Home | History | Annotate | Download | only in keystore
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <stdio.h>
     18 #include <stdint.h>
     19 #include <string.h>
     20 #include <unistd.h>
     21 #include <signal.h>
     22 #include <errno.h>
     23 #include <dirent.h>
     24 #include <fcntl.h>
     25 #include <limits.h>
     26 #include <sys/types.h>
     27 #include <sys/socket.h>
     28 #include <sys/stat.h>
     29 #include <sys/time.h>
     30 #include <arpa/inet.h>
     31 
     32 #include <openssl/aes.h>
     33 #include <openssl/evp.h>
     34 #include <openssl/md5.h>
     35 
     36 #define LOG_TAG "keystore"
     37 #include <cutils/log.h>
     38 #include <cutils/sockets.h>
     39 #include <private/android_filesystem_config.h>
     40 
     41 #include "keystore.h"
     42 
     43 /* KeyStore is a secured storage for key-value pairs. In this implementation,
     44  * each file stores one key-value pair. Keys are encoded in file names, and
     45  * values are encrypted with checksums. The encryption key is protected by a
     46  * user-defined password. To keep things simple, buffers are always larger than
     47  * the maximum space we needed, so boundary checks on buffers are omitted. */
     48 
     49 #define KEY_SIZE        ((NAME_MAX - 15) / 2)
     50 #define VALUE_SIZE      32768
     51 #define PASSWORD_SIZE   VALUE_SIZE
     52 
     53 /* Here is the encoding of keys. This is necessary in order to allow arbitrary
     54  * characters in keys. Characters in [0-~] are not encoded. Others are encoded
     55  * into two bytes. The first byte is one of [+-.] which represents the first
     56  * two bits of the character. The second byte encodes the rest of the bits into
     57  * [0-o]. Therefore in the worst case the length of a key gets doubled. Note
     58  * that Base64 cannot be used here due to the need of prefix match on keys. */
     59 
     60 static int encode_key(char *out, uint8_t *in, int length)
     61 {
     62     int i;
     63     for (i = length; i > 0; --i, ++in, ++out) {
     64         if (*in >= '0' && *in <= '~') {
     65             *out = *in;
     66         } else {
     67             *out = '+' + (*in >> 6);
     68             *++out = '0' + (*in & 0x3F);
     69             ++length;
     70         }
     71     }
     72     *out = 0;
     73     return length;
     74 }
     75 
     76 static int decode_key(uint8_t *out, char *in, int length)
     77 {
     78     int i;
     79     for (i = 0; i < length; ++i, ++in, ++out) {
     80         if (*in >= '0' && *in <= '~') {
     81             *out = *in;
     82         } else {
     83             *out = (*in - '+') << 6;
     84             *out |= (*++in - '0') & 0x3F;
     85             --length;
     86         }
     87     }
     88     *out = 0;
     89     return length;
     90 }
     91 
     92 /* Here is the protocol used in both requests and responses:
     93  *     code [length_1 message_1 ... length_n message_n] end-of-file
     94  * where code is one byte long and lengths are unsigned 16-bit integers in
     95  * network order. Thus the maximum length of a message is 65535 bytes. */
     96 
     97 static int the_socket = -1;
     98 
     99 static int recv_code(int8_t *code)
    100 {
    101     return recv(the_socket, code, 1, 0) == 1;
    102 }
    103 
    104 static int recv_message(uint8_t *message, int length)
    105 {
    106     uint8_t bytes[2];
    107     if (recv(the_socket, &bytes[0], 1, 0) != 1 ||
    108         recv(the_socket, &bytes[1], 1, 0) != 1) {
    109         return -1;
    110     } else {
    111         int offset = bytes[0] << 8 | bytes[1];
    112         if (length < offset) {
    113             return -1;
    114         }
    115         length = offset;
    116         offset = 0;
    117         while (offset < length) {
    118             int n = recv(the_socket, &message[offset], length - offset, 0);
    119             if (n <= 0) {
    120                 return -1;
    121             }
    122             offset += n;
    123         }
    124     }
    125     return length;
    126 }
    127 
    128 static int recv_end_of_file()
    129 {
    130     uint8_t byte;
    131     return recv(the_socket, &byte, 1, 0) == 0;
    132 }
    133 
    134 static void send_code(int8_t code)
    135 {
    136     send(the_socket, &code, 1, 0);
    137 }
    138 
    139 static void send_message(uint8_t *message, int length)
    140 {
    141     uint16_t bytes = htons(length);
    142     send(the_socket, &bytes, 2, 0);
    143     send(the_socket, message, length, 0);
    144 }
    145 
    146 /* Here is the file format. There are two parts in blob.value, the secret and
    147  * the description. The secret is stored in ciphertext, and its original size
    148  * can be found in blob.length. The description is stored after the secret in
    149  * plaintext, and its size is specified in blob.info. The total size of the two
    150  * parts must be no more than VALUE_SIZE bytes. The first three bytes of the
    151  * file are reserved for future use and are always set to zero. Fields other
    152  * than blob.info, blob.length, and blob.value are modified by encrypt_blob()
    153  * and decrypt_blob(). Thus they should not be accessed from outside. */
    154 
    155 static int the_entropy = -1;
    156 
    157 static struct __attribute__((packed)) {
    158     uint8_t reserved[3];
    159     uint8_t info;
    160     uint8_t vector[AES_BLOCK_SIZE];
    161     uint8_t encrypted[0];
    162     uint8_t digest[MD5_DIGEST_LENGTH];
    163     uint8_t digested[0];
    164     int32_t length;
    165     uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
    166 } blob;
    167 
    168 static int8_t encrypt_blob(char *name, AES_KEY *aes_key)
    169 {
    170     uint8_t vector[AES_BLOCK_SIZE];
    171     int length;
    172     int fd;
    173 
    174     if (read(the_entropy, blob.vector, AES_BLOCK_SIZE) != AES_BLOCK_SIZE) {
    175         return SYSTEM_ERROR;
    176     }
    177 
    178     length = blob.length + (blob.value - blob.encrypted);
    179     length = (length + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE;
    180 
    181     if (blob.info != 0) {
    182         memmove(&blob.encrypted[length], &blob.value[blob.length], blob.info);
    183     }
    184 
    185     blob.length = htonl(blob.length);
    186     MD5(blob.digested, length - (blob.digested - blob.encrypted), blob.digest);
    187 
    188     memcpy(vector, blob.vector, AES_BLOCK_SIZE);
    189     AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, vector,
    190                     AES_ENCRYPT);
    191 
    192     memset(blob.reserved, 0, sizeof(blob.reserved));
    193     length += (blob.encrypted - (uint8_t *)&blob) + blob.info;
    194 
    195     fd = open(".tmp", O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
    196     length -= write(fd, &blob, length);
    197     close(fd);
    198     return (length || rename(".tmp", name)) ? SYSTEM_ERROR : NO_ERROR;
    199 }
    200 
    201 static int8_t decrypt_blob(char *name, AES_KEY *aes_key)
    202 {
    203     int fd = open(name, O_RDONLY);
    204     int length;
    205 
    206     if (fd == -1) {
    207         return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
    208     }
    209     length = read(fd, &blob, sizeof(blob));
    210     close(fd);
    211 
    212     length -= (blob.encrypted - (uint8_t *)&blob) + blob.info;
    213     if (length < blob.value - blob.encrypted || length % AES_BLOCK_SIZE != 0) {
    214         return VALUE_CORRUPTED;
    215     }
    216 
    217     AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key,
    218                     blob.vector, AES_DECRYPT);
    219     length -= blob.digested - blob.encrypted;
    220     if (memcmp(blob.digest, MD5(blob.digested, length, NULL),
    221                MD5_DIGEST_LENGTH)) {
    222         return VALUE_CORRUPTED;
    223     }
    224 
    225     length -= blob.value - blob.digested;
    226     blob.length = ntohl(blob.length);
    227     if (blob.length < 0 || blob.length > length) {
    228         return VALUE_CORRUPTED;
    229     }
    230     if (blob.info != 0) {
    231         memmove(&blob.value[blob.length], &blob.value[length], blob.info);
    232     }
    233     return NO_ERROR;
    234 }
    235 
    236 /* Here are the actions. Each of them is a function without arguments. All
    237  * information is defined in global variables, which are set properly before
    238  * performing an action. The number of parameters required by each action is
    239  * fixed and defined in a table. If the return value of an action is positive,
    240  * it will be treated as a response code and transmitted to the client. Note
    241  * that the lengths of parameters are checked when they are received, so
    242  * boundary checks on parameters are omitted. */
    243 
    244 #define MAX_PARAM   2
    245 #define MAX_RETRY   4
    246 
    247 static uid_t uid = -1;
    248 static int8_t state = UNINITIALIZED;
    249 static int8_t retry = MAX_RETRY;
    250 
    251 static struct {
    252     int length;
    253     uint8_t value[VALUE_SIZE];
    254 } params[MAX_PARAM];
    255 
    256 static AES_KEY encryption_key;
    257 static AES_KEY decryption_key;
    258 
    259 static int8_t test()
    260 {
    261     return state;
    262 }
    263 
    264 static int8_t get()
    265 {
    266     char name[NAME_MAX];
    267     int n = sprintf(name, "%u_", uid);
    268     encode_key(&name[n], params[0].value, params[0].length);
    269     n = decrypt_blob(name, &decryption_key);
    270     if (n != NO_ERROR) {
    271         return n;
    272     }
    273     send_code(NO_ERROR);
    274     send_message(blob.value, blob.length);
    275     return -NO_ERROR;
    276 }
    277 
    278 static int8_t insert()
    279 {
    280     char name[NAME_MAX];
    281     int n = sprintf(name, "%u_", uid);
    282     encode_key(&name[n], params[0].value, params[0].length);
    283     blob.info = 0;
    284     blob.length = params[1].length;
    285     memcpy(blob.value, params[1].value, params[1].length);
    286     return encrypt_blob(name, &encryption_key);
    287 }
    288 
    289 static int8_t delete()
    290 {
    291     char name[NAME_MAX];
    292     int n = sprintf(name, "%u_", uid);
    293     encode_key(&name[n], params[0].value, params[0].length);
    294     return (unlink(name) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR;
    295 }
    296 
    297 static int8_t exist()
    298 {
    299     char name[NAME_MAX];
    300     int n = sprintf(name, "%u_", uid);
    301     encode_key(&name[n], params[0].value, params[0].length);
    302     if (access(name, R_OK) == -1) {
    303         return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND;
    304     }
    305     return NO_ERROR;
    306 }
    307 
    308 static int8_t saw()
    309 {
    310     DIR *dir = opendir(".");
    311     struct dirent *file;
    312     char name[NAME_MAX];
    313     int n;
    314 
    315     if (!dir) {
    316         return SYSTEM_ERROR;
    317     }
    318     n = sprintf(name, "%u_", uid);
    319     n += encode_key(&name[n], params[0].value, params[0].length);
    320     send_code(NO_ERROR);
    321     while ((file = readdir(dir)) != NULL) {
    322         if (!strncmp(name, file->d_name, n)) {
    323             char *p = &file->d_name[n];
    324             params[0].length = decode_key(params[0].value, p, strlen(p));
    325             send_message(params[0].value, params[0].length);
    326         }
    327     }
    328     closedir(dir);
    329     return -NO_ERROR;
    330 }
    331 
    332 static int8_t reset()
    333 {
    334     DIR *dir = opendir(".");
    335     struct dirent *file;
    336 
    337     memset(&encryption_key, 0, sizeof(encryption_key));
    338     memset(&decryption_key, 0, sizeof(decryption_key));
    339     state = UNINITIALIZED;
    340     retry = MAX_RETRY;
    341 
    342     if (!dir) {
    343         return SYSTEM_ERROR;
    344     }
    345     while ((file = readdir(dir)) != NULL) {
    346         unlink(file->d_name);
    347     }
    348     closedir(dir);
    349     return NO_ERROR;
    350 }
    351 
    352 #define MASTER_KEY_FILE ".masterkey"
    353 #define MASTER_KEY_SIZE 16
    354 #define SALT_SIZE       16
    355 
    356 static void set_key(uint8_t *key, uint8_t *password, int length, uint8_t *salt)
    357 {
    358     if (salt) {
    359         PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, salt, SALT_SIZE,
    360                                8192, MASTER_KEY_SIZE, key);
    361     } else {
    362         PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore",
    363                                sizeof("keystore"), 1024, MASTER_KEY_SIZE, key);
    364     }
    365 }
    366 
    367 /* Here is the history. To improve the security, the parameters to generate the
    368  * master key has been changed. To make a seamless transition, we update the
    369  * file using the same password when the user unlock it for the first time. If
    370  * any thing goes wrong during the transition, the new file will not overwrite
    371  * the old one. This avoids permanent damages of the existing data. */
    372 
    373 static int8_t password()
    374 {
    375     uint8_t key[MASTER_KEY_SIZE];
    376     AES_KEY aes_key;
    377     int8_t response = SYSTEM_ERROR;
    378 
    379     if (state == UNINITIALIZED) {
    380         if (read(the_entropy, blob.value, MASTER_KEY_SIZE) != MASTER_KEY_SIZE) {
    381            return SYSTEM_ERROR;
    382         }
    383     } else {
    384         int fd = open(MASTER_KEY_FILE, O_RDONLY);
    385         uint8_t *salt = NULL;
    386         if (fd != -1) {
    387             int length = read(fd, &blob, sizeof(blob));
    388             close(fd);
    389             if (length > SALT_SIZE && blob.info == SALT_SIZE) {
    390                 salt = (uint8_t *)&blob + length - SALT_SIZE;
    391             }
    392         }
    393 
    394         set_key(key, params[0].value, params[0].length, salt);
    395         AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
    396         response = decrypt_blob(MASTER_KEY_FILE, &aes_key);
    397         if (response == SYSTEM_ERROR) {
    398             return SYSTEM_ERROR;
    399         }
    400         if (response != NO_ERROR || blob.length != MASTER_KEY_SIZE) {
    401             if (retry <= 0) {
    402                 reset();
    403                 return UNINITIALIZED;
    404             }
    405             return WRONG_PASSWORD + --retry;
    406         }
    407 
    408         if (!salt && params[1].length == -1) {
    409             params[1] = params[0];
    410         }
    411     }
    412 
    413     if (params[1].length == -1) {
    414         memcpy(key, blob.value, MASTER_KEY_SIZE);
    415     } else {
    416         uint8_t *salt = &blob.value[MASTER_KEY_SIZE];
    417         if (read(the_entropy, salt, SALT_SIZE) != SALT_SIZE) {
    418             return SYSTEM_ERROR;
    419         }
    420 
    421         set_key(key, params[1].value, params[1].length, salt);
    422         AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
    423         memcpy(key, blob.value, MASTER_KEY_SIZE);
    424         blob.info = SALT_SIZE;
    425         blob.length = MASTER_KEY_SIZE;
    426         response = encrypt_blob(MASTER_KEY_FILE, &aes_key);
    427     }
    428 
    429     if (response == NO_ERROR) {
    430         AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &encryption_key);
    431         AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &decryption_key);
    432         state = NO_ERROR;
    433         retry = MAX_RETRY;
    434     }
    435     return response;
    436 }
    437 
    438 static int8_t lock()
    439 {
    440     memset(&encryption_key, 0, sizeof(encryption_key));
    441     memset(&decryption_key, 0, sizeof(decryption_key));
    442     state = LOCKED;
    443     return NO_ERROR;
    444 }
    445 
    446 static int8_t unlock()
    447 {
    448     params[1].length = -1;
    449     return password();
    450 }
    451 
    452 /* Here are the permissions, actions, users, and the main function. */
    453 
    454 enum perm {
    455     TEST     =   1,
    456     GET      =   2,
    457     INSERT   =   4,
    458     DELETE   =   8,
    459     EXIST    =  16,
    460     SAW      =  32,
    461     RESET    =  64,
    462     PASSWORD = 128,
    463     LOCK     = 256,
    464     UNLOCK   = 512,
    465 };
    466 
    467 static struct action {
    468     int8_t (*run)();
    469     int8_t code;
    470     int8_t state;
    471     uint32_t perm;
    472     int lengths[MAX_PARAM];
    473 } actions[] = {
    474     {test,     't', 0,        TEST,     {0}},
    475     {get,      'g', NO_ERROR, GET,      {KEY_SIZE}},
    476     {insert,   'i', NO_ERROR, INSERT,   {KEY_SIZE, VALUE_SIZE}},
    477     {delete,   'd', 0,        DELETE,   {KEY_SIZE}},
    478     {exist,    'e', 0,        EXIST,    {KEY_SIZE}},
    479     {saw,      's', 0,        SAW,      {KEY_SIZE}},
    480     {reset,    'r', 0,        RESET,    {0}},
    481     {password, 'p', 0,        PASSWORD, {PASSWORD_SIZE, PASSWORD_SIZE}},
    482     {lock,     'l', NO_ERROR, LOCK,     {0}},
    483     {unlock,   'u', LOCKED,   UNLOCK,   {PASSWORD_SIZE}},
    484     {NULL,      0 , 0,        0,        {0}},
    485 };
    486 
    487 static struct user {
    488     uid_t uid;
    489     uid_t euid;
    490     uint32_t perms;
    491 } users[] = {
    492     {AID_SYSTEM,   ~0,         ~GET},
    493     {AID_VPN,      AID_SYSTEM, GET},
    494     {AID_WIFI,     AID_SYSTEM, GET},
    495     {AID_ROOT,     AID_SYSTEM, GET},
    496     {~0,           ~0,         TEST | GET | INSERT | DELETE | EXIST | SAW},
    497 };
    498 
    499 static int8_t process(int8_t code) {
    500     struct user *user = users;
    501     struct action *action = actions;
    502     int i;
    503 
    504     while (~user->uid && user->uid != uid) {
    505         ++user;
    506     }
    507     while (action->code && action->code != code) {
    508         ++action;
    509     }
    510     if (!action->code) {
    511         return UNDEFINED_ACTION;
    512     }
    513     if (!(action->perm & user->perms)) {
    514         return PERMISSION_DENIED;
    515     }
    516     if (action->state && action->state != state) {
    517         return state;
    518     }
    519     if (~user->euid) {
    520         uid = user->euid;
    521     }
    522     for (i = 0; i < MAX_PARAM && action->lengths[i]; ++i) {
    523         params[i].length = recv_message(params[i].value, action->lengths[i]);
    524         if (params[i].length == -1) {
    525             return PROTOCOL_ERROR;
    526         }
    527     }
    528     if (!recv_end_of_file()) {
    529         return PROTOCOL_ERROR;
    530     }
    531     return action->run();
    532 }
    533 
    534 #define RANDOM_DEVICE   "/dev/urandom"
    535 
    536 int main(int argc, char **argv)
    537 {
    538     int control_socket = android_get_control_socket("keystore");
    539     if (argc < 2) {
    540         LOGE("A directory must be specified!");
    541         return 1;
    542     }
    543     if (chdir(argv[1]) == -1) {
    544         LOGE("chdir: %s: %s", argv[1], strerror(errno));
    545         return 1;
    546     }
    547     if ((the_entropy = open(RANDOM_DEVICE, O_RDONLY)) == -1) {
    548         LOGE("open: %s: %s", RANDOM_DEVICE, strerror(errno));
    549         return 1;
    550     }
    551     if (listen(control_socket, 3) == -1) {
    552         LOGE("listen: %s", strerror(errno));
    553         return 1;
    554     }
    555 
    556     signal(SIGPIPE, SIG_IGN);
    557     if (access(MASTER_KEY_FILE, R_OK) == 0) {
    558         state = LOCKED;
    559     }
    560 
    561     while ((the_socket = accept(control_socket, NULL, 0)) != -1) {
    562         struct timeval tv = {.tv_sec = 3};
    563         struct ucred cred;
    564         socklen_t size = sizeof(cred);
    565         int8_t request;
    566 
    567         setsockopt(the_socket, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
    568         setsockopt(the_socket, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv));
    569 
    570         if (getsockopt(the_socket, SOL_SOCKET, SO_PEERCRED, &cred, &size)) {
    571             LOGW("getsockopt: %s", strerror(errno));
    572         } else if (recv_code(&request)) {
    573             int8_t old_state = state;
    574             int8_t response;
    575             uid = cred.uid;
    576 
    577             if ((response = process(request)) > 0) {
    578                 send_code(response);
    579                 response = -response;
    580             }
    581 
    582             LOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d",
    583                  cred.uid, request, -response, old_state, state, retry);
    584         }
    585         close(the_socket);
    586     }
    587     LOGE("accept: %s", strerror(errno));
    588     return 1;
    589 }
    590