349   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    350 }
    351 
    352 
    353 // Initialize timestamp from date/time components.
    354 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
    355   SYSTEMTIME st;
    356   st.wYear = year;
    357   st.wMonth = mon;
    358   st.wDay = day;
    359   st.wHour = hour;
    360   st.wMinute = min;
    361   st.wSecond = sec;
    362   st.wMilliseconds = 0;
    363   SystemTimeToFileTime(&st, &ft());
    364 }
    365 
    366 
    367 // Convert timestamp to JavaScript timestamp.
    368 double Time::ToJSTime() {
    369   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    370 }
    371 
    372 
    373 // Guess the name of the timezone from the bias.
    374 // The guess is very biased towards the northern hemisphere.
    375 const char* Time::GuessTimezoneNameFromBias(int bias) {
    376   static const int kHour = 60;
    377   switch (-bias) {
    378     case -9*kHour: return "Alaska";
    379     case -8*kHour: return "Pacific";
    380     case -7*kHour: return "Mountain";
    381     case -6*kHour: return "Central";
    382     case -5*kHour: return "Eastern";
    383     case -4*kHour: return "Atlantic";
    384     case  0*kHour: return "GMT";
    385     case +1*kHour: return "Central Europe";
    386     case +2*kHour: return "Eastern Europe";
    387     case +3*kHour: return "Russia";
    388     case +5*kHour + 30: return "India";
    389     case +8*kHour: return "China";
    390     case +9*kHour: return "Japan";
    391     case +12*kHour: return "New Zealand";
    392     default: return "Local";
    393   }
    394 }
    395 
    396 
    397 // Initialize timezone information. The timezone information is obtained from
    398 // windows. If we cannot get the timezone information we fall back to CET.
    399 // Please notice that this code is not thread-safe.
    400 void Time::TzSet() {
    401   // Just return if timezone information has already been initialized.
    402   if (tz_initialized_) return;
    403 
    404   // Initialize POSIX time zone data.
    405   _tzset();
    406   // Obtain timezone information from operating system.
    407   memset(&tzinfo_, 0, sizeof(tzinfo_));
    408   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    409     // If we cannot get timezone information we fall back to CET.
    410     tzinfo_.Bias = -60;
    411     tzinfo_.StandardDate.wMonth = 10;
    412     tzinfo_.StandardDate.wDay = 5;
    413     tzinfo_.StandardDate.wHour = 3;
    414     tzinfo_.StandardBias = 0;
    415     tzinfo_.DaylightDate.wMonth = 3;
    416     tzinfo_.DaylightDate.wDay = 5;
    417     tzinfo_.DaylightDate.wHour = 2;
    418     tzinfo_.DaylightBias = -60;
    419   }
    420 
    421   // Make standard and DST timezone names.
    422   OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
    423                "%S",
    424                tzinfo_.StandardName);
    425   std_tz_name_[kTzNameSize - 1] = '\0';
    426   OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
    427                "%S",
    428                tzinfo_.DaylightName);
    429   dst_tz_name_[kTzNameSize - 1] = '\0';
    430 
    431   // If OS returned empty string or resource id (like "@tzres.dll,-211")
    432   // simply guess the name from the UTC bias of the timezone.
    433   // To properly resolve the resource identifier requires a library load,
    434   // which is not possible in a sandbox.
    435   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    436     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
    437                  "%s Standard Time",
    438                  GuessTimezoneNameFromBias(tzinfo_.Bias));
    439   }
    440   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    441     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
    442                  "%s Daylight Time",
    443                  GuessTimezoneNameFromBias(tzinfo_.Bias));
    444   }
    445 
    446   // Timezone information initialized.
    447   tz_initialized_ = true;
    448 }
    449 
    450 
    451 // Return the difference in milliseconds between this and another timestamp.
    452 int64_t Time::Diff(Time* other) {
    453   return (t() - other->t()) / kTimeScaler;
    454 }
    455 
    456 
    457 // Set timestamp to current time.
    458 void Time::SetToCurrentTime() {
    459   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    460   // Because we're fast, we like fast timers which have at least a
    461   // 1ms resolution.
    462   //
    463   // timeGetTime() provides 1ms granularity when combined with
    464   // timeBeginPeriod().  If the host application for v8 wants fast
    465   // timers, it can use timeBeginPeriod to increase the resolution.
    466   //
    467   // Using timeGetTime() has a drawback because it is a 32bit value
    468   // and hence rolls-over every ~49days.
    469   //
    470   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    471   // and then use timeGetTime to extrapolate current time from the
    472   // start time.  To deal with rollovers, we resync the clock
    473   // any time when more than kMaxClockElapsedTime has passed or
    474   // whenever timeGetTime creates a rollover.
    475 
    476   static bool initialized = false;
    477   static TimeStamp init_time;
    478   static DWORD init_ticks;
    479   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    480   static const int64_t kMaxClockElapsedTime =
    481       60*kHundredNanosecondsPerSecond;  // 1 minute
    482 
    483   // If we are uninitialized, we need to resync the clock.
    484   bool needs_resync = !initialized;
    485 
    486   // Get the current time.
    487   TimeStamp time_now;
    488   GetSystemTimeAsFileTime(&time_now.ft_);
    489   DWORD ticks_now = timeGetTime();
    490 
    491   // Check if we need to resync due to clock rollover.
    492   needs_resync |= ticks_now < init_ticks;
    493 
    494   // Check if we need to resync due to elapsed time.
    495   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    496 
    497   // Resync the clock if necessary.
    498   if (needs_resync) {
    499     GetSystemTimeAsFileTime(&init_time.ft_);
    500     init_ticks = ticks_now = timeGetTime();
    501     initialized = true;
    502   }
    503 
    504   // Finally, compute the actual time.  Why is this so hard.
    505   DWORD elapsed = ticks_now - init_ticks;
    506   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    507 }
    508 
    509 
    510 // Return the local timezone offset in milliseconds east of UTC. This
    511 // takes into account whether daylight saving is in effect at the time.
    512 // Only times in the 32-bit Unix range may be passed to this function.
    513 // Also, adding the time-zone offset to the input must not overflow.
    514 // The function EquivalentTime() in date.js guarantees this.
    515 int64_t Time::LocalOffset() {
    516   // Initialize timezone information, if needed.
    517   TzSet();
    518 
    519   Time rounded_to_second(*this);
    520   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
    521       1000 * kTimeScaler;
    522   // Convert to local time using POSIX localtime function.
    523   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    524   // very slow.  Other browsers use localtime().
    525 
    526   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    527   // POSIX seconds past 1/1/1970 0:00:00.
    528   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    529   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    530     return 0;
    531   }
    532   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    533   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    534 
    535   // Convert to local time, as struct with fields for day, hour, year, etc.
    536   tm posix_local_time_struct;
    537   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    538   // Convert local time in struct to POSIX time as if it were a UTC time.
    539   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
    540   Time localtime(1000.0 * local_posix_time);
    541 
    542   return localtime.Diff(&rounded_to_second);
    543 }
    544 
    545 
    546 // Return whether or not daylight savings time is in effect at this time.
    547 bool Time::InDST() {
    548   // Initialize timezone information, if needed.
    549   TzSet();
    550 
    551   // Determine if DST is in effect at the specified time.
    552   bool in_dst = false;
    553   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
    554     // Get the local timezone offset for the timestamp in milliseconds.
    555     int64_t offset = LocalOffset();
    556 
    557     // Compute the offset for DST. The bias parameters in the timezone info
    558     // are specified in minutes. These must be converted to milliseconds.
    559     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
    560 
    561     // If the local time offset equals the timezone bias plus the daylight
    562     // bias then DST is in effect.
    563     in_dst = offset == dstofs;
    564   }
    565 
    566   return in_dst;
    567 }
    568 
    569 
    570 // Return the daylight savings time offset for this time.
    571 int64_t Time::DaylightSavingsOffset() {
    572   return InDST() ? 60 * kMsPerMinute : 0;
    573 }
    574 
    575 
    576 // Returns a string identifying the current timezone for the
    577 // timestamp taking into account daylight saving.
    578 char* Time::LocalTimezone() {
    579   // Return the standard or DST time zone name based on whether daylight
    580   // saving is in effect at the given time.
    581   return InDST() ? dst_tz_name_ : std_tz_name_;
    582 }
    583 
    584 
    585 void OS::Setup() {
    586   // Seed the random number generator.
    587   // Convert the current time to a 64-bit integer first, before converting it
    588   // to an unsigned. Going directly can cause an overflow and the seed to be
    589   // set to all ones. The seed will be identical for different instances that
    590   // call this setup code within the same millisecond.
    591   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
    592   srand(static_cast<unsigned int>(seed));
    593 }
    594 
    595 
    596 // Returns the accumulated user time for thread.
    597 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    598   FILETIME dummy;
    599   uint64_t usertime;
    600 
    601   // Get the amount of time that the thread has executed in user mode.
    602   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    603                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    604 
    605   // Adjust the resolution to micro-seconds.
    606   usertime /= 10;
    607 
    608   // Convert to seconds and microseconds
    609   *secs = static_cast<uint32_t>(usertime / 1000000);
    610   *usecs = static_cast<uint32_t>(usertime % 1000000);
    611   return 0;
    612 }
    613 
    614 
    615 // Returns current time as the number of milliseconds since
    616 // 00:00:00 UTC, January 1, 1970.
    617 double OS::TimeCurrentMillis() {
    618   Time t;
    619   t.SetToCurrentTime();
    620   return t.ToJSTime();
    621 }
    622 
    623 // Returns the tickcounter based on timeGetTime.
    624 int64_t OS::Ticks() {
    625   return timeGetTime() * 1000;  // Convert to microseconds.
    626 }
    627 
    628 
    629 // Returns a string identifying the current timezone taking into
    630 // account daylight saving.
    631 const char* OS::LocalTimezone(double time) {
    632   return Time(time).LocalTimezone();
    633 }
    634 
    635 
    636 // Returns the local time offset in milliseconds east of UTC without
    637 // taking daylight savings time into account.
    638 double OS::LocalTimeOffset() {
    639   // Use current time, rounded to the millisecond.
    640   Time t(TimeCurrentMillis());
    641   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    642   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
    643 }
    644 
    645 
    646 // Returns the daylight savings offset in milliseconds for the given
    647 // time.
    648 double OS::DaylightSavingsOffset(double time) {
    649   int64_t offset = Time(time).DaylightSavingsOffset();
    650   return static_cast<double>(offset);
    651 }
    652 
    653 
    654 // ----------------------------------------------------------------------------
    655 // Win32 console output.
    656 //
    657 // If a Win32 application is linked as a console application it has a normal
    658 // standard output and standard error. In this case normal printf works fine
    659 // for output. However, if the application is linked as a GUI application,
    660 // the process doesn't have a console, and therefore (debugging) output is lost.
    661 // This is the case if we are embedded in a windows program (like a browser).
    662 // In order to be able to get debug output in this case the the debugging
    663 // facility using OutputDebugString. This output goes to the active debugger
    664 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    665 
    666 enum OutputMode {
    667   UNKNOWN,  // Output method has not yet been determined.
    668   CONSOLE,  // Output is written to stdout.
    669   ODS       // Output is written to debug facility.
    670 };
    671 
    672 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    673 
    674 
    675 // Determine if the process has a console for output.
    676 static bool HasConsole() {
    677   // Only check the first time. Eventual race conditions are not a problem,
    678   // because all threads will eventually determine the same mode.
    679   if (output_mode == UNKNOWN) {
    680     // We cannot just check that the standard output is attached to a console
    681     // because this would fail if output is redirected to a file. Therefore we
    682     // say that a process does not have an output console if either the
    683     // standard output handle is invalid or its file type is unknown.
    684     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    685         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    686       output_mode = CONSOLE;
    687     else
    688       output_mode = ODS;
    689   }
    690   return output_mode == CONSOLE;
    691 }
    692 
    693 
    694 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    695   if (HasConsole()) {
    696     vfprintf(stream, format, args);
    697   } else {
    698     // It is important to use safe print here in order to avoid
    699     // overflowing the buffer. We might truncate the output, but this
    700     // does not crash.
    701     EmbeddedVector<char, 4096> buffer;
    702     OS::VSNPrintF(buffer, format, args);
    703     OutputDebugStringA(buffer.start());
    704   }
    705 }
    706 
    707 
    708 FILE* OS::FOpen(const char* path, const char* mode) {
    709   FILE* result;
    710   if (fopen_s(&result, path, mode) == 0) {
    711     return result;
    712   } else {
    713     return NULL;
    714   }
    715 }
    716 
    717 
    718 // Open log file in binary mode to avoid /n -> /r/n conversion.
    719 const char* OS::LogFileOpenMode = "wb";
    720 
    721 
    722 // Print (debug) message to console.
    723 void OS::Print(const char* format, ...) {
    724   va_list args;
    725   va_start(args, format);
    726   VPrint(format, args);
    727   va_end(args);
    728 }
    729 
    730 
    731 void OS::VPrint(const char* format, va_list args) {
    732   VPrintHelper(stdout, format, args);
    733 }
    734 
    735 
    736 // Print error message to console.
    737 void OS::PrintError(const char* format, ...) {
    738   va_list args;
    739   va_start(args, format);
    740   VPrintError(format, args);
    741   va_end(args);
    742 }
    743 
    744 
    745 void OS::VPrintError(const char* format, va_list args) {
    746   VPrintHelper(stderr, format, args);
    747 }
    748 
    749 
    750 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
    751   va_list args;
    752   va_start(args, format);
    753   int result = VSNPrintF(str, format, args);
    754   va_end(args);
    755   return result;
    756 }
    757 
    758 
    759 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
    760   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
    761   // Make sure to zero-terminate the string if the output was
    762   // truncated or if there was an error.
    763   if (n < 0 || n >= str.length()) {
    764     str[str.length() - 1] = '\0';
    765     return -1;
    766   } else {
    767     return n;
    768   }
    769 }
    770 
    771 
    772 char* OS::StrChr(char* str, int c) {
    773   return const_cast<char*>(strchr(str, c));
    774 }
    775 
    776 
    777 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
    778   int result = strncpy_s(dest.start(), dest.length(), src, n);
    779   USE(result);
    780   ASSERT(result == 0);
    781 }
    782 
    783 
    784 // We keep the lowest and highest addresses mapped as a quick way of
    785 // determining that pointers are outside the heap (used mostly in assertions
    786 // and verification).  The estimate is conservative, ie, not all addresses in
    787 // 'allocated' space are actually allocated to our heap.  The range is
    788 // [lowest, highest), inclusive on the low and and exclusive on the high end.
    789 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
    790 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
    791 
    792 
    793 static void UpdateAllocatedSpaceLimits(void* address, int size) {
    794   lowest_ever_allocated = Min(lowest_ever_allocated, address);
    795   highest_ever_allocated =
    796       Max(highest_ever_allocated,
    797           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
    798 }
    799 
    800 
    801 bool OS::IsOutsideAllocatedSpace(void* pointer) {
    802   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
    803     return true;
    804   // Ask the Windows API
    805   if (IsBadWritePtr(pointer, 1))
    806     return true;
    807   return false;
    808 }
    809 
    810 
    811 // Get the system's page size used by VirtualAlloc() or the next power
    812 // of two. The reason for always returning a power of two is that the
    813 // rounding up in OS::Allocate expects that.
    814 static size_t GetPageSize() {
    815   static size_t page_size = 0;
    816   if (page_size == 0) {
    817     SYSTEM_INFO info;
    818     GetSystemInfo(&info);
    819     page_size = RoundUpToPowerOf2(info.dwPageSize);
    820   }
    821   return page_size;
    822 }
    823 
    824 
    825 // The allocation alignment is the guaranteed alignment for
    826 // VirtualAlloc'ed blocks of memory.
    827 size_t OS::AllocateAlignment() {
    828   static size_t allocate_alignment = 0;
    829   if (allocate_alignment == 0) {
    830     SYSTEM_INFO info;
    831     GetSystemInfo(&info);
    832     allocate_alignment = info.dwAllocationGranularity;
    833   }
    834   return allocate_alignment;
    835 }
    836 
    837 
    838 void* OS::Allocate(const size_t requested,
    839                    size_t* allocated,
    840                    bool is_executable) {
    841   // VirtualAlloc rounds allocated size to page size automatically.
    842   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    843 
    844   // Windows XP SP2 allows Data Excution Prevention (DEP).
    845   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    846   LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
    847   if (mbase == NULL) {
    848     LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
    849     return NULL;
    850   }
    851 
    852   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
    853 
    854   *allocated = msize;
    855   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
    856   return mbase;
    857 }
    858 
    859 
    860 void OS::Free(void* address, const size_t size) {
    861   // TODO(1240712): VirtualFree has a return value which is ignored here.
    862   VirtualFree(address, 0, MEM_RELEASE);
    863   USE(size);
    864 }
    865 
    866 
    867 #ifdef ENABLE_HEAP_PROTECTION
    868 
    869 void OS::Protect(void* address, size_t size) {
    870   // TODO(1240712): VirtualProtect has a return value which is ignored here.
    871   DWORD old_protect;
    872   VirtualProtect(address, size, PAGE_READONLY, &old_protect);
    873 }
    874 
    875 
    876 void OS::Unprotect(void* address, size_t size, bool is_executable) {
    877   // TODO(1240712): VirtualProtect has a return value which is ignored here.
    878   DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    879   DWORD old_protect;
    880   VirtualProtect(address, size, new_protect, &old_protect);
    881 }
    882 
    883 #endif
    884 
    885 
    886 void OS::Sleep(int milliseconds) {
    887   ::Sleep(milliseconds);
    888 }
    889 
    890 
    891 void OS::Abort() {
    892   if (!IsDebuggerPresent()) {
    893 #ifdef _MSC_VER
    894     // Make the MSVCRT do a silent abort.
    895     _set_abort_behavior(0, _WRITE_ABORT_MSG);
    896     _set_abort_behavior(0, _CALL_REPORTFAULT);
    897 #endif  // _MSC_VER
    898     abort();
    899   } else {
    900     DebugBreak();
    901   }
    902 }
    903 
    904 
    905 void OS::DebugBreak() {
    906 #ifdef _MSC_VER
    907   __debugbreak();
    908 #else
    909   ::DebugBreak();
    910 #endif
    911 }
    912 
    913 
    914 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
    915  public:
    916   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
    917     : file_(file), file_mapping_(file_mapping), memory_(memory) { }
    918   virtual ~Win32MemoryMappedFile();
    919   virtual void* memory() { return memory_; }
    920  private:
    921   HANDLE file_;
    922   HANDLE file_mapping_;
    923   void* memory_;
    924 };
    925 
    926 
    927 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    928     void* initial) {
    929   // Open a physical file
    930   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    931       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
    932   if (file == NULL) return NULL;
    933   // Create a file mapping for the physical file
    934   HANDLE file_mapping = CreateFileMapping(file, NULL,
    935       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    936   if (file_mapping == NULL) return NULL;
    937   // Map a view of the file into memory
    938   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    939   if (memory) memmove(memory, initial, size);
    940   return new Win32MemoryMappedFile(file, file_mapping, memory);
    941 }
    942 
    943 
    944 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
    945   if (memory_ != NULL)
    946     UnmapViewOfFile(memory_);
    947   CloseHandle(file_mapping_);
    948   CloseHandle(file_);
    949 }
    950 
    951 
    952 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
    953 // dynamically. This is to avoid being depending on dbghelp.dll and
    954 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
    955 // kernel32.dll at some point so loading functions defines in TlHelp32.h
    956 // dynamically might not be necessary any more - for some versions of Windows?).
    957 
    958 // Function pointers to functions dynamically loaded from dbghelp.dll.
    959 #define DBGHELP_FUNCTION_LIST(V)  \
    960   V(SymInitialize)                \
    961   V(SymGetOptions)                \
    962   V(SymSetOptions)                \
    963   V(SymGetSearchPath)             \
    964   V(SymLoadModule64)              \
    965   V(StackWalk64)                  \
    966   V(SymGetSymFromAddr64)          \
    967   V(SymGetLineFromAddr64)         \
    968   V(SymFunctionTableAccess64)     \
    969   V(SymGetModuleBase64)
    970 
    971 // Function pointers to functions dynamically loaded from dbghelp.dll.
    972 #define TLHELP32_FUNCTION_LIST(V)  \
    973   V(CreateToolhelp32Snapshot)      \
    974   V(Module32FirstW)                \
    975   V(Module32NextW)
    976 
    977 // Define the decoration to use for the type and variable name used for
    978 // dynamically loaded DLL function..
    979 #define DLL_FUNC_TYPE(name) _##name##_
    980 #define DLL_FUNC_VAR(name) _##name
    981 
    982 // Define the type for each dynamically loaded DLL function. The function
    983 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
    984 // from the Windows include files are redefined here to have the function
    985 // definitions to be as close to the ones in the original .h files as possible.
    986 #ifndef IN
    987 #define IN
    988 #endif
    989 #ifndef VOID
    990 #define VOID void
    991 #endif
    992 
    993 // DbgHelp isn't supported on MinGW yet
    994 #ifndef __MINGW32__
    995 // DbgHelp.h functions.
    996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
    997                                                        IN PSTR UserSearchPath,
    998                                                        IN BOOL fInvadeProcess);
    999 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
   1000 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
   1001 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
   1002     IN HANDLE hProcess,
   1003     OUT PSTR SearchPath,
   1004     IN DWORD SearchPathLength);
   1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
   1006     IN HANDLE hProcess,
   1007     IN HANDLE hFile,
   1008     IN PSTR ImageName,
   1009     IN PSTR ModuleName,
   1010     IN DWORD64 BaseOfDll,
   1011     IN DWORD SizeOfDll);
   1012 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
   1013     DWORD MachineType,
   1014     HANDLE hProcess,
   1015     HANDLE hThread,
   1016     LPSTACKFRAME64 StackFrame,
   1017     PVOID ContextRecord,
   1018     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
   1019     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
   1020     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
   1021     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
   1022 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
   1023     IN HANDLE hProcess,
   1024     IN DWORD64 qwAddr,
   1025     OUT PDWORD64 pdwDisplacement,
   1026     OUT PIMAGEHLP_SYMBOL64 Symbol);
   1027 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
   1028     IN HANDLE hProcess,
   1029     IN DWORD64 qwAddr,
   1030     OUT PDWORD pdwDisplacement,
   1031     OUT PIMAGEHLP_LINE64 Line64);
   1032 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
   1033 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
   1034     HANDLE hProcess,
   1035     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
   1036 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
   1037     HANDLE hProcess,
   1038     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
   1039 
   1040 // TlHelp32.h functions.
   1041 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
   1042     DWORD dwFlags,
   1043     DWORD th32ProcessID);
   1044 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
   1045                                                         LPMODULEENTRY32W lpme);
   1046 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
   1047                                                        LPMODULEENTRY32W lpme);
   1048 
   1049 #undef IN
   1050 #undef VOID
   1051 
   1052 // Declare a variable for each dynamically loaded DLL function.
   1053 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
   1054 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1055 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1056 #undef DEF_DLL_FUNCTION
   1057 
   1058 // Load the functions. This function has a lot of "ugly" macros in order to
   1059 // keep down code duplication.
   1060 
   1061 static bool LoadDbgHelpAndTlHelp32() {
   1062   static bool dbghelp_loaded = false;
   1063 
   1064   if (dbghelp_loaded) return true;
   1065 
   1066   HMODULE module;
   1067 
   1068   // Load functions from the dbghelp.dll module.
   1069   module = LoadLibrary(TEXT("dbghelp.dll"));
   1070   if (module == NULL) {
   1071     return false;
   1072   }
   1073 
   1074 #define LOAD_DLL_FUNC(name)                                                 \
   1075   DLL_FUNC_VAR(name) =                                                      \
   1076       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1077 
   1078 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1079 
   1080 #undef LOAD_DLL_FUNC
   1081 
   1082   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1083   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1084   module = LoadLibrary(TEXT("kernel32.dll"));
   1085   if (module == NULL) {
   1086     return false;
   1087   }
   1088 
   1089 #define LOAD_DLL_FUNC(name)                                                 \
   1090   DLL_FUNC_VAR(name) =                                                      \
   1091       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1092 
   1093 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1094 
   1095 #undef LOAD_DLL_FUNC
   1096 
   1097   // Check that all functions where loaded.
   1098   bool result =
   1099 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1100 
   1101 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1102 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1103 
   1104 #undef DLL_FUNC_LOADED
   1105   true;
   1106 
   1107   dbghelp_loaded = result;
   1108   return result;
   1109   // NOTE: The modules are never unloaded and will stay around until the
   1110   // application is closed.
   1111 }
   1112 
   1113 
   1114 // Load the symbols for generating stack traces.
   1115 static bool LoadSymbols(HANDLE process_handle) {
   1116   static bool symbols_loaded = false;
   1117 
   1118   if (symbols_loaded) return true;
   1119 
   1120   BOOL ok;
   1121 
   1122   // Initialize the symbol engine.
   1123   ok = _SymInitialize(process_handle,  // hProcess
   1124                       NULL,            // UserSearchPath
   1125                       FALSE);          // fInvadeProcess
   1126   if (!ok) return false;
   1127 
   1128   DWORD options = _SymGetOptions();
   1129   options |= SYMOPT_LOAD_LINES;
   1130   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1131   options = _SymSetOptions(options);
   1132 
   1133   char buf[OS::kStackWalkMaxNameLen] = {0};
   1134   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1135   if (!ok) {
   1136     int err = GetLastError();
   1137     PrintF("%d\n", err);
   1138     return false;
   1139   }
   1140 
   1141   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1142       TH32CS_SNAPMODULE,       // dwFlags
   1143       GetCurrentProcessId());  // th32ProcessId
   1144   if (snapshot == INVALID_HANDLE_VALUE) return false;
   1145   MODULEENTRY32W module_entry;
   1146   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1147   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1148   while (cont) {
   1149     DWORD64 base;
   1150     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1151     // both unicode and ASCII strings even though the parameter is PSTR.
   1152     base = _SymLoadModule64(
   1153         process_handle,                                       // hProcess
   1154         0,                                                    // hFile
   1155         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1156         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1157         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1158         module_entry.modBaseSize);                            // SizeOfDll
   1159     if (base == 0) {
   1160       int err = GetLastError();
   1161       if (err != ERROR_MOD_NOT_FOUND &&
   1162           err != ERROR_INVALID_HANDLE) return false;
   1163     }
   1164     LOG(SharedLibraryEvent(
   1165             module_entry.szExePath,
   1166             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
   1167             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
   1168                                            module_entry.modBaseSize)));
   1169     cont = _Module32NextW(snapshot, &module_entry);
   1170   }
   1171   CloseHandle(snapshot);
   1172 
   1173   symbols_loaded = true;
   1174   return true;
   1175 }
   1176 
   1177 
   1178 void OS::LogSharedLibraryAddresses() {
   1179   // SharedLibraryEvents are logged when loading symbol information.
   1180   // Only the shared libraries loaded at the time of the call to
   1181   // LogSharedLibraryAddresses are logged.  DLLs loaded after
   1182   // initialization are not accounted for.
   1183   if (!LoadDbgHelpAndTlHelp32()) return;
   1184   HANDLE process_handle = GetCurrentProcess();
   1185   LoadSymbols(process_handle);
   1186 }
   1187 
   1188 
   1189 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
   1190 
   1191 // Switch off warning 4748 (/GS can not protect parameters and local variables
   1192 // from local buffer overrun because optimizations are disabled in function) as
   1193 // it is triggered by the use of inline assembler.
   1194 #pragma warning(push)
   1195 #pragma warning(disable : 4748)
   1196 int OS::StackWalk(Vector<OS::StackFrame> frames) {
   1197   BOOL ok;
   1198 
   1199   // Load the required functions from DLL's.
   1200   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
   1201 
   1202   // Get the process and thread handles.
   1203   HANDLE process_handle = GetCurrentProcess();
   1204   HANDLE thread_handle = GetCurrentThread();
   1205 
   1206   // Read the symbols.
   1207   if (!LoadSymbols(process_handle)) return kStackWalkError;
   1208 
   1209   // Capture current context.
   1210   CONTEXT context;
   1211   RtlCaptureContext(&context);
   1212 
   1213   // Initialize the stack walking
   1214   STACKFRAME64 stack_frame;
   1215   memset(&stack_frame, 0, sizeof(stack_frame));
   1216 #ifdef  _WIN64
   1217   stack_frame.AddrPC.Offset = context.Rip;
   1218   stack_frame.AddrFrame.Offset = context.Rbp;
   1219   stack_frame.AddrStack.Offset = context.Rsp;
   1220 #else
   1221   stack_frame.AddrPC.Offset = context.Eip;
   1222   stack_frame.AddrFrame.Offset = context.Ebp;
   1223   stack_frame.AddrStack.Offset = context.Esp;
   1224 #endif
   1225   stack_frame.AddrPC.Mode = AddrModeFlat;
   1226   stack_frame.AddrFrame.Mode = AddrModeFlat;
   1227   stack_frame.AddrStack.Mode = AddrModeFlat;
   1228   int frames_count = 0;
   1229 
   1230   // Collect stack frames.
   1231   int frames_size = frames.length();
   1232   while (frames_count < frames_size) {
   1233     ok = _StackWalk64(
   1234         IMAGE_FILE_MACHINE_I386,    // MachineType
   1235         process_handle,             // hProcess
   1236         thread_handle,              // hThread
   1237         &stack_frame,               // StackFrame
   1238         &context,                   // ContextRecord
   1239         NULL,                       // ReadMemoryRoutine
   1240         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
   1241         _SymGetModuleBase64,        // GetModuleBaseRoutine
   1242         NULL);                      // TranslateAddress
   1243     if (!ok) break;
   1244 
   1245     // Store the address.
   1246     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
   1247     frames[frames_count].address =
   1248         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
   1249 
   1250     // Try to locate a symbol for this frame.
   1251     DWORD64 symbol_displacement;
   1252     IMAGEHLP_SYMBOL64* symbol = NULL;
   1253     symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
   1254     if (!symbol) return kStackWalkError;  // Out of memory.
   1255     memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
   1256     symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
   1257     symbol->MaxNameLength = kStackWalkMaxNameLen;
   1258     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
   1259                               stack_frame.AddrPC.Offset,  // Address
   1260                               &symbol_displacement,       // Displacement
   1261                               symbol);                    // Symbol
   1262     if (ok) {
   1263       // Try to locate more source information for the symbol.
   1264       IMAGEHLP_LINE64 Line;
   1265       memset(&Line, 0, sizeof(Line));
   1266       Line.SizeOfStruct = sizeof(Line);
   1267       DWORD line_displacement;
   1268       ok = _SymGetLineFromAddr64(
   1269           process_handle,             // hProcess
   1270           stack_frame.AddrPC.Offset,  // dwAddr
   1271           &line_displacement,         // pdwDisplacement
   1272           &Line);                     // Line
   1273       // Format a text representation of the frame based on the information
   1274       // available.
   1275       if (ok) {
   1276         SNPrintF(MutableCStrVector(frames[frames_count].text,
   1277                                    kStackWalkMaxTextLen),
   1278                  "%s %s:%d:%d",
   1279                  symbol->Name, Line.FileName, Line.LineNumber,
   1280                  line_displacement);
   1281       } else {
   1282         SNPrintF(MutableCStrVector(frames[frames_count].text,
   1283                                    kStackWalkMaxTextLen),
   1284                  "%s",
   1285                  symbol->Name);
   1286       }
   1287       // Make sure line termination is in place.
   1288       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
   1289     } else {
   1290       // No text representation of this frame
   1291       frames[frames_count].text[0] = '\0';
   1292 
   1293       // Continue if we are just missing a module (for non C/C++ frames a
   1294       // module will never be found).
   1295       int err = GetLastError();
   1296       if (err != ERROR_MOD_NOT_FOUND) {
   1297         DeleteArray(symbol);
   1298         break;
   1299       }
   1300     }
   1301     DeleteArray(symbol);
   1302 
   1303     frames_count++;
   1304   }
   1305 
   1306   // Return the number of frames filled in.
   1307   return frames_count;
   1308 }
   1309 
   1310 // Restore warnings to previous settings.
   1311 #pragma warning(pop)
   1312 
   1313 #else  // __MINGW32__
   1314 void OS::LogSharedLibraryAddresses() { }
   1315 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
   1316 #endif  // __MINGW32__
   1317 
   1318 
   1319 uint64_t OS::CpuFeaturesImpliedByPlatform() {
   1320   return 0;  // Windows runs on anything.
   1321 }
   1322 
   1323 
   1324 double OS::nan_value() {
   1325 #ifdef _MSC_VER
   1326   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
   1327   // in mask set, so value equals mask.
   1328   static const __int64 nanval = kQuietNaNMask;
   1329   return *reinterpret_cast<const double*>(&nanval);
   1330 #else  // _MSC_VER
   1331   return NAN;
   1332 #endif  // _MSC_VER
   1333 }
   1334 
   1335 
   1336 int OS::ActivationFrameAlignment() {
   1337 #ifdef _WIN64
   1338   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1339 #else
   1340   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1341 #endif
   1342 }
   1343 
   1344 
   1345 bool VirtualMemory::IsReserved() {
   1346   return address_ != NULL;
   1347 }
   1348 
   1349 
   1350 VirtualMemory::VirtualMemory(size_t size) {
   1351   address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
   1352   size_ = size;
   1353 }
   1354 
   1355 
   1356 VirtualMemory::~VirtualMemory() {
   1357   if (IsReserved()) {
   1358     if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
   1359   }
   1360 }
   1361 
   1362 
   1363 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1364   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1365   if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
   1366     return false;
   1367   }
   1368 
   1369   UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
   1370   return true;
   1371 }
   1372 
   1373 
   1374 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1375   ASSERT(IsReserved());
   1376   return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
   1377 }
   1378 
   1379 
   1380 // ----------------------------------------------------------------------------
   1381 // Win32 thread support.
   1382 
   1383 // Definition of invalid thread handle and id.
   1384 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1385 static const DWORD kNoThreadId = 0;
   1386 
   1387 
   1388 class ThreadHandle::PlatformData : public Malloced {
   1389  public:
   1390   explicit PlatformData(ThreadHandle::Kind kind) {
   1391     Initialize(kind);
   1392   }
   1393 
   1394   void Initialize(ThreadHandle::Kind kind) {
   1395     switch (kind) {
   1396       case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
   1397       case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
   1398     }
   1399   }
   1400   DWORD tid_;  // Win32 thread identifier.
   1401 };
   1402 
   1403 
   1404 // Entry point for threads. The supplied argument is a pointer to the thread
   1405 // object. The entry function dispatches to the run method in the thread
   1406 // object. It is important that this function has __stdcall calling
   1407 // convention.
   1408 static unsigned int __stdcall ThreadEntry(void* arg) {
   1409   Thread* thread = reinterpret_cast<Thread*>(arg);
   1410   // This is also initialized by the last parameter to _beginthreadex() but we
   1411   // don't know which thread will run first (the original thread or the new
   1412   // one) so we initialize it here too.
   1413   thread->thread_handle_data()->tid_ = GetCurrentThreadId();
   1414   thread->Run();
   1415   return 0;
   1416 }
   1417 
   1418 
   1419 // Initialize thread handle to invalid handle.
   1420 ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
   1421   data_ = new PlatformData(kind);
   1422 }
   1423 
   1424 
   1425 ThreadHandle::~ThreadHandle() {
   1426   delete data_;
   1427 }
   1428 
   1429 
   1430 // The thread is running if it has the same id as the current thread.
   1431 bool ThreadHandle::IsSelf() const {
   1432   return GetCurrentThreadId() == data_->tid_;
   1433 }
   1434 
   1435 
   1436 // Test for invalid thread handle.
   1437 bool ThreadHandle::IsValid() const {
   1438   return data_->tid_ != kNoThreadId;
   1439 }
   1440 
   1441 
   1442 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
   1443   data_->Initialize(kind);
   1444 }
   1445 
   1446 
   1447 class Thread::PlatformData : public Malloced {
   1448  public:
   1449   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1450   HANDLE thread_;
   1451 };
   1452 
   1453 
   1454 // Initialize a Win32 thread object. The thread has an invalid thread
   1455 // handle until it is started.
   1456 
   1457 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
   1458   data_ = new PlatformData(kNoThread);
   1459 }
   1460 
   1461 
   1462 // Close our own handle for the thread.
   1463 Thread::~Thread() {
   1464   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1465   delete data_;
   1466 }
   1467 
   1468 
   1469 // Create a new thread. It is important to use _beginthreadex() instead of
   1470 // the Win32 function CreateThread(), because the CreateThread() does not
   1471 // initialize thread specific structures in the C runtime library.
   1472 void Thread::Start() {
   1473   data_->thread_ = reinterpret_cast<HANDLE>(
   1474       _beginthreadex(NULL,
   1475                      0,
   1476                      ThreadEntry,
   1477                      this,
   1478                      0,
   1479                      reinterpret_cast<unsigned int*>(
   1480                          &thread_handle_data()->tid_)));
   1481   ASSERT(IsValid());
   1482 }
   1483 
   1484 
   1485 // Wait for thread to terminate.
   1486 void Thread::Join() {
   1487   WaitForSingleObject(data_->thread_, INFINITE);
   1488 }
   1489 
   1490 
   1491 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1492   DWORD result = TlsAlloc();
   1493   ASSERT(result != TLS_OUT_OF_INDEXES);
   1494   return static_cast<LocalStorageKey>(result);
   1495 }
   1496 
   1497 
   1498 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1499   BOOL result = TlsFree(static_cast<DWORD>(key));
   1500   USE(result);
   1501   ASSERT(result);
   1502 }
   1503 
   1504 
   1505 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1506   return TlsGetValue(static_cast<DWORD>(key));
   1507 }
   1508 
   1509 
   1510 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1511   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1512   USE(result);
   1513   ASSERT(result);
   1514 }
   1515 
   1516 
   1517 
   1518 void Thread::YieldCPU() {
   1519   Sleep(0);
   1520 }
   1521 
   1522 
   1523 // ----------------------------------------------------------------------------
   1524 // Win32 mutex support.
   1525 //
   1526 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
   1527 // faster than Win32 Mutex objects because they are implemented using user mode
   1528 // atomic instructions. Therefore we only do ring transitions if there is lock
   1529 // contention.
   1530 
   1531 class Win32Mutex : public Mutex {
   1532  public:
   1533 
   1534   Win32Mutex() { InitializeCriticalSection(&cs_); }
   1535 
   1536   ~Win32Mutex() { DeleteCriticalSection(&cs_); }
   1537 
   1538   int Lock() {
   1539     EnterCriticalSection(&cs_);
   1540     return 0;
   1541   }
   1542 
   1543   int Unlock() {
   1544     LeaveCriticalSection(&cs_);
   1545     return 0;
   1546   }
   1547 
   1548  private:
   1549   CRITICAL_SECTION cs_;  // Critical section used for mutex
   1550 };
   1551 
   1552 
   1553 Mutex* OS::CreateMutex() {
   1554   return new Win32Mutex();
   1555 }
   1556 
   1557 
   1558 // ----------------------------------------------------------------------------
   1559 // Win32 semaphore support.
   1560 //
   1561 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
   1562 // semaphores are anonymous. Also, the semaphores are initialized to have
   1563 // no upper limit on count.
   1564 
   1565 
   1566 class Win32Semaphore : public Semaphore {
   1567  public:
   1568   explicit Win32Semaphore(int count) {
   1569     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
   1570   }
   1571 
   1572   ~Win32Semaphore() {
   1573     CloseHandle(sem);
   1574   }
   1575 
   1576   void Wait() {
   1577     WaitForSingleObject(sem, INFINITE);
   1578   }
   1579 
   1580   bool Wait(int timeout) {
   1581     // Timeout in Windows API is in milliseconds.
   1582     DWORD millis_timeout = timeout / 1000;
   1583     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
   1584   }
   1585 
   1586   void Signal() {
   1587     LONG dummy;
   1588     ReleaseSemaphore(sem, 1, &dummy);
   1589   }
   1590 
   1591  private:
   1592   HANDLE sem;
   1593 };
   1594 
   1595 
   1596 Semaphore* OS::CreateSemaphore(int count) {
   1597   return new Win32Semaphore(count);
   1598 }
   1599 
   1600 
   1601 // ----------------------------------------------------------------------------
   1602 // Win32 socket support.
   1603 //
   1604 
   1605 class Win32Socket : public Socket {
   1606  public:
   1607   explicit Win32Socket() {
   1608     // Create the socket.
   1609     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
   1610   }
   1611   explicit Win32Socket(SOCKET socket): socket_(socket) { }
   1612   virtual ~Win32Socket() { Shutdown(); }
   1613 
   1614   // Server initialization.
   1615   bool Bind(const int port);
   1616   bool Listen(int backlog) const;
   1617   Socket* Accept() const;
   1618 
   1619   // Client initialization.
   1620   bool Connect(const char* host, const char* port);
   1621 
   1622   // Shutdown socket for both read and write.
   1623   bool Shutdown();
   1624 
   1625   // Data Transimission
   1626   int Send(const char* data, int len) const;
   1627   int Receive(char* data, int len) const;
   1628 
   1629   bool SetReuseAddress(bool reuse_address);
   1630 
   1631   bool IsValid() const { return socket_ != INVALID_SOCKET; }
   1632 
   1633  private:
   1634   SOCKET socket_;
   1635 };
   1636 
   1637 
   1638 bool Win32Socket::Bind(const int port) {
   1639   if (!IsValid())  {
   1640     return false;
   1641   }
   1642 
   1643   sockaddr_in addr;
   1644   memset(&addr, 0, sizeof(addr));
   1645   addr.sin_family = AF_INET;
   1646   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
   1647   addr.sin_port = htons(port);
   1648   int status = bind(socket_,
   1649                     reinterpret_cast<struct sockaddr *>(&addr),
   1650                     sizeof(addr));
   1651   return status == 0;
   1652 }
   1653 
   1654 
   1655 bool Win32Socket::Listen(int backlog) const {
   1656   if (!IsValid()) {
   1657     return false;
   1658   }
   1659 
   1660   int status = listen(socket_, backlog);
   1661   return status == 0;
   1662 }
   1663 
   1664 
   1665 Socket* Win32Socket::Accept() const {
   1666   if (!IsValid()) {
   1667     return NULL;
   1668   }
   1669 
   1670   SOCKET socket = accept(socket_, NULL, NULL);
   1671   if (socket == INVALID_SOCKET) {
   1672     return NULL;
   1673   } else {
   1674     return new Win32Socket(socket);
   1675   }
   1676 }
   1677 
   1678 
   1679 bool Win32Socket::Connect(const char* host, const char* port) {
   1680   if (!IsValid()) {
   1681     return false;
   1682   }
   1683 
   1684   // Lookup host and port.
   1685   struct addrinfo *result = NULL;
   1686   struct addrinfo hints;
   1687   memset(&hints, 0, sizeof(addrinfo));
   1688   hints.ai_family = AF_INET;
   1689   hints.ai_socktype = SOCK_STREAM;
   1690   hints.ai_protocol = IPPROTO_TCP;
   1691   int status = getaddrinfo(host, port, &hints, &result);
   1692   if (status != 0) {
   1693     return false;
   1694   }
   1695 
   1696   // Connect.
   1697   status = connect(socket_,
   1698                    result->ai_addr,
   1699                    static_cast<int>(result->ai_addrlen));
   1700   freeaddrinfo(result);
   1701   return status == 0;
   1702 }
   1703 
   1704 
   1705 bool Win32Socket::Shutdown() {
   1706   if (IsValid()) {
   1707     // Shutdown socket for both read and write.
   1708     int status = shutdown(socket_, SD_BOTH);
   1709     closesocket(socket_);
   1710     socket_ = INVALID_SOCKET;
   1711     return status == SOCKET_ERROR;
   1712   }
   1713   return true;
   1714 }
   1715 
   1716 
   1717 int Win32Socket::Send(const char* data, int len) const {
   1718   int status = send(socket_, data, len, 0);
   1719   return status;
   1720 }
   1721 
   1722 
   1723 int Win32Socket::Receive(char* data, int len) const {
   1724   int status = recv(socket_, data, len, 0);
   1725   return status;
   1726 }
   1727 
   1728 
   1729 bool Win32Socket::SetReuseAddress(bool reuse_address) {
   1730   BOOL on = reuse_address ? TRUE : FALSE;
   1731   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
   1732                           reinterpret_cast<char*>(&on), sizeof(on));
   1733   return status == SOCKET_ERROR;
   1734 }
   1735 
   1736 
   1737 bool Socket::Setup() {
   1738   // Initialize Winsock32
   1739   int err;
   1740   WSADATA winsock_data;
   1741   WORD version_requested = MAKEWORD(1, 0);
   1742   err = WSAStartup(version_requested, &winsock_data);
   1743   if (err != 0) {
   1744     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
   1745   }
   1746 
   1747   return err == 0;
   1748 }
   1749 
   1750 
   1751 int Socket::LastError() {
   1752   return WSAGetLastError();
   1753 }
   1754 
   1755 
   1756 uint16_t Socket::HToN(uint16_t value) {
   1757   return htons(value);
   1758 }
   1759 
   1760 
   1761 uint16_t Socket::NToH(uint16_t value) {
   1762   return ntohs(value);
   1763 }
   1764 
   1765 
   1766 uint32_t Socket::HToN(uint32_t value) {
   1767   return htonl(value);
   1768 }
   1769 
   1770 
   1771 uint32_t Socket::NToH(uint32_t value) {
   1772   return ntohl(value);
   1773 }
   1774 
   1775 
   1776 Socket* OS::CreateSocket() {
   1777   return new Win32Socket();
   1778 }
   1779 
   1780 
   1781 #ifdef ENABLE_LOGGING_AND_PROFILING
   1782 
   1783 // ----------------------------------------------------------------------------
   1784 // Win32 profiler support.
   1785 //
   1786 // On win32 we use a sampler thread with high priority to sample the program
   1787 // counter for the profiled thread.
   1788 
   1789 class Sampler::PlatformData : public Malloced {
   1790  public:
   1791   explicit PlatformData(Sampler* sampler) {
   1792     sampler_ = sampler;
   1793     sampler_thread_ = INVALID_HANDLE_VALUE;
   1794     profiled_thread_ = INVALID_HANDLE_VALUE;
   1795   }
   1796 
   1797   Sampler* sampler_;
   1798   HANDLE sampler_thread_;
   1799   HANDLE profiled_thread_;
   1800 
   1801   // Sampler thread handler.
   1802   void Runner() {
   1803     // Context used for sampling the register state of the profiled thread.
   1804     CONTEXT context;
   1805     memset(&context, 0, sizeof(context));
   1806     // Loop until the sampler is disengaged.
   1807     while (sampler_->IsActive()) {
   1808       TickSample sample;
   1809 
   1810       // If profiling, we record the pc and sp of the profiled thread.
   1811       if (sampler_->IsProfiling()
   1812           && SuspendThread(profiled_thread_) != (DWORD)-1) {
   1813         context.ContextFlags = CONTEXT_FULL;
   1814         if (GetThreadContext(profiled_thread_, &context) != 0) {
   1815 #if V8_HOST_ARCH_X64
   1816           sample.pc = reinterpret_cast<Address>(context.Rip);
   1817           sample.sp = reinterpret_cast<Address>(context.Rsp);
   1818           sample.fp = reinterpret_cast<Address>(context.Rbp);
   1819 #else
   1820           sample.pc = reinterpret_cast<Address>(context.Eip);
   1821           sample.sp = reinterpret_cast<Address>(context.Esp);
   1822           sample.fp = reinterpret_cast<Address>(context.Ebp);
   1823 #endif
   1824           sampler_->SampleStack(&sample);
   1825         }
   1826         ResumeThread(profiled_thread_);
   1827       }
   1828 
   1829       // We always sample the VM state.
   1830       sample.state = Logger::state();
   1831       // Invoke tick handler with program counter and stack pointer.
   1832       sampler_->Tick(&sample);
   1833 
   1834       // Wait until next sampling.
   1835       Sleep(sampler_->interval_);
   1836     }
   1837   }
   1838 };
   1839 
   1840 
   1841 // Entry point for sampler thread.
   1842 static unsigned int __stdcall SamplerEntry(void* arg) {
   1843   Sampler::PlatformData* data =
   1844       reinterpret_cast<Sampler::PlatformData*>(arg);
   1845   data->Runner();
   1846   return 0;
   1847 }
   1848 
   1849 
   1850 // Initialize a profile sampler.
   1851 Sampler::Sampler(int interval, bool profiling)
   1852     : interval_(interval), profiling_(profiling), active_(false) {
   1853   data_ = new PlatformData(this);
   1854 }
   1855 
   1856 
   1857 Sampler::~Sampler() {
   1858   delete data_;
   1859 }
   1860 
   1861 
   1862 // Start profiling.
   1863 void Sampler::Start() {
   1864   // If we are profiling, we need to be able to access the calling
   1865   // thread.
   1866   if (IsProfiling()) {
   1867     // Get a handle to the calling thread. This is the thread that we are
   1868     // going to profile. We need to make a copy of the handle because we are
   1869     // going to use it in the sampler thread. Using GetThreadHandle() will
   1870     // not work in this case. We're using OpenThread because DuplicateHandle
   1871     // for some reason doesn't work in Chrome's sandbox.
   1872     data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
   1873                                          THREAD_SUSPEND_RESUME |
   1874                                          THREAD_QUERY_INFORMATION,
   1875                                          FALSE,
   1876                                          GetCurrentThreadId());
   1877     BOOL ok = data_->profiled_thread_ != NULL;
   1878     if (!ok) return;
   1879   }
   1880 
   1881   // Start sampler thread.
   1882   unsigned int tid;
   1883   active_ = true;
   1884   data_->sampler_thread_ = reinterpret_cast<HANDLE>(
   1885       _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
   1886   // Set thread to high priority to increase sampling accuracy.
   1887   SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
   1888 }
   1889 
   1890 
   1891 // Stop profiling.
   1892 void Sampler::Stop() {
   1893   // Seting active to false triggers termination of the sampler
   1894   // thread.
   1895   active_ = false;
   1896 
   1897   // Wait for sampler thread to terminate.
   1898   WaitForSingleObject(data_->sampler_thread_, INFINITE);
   1899 
   1900   // Release the thread handles
   1901   CloseHandle(data_->sampler_thread_);
   1902   CloseHandle(data_->profiled_thread_);
   1903 }
   1904 
   1905 
   1906 #endif  // ENABLE_LOGGING_AND_PROFILING
   1907 
   1908 } }  // namespace v8::internal
   1909