Home | History | Annotate | Download | only in jit
      1 /*
      2  * Copyright (C) 2009 Apple Inc. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  *
     13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
     14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
     17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24  */
     25 
     26 #include "config.h"
     27 
     28 #include "ExecutableAllocator.h"
     29 
     30 #include <errno.h>
     31 
     32 #if ENABLE(ASSEMBLER) && OS(DARWIN) && CPU(X86_64)
     33 
     34 #include "TCSpinLock.h"
     35 #include <mach/mach_init.h>
     36 #include <mach/vm_map.h>
     37 #include <sys/mman.h>
     38 #include <unistd.h>
     39 #include <wtf/AVLTree.h>
     40 #include <wtf/VMTags.h>
     41 
     42 using namespace WTF;
     43 
     44 namespace JSC {
     45 
     46 #define TWO_GB (2u * 1024u * 1024u * 1024u)
     47 #define SIXTEEN_MB (16u * 1024u * 1024u)
     48 
     49 // FreeListEntry describes a free chunk of memory, stored in the freeList.
     50 struct FreeListEntry {
     51     FreeListEntry(void* pointer, size_t size)
     52         : pointer(pointer)
     53         , size(size)
     54         , nextEntry(0)
     55         , less(0)
     56         , greater(0)
     57         , balanceFactor(0)
     58     {
     59     }
     60 
     61     // All entries of the same size share a single entry
     62     // in the AVLTree, and are linked together in a linked
     63     // list, using nextEntry.
     64     void* pointer;
     65     size_t size;
     66     FreeListEntry* nextEntry;
     67 
     68     // These fields are used by AVLTree.
     69     FreeListEntry* less;
     70     FreeListEntry* greater;
     71     int balanceFactor;
     72 };
     73 
     74 // Abstractor class for use in AVLTree.
     75 // Nodes in the AVLTree are of type FreeListEntry, keyed on
     76 // (and thus sorted by) their size.
     77 struct AVLTreeAbstractorForFreeList {
     78     typedef FreeListEntry* handle;
     79     typedef int32_t size;
     80     typedef size_t key;
     81 
     82     handle get_less(handle h) { return h->less; }
     83     void set_less(handle h, handle lh) { h->less = lh; }
     84     handle get_greater(handle h) { return h->greater; }
     85     void set_greater(handle h, handle gh) { h->greater = gh; }
     86     int get_balance_factor(handle h) { return h->balanceFactor; }
     87     void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
     88 
     89     static handle null() { return 0; }
     90 
     91     int compare_key_key(key va, key vb) { return va - vb; }
     92     int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
     93     int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
     94 };
     95 
     96 // Used to reverse sort an array of FreeListEntry pointers.
     97 static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
     98 {
     99     FreeListEntry* left = *(FreeListEntry**)leftPtr;
    100     FreeListEntry* right = *(FreeListEntry**)rightPtr;
    101 
    102     return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
    103 }
    104 
    105 // Used to reverse sort an array of pointers.
    106 static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
    107 {
    108     void* left = *(void**)leftPtr;
    109     void* right = *(void**)rightPtr;
    110 
    111     return (intptr_t)right - (intptr_t)left;
    112 }
    113 
    114 class FixedVMPoolAllocator
    115 {
    116     // The free list is stored in a sorted tree.
    117     typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
    118 
    119     // Use madvise as apropriate to prevent freed pages from being spilled,
    120     // and to attempt to ensure that used memory is reported correctly.
    121 #if HAVE(MADV_FREE_REUSE)
    122     void release(void* position, size_t size)
    123     {
    124         while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
    125     }
    126 
    127     void reuse(void* position, size_t size)
    128     {
    129         while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
    130     }
    131 #elif HAVE(MADV_DONTNEED)
    132     void release(void* position, size_t size)
    133     {
    134         while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
    135     }
    136 
    137     void reuse(void*, size_t) {}
    138 #else
    139     void release(void*, size_t) {}
    140     void reuse(void*, size_t) {}
    141 #endif
    142 
    143     // All addition to the free list should go through this method, rather than
    144     // calling insert directly, to avoid multiple entries beging added with the
    145     // same key.  All nodes being added should be singletons, they should not
    146     // already be a part of a chain.
    147     void addToFreeList(FreeListEntry* entry)
    148     {
    149         ASSERT(!entry->nextEntry);
    150 
    151         if (entry->size == m_commonSize) {
    152             m_commonSizedAllocations.append(entry->pointer);
    153             delete entry;
    154         } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
    155             // m_freeList already contain an entry for this size - insert this node into the chain.
    156             entry->nextEntry = entryInFreeList->nextEntry;
    157             entryInFreeList->nextEntry = entry;
    158         } else
    159             m_freeList.insert(entry);
    160     }
    161 
    162     // We do not attempt to coalesce addition, which may lead to fragmentation;
    163     // instead we periodically perform a sweep to try to coalesce neigboring
    164     // entries in m_freeList.  Presently this is triggered at the point 16MB
    165     // of memory has been released.
    166     void coalesceFreeSpace()
    167     {
    168         Vector<FreeListEntry*> freeListEntries;
    169         SizeSortedFreeTree::Iterator iter;
    170         iter.start_iter_least(m_freeList);
    171 
    172         // Empty m_freeList into a Vector.
    173         for (FreeListEntry* entry; (entry = *iter); ++iter) {
    174             // Each entry in m_freeList might correspond to multiple
    175             // free chunks of memory (of the same size).  Walk the chain
    176             // (this is likely of couse only be one entry long!) adding
    177             // each entry to the Vector (at reseting the next in chain
    178             // pointer to separate each node out).
    179             FreeListEntry* next;
    180             do {
    181                 next = entry->nextEntry;
    182                 entry->nextEntry = 0;
    183                 freeListEntries.append(entry);
    184             } while ((entry = next));
    185         }
    186         // All entries are now in the Vector; purge the tree.
    187         m_freeList.purge();
    188 
    189         // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
    190         // We reverse-sort so that we can logically work forwards through memory,
    191         // whilst popping items off the end of the Vectors using last() and removeLast().
    192         qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
    193         qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
    194 
    195         // The entries from m_commonSizedAllocations that cannot be
    196         // coalesced into larger chunks will be temporarily stored here.
    197         Vector<void*> newCommonSizedAllocations;
    198 
    199         // Keep processing so long as entries remain in either of the vectors.
    200         while (freeListEntries.size() || m_commonSizedAllocations.size()) {
    201             // We're going to try to find a FreeListEntry node that we can coalesce onto.
    202             FreeListEntry* coalescionEntry = 0;
    203 
    204             // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
    205             if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
    206                 // Pop an item from the m_commonSizedAllocations vector - this is the lowest
    207                 // addressed free chunk.  Find out the begin and end addresses of the memory chunk.
    208                 void* begin = m_commonSizedAllocations.last();
    209                 void* end = (void*)((intptr_t)begin + m_commonSize);
    210                 m_commonSizedAllocations.removeLast();
    211 
    212                 // Try to find another free chunk abutting onto the end of the one we have already found.
    213                 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
    214                     // There is an existing FreeListEntry for the next chunk of memory!
    215                     // we can reuse this.  Pop it off the end of m_freeList.
    216                     coalescionEntry = freeListEntries.last();
    217                     freeListEntries.removeLast();
    218                     // Update the existing node to include the common-sized chunk that we also found.
    219                     coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
    220                     coalescionEntry->size += m_commonSize;
    221                 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
    222                     // There is a second common-sized chunk that can be coalesced.
    223                     // Allocate a new node.
    224                     m_commonSizedAllocations.removeLast();
    225                     coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
    226                 } else {
    227                     // Nope - this poor little guy is all on his own. :-(
    228                     // Add him into the newCommonSizedAllocations vector for now, we're
    229                     // going to end up adding him back into the m_commonSizedAllocations
    230                     // list when we're done.
    231                     newCommonSizedAllocations.append(begin);
    232                     continue;
    233                 }
    234             } else {
    235                 ASSERT(freeListEntries.size());
    236                 ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
    237                 // The lowest addressed item is from m_freeList; pop it from the Vector.
    238                 coalescionEntry = freeListEntries.last();
    239                 freeListEntries.removeLast();
    240             }
    241 
    242             // Right, we have a FreeListEntry, we just need check if there is anything else
    243             // to coalesce onto the end.
    244             ASSERT(coalescionEntry);
    245             while (true) {
    246                 // Calculate the end address of the chunk we have found so far.
    247                 void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
    248 
    249                 // Is there another chunk adjacent to the one we already have?
    250                 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
    251                     // Yes - another FreeListEntry -pop it from the list.
    252                     FreeListEntry* coalescee = freeListEntries.last();
    253                     freeListEntries.removeLast();
    254                     // Add it's size onto our existing node.
    255                     coalescionEntry->size += coalescee->size;
    256                     delete coalescee;
    257                 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
    258                     // We can coalesce the next common-sized chunk.
    259                     m_commonSizedAllocations.removeLast();
    260                     coalescionEntry->size += m_commonSize;
    261                 } else
    262                     break; // Nope, nothing to be added - stop here.
    263             }
    264 
    265             // We've coalesced everything we can onto the current chunk.
    266             // Add it back into m_freeList.
    267             addToFreeList(coalescionEntry);
    268         }
    269 
    270         // All chunks of free memory larger than m_commonSize should be
    271         // back in m_freeList by now.  All that remains to be done is to
    272         // copy the contents on the newCommonSizedAllocations back into
    273         // the m_commonSizedAllocations Vector.
    274         ASSERT(m_commonSizedAllocations.size() == 0);
    275         m_commonSizedAllocations.append(newCommonSizedAllocations);
    276     }
    277 
    278 public:
    279 
    280     FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
    281         : m_commonSize(commonSize)
    282         , m_countFreedSinceLastCoalesce(0)
    283         , m_totalHeapSize(totalHeapSize)
    284     {
    285         // Cook up an address to allocate at, using the following recipe:
    286         //   17 bits of zero, stay in userspace kids.
    287         //   26 bits of randomness for ASLR.
    288         //   21 bits of zero, at least stay aligned within one level of the pagetables.
    289         //
    290         // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
    291         // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
    292         // 2^24, which should put up somewhere in the middle of usespace (in the address range
    293         // 0x200000000000 .. 0x5fffffffffff).
    294         intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
    295         randomLocation += (1 << 24);
    296         randomLocation <<= 21;
    297         m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
    298         if (!m_base)
    299             CRASH();
    300 
    301         // For simplicity, we keep all memory in m_freeList in a 'released' state.
    302         // This means that we can simply reuse all memory when allocating, without
    303         // worrying about it's previous state, and also makes coalescing m_freeList
    304         // simpler since we need not worry about the possibility of coalescing released
    305         // chunks with non-released ones.
    306         release(m_base, m_totalHeapSize);
    307         m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
    308     }
    309 
    310     void* alloc(size_t size)
    311     {
    312         void* result;
    313 
    314         // Freed allocations of the common size are not stored back into the main
    315         // m_freeList, but are instead stored in a separate vector.  If the request
    316         // is for a common sized allocation, check this list.
    317         if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
    318             result = m_commonSizedAllocations.last();
    319             m_commonSizedAllocations.removeLast();
    320         } else {
    321             // Serach m_freeList for a suitable sized chunk to allocate memory from.
    322             FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
    323 
    324             // This would be bad news.
    325             if (!entry) {
    326                 // Errk!  Lets take a last-ditch desparation attempt at defragmentation...
    327                 coalesceFreeSpace();
    328                 // Did that free up a large enough chunk?
    329                 entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
    330                 // No?...  *BOOM!*
    331                 if (!entry)
    332                     CRASH();
    333             }
    334             ASSERT(entry->size != m_commonSize);
    335 
    336             // Remove the entry from m_freeList.  But! -
    337             // Each entry in the tree may represent a chain of multiple chunks of the
    338             // same size, and we only want to remove one on them.  So, if this entry
    339             // does have a chain, just remove the first-but-one item from the chain.
    340             if (FreeListEntry* next = entry->nextEntry) {
    341                 // We're going to leave 'entry' in the tree; remove 'next' from its chain.
    342                 entry->nextEntry = next->nextEntry;
    343                 next->nextEntry = 0;
    344                 entry = next;
    345             } else
    346                 m_freeList.remove(entry->size);
    347 
    348             // Whoo!, we have a result!
    349             ASSERT(entry->size >= size);
    350             result = entry->pointer;
    351 
    352             // If the allocation exactly fits the chunk we found in the,
    353             // m_freeList then the FreeListEntry node is no longer needed.
    354             if (entry->size == size)
    355                 delete entry;
    356             else {
    357                 // There is memory left over, and it is not of the common size.
    358                 // We can reuse the existing FreeListEntry node to add this back
    359                 // into m_freeList.
    360                 entry->pointer = (void*)((intptr_t)entry->pointer + size);
    361                 entry->size -= size;
    362                 addToFreeList(entry);
    363             }
    364         }
    365 
    366         // Call reuse to report to the operating system that this memory is in use.
    367         ASSERT(isWithinVMPool(result, size));
    368         reuse(result, size);
    369         return result;
    370     }
    371 
    372     void free(void* pointer, size_t size)
    373     {
    374         // Call release to report to the operating system that this
    375         // memory is no longer in use, and need not be paged out.
    376         ASSERT(isWithinVMPool(pointer, size));
    377         release(pointer, size);
    378 
    379         // Common-sized allocations are stored in the m_commonSizedAllocations
    380         // vector; all other freed chunks are added to m_freeList.
    381         if (size == m_commonSize)
    382             m_commonSizedAllocations.append(pointer);
    383         else
    384             addToFreeList(new FreeListEntry(pointer, size));
    385 
    386         // Do some housekeeping.  Every time we reach a point that
    387         // 16MB of allocations have been freed, sweep m_freeList
    388         // coalescing any neighboring fragments.
    389         m_countFreedSinceLastCoalesce += size;
    390         if (m_countFreedSinceLastCoalesce >= SIXTEEN_MB) {
    391             m_countFreedSinceLastCoalesce = 0;
    392             coalesceFreeSpace();
    393         }
    394     }
    395 
    396 private:
    397 
    398 #ifndef NDEBUG
    399     bool isWithinVMPool(void* pointer, size_t size)
    400     {
    401         return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
    402     }
    403 #endif
    404 
    405     // Freed space from the most common sized allocations will be held in this list, ...
    406     const size_t m_commonSize;
    407     Vector<void*> m_commonSizedAllocations;
    408 
    409     // ... and all other freed allocations are held in m_freeList.
    410     SizeSortedFreeTree m_freeList;
    411 
    412     // This is used for housekeeping, to trigger defragmentation of the freed lists.
    413     size_t m_countFreedSinceLastCoalesce;
    414 
    415     void* m_base;
    416     size_t m_totalHeapSize;
    417 };
    418 
    419 void ExecutableAllocator::intializePageSize()
    420 {
    421     ExecutableAllocator::pageSize = getpagesize();
    422 }
    423 
    424 static FixedVMPoolAllocator* allocator = 0;
    425 static SpinLock spinlock = SPINLOCK_INITIALIZER;
    426 
    427 ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
    428 {
    429   SpinLockHolder lock_holder(&spinlock);
    430 
    431     if (!allocator)
    432         allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, TWO_GB);
    433     ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
    434     return alloc;
    435 }
    436 
    437 void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation)
    438 {
    439   SpinLockHolder lock_holder(&spinlock);
    440 
    441     ASSERT(allocator);
    442     allocator->free(allocation.pages, allocation.size);
    443 }
    444 
    445 }
    446 
    447 #endif // HAVE(ASSEMBLER)
    448