Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 /*
     28  * Mark garbage collection card. Skip if the value we're storing is null.
     29  */
     30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
     31 {
     32     int regCardBase = dvmCompilerAllocTemp(cUnit);
     33     int regCardNo = dvmCompilerAllocTemp(cUnit);
     34     opRegImm(cUnit, kOpCmp, valReg, 0); /* storing null? */
     35     ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
     36     loadWordDisp(cUnit, rGLUE, offsetof(InterpState, cardTable),
     37                  regCardBase);
     38     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
     39     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
     40                      kUnsignedByte);
     41     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
     42     target->defMask = ENCODE_ALL;
     43     branchOver->generic.target = (LIR *)target;
     44     dvmCompilerFreeTemp(cUnit, regCardBase);
     45     dvmCompilerFreeTemp(cUnit, regCardNo);
     46 }
     47 
     48 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     49                                      int srcSize, int tgtSize)
     50 {
     51     /*
     52      * Don't optimize the register usage since it calls out to template
     53      * functions
     54      */
     55     RegLocation rlSrc;
     56     RegLocation rlDest;
     57     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     58     if (srcSize == 1) {
     59         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     60         loadValueDirectFixed(cUnit, rlSrc, r0);
     61     } else {
     62         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     63         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     64     }
     65     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     66     opReg(cUnit, kOpBlx, r2);
     67     dvmCompilerClobberCallRegs(cUnit);
     68     if (tgtSize == 1) {
     69         RegLocation rlResult;
     70         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     71         rlResult = dvmCompilerGetReturn(cUnit);
     72         storeValue(cUnit, rlDest, rlResult);
     73     } else {
     74         RegLocation rlResult;
     75         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     76         rlResult = dvmCompilerGetReturnWide(cUnit);
     77         storeValueWide(cUnit, rlDest, rlResult);
     78     }
     79     return false;
     80 }
     81 
     82 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     83                                     RegLocation rlDest, RegLocation rlSrc1,
     84                                     RegLocation rlSrc2)
     85 {
     86     RegLocation rlResult;
     87     void* funct;
     88 
     89     switch (mir->dalvikInsn.opCode) {
     90         case OP_ADD_FLOAT_2ADDR:
     91         case OP_ADD_FLOAT:
     92             funct = (void*) __aeabi_fadd;
     93             break;
     94         case OP_SUB_FLOAT_2ADDR:
     95         case OP_SUB_FLOAT:
     96             funct = (void*) __aeabi_fsub;
     97             break;
     98         case OP_DIV_FLOAT_2ADDR:
     99         case OP_DIV_FLOAT:
    100             funct = (void*) __aeabi_fdiv;
    101             break;
    102         case OP_MUL_FLOAT_2ADDR:
    103         case OP_MUL_FLOAT:
    104             funct = (void*) __aeabi_fmul;
    105             break;
    106         case OP_REM_FLOAT_2ADDR:
    107         case OP_REM_FLOAT:
    108             funct = (void*) fmodf;
    109             break;
    110         case OP_NEG_FLOAT: {
    111             genNegFloat(cUnit, rlDest, rlSrc1);
    112             return false;
    113         }
    114         default:
    115             return true;
    116     }
    117     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    118     loadValueDirectFixed(cUnit, rlSrc1, r0);
    119     loadValueDirectFixed(cUnit, rlSrc2, r1);
    120     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    121     opReg(cUnit, kOpBlx, r2);
    122     dvmCompilerClobberCallRegs(cUnit);
    123     rlResult = dvmCompilerGetReturn(cUnit);
    124     storeValue(cUnit, rlDest, rlResult);
    125     return false;
    126 }
    127 
    128 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    129                                      RegLocation rlDest, RegLocation rlSrc1,
    130                                      RegLocation rlSrc2)
    131 {
    132     RegLocation rlResult;
    133     void* funct;
    134 
    135     switch (mir->dalvikInsn.opCode) {
    136         case OP_ADD_DOUBLE_2ADDR:
    137         case OP_ADD_DOUBLE:
    138             funct = (void*) __aeabi_dadd;
    139             break;
    140         case OP_SUB_DOUBLE_2ADDR:
    141         case OP_SUB_DOUBLE:
    142             funct = (void*) __aeabi_dsub;
    143             break;
    144         case OP_DIV_DOUBLE_2ADDR:
    145         case OP_DIV_DOUBLE:
    146             funct = (void*) __aeabi_ddiv;
    147             break;
    148         case OP_MUL_DOUBLE_2ADDR:
    149         case OP_MUL_DOUBLE:
    150             funct = (void*) __aeabi_dmul;
    151             break;
    152         case OP_REM_DOUBLE_2ADDR:
    153         case OP_REM_DOUBLE:
    154             funct = (void*) fmod;
    155             break;
    156         case OP_NEG_DOUBLE: {
    157             genNegDouble(cUnit, rlDest, rlSrc1);
    158             return false;
    159         }
    160         default:
    161             return true;
    162     }
    163     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    164     LOAD_FUNC_ADDR(cUnit, rlr, (int)funct);
    165     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    166     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    167     opReg(cUnit, kOpBlx, rlr);
    168     dvmCompilerClobberCallRegs(cUnit);
    169     rlResult = dvmCompilerGetReturnWide(cUnit);
    170     storeValueWide(cUnit, rlDest, rlResult);
    171     return false;
    172 }
    173 
    174 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    175 {
    176     OpCode opCode = mir->dalvikInsn.opCode;
    177 
    178     switch (opCode) {
    179         case OP_INT_TO_FLOAT:
    180             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    181         case OP_FLOAT_TO_INT:
    182             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    183         case OP_DOUBLE_TO_FLOAT:
    184             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    185         case OP_FLOAT_TO_DOUBLE:
    186             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    187         case OP_INT_TO_DOUBLE:
    188             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    189         case OP_DOUBLE_TO_INT:
    190             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    191         case OP_FLOAT_TO_LONG:
    192             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    193         case OP_LONG_TO_FLOAT:
    194             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    195         case OP_DOUBLE_TO_LONG:
    196             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    197         case OP_LONG_TO_DOUBLE:
    198             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    199         default:
    200             return true;
    201     }
    202     return false;
    203 }
    204 
    205 #if defined(WITH_SELF_VERIFICATION)
    206 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpCode opCode,
    207                           int dest, int src1)
    208 {
    209      ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
    210      insn->opCode = opCode;
    211      insn->operands[0] = dest;
    212      insn->operands[1] = src1;
    213      setupResourceMasks(insn);
    214      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    215 }
    216 
    217 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    218 {
    219     ArmLIR *thisLIR;
    220     TemplateOpCode opCode = TEMPLATE_MEM_OP_DECODE;
    221 
    222     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    223          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    224          thisLIR = NEXT_LIR(thisLIR)) {
    225         if (thisLIR->branchInsertSV) {
    226             /* Branch to mem op decode template */
    227             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    228                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    229                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    230             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    231                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    232                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    233         }
    234     }
    235 }
    236 #endif
    237 
    238 /* Generate conditional branch instructions */
    239 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    240                                     ArmConditionCode cond,
    241                                     ArmLIR *target)
    242 {
    243     ArmLIR *branch = opCondBranch(cUnit, cond);
    244     branch->generic.target = (LIR *) target;
    245     return branch;
    246 }
    247 
    248 /* Generate a unconditional branch to go to the interpreter */
    249 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    250                                   ArmLIR *pcrLabel)
    251 {
    252     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    253     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    254 }
    255 
    256 /* Load a wide field from an object instance */
    257 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    258 {
    259     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    260     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    261     RegLocation rlResult;
    262     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    263     int regPtr = dvmCompilerAllocTemp(cUnit);
    264 
    265     assert(rlDest.wide);
    266 
    267     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    268                  NULL);/* null object? */
    269     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    270     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    271 
    272     HEAP_ACCESS_SHADOW(true);
    273     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    274     HEAP_ACCESS_SHADOW(false);
    275 
    276     dvmCompilerFreeTemp(cUnit, regPtr);
    277     storeValueWide(cUnit, rlDest, rlResult);
    278 }
    279 
    280 /* Store a wide field to an object instance */
    281 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    282 {
    283     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    284     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    285     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    286     int regPtr;
    287     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    288     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    289                  NULL);/* null object? */
    290     regPtr = dvmCompilerAllocTemp(cUnit);
    291     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    292 
    293     HEAP_ACCESS_SHADOW(true);
    294     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    295     HEAP_ACCESS_SHADOW(false);
    296 
    297     dvmCompilerFreeTemp(cUnit, regPtr);
    298 }
    299 
    300 /*
    301  * Load a field from an object instance
    302  *
    303  */
    304 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    305                     int fieldOffset, bool isVolatile)
    306 {
    307     RegLocation rlResult;
    308     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    309     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    310     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    311     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    312     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    313     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    314                  NULL);/* null object? */
    315 
    316     HEAP_ACCESS_SHADOW(true);
    317     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    318                  size, rlObj.sRegLow);
    319     HEAP_ACCESS_SHADOW(false);
    320     if (isVolatile) {
    321         dvmCompilerGenMemBarrier(cUnit);
    322     }
    323 
    324     storeValue(cUnit, rlDest, rlResult);
    325 }
    326 
    327 /*
    328  * Store a field to an object instance
    329  *
    330  */
    331 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    332                     int fieldOffset, bool isObject, bool isVolatile)
    333 {
    334     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    335     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    336     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    337     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    338     rlSrc = loadValue(cUnit, rlSrc, regClass);
    339     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    340                  NULL);/* null object? */
    341 
    342     if (isVolatile) {
    343         dvmCompilerGenMemBarrier(cUnit);
    344     }
    345     HEAP_ACCESS_SHADOW(true);
    346     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    347     HEAP_ACCESS_SHADOW(false);
    348     if (isObject) {
    349         /* NOTE: marking card based on object head */
    350         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
    351     }
    352 }
    353 
    354 
    355 /*
    356  * Generate array load
    357  */
    358 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    359                         RegLocation rlArray, RegLocation rlIndex,
    360                         RegLocation rlDest, int scale)
    361 {
    362     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    363     int lenOffset = offsetof(ArrayObject, length);
    364     int dataOffset = offsetof(ArrayObject, contents);
    365     RegLocation rlResult;
    366     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    367     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    368     int regPtr;
    369 
    370     /* null object? */
    371     ArmLIR * pcrLabel = NULL;
    372 
    373     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    374         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    375                                 rlArray.lowReg, mir->offset, NULL);
    376     }
    377 
    378     regPtr = dvmCompilerAllocTemp(cUnit);
    379 
    380     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    381         int regLen = dvmCompilerAllocTemp(cUnit);
    382         /* Get len */
    383         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    384         /* regPtr -> array data */
    385         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    386         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    387                        pcrLabel);
    388         dvmCompilerFreeTemp(cUnit, regLen);
    389     } else {
    390         /* regPtr -> array data */
    391         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    392     }
    393     if ((size == kLong) || (size == kDouble)) {
    394         if (scale) {
    395             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    396             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    397             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    398             dvmCompilerFreeTemp(cUnit, rNewIndex);
    399         } else {
    400             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    401         }
    402         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    403 
    404         HEAP_ACCESS_SHADOW(true);
    405         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    406         HEAP_ACCESS_SHADOW(false);
    407 
    408         dvmCompilerFreeTemp(cUnit, regPtr);
    409         storeValueWide(cUnit, rlDest, rlResult);
    410     } else {
    411         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    412 
    413         HEAP_ACCESS_SHADOW(true);
    414         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    415                         scale, size);
    416         HEAP_ACCESS_SHADOW(false);
    417 
    418         dvmCompilerFreeTemp(cUnit, regPtr);
    419         storeValue(cUnit, rlDest, rlResult);
    420     }
    421 }
    422 
    423 /*
    424  * Generate array store
    425  *
    426  */
    427 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    428                         RegLocation rlArray, RegLocation rlIndex,
    429                         RegLocation rlSrc, int scale)
    430 {
    431     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    432     int lenOffset = offsetof(ArrayObject, length);
    433     int dataOffset = offsetof(ArrayObject, contents);
    434 
    435     int regPtr;
    436     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    437     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    438 
    439     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    440         dvmCompilerClobber(cUnit, rlArray.lowReg);
    441         regPtr = rlArray.lowReg;
    442     } else {
    443         regPtr = dvmCompilerAllocTemp(cUnit);
    444         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    445     }
    446 
    447     /* null object? */
    448     ArmLIR * pcrLabel = NULL;
    449 
    450     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    451         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    452                                 mir->offset, NULL);
    453     }
    454 
    455     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    456         int regLen = dvmCompilerAllocTemp(cUnit);
    457         //NOTE: max live temps(4) here.
    458         /* Get len */
    459         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    460         /* regPtr -> array data */
    461         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    462         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    463                        pcrLabel);
    464         dvmCompilerFreeTemp(cUnit, regLen);
    465     } else {
    466         /* regPtr -> array data */
    467         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    468     }
    469     /* at this point, regPtr points to array, 2 live temps */
    470     if ((size == kLong) || (size == kDouble)) {
    471         //TODO: need specific wide routine that can handle fp regs
    472         if (scale) {
    473             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    474             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    475             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    476             dvmCompilerFreeTemp(cUnit, rNewIndex);
    477         } else {
    478             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    479         }
    480         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
    481 
    482         HEAP_ACCESS_SHADOW(true);
    483         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    484         HEAP_ACCESS_SHADOW(false);
    485 
    486         dvmCompilerFreeTemp(cUnit, regPtr);
    487     } else {
    488         rlSrc = loadValue(cUnit, rlSrc, regClass);
    489 
    490         HEAP_ACCESS_SHADOW(true);
    491         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    492                          scale, size);
    493         HEAP_ACCESS_SHADOW(false);
    494     }
    495 }
    496 
    497 /*
    498  * Generate array object store
    499  * Must use explicit register allocation here because of
    500  * call-out to dvmCanPutArrayElement
    501  */
    502 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    503                               RegLocation rlArray, RegLocation rlIndex,
    504                               RegLocation rlSrc, int scale)
    505 {
    506     int lenOffset = offsetof(ArrayObject, length);
    507     int dataOffset = offsetof(ArrayObject, contents);
    508 
    509     dvmCompilerFlushAllRegs(cUnit);
    510 
    511     int regLen = r0;
    512     int regPtr = r4PC;  /* Preserved across call */
    513     int regArray = r1;
    514     int regIndex = r7;  /* Preserved across call */
    515 
    516     loadValueDirectFixed(cUnit, rlArray, regArray);
    517     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    518 
    519     /* null object? */
    520     ArmLIR * pcrLabel = NULL;
    521 
    522     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    523         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    524                                 mir->offset, NULL);
    525     }
    526 
    527     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    528         /* Get len */
    529         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    530         /* regPtr -> array data */
    531         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    532         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    533                        pcrLabel);
    534     } else {
    535         /* regPtr -> array data */
    536         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    537     }
    538 
    539     /* Get object to store */
    540     loadValueDirectFixed(cUnit, rlSrc, r0);
    541     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    542 
    543     /* Are we storing null?  If so, avoid check */
    544     opRegImm(cUnit, kOpCmp, r0, 0);
    545     ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
    546 
    547     /* Make sure the types are compatible */
    548     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    549     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    550     opReg(cUnit, kOpBlx, r2);
    551     dvmCompilerClobberCallRegs(cUnit);
    552 
    553     /*
    554      * Using fixed registers here, and counting on r4 and r7 being
    555      * preserved across the above call.  Tell the register allocation
    556      * utilities about the regs we are using directly
    557      */
    558     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    559     dvmCompilerLockTemp(cUnit, regIndex); // r7
    560     dvmCompilerLockTemp(cUnit, r0);
    561     dvmCompilerLockTemp(cUnit, r1);
    562 
    563     /* Bad? - roll back and re-execute if so */
    564     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    565 
    566     /* Resume here - must reload element & array, regPtr & index preserved */
    567     loadValueDirectFixed(cUnit, rlSrc, r0);
    568     loadValueDirectFixed(cUnit, rlArray, r1);
    569 
    570     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    571     target->defMask = ENCODE_ALL;
    572     branchOver->generic.target = (LIR *) target;
    573 
    574     HEAP_ACCESS_SHADOW(true);
    575     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    576                      scale, kWord);
    577     HEAP_ACCESS_SHADOW(false);
    578 
    579     dvmCompilerFreeTemp(cUnit, regPtr);
    580     dvmCompilerFreeTemp(cUnit, regIndex);
    581 
    582     /* NOTE: marking card here based on object head */
    583     markCard(cUnit, r0, r1);
    584 }
    585 
    586 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    587                            RegLocation rlDest, RegLocation rlSrc1,
    588                            RegLocation rlShift)
    589 {
    590     /*
    591      * Don't mess with the regsiters here as there is a particular calling
    592      * convention to the out-of-line handler.
    593      */
    594     RegLocation rlResult;
    595 
    596     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    597     loadValueDirect(cUnit, rlShift, r2);
    598     switch( mir->dalvikInsn.opCode) {
    599         case OP_SHL_LONG:
    600         case OP_SHL_LONG_2ADDR:
    601             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    602             break;
    603         case OP_SHR_LONG:
    604         case OP_SHR_LONG_2ADDR:
    605             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    606             break;
    607         case OP_USHR_LONG:
    608         case OP_USHR_LONG_2ADDR:
    609             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    610             break;
    611         default:
    612             return true;
    613     }
    614     rlResult = dvmCompilerGetReturnWide(cUnit);
    615     storeValueWide(cUnit, rlDest, rlResult);
    616     return false;
    617 }
    618 
    619 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    620                            RegLocation rlDest, RegLocation rlSrc1,
    621                            RegLocation rlSrc2)
    622 {
    623     RegLocation rlResult;
    624     OpKind firstOp = kOpBkpt;
    625     OpKind secondOp = kOpBkpt;
    626     bool callOut = false;
    627     void *callTgt;
    628     int retReg = r0;
    629 
    630     switch (mir->dalvikInsn.opCode) {
    631         case OP_NOT_LONG:
    632             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    633             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    634             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    635             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    636             storeValueWide(cUnit, rlDest, rlResult);
    637             return false;
    638             break;
    639         case OP_ADD_LONG:
    640         case OP_ADD_LONG_2ADDR:
    641             firstOp = kOpAdd;
    642             secondOp = kOpAdc;
    643             break;
    644         case OP_SUB_LONG:
    645         case OP_SUB_LONG_2ADDR:
    646             firstOp = kOpSub;
    647             secondOp = kOpSbc;
    648             break;
    649         case OP_MUL_LONG:
    650         case OP_MUL_LONG_2ADDR:
    651             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    652             return false;
    653         case OP_DIV_LONG:
    654         case OP_DIV_LONG_2ADDR:
    655             callOut = true;
    656             retReg = r0;
    657             callTgt = (void*)__aeabi_ldivmod;
    658             break;
    659         /* NOTE - result is in r2/r3 instead of r0/r1 */
    660         case OP_REM_LONG:
    661         case OP_REM_LONG_2ADDR:
    662             callOut = true;
    663             callTgt = (void*)__aeabi_ldivmod;
    664             retReg = r2;
    665             break;
    666         case OP_AND_LONG_2ADDR:
    667         case OP_AND_LONG:
    668             firstOp = kOpAnd;
    669             secondOp = kOpAnd;
    670             break;
    671         case OP_OR_LONG:
    672         case OP_OR_LONG_2ADDR:
    673             firstOp = kOpOr;
    674             secondOp = kOpOr;
    675             break;
    676         case OP_XOR_LONG:
    677         case OP_XOR_LONG_2ADDR:
    678             firstOp = kOpXor;
    679             secondOp = kOpXor;
    680             break;
    681         case OP_NEG_LONG: {
    682             //TUNING: can improve this using Thumb2 code
    683             int tReg = dvmCompilerAllocTemp(cUnit);
    684             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    685             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    686             loadConstantNoClobber(cUnit, tReg, 0);
    687             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    688                         tReg, rlSrc2.lowReg);
    689             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    690             genRegCopy(cUnit, rlResult.highReg, tReg);
    691             storeValueWide(cUnit, rlDest, rlResult);
    692             return false;
    693         }
    694         default:
    695             LOGE("Invalid long arith op");
    696             dvmCompilerAbort(cUnit);
    697     }
    698     if (!callOut) {
    699         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    700     } else {
    701         // Adjust return regs in to handle case of rem returning r2/r3
    702         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    703         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    704         LOAD_FUNC_ADDR(cUnit, rlr, (int) callTgt);
    705         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    706         opReg(cUnit, kOpBlx, rlr);
    707         dvmCompilerClobberCallRegs(cUnit);
    708         if (retReg == r0)
    709             rlResult = dvmCompilerGetReturnWide(cUnit);
    710         else
    711             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    712         storeValueWide(cUnit, rlDest, rlResult);
    713     }
    714     return false;
    715 }
    716 
    717 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    718                           RegLocation rlDest, RegLocation rlSrc1,
    719                           RegLocation rlSrc2)
    720 {
    721     OpKind op = kOpBkpt;
    722     bool callOut = false;
    723     bool checkZero = false;
    724     bool unary = false;
    725     int retReg = r0;
    726     void *callTgt;
    727     RegLocation rlResult;
    728     bool shiftOp = false;
    729 
    730     switch (mir->dalvikInsn.opCode) {
    731         case OP_NEG_INT:
    732             op = kOpNeg;
    733             unary = true;
    734             break;
    735         case OP_NOT_INT:
    736             op = kOpMvn;
    737             unary = true;
    738             break;
    739         case OP_ADD_INT:
    740         case OP_ADD_INT_2ADDR:
    741             op = kOpAdd;
    742             break;
    743         case OP_SUB_INT:
    744         case OP_SUB_INT_2ADDR:
    745             op = kOpSub;
    746             break;
    747         case OP_MUL_INT:
    748         case OP_MUL_INT_2ADDR:
    749             op = kOpMul;
    750             break;
    751         case OP_DIV_INT:
    752         case OP_DIV_INT_2ADDR:
    753             callOut = true;
    754             checkZero = true;
    755             callTgt = __aeabi_idiv;
    756             retReg = r0;
    757             break;
    758         /* NOTE: returns in r1 */
    759         case OP_REM_INT:
    760         case OP_REM_INT_2ADDR:
    761             callOut = true;
    762             checkZero = true;
    763             callTgt = __aeabi_idivmod;
    764             retReg = r1;
    765             break;
    766         case OP_AND_INT:
    767         case OP_AND_INT_2ADDR:
    768             op = kOpAnd;
    769             break;
    770         case OP_OR_INT:
    771         case OP_OR_INT_2ADDR:
    772             op = kOpOr;
    773             break;
    774         case OP_XOR_INT:
    775         case OP_XOR_INT_2ADDR:
    776             op = kOpXor;
    777             break;
    778         case OP_SHL_INT:
    779         case OP_SHL_INT_2ADDR:
    780             shiftOp = true;
    781             op = kOpLsl;
    782             break;
    783         case OP_SHR_INT:
    784         case OP_SHR_INT_2ADDR:
    785             shiftOp = true;
    786             op = kOpAsr;
    787             break;
    788         case OP_USHR_INT:
    789         case OP_USHR_INT_2ADDR:
    790             shiftOp = true;
    791             op = kOpLsr;
    792             break;
    793         default:
    794             LOGE("Invalid word arith op: 0x%x(%d)",
    795                  mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
    796             dvmCompilerAbort(cUnit);
    797     }
    798     if (!callOut) {
    799         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    800         if (unary) {
    801             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    802             opRegReg(cUnit, op, rlResult.lowReg,
    803                      rlSrc1.lowReg);
    804         } else {
    805             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    806             if (shiftOp) {
    807                 int tReg = dvmCompilerAllocTemp(cUnit);
    808                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    809                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    810                 opRegRegReg(cUnit, op, rlResult.lowReg,
    811                             rlSrc1.lowReg, tReg);
    812                 dvmCompilerFreeTemp(cUnit, tReg);
    813             } else {
    814                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    815                 opRegRegReg(cUnit, op, rlResult.lowReg,
    816                             rlSrc1.lowReg, rlSrc2.lowReg);
    817             }
    818         }
    819         storeValue(cUnit, rlDest, rlResult);
    820     } else {
    821         RegLocation rlResult;
    822         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    823         loadValueDirectFixed(cUnit, rlSrc2, r1);
    824         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    825         loadValueDirectFixed(cUnit, rlSrc1, r0);
    826         if (checkZero) {
    827             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    828         }
    829         opReg(cUnit, kOpBlx, r2);
    830         dvmCompilerClobberCallRegs(cUnit);
    831         if (retReg == r0)
    832             rlResult = dvmCompilerGetReturn(cUnit);
    833         else
    834             rlResult = dvmCompilerGetReturnAlt(cUnit);
    835         storeValue(cUnit, rlDest, rlResult);
    836     }
    837     return false;
    838 }
    839 
    840 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    841 {
    842     OpCode opCode = mir->dalvikInsn.opCode;
    843     RegLocation rlDest;
    844     RegLocation rlSrc1;
    845     RegLocation rlSrc2;
    846     /* Deduce sizes of operands */
    847     if (mir->ssaRep->numUses == 2) {
    848         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    849         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    850     } else if (mir->ssaRep->numUses == 3) {
    851         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    852         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    853     } else {
    854         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    855         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    856         assert(mir->ssaRep->numUses == 4);
    857     }
    858     if (mir->ssaRep->numDefs == 1) {
    859         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    860     } else {
    861         assert(mir->ssaRep->numDefs == 2);
    862         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    863     }
    864 
    865     if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
    866         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    867     }
    868     if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
    869         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    870     }
    871     if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
    872         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    873     }
    874     if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
    875         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    876     }
    877     if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
    878         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    879     }
    880     if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
    881         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    882     }
    883     if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
    884         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    885     }
    886     if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
    887         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    888     }
    889     if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
    890         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    891     }
    892     if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
    893         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    894     }
    895     return true;
    896 }
    897 
    898 /* Generate unconditional branch instructions */
    899 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    900 {
    901     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    902     branch->generic.target = (LIR *) target;
    903     return branch;
    904 }
    905 
    906 /* Perform the actual operation for OP_RETURN_* */
    907 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    908 {
    909     genDispatchToHandler(cUnit, TEMPLATE_RETURN);
    910 #if defined(WITH_JIT_TUNING)
    911     gDvmJit.returnOp++;
    912 #endif
    913     int dPC = (int) (cUnit->method->insns + mir->offset);
    914     /* Insert branch, but defer setting of target */
    915     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    916     /* Set up the place holder to reconstruct this Dalvik PC */
    917     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
    918     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
    919     pcrLabel->operands[0] = dPC;
    920     pcrLabel->operands[1] = mir->offset;
    921     /* Insert the place holder to the growable list */
    922     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
    923     /* Branch to the PC reconstruction code */
    924     branch->generic.target = (LIR *) pcrLabel;
    925 }
    926 
    927 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    928                                   DecodedInstruction *dInsn,
    929                                   ArmLIR **pcrLabel)
    930 {
    931     unsigned int i;
    932     unsigned int regMask = 0;
    933     RegLocation rlArg;
    934     int numDone = 0;
    935 
    936     /*
    937      * Load arguments to r0..r4.  Note that these registers may contain
    938      * live values, so we clobber them immediately after loading to prevent
    939      * them from being used as sources for subsequent loads.
    940      */
    941     dvmCompilerLockAllTemps(cUnit);
    942     for (i = 0; i < dInsn->vA; i++) {
    943         regMask |= 1 << i;
    944         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
    945         loadValueDirectFixed(cUnit, rlArg, i);
    946     }
    947     if (regMask) {
    948         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
    949         opRegRegImm(cUnit, kOpSub, r7, rFP,
    950                     sizeof(StackSaveArea) + (dInsn->vA << 2));
    951         /* generate null check */
    952         if (pcrLabel) {
    953             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    954                                      mir->offset, NULL);
    955         }
    956         storeMultiple(cUnit, r7, regMask);
    957     }
    958 }
    959 
    960 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
    961                                 DecodedInstruction *dInsn,
    962                                 ArmLIR **pcrLabel)
    963 {
    964     int srcOffset = dInsn->vC << 2;
    965     int numArgs = dInsn->vA;
    966     int regMask;
    967 
    968     /*
    969      * Note: here, all promoted registers will have been flushed
    970      * back to the Dalvik base locations, so register usage restrictins
    971      * are lifted.  All parms loaded from original Dalvik register
    972      * region - even though some might conceivably have valid copies
    973      * cached in a preserved register.
    974      */
    975     dvmCompilerLockAllTemps(cUnit);
    976 
    977     /*
    978      * r4PC     : &rFP[vC]
    979      * r7: &newFP[0]
    980      */
    981     opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
    982     /* load [r0 .. min(numArgs,4)] */
    983     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
    984     /*
    985      * Protect the loadMultiple instruction from being reordered with other
    986      * Dalvik stack accesses.
    987      */
    988     loadMultiple(cUnit, r4PC, regMask);
    989 
    990     opRegRegImm(cUnit, kOpSub, r7, rFP,
    991                 sizeof(StackSaveArea) + (numArgs << 2));
    992     /* generate null check */
    993     if (pcrLabel) {
    994         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    995                                  mir->offset, NULL);
    996     }
    997 
    998     /*
    999      * Handle remaining 4n arguments:
   1000      * store previously loaded 4 values and load the next 4 values
   1001      */
   1002     if (numArgs >= 8) {
   1003         ArmLIR *loopLabel = NULL;
   1004         /*
   1005          * r0 contains "this" and it will be used later, so push it to the stack
   1006          * first. Pushing r5 (rFP) is just for stack alignment purposes.
   1007          */
   1008         opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP));
   1009         /* No need to generate the loop structure if numArgs <= 11 */
   1010         if (numArgs > 11) {
   1011             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
   1012             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1013             loopLabel->defMask = ENCODE_ALL;
   1014         }
   1015         storeMultiple(cUnit, r7, regMask);
   1016         /*
   1017          * Protect the loadMultiple instruction from being reordered with other
   1018          * Dalvik stack accesses.
   1019          */
   1020         loadMultiple(cUnit, r4PC, regMask);
   1021         /* No need to generate the loop structure if numArgs <= 11 */
   1022         if (numArgs > 11) {
   1023             opRegImm(cUnit, kOpSub, rFP, 4);
   1024             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
   1025         }
   1026     }
   1027 
   1028     /* Save the last batch of loaded values */
   1029     storeMultiple(cUnit, r7, regMask);
   1030 
   1031     /* Generate the loop epilogue - don't use r0 */
   1032     if ((numArgs > 4) && (numArgs % 4)) {
   1033         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
   1034         /*
   1035          * Protect the loadMultiple instruction from being reordered with other
   1036          * Dalvik stack accesses.
   1037          */
   1038         loadMultiple(cUnit, r4PC, regMask);
   1039     }
   1040     if (numArgs >= 8)
   1041         opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP));
   1042 
   1043     /* Save the modulo 4 arguments */
   1044     if ((numArgs > 4) && (numArgs % 4)) {
   1045         storeMultiple(cUnit, r7, regMask);
   1046     }
   1047 }
   1048 
   1049 /*
   1050  * Generate code to setup the call stack then jump to the chaining cell if it
   1051  * is not a native method.
   1052  */
   1053 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1054                                      BasicBlock *bb, ArmLIR *labelList,
   1055                                      ArmLIR *pcrLabel,
   1056                                      const Method *calleeMethod)
   1057 {
   1058     /*
   1059      * Note: all Dalvik register state should be flushed to
   1060      * memory by the point, so register usage restrictions no
   1061      * longer apply.  All temp & preserved registers may be used.
   1062      */
   1063     dvmCompilerLockAllTemps(cUnit);
   1064     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1065 
   1066     /* r1 = &retChainingCell */
   1067     dvmCompilerLockTemp(cUnit, r1);
   1068     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1069     /* r4PC = dalvikCallsite */
   1070     loadConstant(cUnit, r4PC,
   1071                  (int) (cUnit->method->insns + mir->offset));
   1072     addrRetChain->generic.target = (LIR *) retChainingCell;
   1073     /*
   1074      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1075      * r1 = &ChainingCell
   1076      * r4PC = callsiteDPC
   1077      */
   1078     if (dvmIsNativeMethod(calleeMethod)) {
   1079         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
   1080 #if defined(WITH_JIT_TUNING)
   1081         gDvmJit.invokeNative++;
   1082 #endif
   1083     } else {
   1084         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
   1085 #if defined(WITH_JIT_TUNING)
   1086         gDvmJit.invokeMonomorphic++;
   1087 #endif
   1088         /* Branch to the chaining cell */
   1089         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1090     }
   1091     /* Handle exceptions using the interpreter */
   1092     genTrap(cUnit, mir->offset, pcrLabel);
   1093 }
   1094 
   1095 /*
   1096  * Generate code to check the validity of a predicted chain and take actions
   1097  * based on the result.
   1098  *
   1099  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1100  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1101  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1102  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1103  * 0x426a99b2 : blx_2   see above     --+
   1104  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1105  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1106  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1107  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1108  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1109  * 0x426a99be : ldr     r7, [r6, #96] --+ dvmJitToPatchPredictedChain
   1110  * 0x426a99c0 : blx     r7            --+
   1111  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1112  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1113  * 0x426a99c6 : blx_2   see above     --+
   1114  */
   1115 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1116                                    int methodIndex,
   1117                                    ArmLIR *retChainingCell,
   1118                                    ArmLIR *predChainingCell,
   1119                                    ArmLIR *pcrLabel)
   1120 {
   1121     /*
   1122      * Note: all Dalvik register state should be flushed to
   1123      * memory by the point, so register usage restrictions no
   1124      * longer apply.  Lock temps to prevent them from being
   1125      * allocated by utility routines.
   1126      */
   1127     dvmCompilerLockAllTemps(cUnit);
   1128 
   1129     /* "this" is already left in r0 by genProcessArgs* */
   1130 
   1131     /* r4PC = dalvikCallsite */
   1132     loadConstant(cUnit, r4PC,
   1133                  (int) (cUnit->method->insns + mir->offset));
   1134 
   1135     /* r1 = &retChainingCell */
   1136     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1137     addrRetChain->generic.target = (LIR *) retChainingCell;
   1138 
   1139     /* r2 = &predictedChainingCell */
   1140     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   1141     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1142 
   1143     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1144 
   1145     /* return through lr - jump to the chaining cell */
   1146     genUnconditionalBranch(cUnit, predChainingCell);
   1147 
   1148     /*
   1149      * null-check on "this" may have been eliminated, but we still need a PC-
   1150      * reconstruction label for stack overflow bailout.
   1151      */
   1152     if (pcrLabel == NULL) {
   1153         int dPC = (int) (cUnit->method->insns + mir->offset);
   1154         pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   1155         pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   1156         pcrLabel->operands[0] = dPC;
   1157         pcrLabel->operands[1] = mir->offset;
   1158         /* Insert the place holder to the growable list */
   1159         dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   1160     }
   1161 
   1162     /* return through lr+2 - punt to the interpreter */
   1163     genUnconditionalBranch(cUnit, pcrLabel);
   1164 
   1165     /*
   1166      * return through lr+4 - fully resolve the callee method.
   1167      * r1 <- count
   1168      * r2 <- &predictedChainCell
   1169      * r3 <- this->class
   1170      * r4 <- dPC
   1171      * r7 <- this->class->vtable
   1172      */
   1173 
   1174     /* r0 <- calleeMethod */
   1175     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1176 
   1177     /* Check if rechain limit is reached */
   1178     opRegImm(cUnit, kOpCmp, r1, 0);
   1179 
   1180     ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   1181 
   1182     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1183                  jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   1184 
   1185     genRegCopy(cUnit, r1, rGLUE);
   1186 
   1187     /*
   1188      * r0 = calleeMethod
   1189      * r2 = &predictedChainingCell
   1190      * r3 = class
   1191      *
   1192      * &returnChainingCell has been loaded into r1 but is not needed
   1193      * when patching the chaining cell and will be clobbered upon
   1194      * returning so it will be reconstructed again.
   1195      */
   1196     opReg(cUnit, kOpBlx, r7);
   1197 
   1198     /* r1 = &retChainingCell */
   1199     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1200     addrRetChain->generic.target = (LIR *) retChainingCell;
   1201 
   1202     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1203     /*
   1204      * r0 = calleeMethod,
   1205      * r1 = &ChainingCell,
   1206      * r4PC = callsiteDPC,
   1207      */
   1208     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   1209 #if defined(WITH_JIT_TUNING)
   1210     gDvmJit.invokePolymorphic++;
   1211 #endif
   1212     /* Handle exceptions using the interpreter */
   1213     genTrap(cUnit, mir->offset, pcrLabel);
   1214 }
   1215 
   1216 /* Geneate a branch to go back to the interpreter */
   1217 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1218 {
   1219     /* r0 = dalvik pc */
   1220     dvmCompilerFlushAllRegs(cUnit);
   1221     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1222     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3);
   1223     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1224                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1225     opReg(cUnit, kOpBlx, r1);
   1226 }
   1227 
   1228 /*
   1229  * Attempt to single step one instruction using the interpreter and return
   1230  * to the compiled code for the next Dalvik instruction
   1231  */
   1232 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1233 {
   1234     int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
   1235     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
   1236                        kInstrCanThrow;
   1237 
   1238     //If already optimized out, just ignore
   1239     if (mir->dalvikInsn.opCode == OP_NOP)
   1240         return;
   1241 
   1242     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1243     dvmCompilerFlushAllRegs(cUnit);
   1244 
   1245     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1246        genPuntToInterp(cUnit, mir->offset);
   1247        return;
   1248     }
   1249     int entryAddr = offsetof(InterpState,
   1250                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1251     loadWordDisp(cUnit, rGLUE, entryAddr, r2);
   1252     /* r0 = dalvik pc */
   1253     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1254     /* r1 = dalvik pc of following instruction */
   1255     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1256     opReg(cUnit, kOpBlx, r2);
   1257 }
   1258 
   1259 #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING) || \
   1260     defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
   1261 /*
   1262  * To prevent a thread in a monitor wait from blocking the Jit from
   1263  * resetting the code cache, heavyweight monitor lock will not
   1264  * be allowed to return to an existing translation.  Instead, we will
   1265  * handle them by branching to a handler, which will in turn call the
   1266  * runtime lock routine and then branch directly back to the
   1267  * interpreter main loop.  Given the high cost of the heavyweight
   1268  * lock operation, this additional cost should be slight (especially when
   1269  * considering that we expect the vast majority of lock operations to
   1270  * use the fast-path thin lock bypass).
   1271  */
   1272 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1273 {
   1274     bool isEnter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
   1275     genExportPC(cUnit, mir);
   1276     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1277     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1278     loadValueDirectFixed(cUnit, rlSrc, r1);
   1279     loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
   1280     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1281     if (isEnter) {
   1282         /* Get dPC of next insn */
   1283         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1284                  dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
   1285 #if defined(WITH_DEADLOCK_PREDICTION)
   1286         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER_DEBUG);
   1287 #else
   1288         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1289 #endif
   1290     } else {
   1291         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1292         /* Do the call */
   1293         opReg(cUnit, kOpBlx, r2);
   1294         opRegImm(cUnit, kOpCmp, r0, 0); /* Did we throw? */
   1295         ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1296         loadConstant(cUnit, r0,
   1297                      (int) (cUnit->method->insns + mir->offset +
   1298                      dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_EXIT)));
   1299         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1300         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1301         target->defMask = ENCODE_ALL;
   1302         branchOver->generic.target = (LIR *) target;
   1303         dvmCompilerClobberCallRegs(cUnit);
   1304     }
   1305 }
   1306 #endif
   1307 
   1308 /*
   1309  * The following are the first-level codegen routines that analyze the format
   1310  * of each bytecode then either dispatch special purpose codegen routines
   1311  * or produce corresponding Thumb instructions directly.
   1312  */
   1313 
   1314 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1315                                        BasicBlock *bb, ArmLIR *labelList)
   1316 {
   1317     /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1318     genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1319     return false;
   1320 }
   1321 
   1322 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1323 {
   1324     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1325     if ((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) {
   1326         LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1327         return true;
   1328     }
   1329     switch (dalvikOpCode) {
   1330         case OP_RETURN_VOID:
   1331             genReturnCommon(cUnit,mir);
   1332             break;
   1333         case OP_UNUSED_73:
   1334         case OP_UNUSED_79:
   1335         case OP_UNUSED_7A:
   1336         case OP_UNUSED_F1:
   1337         case OP_UNUSED_FF:
   1338             LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1339             return true;
   1340         case OP_NOP:
   1341             break;
   1342         default:
   1343             return true;
   1344     }
   1345     return false;
   1346 }
   1347 
   1348 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1349 {
   1350     RegLocation rlDest;
   1351     RegLocation rlResult;
   1352     if (mir->ssaRep->numDefs == 2) {
   1353         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1354     } else {
   1355         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1356     }
   1357 
   1358     switch (mir->dalvikInsn.opCode) {
   1359         case OP_CONST:
   1360         case OP_CONST_4: {
   1361             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1362             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1363             storeValue(cUnit, rlDest, rlResult);
   1364             break;
   1365         }
   1366         case OP_CONST_WIDE_32: {
   1367             //TUNING: single routine to load constant pair for support doubles
   1368             //TUNING: load 0/-1 separately to avoid load dependency
   1369             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1370             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1371             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1372                         rlResult.lowReg, 31);
   1373             storeValueWide(cUnit, rlDest, rlResult);
   1374             break;
   1375         }
   1376         default:
   1377             return true;
   1378     }
   1379     return false;
   1380 }
   1381 
   1382 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1383 {
   1384     RegLocation rlDest;
   1385     RegLocation rlResult;
   1386     if (mir->ssaRep->numDefs == 2) {
   1387         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1388     } else {
   1389         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1390     }
   1391     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1392 
   1393     switch (mir->dalvikInsn.opCode) {
   1394         case OP_CONST_HIGH16: {
   1395             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1396                                   mir->dalvikInsn.vB << 16);
   1397             storeValue(cUnit, rlDest, rlResult);
   1398             break;
   1399         }
   1400         case OP_CONST_WIDE_HIGH16: {
   1401             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1402                                   0, mir->dalvikInsn.vB << 16);
   1403             storeValueWide(cUnit, rlDest, rlResult);
   1404             break;
   1405         }
   1406         default:
   1407             return true;
   1408     }
   1409     return false;
   1410 }
   1411 
   1412 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1413 {
   1414     /* For OP_THROW_VERIFICATION_ERROR */
   1415     genInterpSingleStep(cUnit, mir);
   1416     return false;
   1417 }
   1418 
   1419 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1420 {
   1421     RegLocation rlResult;
   1422     RegLocation rlDest;
   1423     RegLocation rlSrc;
   1424 
   1425     switch (mir->dalvikInsn.opCode) {
   1426         case OP_CONST_STRING_JUMBO:
   1427         case OP_CONST_STRING: {
   1428             void *strPtr = (void*)
   1429               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1430 
   1431             if (strPtr == NULL) {
   1432                 LOGE("Unexpected null string");
   1433                 dvmAbort();
   1434             }
   1435 
   1436             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1437             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1438             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1439             storeValue(cUnit, rlDest, rlResult);
   1440             break;
   1441         }
   1442         case OP_CONST_CLASS: {
   1443             void *classPtr = (void*)
   1444               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1445 
   1446             if (classPtr == NULL) {
   1447                 LOGE("Unexpected null class");
   1448                 dvmAbort();
   1449             }
   1450 
   1451             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1452             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1453             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1454             storeValue(cUnit, rlDest, rlResult);
   1455             break;
   1456         }
   1457         case OP_SGET_VOLATILE:
   1458         case OP_SGET_OBJECT_VOLATILE:
   1459         case OP_SGET_OBJECT:
   1460         case OP_SGET_BOOLEAN:
   1461         case OP_SGET_CHAR:
   1462         case OP_SGET_BYTE:
   1463         case OP_SGET_SHORT:
   1464         case OP_SGET: {
   1465             int valOffset = offsetof(StaticField, value);
   1466             int tReg = dvmCompilerAllocTemp(cUnit);
   1467             bool isVolatile;
   1468             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1469                 mir->meta.calleeMethod : cUnit->method;
   1470             void *fieldPtr = (void*)
   1471               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1472 
   1473             if (fieldPtr == NULL) {
   1474                 LOGE("Unexpected null static field");
   1475                 dvmAbort();
   1476             }
   1477 
   1478             isVolatile = (mir->dalvikInsn.opCode == OP_SGET_VOLATILE) ||
   1479                          (mir->dalvikInsn.opCode == OP_SGET_OBJECT_VOLATILE) ||
   1480                          dvmIsVolatileField(fieldPtr);
   1481 
   1482             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1483             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1484             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1485 
   1486             if (isVolatile) {
   1487                 dvmCompilerGenMemBarrier(cUnit);
   1488             }
   1489             HEAP_ACCESS_SHADOW(true);
   1490             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1491             HEAP_ACCESS_SHADOW(false);
   1492 
   1493             storeValue(cUnit, rlDest, rlResult);
   1494             break;
   1495         }
   1496         case OP_SGET_WIDE: {
   1497             int valOffset = offsetof(StaticField, value);
   1498             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1499                 mir->meta.calleeMethod : cUnit->method;
   1500             void *fieldPtr = (void*)
   1501               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1502 
   1503             if (fieldPtr == NULL) {
   1504                 LOGE("Unexpected null static field");
   1505                 dvmAbort();
   1506             }
   1507 
   1508             int tReg = dvmCompilerAllocTemp(cUnit);
   1509             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1510             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1511             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1512 
   1513             HEAP_ACCESS_SHADOW(true);
   1514             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1515             HEAP_ACCESS_SHADOW(false);
   1516 
   1517             storeValueWide(cUnit, rlDest, rlResult);
   1518             break;
   1519         }
   1520         case OP_SPUT_OBJECT:
   1521         case OP_SPUT_OBJECT_VOLATILE:
   1522         case OP_SPUT_VOLATILE:
   1523         case OP_SPUT_BOOLEAN:
   1524         case OP_SPUT_CHAR:
   1525         case OP_SPUT_BYTE:
   1526         case OP_SPUT_SHORT:
   1527         case OP_SPUT: {
   1528             int valOffset = offsetof(StaticField, value);
   1529             int tReg = dvmCompilerAllocTemp(cUnit);
   1530             int objHead;
   1531             bool isVolatile;
   1532             bool isSputObject;
   1533             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1534                 mir->meta.calleeMethod : cUnit->method;
   1535             void *fieldPtr = (void*)
   1536               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1537 
   1538             isVolatile = (mir->dalvikInsn.opCode == OP_SPUT_VOLATILE) ||
   1539                          (mir->dalvikInsn.opCode == OP_SPUT_OBJECT_VOLATILE) ||
   1540                          dvmIsVolatileField(fieldPtr);
   1541 
   1542             isSputObject = (mir->dalvikInsn.opCode == OP_SPUT_OBJECT) ||
   1543                            (mir->dalvikInsn.opCode == OP_SPUT_OBJECT_VOLATILE);
   1544 
   1545             if (fieldPtr == NULL) {
   1546                 LOGE("Unexpected null static field");
   1547                 dvmAbort();
   1548             }
   1549 
   1550             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1551             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1552             loadConstant(cUnit, tReg,  (int) fieldPtr);
   1553             if (isSputObject) {
   1554                 objHead = dvmCompilerAllocTemp(cUnit);
   1555                 loadWordDisp(cUnit, tReg, offsetof(Field, clazz), objHead);
   1556             }
   1557             HEAP_ACCESS_SHADOW(true);
   1558             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
   1559             dvmCompilerFreeTemp(cUnit, tReg);
   1560             HEAP_ACCESS_SHADOW(false);
   1561             if (isVolatile) {
   1562                 dvmCompilerGenMemBarrier(cUnit);
   1563             }
   1564             if (isSputObject) {
   1565                 /* NOTE: marking card based sfield->clazz */
   1566                 markCard(cUnit, rlSrc.lowReg, objHead);
   1567                 dvmCompilerFreeTemp(cUnit, objHead);
   1568             }
   1569 
   1570             break;
   1571         }
   1572         case OP_SPUT_WIDE: {
   1573             int tReg = dvmCompilerAllocTemp(cUnit);
   1574             int valOffset = offsetof(StaticField, value);
   1575             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1576                 mir->meta.calleeMethod : cUnit->method;
   1577             void *fieldPtr = (void*)
   1578               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1579 
   1580             if (fieldPtr == NULL) {
   1581                 LOGE("Unexpected null static field");
   1582                 dvmAbort();
   1583             }
   1584 
   1585             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1586             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1587             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1588 
   1589             HEAP_ACCESS_SHADOW(true);
   1590             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1591             HEAP_ACCESS_SHADOW(false);
   1592             break;
   1593         }
   1594         case OP_NEW_INSTANCE: {
   1595             /*
   1596              * Obey the calling convention and don't mess with the register
   1597              * usage.
   1598              */
   1599             ClassObject *classPtr = (void*)
   1600               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1601 
   1602             if (classPtr == NULL) {
   1603                 LOGE("Unexpected null class");
   1604                 dvmAbort();
   1605             }
   1606 
   1607             /*
   1608              * If it is going to throw, it should not make to the trace to begin
   1609              * with.  However, Alloc might throw, so we need to genExportPC()
   1610              */
   1611             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1612             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1613             genExportPC(cUnit, mir);
   1614             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1615             loadConstant(cUnit, r0, (int) classPtr);
   1616             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1617             opReg(cUnit, kOpBlx, r2);
   1618             dvmCompilerClobberCallRegs(cUnit);
   1619             /* generate a branch over if allocation is successful */
   1620             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   1621             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1622             /*
   1623              * OOM exception needs to be thrown here and cannot re-execute
   1624              */
   1625             loadConstant(cUnit, r0,
   1626                          (int) (cUnit->method->insns + mir->offset));
   1627             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1628             /* noreturn */
   1629 
   1630             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1631             target->defMask = ENCODE_ALL;
   1632             branchOver->generic.target = (LIR *) target;
   1633             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1634             rlResult = dvmCompilerGetReturn(cUnit);
   1635             storeValue(cUnit, rlDest, rlResult);
   1636             break;
   1637         }
   1638         case OP_CHECK_CAST: {
   1639             /*
   1640              * Obey the calling convention and don't mess with the register
   1641              * usage.
   1642              */
   1643             ClassObject *classPtr =
   1644               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1645             /*
   1646              * Note: It is possible that classPtr is NULL at this point,
   1647              * even though this instruction has been successfully interpreted.
   1648              * If the previous interpretation had a null source, the
   1649              * interpreter would not have bothered to resolve the clazz.
   1650              * Bail out to the interpreter in this case, and log it
   1651              * so that we can tell if it happens frequently.
   1652              */
   1653             if (classPtr == NULL) {
   1654                  LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1655                  genInterpSingleStep(cUnit, mir);
   1656                  return false;
   1657             }
   1658             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1659             loadConstant(cUnit, r1, (int) classPtr );
   1660             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1661             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1662             opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);   /* Null? */
   1663             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   1664             /*
   1665              *  rlSrc.lowReg now contains object->clazz.  Note that
   1666              *  it could have been allocated r0, but we're okay so long
   1667              *  as we don't do anything desctructive until r0 is loaded
   1668              *  with clazz.
   1669              */
   1670             /* r0 now contains object->clazz */
   1671             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1672             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1673             opRegReg(cUnit, kOpCmp, r0, r1);
   1674             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1675             opReg(cUnit, kOpBlx, r2);
   1676             dvmCompilerClobberCallRegs(cUnit);
   1677             /*
   1678              * If null, check cast failed - punt to the interpreter.  Because
   1679              * interpreter will be the one throwing, we don't need to
   1680              * genExportPC() here.
   1681              */
   1682             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1683             /* check cast passed - branch target here */
   1684             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1685             target->defMask = ENCODE_ALL;
   1686             branch1->generic.target = (LIR *)target;
   1687             branch2->generic.target = (LIR *)target;
   1688             break;
   1689         }
   1690         case OP_SGET_WIDE_VOLATILE:
   1691         case OP_SPUT_WIDE_VOLATILE:
   1692             genInterpSingleStep(cUnit, mir);
   1693             break;
   1694         default:
   1695             return true;
   1696     }
   1697     return false;
   1698 }
   1699 
   1700 /*
   1701  * A typical example of inlined getter/setter from a monomorphic callsite:
   1702  *
   1703  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
   1704  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
   1705  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
   1706  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
   1707  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
   1708  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
   1709  * D/dalvikvm(  289): L0x0003:
   1710  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
   1711  *
   1712  * Note the invoke-static and move-result-object with the (I) notation are
   1713  * turned into no-op.
   1714  */
   1715 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1716 {
   1717     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1718     RegLocation rlResult;
   1719     switch (dalvikOpCode) {
   1720         case OP_MOVE_EXCEPTION: {
   1721             int offset = offsetof(InterpState, self);
   1722             int exOffset = offsetof(Thread, exception);
   1723             int selfReg = dvmCompilerAllocTemp(cUnit);
   1724             int resetReg = dvmCompilerAllocTemp(cUnit);
   1725             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1726             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1727             loadWordDisp(cUnit, rGLUE, offset, selfReg);
   1728             loadConstant(cUnit, resetReg, 0);
   1729             loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg);
   1730             storeWordDisp(cUnit, selfReg, exOffset, resetReg);
   1731             storeValue(cUnit, rlDest, rlResult);
   1732            break;
   1733         }
   1734         case OP_MOVE_RESULT:
   1735         case OP_MOVE_RESULT_OBJECT: {
   1736             /* An inlined move result is effectively no-op */
   1737             if (mir->OptimizationFlags & MIR_INLINED)
   1738                 break;
   1739             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1740             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1741             rlSrc.fp = rlDest.fp;
   1742             storeValue(cUnit, rlDest, rlSrc);
   1743             break;
   1744         }
   1745         case OP_MOVE_RESULT_WIDE: {
   1746             /* An inlined move result is effectively no-op */
   1747             if (mir->OptimizationFlags & MIR_INLINED)
   1748                 break;
   1749             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1750             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1751             rlSrc.fp = rlDest.fp;
   1752             storeValueWide(cUnit, rlDest, rlSrc);
   1753             break;
   1754         }
   1755         case OP_RETURN_WIDE: {
   1756             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1757             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1758             rlDest.fp = rlSrc.fp;
   1759             storeValueWide(cUnit, rlDest, rlSrc);
   1760             genReturnCommon(cUnit,mir);
   1761             break;
   1762         }
   1763         case OP_RETURN:
   1764         case OP_RETURN_OBJECT: {
   1765             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1766             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1767             rlDest.fp = rlSrc.fp;
   1768             storeValue(cUnit, rlDest, rlSrc);
   1769             genReturnCommon(cUnit,mir);
   1770             break;
   1771         }
   1772         case OP_MONITOR_EXIT:
   1773         case OP_MONITOR_ENTER:
   1774 #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING)
   1775             genMonitorPortable(cUnit, mir);
   1776 #else
   1777             genMonitor(cUnit, mir);
   1778 #endif
   1779             break;
   1780         case OP_THROW: {
   1781             genInterpSingleStep(cUnit, mir);
   1782             break;
   1783         }
   1784         default:
   1785             return true;
   1786     }
   1787     return false;
   1788 }
   1789 
   1790 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1791 {
   1792     OpCode opCode = mir->dalvikInsn.opCode;
   1793     RegLocation rlDest;
   1794     RegLocation rlSrc;
   1795     RegLocation rlResult;
   1796 
   1797     if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
   1798         return genArithOp( cUnit, mir );
   1799     }
   1800 
   1801     if (mir->ssaRep->numUses == 2)
   1802         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1803     else
   1804         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1805     if (mir->ssaRep->numDefs == 2)
   1806         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1807     else
   1808         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1809 
   1810     switch (opCode) {
   1811         case OP_DOUBLE_TO_INT:
   1812         case OP_INT_TO_FLOAT:
   1813         case OP_FLOAT_TO_INT:
   1814         case OP_DOUBLE_TO_FLOAT:
   1815         case OP_FLOAT_TO_DOUBLE:
   1816         case OP_INT_TO_DOUBLE:
   1817         case OP_FLOAT_TO_LONG:
   1818         case OP_LONG_TO_FLOAT:
   1819         case OP_DOUBLE_TO_LONG:
   1820         case OP_LONG_TO_DOUBLE:
   1821             return genConversion(cUnit, mir);
   1822         case OP_NEG_INT:
   1823         case OP_NOT_INT:
   1824             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   1825         case OP_NEG_LONG:
   1826         case OP_NOT_LONG:
   1827             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   1828         case OP_NEG_FLOAT:
   1829             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   1830         case OP_NEG_DOUBLE:
   1831             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   1832         case OP_MOVE_WIDE:
   1833             storeValueWide(cUnit, rlDest, rlSrc);
   1834             break;
   1835         case OP_INT_TO_LONG:
   1836             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   1837             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1838             //TUNING: shouldn't loadValueDirect already check for phys reg?
   1839             if (rlSrc.location == kLocPhysReg) {
   1840                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   1841             } else {
   1842                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   1843             }
   1844             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1845                         rlResult.lowReg, 31);
   1846             storeValueWide(cUnit, rlDest, rlResult);
   1847             break;
   1848         case OP_LONG_TO_INT:
   1849             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   1850             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   1851             // Intentional fallthrough
   1852         case OP_MOVE:
   1853         case OP_MOVE_OBJECT:
   1854             storeValue(cUnit, rlDest, rlSrc);
   1855             break;
   1856         case OP_INT_TO_BYTE:
   1857             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1858             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1859             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   1860             storeValue(cUnit, rlDest, rlResult);
   1861             break;
   1862         case OP_INT_TO_SHORT:
   1863             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1864             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1865             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   1866             storeValue(cUnit, rlDest, rlResult);
   1867             break;
   1868         case OP_INT_TO_CHAR:
   1869             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1870             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1871             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   1872             storeValue(cUnit, rlDest, rlResult);
   1873             break;
   1874         case OP_ARRAY_LENGTH: {
   1875             int lenOffset = offsetof(ArrayObject, length);
   1876             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1877             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   1878                          mir->offset, NULL);
   1879             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1880             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   1881                          rlResult.lowReg);
   1882             storeValue(cUnit, rlDest, rlResult);
   1883             break;
   1884         }
   1885         default:
   1886             return true;
   1887     }
   1888     return false;
   1889 }
   1890 
   1891 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   1892 {
   1893     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1894     RegLocation rlDest;
   1895     RegLocation rlResult;
   1896     int BBBB = mir->dalvikInsn.vB;
   1897     if (dalvikOpCode == OP_CONST_WIDE_16) {
   1898         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1899         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1900         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1901         //TUNING: do high separately to avoid load dependency
   1902         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   1903         storeValueWide(cUnit, rlDest, rlResult);
   1904     } else if (dalvikOpCode == OP_CONST_16) {
   1905         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1906         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1907         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1908         storeValue(cUnit, rlDest, rlResult);
   1909     } else
   1910         return true;
   1911     return false;
   1912 }
   1913 
   1914 /* Compare agaist zero */
   1915 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   1916                          ArmLIR *labelList)
   1917 {
   1918     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1919     ArmConditionCode cond;
   1920     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1921     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1922     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
   1923 
   1924 //TUNING: break this out to allow use of Thumb2 CB[N]Z
   1925     switch (dalvikOpCode) {
   1926         case OP_IF_EQZ:
   1927             cond = kArmCondEq;
   1928             break;
   1929         case OP_IF_NEZ:
   1930             cond = kArmCondNe;
   1931             break;
   1932         case OP_IF_LTZ:
   1933             cond = kArmCondLt;
   1934             break;
   1935         case OP_IF_GEZ:
   1936             cond = kArmCondGe;
   1937             break;
   1938         case OP_IF_GTZ:
   1939             cond = kArmCondGt;
   1940             break;
   1941         case OP_IF_LEZ:
   1942             cond = kArmCondLe;
   1943             break;
   1944         default:
   1945             cond = 0;
   1946             LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
   1947             dvmCompilerAbort(cUnit);
   1948     }
   1949     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   1950     /* This mostly likely will be optimized away in a later phase */
   1951     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   1952     return false;
   1953 }
   1954 
   1955 static bool isPowerOfTwo(int x)
   1956 {
   1957     return (x & (x - 1)) == 0;
   1958 }
   1959 
   1960 // Returns true if no more than two bits are set in 'x'.
   1961 static bool isPopCountLE2(unsigned int x)
   1962 {
   1963     x &= x - 1;
   1964     return (x & (x - 1)) == 0;
   1965 }
   1966 
   1967 // Returns the index of the lowest set bit in 'x'.
   1968 static int lowestSetBit(unsigned int x) {
   1969     int bit_posn = 0;
   1970     while ((x & 0xf) == 0) {
   1971         bit_posn += 4;
   1972         x >>= 4;
   1973     }
   1974     while ((x & 1) == 0) {
   1975         bit_posn++;
   1976         x >>= 1;
   1977     }
   1978     return bit_posn;
   1979 }
   1980 
   1981 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
   1982 // and store the result in 'rlDest'.
   1983 static bool handleEasyDivide(CompilationUnit *cUnit, OpCode dalvikOpCode,
   1984                              RegLocation rlSrc, RegLocation rlDest, int lit)
   1985 {
   1986     if (lit < 2 || !isPowerOfTwo(lit)) {
   1987         return false;
   1988     }
   1989     int k = lowestSetBit(lit);
   1990     if (k >= 30) {
   1991         // Avoid special cases.
   1992         return false;
   1993     }
   1994     bool div = (dalvikOpCode == OP_DIV_INT_LIT8 || dalvikOpCode == OP_DIV_INT_LIT16);
   1995     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1996     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1997     if (div) {
   1998         int tReg = dvmCompilerAllocTemp(cUnit);
   1999         if (lit == 2) {
   2000             // Division by 2 is by far the most common division by constant.
   2001             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
   2002             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2003             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2004         } else {
   2005             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
   2006             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
   2007             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2008             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2009         }
   2010     } else {
   2011         int cReg = dvmCompilerAllocTemp(cUnit);
   2012         loadConstant(cUnit, cReg, lit - 1);
   2013         int tReg1 = dvmCompilerAllocTemp(cUnit);
   2014         int tReg2 = dvmCompilerAllocTemp(cUnit);
   2015         if (lit == 2) {
   2016             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
   2017             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2018             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2019             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2020         } else {
   2021             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
   2022             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
   2023             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2024             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2025             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2026         }
   2027     }
   2028     storeValue(cUnit, rlDest, rlResult);
   2029     return true;
   2030 }
   2031 
   2032 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   2033 // and store the result in 'rlDest'.
   2034 static bool handleEasyMultiply(CompilationUnit *cUnit,
   2035                                RegLocation rlSrc, RegLocation rlDest, int lit)
   2036 {
   2037     // Can we simplify this multiplication?
   2038     bool powerOfTwo = false;
   2039     bool popCountLE2 = false;
   2040     bool powerOfTwoMinusOne = false;
   2041     if (lit < 2) {
   2042         // Avoid special cases.
   2043         return false;
   2044     } else if (isPowerOfTwo(lit)) {
   2045         powerOfTwo = true;
   2046     } else if (isPopCountLE2(lit)) {
   2047         popCountLE2 = true;
   2048     } else if (isPowerOfTwo(lit + 1)) {
   2049         powerOfTwoMinusOne = true;
   2050     } else {
   2051         return false;
   2052     }
   2053     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2054     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2055     if (powerOfTwo) {
   2056         // Shift.
   2057         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   2058                     lowestSetBit(lit));
   2059     } else if (popCountLE2) {
   2060         // Shift and add and shift.
   2061         int firstBit = lowestSetBit(lit);
   2062         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   2063         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   2064                                       firstBit, secondBit);
   2065     } else {
   2066         // Reverse subtract: (src << (shift + 1)) - src.
   2067         assert(powerOfTwoMinusOne);
   2068         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
   2069         int tReg = dvmCompilerAllocTemp(cUnit);
   2070         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
   2071         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
   2072     }
   2073     storeValue(cUnit, rlDest, rlResult);
   2074     return true;
   2075 }
   2076 
   2077 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   2078 {
   2079     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2080     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2081     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2082     RegLocation rlResult;
   2083     int lit = mir->dalvikInsn.vC;
   2084     OpKind op = 0;      /* Make gcc happy */
   2085     int shiftOp = false;
   2086     bool isDiv = false;
   2087 
   2088     switch (dalvikOpCode) {
   2089         case OP_RSUB_INT_LIT8:
   2090         case OP_RSUB_INT: {
   2091             int tReg;
   2092             //TUNING: add support for use of Arm rsub op
   2093             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2094             tReg = dvmCompilerAllocTemp(cUnit);
   2095             loadConstant(cUnit, tReg, lit);
   2096             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2097             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   2098                         tReg, rlSrc.lowReg);
   2099             storeValue(cUnit, rlDest, rlResult);
   2100             return false;
   2101             break;
   2102         }
   2103 
   2104         case OP_ADD_INT_LIT8:
   2105         case OP_ADD_INT_LIT16:
   2106             op = kOpAdd;
   2107             break;
   2108         case OP_MUL_INT_LIT8:
   2109         case OP_MUL_INT_LIT16: {
   2110             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   2111                 return false;
   2112             }
   2113             op = kOpMul;
   2114             break;
   2115         }
   2116         case OP_AND_INT_LIT8:
   2117         case OP_AND_INT_LIT16:
   2118             op = kOpAnd;
   2119             break;
   2120         case OP_OR_INT_LIT8:
   2121         case OP_OR_INT_LIT16:
   2122             op = kOpOr;
   2123             break;
   2124         case OP_XOR_INT_LIT8:
   2125         case OP_XOR_INT_LIT16:
   2126             op = kOpXor;
   2127             break;
   2128         case OP_SHL_INT_LIT8:
   2129             lit &= 31;
   2130             shiftOp = true;
   2131             op = kOpLsl;
   2132             break;
   2133         case OP_SHR_INT_LIT8:
   2134             lit &= 31;
   2135             shiftOp = true;
   2136             op = kOpAsr;
   2137             break;
   2138         case OP_USHR_INT_LIT8:
   2139             lit &= 31;
   2140             shiftOp = true;
   2141             op = kOpLsr;
   2142             break;
   2143 
   2144         case OP_DIV_INT_LIT8:
   2145         case OP_DIV_INT_LIT16:
   2146         case OP_REM_INT_LIT8:
   2147         case OP_REM_INT_LIT16:
   2148             if (lit == 0) {
   2149                 /* Let the interpreter deal with div by 0 */
   2150                 genInterpSingleStep(cUnit, mir);
   2151                 return false;
   2152             }
   2153             if (handleEasyDivide(cUnit, dalvikOpCode, rlSrc, rlDest, lit)) {
   2154                 return false;
   2155             }
   2156             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2157             loadValueDirectFixed(cUnit, rlSrc, r0);
   2158             dvmCompilerClobber(cUnit, r0);
   2159             if ((dalvikOpCode == OP_DIV_INT_LIT8) ||
   2160                 (dalvikOpCode == OP_DIV_INT_LIT16)) {
   2161                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2162                 isDiv = true;
   2163             } else {
   2164                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2165                 isDiv = false;
   2166             }
   2167             loadConstant(cUnit, r1, lit);
   2168             opReg(cUnit, kOpBlx, r2);
   2169             dvmCompilerClobberCallRegs(cUnit);
   2170             if (isDiv)
   2171                 rlResult = dvmCompilerGetReturn(cUnit);
   2172             else
   2173                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2174             storeValue(cUnit, rlDest, rlResult);
   2175             return false;
   2176             break;
   2177         default:
   2178             return true;
   2179     }
   2180     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2181     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2182     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2183     if (shiftOp && (lit == 0)) {
   2184         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2185     } else {
   2186         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2187     }
   2188     storeValue(cUnit, rlDest, rlResult);
   2189     return false;
   2190 }
   2191 
   2192 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2193 {
   2194     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2195     int fieldOffset = -1;
   2196     bool isVolatile = false;
   2197     switch (dalvikOpCode) {
   2198         /*
   2199          * Wide volatiles currently handled via single step.
   2200          * Add them here if generating in-line code.
   2201          *     case OP_IGET_WIDE_VOLATILE:
   2202          *     case OP_IPUT_WIDE_VOLATILE:
   2203          */
   2204         case OP_IGET:
   2205         case OP_IGET_VOLATILE:
   2206         case OP_IGET_WIDE:
   2207         case OP_IGET_OBJECT:
   2208         case OP_IGET_OBJECT_VOLATILE:
   2209         case OP_IGET_BOOLEAN:
   2210         case OP_IGET_BYTE:
   2211         case OP_IGET_CHAR:
   2212         case OP_IGET_SHORT:
   2213         case OP_IPUT:
   2214         case OP_IPUT_VOLATILE:
   2215         case OP_IPUT_WIDE:
   2216         case OP_IPUT_OBJECT:
   2217         case OP_IPUT_OBJECT_VOLATILE:
   2218         case OP_IPUT_BOOLEAN:
   2219         case OP_IPUT_BYTE:
   2220         case OP_IPUT_CHAR:
   2221         case OP_IPUT_SHORT: {
   2222             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   2223                 mir->meta.calleeMethod : cUnit->method;
   2224             Field *fieldPtr =
   2225                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2226 
   2227             if (fieldPtr == NULL) {
   2228                 LOGE("Unexpected null instance field");
   2229                 dvmAbort();
   2230             }
   2231             isVolatile = dvmIsVolatileField(fieldPtr);
   2232             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
   2233             break;
   2234         }
   2235         default:
   2236             break;
   2237     }
   2238 
   2239     switch (dalvikOpCode) {
   2240         case OP_NEW_ARRAY: {
   2241             // Generates a call - use explicit registers
   2242             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2243             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2244             RegLocation rlResult;
   2245             void *classPtr = (void*)
   2246               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2247 
   2248             if (classPtr == NULL) {
   2249                 LOGE("Unexpected null class");
   2250                 dvmAbort();
   2251             }
   2252 
   2253             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2254             genExportPC(cUnit, mir);
   2255             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2256             loadConstant(cUnit, r0, (int) classPtr );
   2257             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2258             /*
   2259              * "len < 0": bail to the interpreter to re-execute the
   2260              * instruction
   2261              */
   2262             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2263             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2264             opReg(cUnit, kOpBlx, r3);
   2265             dvmCompilerClobberCallRegs(cUnit);
   2266             /* generate a branch over if allocation is successful */
   2267             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2268             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2269             /*
   2270              * OOM exception needs to be thrown here and cannot re-execute
   2271              */
   2272             loadConstant(cUnit, r0,
   2273                          (int) (cUnit->method->insns + mir->offset));
   2274             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2275             /* noreturn */
   2276 
   2277             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2278             target->defMask = ENCODE_ALL;
   2279             branchOver->generic.target = (LIR *) target;
   2280             rlResult = dvmCompilerGetReturn(cUnit);
   2281             storeValue(cUnit, rlDest, rlResult);
   2282             break;
   2283         }
   2284         case OP_INSTANCE_OF: {
   2285             // May generate a call - use explicit registers
   2286             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2287             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2288             RegLocation rlResult;
   2289             ClassObject *classPtr =
   2290               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2291             /*
   2292              * Note: It is possible that classPtr is NULL at this point,
   2293              * even though this instruction has been successfully interpreted.
   2294              * If the previous interpretation had a null source, the
   2295              * interpreter would not have bothered to resolve the clazz.
   2296              * Bail out to the interpreter in this case, and log it
   2297              * so that we can tell if it happens frequently.
   2298              */
   2299             if (classPtr == NULL) {
   2300                 LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2301                 genInterpSingleStep(cUnit, mir);
   2302                 break;
   2303             }
   2304             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2305             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2306             loadConstant(cUnit, r2, (int) classPtr );
   2307 //TUNING: compare to 0 primative to allow use of CB[N]Z
   2308             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2309             /* When taken r0 has NULL which can be used for store directly */
   2310             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   2311             /* r1 now contains object->clazz */
   2312             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2313             /* r1 now contains object->clazz */
   2314             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2315             loadConstant(cUnit, r0, 1);                /* Assume true */
   2316             opRegReg(cUnit, kOpCmp, r1, r2);
   2317             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2318             genRegCopy(cUnit, r0, r1);
   2319             genRegCopy(cUnit, r1, r2);
   2320             opReg(cUnit, kOpBlx, r3);
   2321             dvmCompilerClobberCallRegs(cUnit);
   2322             /* branch target here */
   2323             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2324             target->defMask = ENCODE_ALL;
   2325             rlResult = dvmCompilerGetReturn(cUnit);
   2326             storeValue(cUnit, rlDest, rlResult);
   2327             branch1->generic.target = (LIR *)target;
   2328             branch2->generic.target = (LIR *)target;
   2329             break;
   2330         }
   2331         case OP_IGET_WIDE:
   2332             genIGetWide(cUnit, mir, fieldOffset);
   2333             break;
   2334         case OP_IGET_VOLATILE:
   2335         case OP_IGET_OBJECT_VOLATILE:
   2336             isVolatile = true;
   2337             // NOTE: intentional fallthrough
   2338         case OP_IGET:
   2339         case OP_IGET_OBJECT:
   2340         case OP_IGET_BOOLEAN:
   2341         case OP_IGET_BYTE:
   2342         case OP_IGET_CHAR:
   2343         case OP_IGET_SHORT:
   2344             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
   2345             break;
   2346         case OP_IPUT_WIDE:
   2347             genIPutWide(cUnit, mir, fieldOffset);
   2348             break;
   2349         case OP_IPUT:
   2350         case OP_IPUT_SHORT:
   2351         case OP_IPUT_CHAR:
   2352         case OP_IPUT_BYTE:
   2353         case OP_IPUT_BOOLEAN:
   2354             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
   2355             break;
   2356         case OP_IPUT_VOLATILE:
   2357         case OP_IPUT_OBJECT_VOLATILE:
   2358             isVolatile = true;
   2359             // NOTE: intentional fallthrough
   2360         case OP_IPUT_OBJECT:
   2361             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
   2362             break;
   2363         case OP_IGET_WIDE_VOLATILE:
   2364         case OP_IPUT_WIDE_VOLATILE:
   2365             genInterpSingleStep(cUnit, mir);
   2366             break;
   2367         default:
   2368             return true;
   2369     }
   2370     return false;
   2371 }
   2372 
   2373 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2374 {
   2375     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2376     int fieldOffset =  mir->dalvikInsn.vC;
   2377     switch (dalvikOpCode) {
   2378         case OP_IGET_QUICK:
   2379         case OP_IGET_OBJECT_QUICK:
   2380             genIGet(cUnit, mir, kWord, fieldOffset, false);
   2381             break;
   2382         case OP_IPUT_QUICK:
   2383             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
   2384             break;
   2385         case OP_IPUT_OBJECT_QUICK:
   2386             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
   2387             break;
   2388         case OP_IGET_WIDE_QUICK:
   2389             genIGetWide(cUnit, mir, fieldOffset);
   2390             break;
   2391         case OP_IPUT_WIDE_QUICK:
   2392             genIPutWide(cUnit, mir, fieldOffset);
   2393             break;
   2394         default:
   2395             return true;
   2396     }
   2397     return false;
   2398 
   2399 }
   2400 
   2401 /* Compare agaist zero */
   2402 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2403                          ArmLIR *labelList)
   2404 {
   2405     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2406     ArmConditionCode cond;
   2407     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2408     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2409 
   2410     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2411     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2412     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2413 
   2414     switch (dalvikOpCode) {
   2415         case OP_IF_EQ:
   2416             cond = kArmCondEq;
   2417             break;
   2418         case OP_IF_NE:
   2419             cond = kArmCondNe;
   2420             break;
   2421         case OP_IF_LT:
   2422             cond = kArmCondLt;
   2423             break;
   2424         case OP_IF_GE:
   2425             cond = kArmCondGe;
   2426             break;
   2427         case OP_IF_GT:
   2428             cond = kArmCondGt;
   2429             break;
   2430         case OP_IF_LE:
   2431             cond = kArmCondLe;
   2432             break;
   2433         default:
   2434             cond = 0;
   2435             LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
   2436             dvmCompilerAbort(cUnit);
   2437     }
   2438     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2439     /* This mostly likely will be optimized away in a later phase */
   2440     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2441     return false;
   2442 }
   2443 
   2444 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2445 {
   2446     OpCode opCode = mir->dalvikInsn.opCode;
   2447 
   2448     switch (opCode) {
   2449         case OP_MOVE_16:
   2450         case OP_MOVE_OBJECT_16:
   2451         case OP_MOVE_FROM16:
   2452         case OP_MOVE_OBJECT_FROM16: {
   2453             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2454                        dvmCompilerGetSrc(cUnit, mir, 0));
   2455             break;
   2456         }
   2457         case OP_MOVE_WIDE_16:
   2458         case OP_MOVE_WIDE_FROM16: {
   2459             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2460                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2461             break;
   2462         }
   2463         default:
   2464             return true;
   2465     }
   2466     return false;
   2467 }
   2468 
   2469 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2470 {
   2471     OpCode opCode = mir->dalvikInsn.opCode;
   2472     RegLocation rlSrc1;
   2473     RegLocation rlSrc2;
   2474     RegLocation rlDest;
   2475 
   2476     if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
   2477         return genArithOp( cUnit, mir );
   2478     }
   2479 
   2480     /* APUTs have 3 sources and no targets */
   2481     if (mir->ssaRep->numDefs == 0) {
   2482         if (mir->ssaRep->numUses == 3) {
   2483             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2484             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2485             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2486         } else {
   2487             assert(mir->ssaRep->numUses == 4);
   2488             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2489             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2490             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2491         }
   2492     } else {
   2493         /* Two sources and 1 dest.  Deduce the operand sizes */
   2494         if (mir->ssaRep->numUses == 4) {
   2495             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2496             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2497         } else {
   2498             assert(mir->ssaRep->numUses == 2);
   2499             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2500             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2501         }
   2502         if (mir->ssaRep->numDefs == 2) {
   2503             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2504         } else {
   2505             assert(mir->ssaRep->numDefs == 1);
   2506             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2507         }
   2508     }
   2509 
   2510 
   2511     switch (opCode) {
   2512         case OP_CMPL_FLOAT:
   2513         case OP_CMPG_FLOAT:
   2514         case OP_CMPL_DOUBLE:
   2515         case OP_CMPG_DOUBLE:
   2516             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2517         case OP_CMP_LONG:
   2518             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2519             break;
   2520         case OP_AGET_WIDE:
   2521             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2522             break;
   2523         case OP_AGET:
   2524         case OP_AGET_OBJECT:
   2525             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2526             break;
   2527         case OP_AGET_BOOLEAN:
   2528             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2529             break;
   2530         case OP_AGET_BYTE:
   2531             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2532             break;
   2533         case OP_AGET_CHAR:
   2534             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2535             break;
   2536         case OP_AGET_SHORT:
   2537             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2538             break;
   2539         case OP_APUT_WIDE:
   2540             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2541             break;
   2542         case OP_APUT:
   2543             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2544             break;
   2545         case OP_APUT_OBJECT:
   2546             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2547             break;
   2548         case OP_APUT_SHORT:
   2549         case OP_APUT_CHAR:
   2550             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2551             break;
   2552         case OP_APUT_BYTE:
   2553         case OP_APUT_BOOLEAN:
   2554             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2555             break;
   2556         default:
   2557             return true;
   2558     }
   2559     return false;
   2560 }
   2561 
   2562 /*
   2563  * Find the matching case.
   2564  *
   2565  * return values:
   2566  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2567  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2568  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2569  *    above MAX_CHAINED_SWITCH_CASES).
   2570  *
   2571  * Instructions around the call are:
   2572  *
   2573  * mov r2, pc
   2574  * blx &findPackedSwitchIndex
   2575  * mov pc, r0
   2576  * .align4
   2577  * chaining cell for case 0 [12 bytes]
   2578  * chaining cell for case 1 [12 bytes]
   2579  *               :
   2580  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
   2581  * chaining cell for case default [8 bytes]
   2582  * noChain exit
   2583  */
   2584 static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
   2585 {
   2586     int size;
   2587     int firstKey;
   2588     const int *entries;
   2589     int index;
   2590     int jumpIndex;
   2591     int caseDPCOffset = 0;
   2592     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2593     int chainingPC = (pc + 4) & ~3;
   2594 
   2595     /*
   2596      * Packed switch data format:
   2597      *  ushort ident = 0x0100   magic value
   2598      *  ushort size             number of entries in the table
   2599      *  int first_key           first (and lowest) switch case value
   2600      *  int targets[size]       branch targets, relative to switch opcode
   2601      *
   2602      * Total size is (4+size*2) 16-bit code units.
   2603      */
   2604     size = switchData[1];
   2605     assert(size > 0);
   2606 
   2607     firstKey = switchData[2];
   2608     firstKey |= switchData[3] << 16;
   2609 
   2610 
   2611     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2612      * we can treat them as a native int array.
   2613      */
   2614     entries = (const int*) &switchData[4];
   2615     assert(((u4)entries & 0x3) == 0);
   2616 
   2617     index = testVal - firstKey;
   2618 
   2619     /* Jump to the default cell */
   2620     if (index < 0 || index >= size) {
   2621         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2622     /* Jump to the non-chaining exit point */
   2623     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2624         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2625         caseDPCOffset = entries[index];
   2626     /* Jump to the inline chaining cell */
   2627     } else {
   2628         jumpIndex = index;
   2629     }
   2630 
   2631     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2632     return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
   2633 }
   2634 
   2635 /* See comments for findPackedSwitchIndex */
   2636 static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
   2637 {
   2638     int size;
   2639     const int *keys;
   2640     const int *entries;
   2641     int chainingPC = (pc + 4) & ~3;
   2642     int i;
   2643 
   2644     /*
   2645      * Sparse switch data format:
   2646      *  ushort ident = 0x0200   magic value
   2647      *  ushort size             number of entries in the table; > 0
   2648      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2649      *  int targets[size]       branch targets, relative to switch opcode
   2650      *
   2651      * Total size is (2+size*4) 16-bit code units.
   2652      */
   2653 
   2654     size = switchData[1];
   2655     assert(size > 0);
   2656 
   2657     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2658      * we can treat them as a native int array.
   2659      */
   2660     keys = (const int*) &switchData[2];
   2661     assert(((u4)keys & 0x3) == 0);
   2662 
   2663     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2664      * we can treat them as a native int array.
   2665      */
   2666     entries = keys + size;
   2667     assert(((u4)entries & 0x3) == 0);
   2668 
   2669     /*
   2670      * Run through the list of keys, which are guaranteed to
   2671      * be sorted low-to-high.
   2672      *
   2673      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2674      * search here is probably not useful.
   2675      */
   2676     for (i = 0; i < size; i++) {
   2677         int k = keys[i];
   2678         if (k == testVal) {
   2679             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2680             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2681                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2682             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2683             return (((s8) entries[i]) << 32) | (u8) chainingPC;
   2684         } else if (k > testVal) {
   2685             break;
   2686         }
   2687     }
   2688     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
   2689            CHAIN_CELL_NORMAL_SIZE;
   2690 }
   2691 
   2692 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2693 {
   2694     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2695     switch (dalvikOpCode) {
   2696         case OP_FILL_ARRAY_DATA: {
   2697             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2698             // Making a call - use explicit registers
   2699             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2700             genExportPC(cUnit, mir);
   2701             loadValueDirectFixed(cUnit, rlSrc, r0);
   2702             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2703             loadConstant(cUnit, r1,
   2704                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2705             opReg(cUnit, kOpBlx, r2);
   2706             dvmCompilerClobberCallRegs(cUnit);
   2707             /* generate a branch over if successful */
   2708             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2709             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2710             loadConstant(cUnit, r0,
   2711                          (int) (cUnit->method->insns + mir->offset));
   2712             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2713             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2714             target->defMask = ENCODE_ALL;
   2715             branchOver->generic.target = (LIR *) target;
   2716             break;
   2717         }
   2718         /*
   2719          * Compute the goto target of up to
   2720          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2721          * See the comment before findPackedSwitchIndex for the code layout.
   2722          */
   2723         case OP_PACKED_SWITCH:
   2724         case OP_SPARSE_SWITCH: {
   2725             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2726             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2727             loadValueDirectFixed(cUnit, rlSrc, r1);
   2728             dvmCompilerLockAllTemps(cUnit);
   2729             if (dalvikOpCode == OP_PACKED_SWITCH) {
   2730                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2731             } else {
   2732                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2733             }
   2734             /* r0 <- Addr of the switch data */
   2735             loadConstant(cUnit, r0,
   2736                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2737             /* r2 <- pc of the instruction following the blx */
   2738             opRegReg(cUnit, kOpMov, r2, rpc);
   2739             opReg(cUnit, kOpBlx, r4PC);
   2740             dvmCompilerClobberCallRegs(cUnit);
   2741             /* pc <- computed goto target */
   2742             opRegReg(cUnit, kOpMov, rpc, r0);
   2743             break;
   2744         }
   2745         default:
   2746             return true;
   2747     }
   2748     return false;
   2749 }
   2750 
   2751 /*
   2752  * See the example of predicted inlining listed before the
   2753  * genValidationForPredictedInline function. The function here takes care the
   2754  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
   2755  */
   2756 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
   2757                                                BasicBlock *bb,
   2758                                                ArmLIR *labelList)
   2759 {
   2760     BasicBlock *fallThrough = bb->fallThrough;
   2761 
   2762     /* Bypass the move-result block if there is one */
   2763     if (fallThrough->firstMIRInsn) {
   2764         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
   2765         fallThrough = fallThrough->fallThrough;
   2766     }
   2767     /* Generate a branch over if the predicted inlining is correct */
   2768     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
   2769 
   2770     /* Reset the register state */
   2771     dvmCompilerResetRegPool(cUnit);
   2772     dvmCompilerClobberAllRegs(cUnit);
   2773     dvmCompilerResetNullCheck(cUnit);
   2774 
   2775     /* Target for the slow invoke path */
   2776     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2777     target->defMask = ENCODE_ALL;
   2778     /* Hook up the target to the verification branch */
   2779     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
   2780 }
   2781 
   2782 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2783                              ArmLIR *labelList)
   2784 {
   2785     ArmLIR *retChainingCell = NULL;
   2786     ArmLIR *pcrLabel = NULL;
   2787 
   2788     /* An invoke with the MIR_INLINED is effectively a no-op */
   2789     if (mir->OptimizationFlags & MIR_INLINED)
   2790         return false;
   2791 
   2792     if (bb->fallThrough != NULL)
   2793         retChainingCell = &labelList[bb->fallThrough->id];
   2794 
   2795     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2796     switch (mir->dalvikInsn.opCode) {
   2797         /*
   2798          * calleeMethod = this->clazz->vtable[
   2799          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   2800          * ]
   2801          */
   2802         case OP_INVOKE_VIRTUAL:
   2803         case OP_INVOKE_VIRTUAL_RANGE: {
   2804             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2805             int methodIndex =
   2806                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   2807                 methodIndex;
   2808 
   2809             /*
   2810              * If the invoke has non-null misPredBranchOver, we need to generate
   2811              * the non-inlined version of the invoke here to handle the
   2812              * mispredicted case.
   2813              */
   2814             if (mir->meta.callsiteInfo->misPredBranchOver) {
   2815                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   2816             }
   2817 
   2818             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
   2819                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2820             else
   2821                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2822 
   2823             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   2824                                    retChainingCell,
   2825                                    predChainingCell,
   2826                                    pcrLabel);
   2827             break;
   2828         }
   2829         /*
   2830          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   2831          *                ->pResMethods[BBBB]->methodIndex]
   2832          */
   2833         case OP_INVOKE_SUPER:
   2834         case OP_INVOKE_SUPER_RANGE: {
   2835             /* Grab the method ptr directly from what the interpreter sees */
   2836             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2837             assert(calleeMethod == cUnit->method->clazz->super->vtable[
   2838                                      cUnit->method->clazz->pDvmDex->
   2839                                        pResMethods[dInsn->vB]->methodIndex]);
   2840 
   2841             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
   2842                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2843             else
   2844                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2845 
   2846             /* r0 = calleeMethod */
   2847             loadConstant(cUnit, r0, (int) calleeMethod);
   2848 
   2849             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2850                                      calleeMethod);
   2851             break;
   2852         }
   2853         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2854         case OP_INVOKE_DIRECT:
   2855         case OP_INVOKE_DIRECT_RANGE: {
   2856             /* Grab the method ptr directly from what the interpreter sees */
   2857             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2858             assert(calleeMethod ==
   2859                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   2860 
   2861             if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
   2862                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2863             else
   2864                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2865 
   2866             /* r0 = calleeMethod */
   2867             loadConstant(cUnit, r0, (int) calleeMethod);
   2868 
   2869             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2870                                      calleeMethod);
   2871             break;
   2872         }
   2873         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2874         case OP_INVOKE_STATIC:
   2875         case OP_INVOKE_STATIC_RANGE: {
   2876             /* Grab the method ptr directly from what the interpreter sees */
   2877             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2878             assert(calleeMethod ==
   2879                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   2880 
   2881             if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
   2882                 genProcessArgsNoRange(cUnit, mir, dInsn,
   2883                                       NULL /* no null check */);
   2884             else
   2885                 genProcessArgsRange(cUnit, mir, dInsn,
   2886                                     NULL /* no null check */);
   2887 
   2888             /* r0 = calleeMethod */
   2889             loadConstant(cUnit, r0, (int) calleeMethod);
   2890 
   2891             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2892                                      calleeMethod);
   2893             break;
   2894         }
   2895         /*
   2896          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   2897          *                    BBBB, method, method->clazz->pDvmDex)
   2898          *
   2899          * The following is an example of generated code for
   2900          *      "invoke-interface v0"
   2901          *
   2902          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   2903          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   2904          * 0x47357e38 : sub     r7,r5,#24        |
   2905          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   2906          * 0x47357e3e : beq     0x47357e82       |
   2907          * 0x47357e40 : stmia   r7, <r0>       --+
   2908          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   2909          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   2910          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   2911          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   2912          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   2913          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   2914          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   2915          * 0x47357e50 : mov     r8, r1         --+
   2916          * 0x47357e52 : mov     r9, r2           |
   2917          * 0x47357e54 : ldr     r2, [pc, #96]    |
   2918          * 0x47357e56 : mov     r10, r3          |
   2919          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   2920          * 0x47357e5a : ldr     r3, [pc, #88]    |
   2921          * 0x47357e5c : ldr     r7, [pc, #80]    |
   2922          * 0x47357e5e : mov     r1, #1452        |
   2923          * 0x47357e62 : blx     r7             --+
   2924          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   2925          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   2926          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   2927          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   2928          * 0x47357e6c : blx_2   see above      --+     COMMON
   2929          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   2930          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   2931          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   2932          * 0x47357e74 : ldr     r7, [r6, #108] --+
   2933          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   2934          * 0x47357e78 : mov     r3, r10          |
   2935          * 0x47357e7a : blx     r7             --+
   2936          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   2937          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   2938          * 0x47357e80 : blx_2   see above      --+
   2939          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   2940          * 0x47357e82 : ldr     r0, [pc, #56]
   2941          * Exception_Handling:
   2942          * 0x47357e84 : ldr     r1, [r6, #92]
   2943          * 0x47357e86 : blx     r1
   2944          * 0x47357e88 : .align4
   2945          * -------- chaining cell (hot): 0x000b
   2946          * 0x47357e88 : ldr     r0, [r6, #104]
   2947          * 0x47357e8a : blx     r0
   2948          * 0x47357e8c : data    0x19e2(6626)
   2949          * 0x47357e8e : data    0x4257(16983)
   2950          * 0x47357e90 : .align4
   2951          * -------- chaining cell (predicted)
   2952          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   2953          * 0x47357e92 : data    0x0000(0)
   2954          * 0x47357e94 : data    0x0000(0)      --> class
   2955          * 0x47357e96 : data    0x0000(0)
   2956          * 0x47357e98 : data    0x0000(0)      --> method
   2957          * 0x47357e9a : data    0x0000(0)
   2958          * 0x47357e9c : data    0x0000(0)      --> rechain count
   2959          * 0x47357e9e : data    0x0000(0)
   2960          * -------- end of chaining cells (0x006c)
   2961          * 0x47357eb0 : .word (0xad03e369)
   2962          * 0x47357eb4 : .word (0x28a90)
   2963          * 0x47357eb8 : .word (0x41a63394)
   2964          * 0x47357ebc : .word (0x425719dc)
   2965          */
   2966         case OP_INVOKE_INTERFACE:
   2967         case OP_INVOKE_INTERFACE_RANGE: {
   2968             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2969 
   2970             /*
   2971              * If the invoke has non-null misPredBranchOver, we need to generate
   2972              * the non-inlined version of the invoke here to handle the
   2973              * mispredicted case.
   2974              */
   2975             if (mir->meta.callsiteInfo->misPredBranchOver) {
   2976                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   2977             }
   2978 
   2979             if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
   2980                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2981             else
   2982                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2983 
   2984             /* "this" is already left in r0 by genProcessArgs* */
   2985 
   2986             /* r4PC = dalvikCallsite */
   2987             loadConstant(cUnit, r4PC,
   2988                          (int) (cUnit->method->insns + mir->offset));
   2989 
   2990             /* r1 = &retChainingCell */
   2991             ArmLIR *addrRetChain =
   2992                 opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   2993             addrRetChain->generic.target = (LIR *) retChainingCell;
   2994 
   2995             /* r2 = &predictedChainingCell */
   2996             ArmLIR *predictedChainingCell =
   2997                 opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   2998             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   2999 
   3000             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   3001 
   3002             /* return through lr - jump to the chaining cell */
   3003             genUnconditionalBranch(cUnit, predChainingCell);
   3004 
   3005             /*
   3006              * null-check on "this" may have been eliminated, but we still need
   3007              * a PC-reconstruction label for stack overflow bailout.
   3008              */
   3009             if (pcrLabel == NULL) {
   3010                 int dPC = (int) (cUnit->method->insns + mir->offset);
   3011                 pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   3012                 pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   3013                 pcrLabel->operands[0] = dPC;
   3014                 pcrLabel->operands[1] = mir->offset;
   3015                 /* Insert the place holder to the growable list */
   3016                 dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   3017             }
   3018 
   3019             /* return through lr+2 - punt to the interpreter */
   3020             genUnconditionalBranch(cUnit, pcrLabel);
   3021 
   3022             /*
   3023              * return through lr+4 - fully resolve the callee method.
   3024              * r1 <- count
   3025              * r2 <- &predictedChainCell
   3026              * r3 <- this->class
   3027              * r4 <- dPC
   3028              * r7 <- this->class->vtable
   3029              */
   3030 
   3031             /* Save count, &predictedChainCell, and class to high regs first */
   3032             genRegCopy(cUnit, r8, r1);
   3033             genRegCopy(cUnit, r9, r2);
   3034             genRegCopy(cUnit, r10, r3);
   3035 
   3036             /* r0 now contains this->clazz */
   3037             genRegCopy(cUnit, r0, r3);
   3038 
   3039             /* r1 = BBBB */
   3040             loadConstant(cUnit, r1, dInsn->vB);
   3041 
   3042             /* r2 = method (caller) */
   3043             loadConstant(cUnit, r2, (int) cUnit->method);
   3044 
   3045             /* r3 = pDvmDex */
   3046             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   3047 
   3048             LOAD_FUNC_ADDR(cUnit, r7,
   3049                            (intptr_t) dvmFindInterfaceMethodInCache);
   3050             opReg(cUnit, kOpBlx, r7);
   3051             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   3052 
   3053             dvmCompilerClobberCallRegs(cUnit);
   3054             /* generate a branch over if the interface method is resolved */
   3055             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   3056             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   3057             /*
   3058              * calleeMethod == NULL -> throw
   3059              */
   3060             loadConstant(cUnit, r0,
   3061                          (int) (cUnit->method->insns + mir->offset));
   3062             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3063             /* noreturn */
   3064 
   3065             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3066             target->defMask = ENCODE_ALL;
   3067             branchOver->generic.target = (LIR *) target;
   3068 
   3069             genRegCopy(cUnit, r1, r8);
   3070 
   3071             /* Check if rechain limit is reached */
   3072             opRegImm(cUnit, kOpCmp, r1, 0);
   3073 
   3074             ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   3075 
   3076             loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   3077                          jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   3078 
   3079             genRegCopy(cUnit, r1, rGLUE);
   3080             genRegCopy(cUnit, r2, r9);
   3081             genRegCopy(cUnit, r3, r10);
   3082 
   3083             /*
   3084              * r0 = calleeMethod
   3085              * r2 = &predictedChainingCell
   3086              * r3 = class
   3087              *
   3088              * &returnChainingCell has been loaded into r1 but is not needed
   3089              * when patching the chaining cell and will be clobbered upon
   3090              * returning so it will be reconstructed again.
   3091              */
   3092             opReg(cUnit, kOpBlx, r7);
   3093 
   3094             /* r1 = &retChainingCell */
   3095             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   3096             addrRetChain->generic.target = (LIR *) retChainingCell;
   3097 
   3098             bypassRechaining->generic.target = (LIR *) addrRetChain;
   3099 
   3100             /*
   3101              * r0 = this, r1 = calleeMethod,
   3102              * r1 = &ChainingCell,
   3103              * r4PC = callsiteDPC,
   3104              */
   3105             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   3106 #if defined(WITH_JIT_TUNING)
   3107             gDvmJit.invokePolymorphic++;
   3108 #endif
   3109             /* Handle exceptions using the interpreter */
   3110             genTrap(cUnit, mir->offset, pcrLabel);
   3111             break;
   3112         }
   3113         /* NOP */
   3114         case OP_INVOKE_DIRECT_EMPTY: {
   3115             return false;
   3116         }
   3117         case OP_FILLED_NEW_ARRAY:
   3118         case OP_FILLED_NEW_ARRAY_RANGE: {
   3119             /* Just let the interpreter deal with these */
   3120             genInterpSingleStep(cUnit, mir);
   3121             break;
   3122         }
   3123         default:
   3124             return true;
   3125     }
   3126     return false;
   3127 }
   3128 
   3129 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   3130                                BasicBlock *bb, ArmLIR *labelList)
   3131 {
   3132     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   3133     ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3134     ArmLIR *pcrLabel = NULL;
   3135 
   3136     /* An invoke with the MIR_INLINED is effectively a no-op */
   3137     if (mir->OptimizationFlags & MIR_INLINED)
   3138         return false;
   3139 
   3140     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3141     switch (mir->dalvikInsn.opCode) {
   3142         /* calleeMethod = this->clazz->vtable[BBBB] */
   3143         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   3144         case OP_INVOKE_VIRTUAL_QUICK: {
   3145             int methodIndex = dInsn->vB;
   3146 
   3147             /*
   3148              * If the invoke has non-null misPredBranchOver, we need to generate
   3149              * the non-inlined version of the invoke here to handle the
   3150              * mispredicted case.
   3151              */
   3152             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3153                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3154             }
   3155 
   3156             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
   3157                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3158             else
   3159                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3160 
   3161             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3162                                    retChainingCell,
   3163                                    predChainingCell,
   3164                                    pcrLabel);
   3165             break;
   3166         }
   3167         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   3168         case OP_INVOKE_SUPER_QUICK:
   3169         case OP_INVOKE_SUPER_QUICK_RANGE: {
   3170             /* Grab the method ptr directly from what the interpreter sees */
   3171             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3172             assert(calleeMethod ==
   3173                    cUnit->method->clazz->super->vtable[dInsn->vB]);
   3174 
   3175             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
   3176                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3177             else
   3178                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3179 
   3180             /* r0 = calleeMethod */
   3181             loadConstant(cUnit, r0, (int) calleeMethod);
   3182 
   3183             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3184                                      calleeMethod);
   3185             break;
   3186         }
   3187         default:
   3188             return true;
   3189     }
   3190     return false;
   3191 }
   3192 
   3193 /*
   3194  * This operation is complex enough that we'll do it partly inline
   3195  * and partly with a handler.  NOTE: the handler uses hardcoded
   3196  * values for string object offsets and must be revisitied if the
   3197  * layout changes.
   3198  */
   3199 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   3200 {
   3201 #if defined(USE_GLOBAL_STRING_DEFS)
   3202     return false;
   3203 #else
   3204     ArmLIR *rollback;
   3205     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3206     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   3207 
   3208     loadValueDirectFixed(cUnit, rlThis, r0);
   3209     loadValueDirectFixed(cUnit, rlComp, r1);
   3210     /* Test objects for NULL */
   3211     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3212     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   3213     /*
   3214      * TUNING: we could check for object pointer equality before invoking
   3215      * handler. Unclear whether the gain would be worth the added code size
   3216      * expansion.
   3217      */
   3218     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   3219     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3220                dvmCompilerGetReturn(cUnit));
   3221     return true;
   3222 #endif
   3223 }
   3224 
   3225 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
   3226 {
   3227 #if defined(USE_GLOBAL_STRING_DEFS)
   3228     return false;
   3229 #else
   3230     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3231     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   3232 
   3233     loadValueDirectFixed(cUnit, rlThis, r0);
   3234     loadValueDirectFixed(cUnit, rlChar, r1);
   3235     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   3236     loadValueDirectFixed(cUnit, rlStart, r2);
   3237     /* Test objects for NULL */
   3238     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3239     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3240     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3241                dvmCompilerGetReturn(cUnit));
   3242     return true;
   3243 #endif
   3244 }
   3245 
   3246 // Generates an inlined String.isEmpty or String.length.
   3247 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
   3248                                             bool isEmpty)
   3249 {
   3250     // dst = src.length();
   3251     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3252     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3253     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3254     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3255     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3256     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3257                  rlResult.lowReg);
   3258     if (isEmpty) {
   3259         // dst = (dst == 0);
   3260         int tReg = dvmCompilerAllocTemp(cUnit);
   3261         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
   3262         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
   3263     }
   3264     storeValue(cUnit, rlDest, rlResult);
   3265     return false;
   3266 }
   3267 
   3268 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3269 {
   3270     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
   3271 }
   3272 
   3273 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
   3274 {
   3275     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
   3276 }
   3277 
   3278 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3279 {
   3280     int contents = offsetof(ArrayObject, contents);
   3281     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3282     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3283     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3284     RegLocation rlResult;
   3285     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3286     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3287     int regMax = dvmCompilerAllocTemp(cUnit);
   3288     int regOff = dvmCompilerAllocTemp(cUnit);
   3289     int regPtr = dvmCompilerAllocTemp(cUnit);
   3290     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3291                                     mir->offset, NULL);
   3292     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3293     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3294     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3295     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3296     dvmCompilerFreeTemp(cUnit, regMax);
   3297     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3298     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3299     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3300     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3301     storeValue(cUnit, rlDest, rlResult);
   3302     return false;
   3303 }
   3304 
   3305 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3306 {
   3307     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3308     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3309     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3310     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3311     int signReg = dvmCompilerAllocTemp(cUnit);
   3312     /*
   3313      * abs(x) = y<=x>>31, (x+y)^y.
   3314      * Thumb2's IT block also yields 3 instructions, but imposes
   3315      * scheduling constraints.
   3316      */
   3317     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3318     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3319     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3320     storeValue(cUnit, rlDest, rlResult);
   3321     return false;
   3322 }
   3323 
   3324 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3325 {
   3326     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3327     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3328     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3329     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3330     int signReg = dvmCompilerAllocTemp(cUnit);
   3331     /*
   3332      * abs(x) = y<=x>>31, (x+y)^y.
   3333      * Thumb2 IT block allows slightly shorter sequence,
   3334      * but introduces a scheduling barrier.  Stick with this
   3335      * mechanism for now.
   3336      */
   3337     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3338     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3339     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3340     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3341     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3342     storeValueWide(cUnit, rlDest, rlResult);
   3343     return false;
   3344 }
   3345 
   3346 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
   3347 {
   3348     // Just move from source to destination...
   3349     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3350     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3351     storeValue(cUnit, rlDest, rlSrc);
   3352     return false;
   3353 }
   3354 
   3355 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
   3356 {
   3357     // Just move from source to destination...
   3358     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3359     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3360     storeValueWide(cUnit, rlDest, rlSrc);
   3361     return false;
   3362 }
   3363 
   3364 /*
   3365  * NOTE: Handles both range and non-range versions (arguments
   3366  * have already been normalized by this point).
   3367  */
   3368 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3369 {
   3370     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3371     switch( mir->dalvikInsn.opCode) {
   3372         case OP_EXECUTE_INLINE_RANGE:
   3373         case OP_EXECUTE_INLINE: {
   3374             unsigned int i;
   3375             const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3376             int offset = offsetof(InterpState, retval);
   3377             int operation = dInsn->vB;
   3378             switch (operation) {
   3379                 case INLINE_EMPTYINLINEMETHOD:
   3380                     return false;  /* Nop */
   3381                 case INLINE_STRING_LENGTH:
   3382                     return genInlinedStringLength(cUnit, mir);
   3383                 case INLINE_STRING_IS_EMPTY:
   3384                     return genInlinedStringIsEmpty(cUnit, mir);
   3385                 case INLINE_MATH_ABS_INT:
   3386                     return genInlinedAbsInt(cUnit, mir);
   3387                 case INLINE_MATH_ABS_LONG:
   3388                     return genInlinedAbsLong(cUnit, mir);
   3389                 case INLINE_MATH_MIN_INT:
   3390                     return genInlinedMinMaxInt(cUnit, mir, true);
   3391                 case INLINE_MATH_MAX_INT:
   3392                     return genInlinedMinMaxInt(cUnit, mir, false);
   3393                 case INLINE_STRING_CHARAT:
   3394                     return genInlinedStringCharAt(cUnit, mir);
   3395                 case INLINE_MATH_SQRT:
   3396                     if (genInlineSqrt(cUnit, mir))
   3397                         return false;
   3398                     else
   3399                         break;   /* Handle with C routine */
   3400                 case INLINE_MATH_ABS_FLOAT:
   3401                     if (genInlinedAbsFloat(cUnit, mir))
   3402                         return false;
   3403                     else
   3404                         break;
   3405                 case INLINE_MATH_ABS_DOUBLE:
   3406                     if (genInlinedAbsDouble(cUnit, mir))
   3407                         return false;
   3408                     else
   3409                         break;
   3410                 case INLINE_STRING_COMPARETO:
   3411                     if (genInlinedCompareTo(cUnit, mir))
   3412                         return false;
   3413                     else
   3414                         break;
   3415                 case INLINE_STRING_FASTINDEXOF_II:
   3416                     if (genInlinedFastIndexOf(cUnit, mir))
   3417                         return false;
   3418                     else
   3419                         break;
   3420                 case INLINE_FLOAT_TO_RAW_INT_BITS:
   3421                 case INLINE_INT_BITS_TO_FLOAT:
   3422                     return genInlinedIntFloatConversion(cUnit, mir);
   3423                 case INLINE_DOUBLE_TO_RAW_LONG_BITS:
   3424                 case INLINE_LONG_BITS_TO_DOUBLE:
   3425                     return genInlinedLongDoubleConversion(cUnit, mir);
   3426                 case INLINE_STRING_EQUALS:
   3427                 case INLINE_MATH_COS:
   3428                 case INLINE_MATH_SIN:
   3429                 case INLINE_FLOAT_TO_INT_BITS:
   3430                 case INLINE_DOUBLE_TO_LONG_BITS:
   3431                     break;   /* Handle with C routine */
   3432                 default:
   3433                     dvmCompilerAbort(cUnit);
   3434             }
   3435             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3436             dvmCompilerClobberCallRegs(cUnit);
   3437             dvmCompilerClobber(cUnit, r4PC);
   3438             dvmCompilerClobber(cUnit, r7);
   3439             opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset);
   3440             opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3441             LOAD_FUNC_ADDR(cUnit, r4PC, (int)inLineTable[operation].func);
   3442             genExportPC(cUnit, mir);
   3443             for (i=0; i < dInsn->vA; i++) {
   3444                 loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3445             }
   3446             opReg(cUnit, kOpBlx, r4PC);
   3447             opRegImm(cUnit, kOpAdd, r13, 8);
   3448             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   3449             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   3450             loadConstant(cUnit, r0,
   3451                          (int) (cUnit->method->insns + mir->offset));
   3452             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3453             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3454             target->defMask = ENCODE_ALL;
   3455             branchOver->generic.target = (LIR *) target;
   3456             break;
   3457         }
   3458         default:
   3459             return true;
   3460     }
   3461     return false;
   3462 }
   3463 
   3464 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3465 {
   3466     //TUNING: We're using core regs here - not optimal when target is a double
   3467     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3468     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3469     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3470                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3471     loadConstantNoClobber(cUnit, rlResult.highReg,
   3472                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3473     storeValueWide(cUnit, rlDest, rlResult);
   3474     return false;
   3475 }
   3476 
   3477 /*
   3478  * The following are special processing routines that handle transfer of
   3479  * controls between compiled code and the interpreter. Certain VM states like
   3480  * Dalvik PC and special-purpose registers are reconstructed here.
   3481  */
   3482 
   3483 /*
   3484  * Insert a
   3485  *    b   .+4
   3486  *    nop
   3487  * pair at the beginning of a chaining cell.  This serves as the
   3488  * switch branch that selects between reverting to the interpreter or
   3489  * not.  Once the cell is chained to a translation, the cell will
   3490  * contain a 32-bit branch.  Subsequent chain/unchain operations will
   3491  * then only alter that first 16-bits - the "b .+4" for unchaining,
   3492  * and the restoration of the first half of the 32-bit branch for
   3493  * rechaining.
   3494  */
   3495 static void insertChainingSwitch(CompilationUnit *cUnit)
   3496 {
   3497     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
   3498     newLIR2(cUnit, kThumbOrr, r0, r0);
   3499     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3500     target->defMask = ENCODE_ALL;
   3501     branch->generic.target = (LIR *) target;
   3502 }
   3503 
   3504 /* Chaining cell for code that may need warmup. */
   3505 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3506                                      unsigned int offset)
   3507 {
   3508     /*
   3509      * Use raw instruction constructors to guarantee that the generated
   3510      * instructions fit the predefined cell size.
   3511      */
   3512     insertChainingSwitch(cUnit);
   3513     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3514             offsetof(InterpState,
   3515                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3516     newLIR1(cUnit, kThumbBlxR, r0);
   3517     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3518 }
   3519 
   3520 /*
   3521  * Chaining cell for instructions that immediately following already translated
   3522  * code.
   3523  */
   3524 static void handleHotChainingCell(CompilationUnit *cUnit,
   3525                                   unsigned int offset)
   3526 {
   3527     /*
   3528      * Use raw instruction constructors to guarantee that the generated
   3529      * instructions fit the predefined cell size.
   3530      */
   3531     insertChainingSwitch(cUnit);
   3532     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3533             offsetof(InterpState,
   3534                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3535     newLIR1(cUnit, kThumbBlxR, r0);
   3536     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3537 }
   3538 
   3539 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   3540 /* Chaining cell for branches that branch back into the same basic block */
   3541 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3542                                              unsigned int offset)
   3543 {
   3544     /*
   3545      * Use raw instruction constructors to guarantee that the generated
   3546      * instructions fit the predefined cell size.
   3547      */
   3548     insertChainingSwitch(cUnit);
   3549 #if defined(WITH_SELF_VERIFICATION)
   3550     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3551         offsetof(InterpState,
   3552                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3553 #else
   3554     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3555         offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3556 #endif
   3557     newLIR1(cUnit, kThumbBlxR, r0);
   3558     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3559 }
   3560 
   3561 #endif
   3562 /* Chaining cell for monomorphic method invocations. */
   3563 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3564                                               const Method *callee)
   3565 {
   3566     /*
   3567      * Use raw instruction constructors to guarantee that the generated
   3568      * instructions fit the predefined cell size.
   3569      */
   3570     insertChainingSwitch(cUnit);
   3571     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3572             offsetof(InterpState,
   3573                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3574     newLIR1(cUnit, kThumbBlxR, r0);
   3575     addWordData(cUnit, (int) (callee->insns), true);
   3576 }
   3577 
   3578 /* Chaining cell for monomorphic method invocations. */
   3579 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3580 {
   3581 
   3582     /* Should not be executed in the initial state */
   3583     addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
   3584     /* To be filled: class */
   3585     addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
   3586     /* To be filled: method */
   3587     addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
   3588     /*
   3589      * Rechain count. The initial value of 0 here will trigger chaining upon
   3590      * the first invocation of this callsite.
   3591      */
   3592     addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
   3593 }
   3594 
   3595 /* Load the Dalvik PC into r0 and jump to the specified target */
   3596 static void handlePCReconstruction(CompilationUnit *cUnit,
   3597                                    ArmLIR *targetLabel)
   3598 {
   3599     ArmLIR **pcrLabel =
   3600         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3601     int numElems = cUnit->pcReconstructionList.numUsed;
   3602     int i;
   3603     for (i = 0; i < numElems; i++) {
   3604         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3605         /* r0 = dalvik PC */
   3606         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3607         genUnconditionalBranch(cUnit, targetLabel);
   3608     }
   3609 }
   3610 
   3611 static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3612     "kMirOpPhi",
   3613     "kMirOpNullNRangeUpCheck",
   3614     "kMirOpNullNRangeDownCheck",
   3615     "kMirOpLowerBound",
   3616     "kMirOpPunt",
   3617     "kMirOpCheckInlinePrediction",
   3618 };
   3619 
   3620 /*
   3621  * vA = arrayReg;
   3622  * vB = idxReg;
   3623  * vC = endConditionReg;
   3624  * arg[0] = maxC
   3625  * arg[1] = minC
   3626  * arg[2] = loopBranchConditionCode
   3627  */
   3628 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3629 {
   3630     /*
   3631      * NOTE: these synthesized blocks don't have ssa names assigned
   3632      * for Dalvik registers.  However, because they dominate the following
   3633      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3634      * ssa name.
   3635      */
   3636     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3637     const int lenOffset = offsetof(ArrayObject, length);
   3638     const int maxC = dInsn->arg[0];
   3639     int regLength;
   3640     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3641     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3642 
   3643     /* regArray <- arrayRef */
   3644     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3645     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3646     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3647                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3648 
   3649     /* regLength <- len(arrayRef) */
   3650     regLength = dvmCompilerAllocTemp(cUnit);
   3651     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3652 
   3653     int delta = maxC;
   3654     /*
   3655      * If the loop end condition is ">=" instead of ">", then the largest value
   3656      * of the index is "endCondition - 1".
   3657      */
   3658     if (dInsn->arg[2] == OP_IF_GE) {
   3659         delta--;
   3660     }
   3661 
   3662     if (delta) {
   3663         int tReg = dvmCompilerAllocTemp(cUnit);
   3664         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3665         rlIdxEnd.lowReg = tReg;
   3666         dvmCompilerFreeTemp(cUnit, tReg);
   3667     }
   3668     /* Punt if "regIdxEnd < len(Array)" is false */
   3669     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3670                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3671 }
   3672 
   3673 /*
   3674  * vA = arrayReg;
   3675  * vB = idxReg;
   3676  * vC = endConditionReg;
   3677  * arg[0] = maxC
   3678  * arg[1] = minC
   3679  * arg[2] = loopBranchConditionCode
   3680  */
   3681 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3682 {
   3683     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3684     const int lenOffset = offsetof(ArrayObject, length);
   3685     const int regLength = dvmCompilerAllocTemp(cUnit);
   3686     const int maxC = dInsn->arg[0];
   3687     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3688     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3689 
   3690     /* regArray <- arrayRef */
   3691     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3692     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3693     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3694                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3695 
   3696     /* regLength <- len(arrayRef) */
   3697     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3698 
   3699     if (maxC) {
   3700         int tReg = dvmCompilerAllocTemp(cUnit);
   3701         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3702         rlIdxInit.lowReg = tReg;
   3703         dvmCompilerFreeTemp(cUnit, tReg);
   3704     }
   3705 
   3706     /* Punt if "regIdxInit < len(Array)" is false */
   3707     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3708                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3709 }
   3710 
   3711 /*
   3712  * vA = idxReg;
   3713  * vB = minC;
   3714  */
   3715 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3716 {
   3717     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3718     const int minC = dInsn->vB;
   3719     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3720 
   3721     /* regIdx <- initial index value */
   3722     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3723 
   3724     /* Punt if "regIdxInit + minC >= 0" is false */
   3725     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3726                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3727 }
   3728 
   3729 /*
   3730  * vC = this
   3731  *
   3732  * A predicted inlining target looks like the following, where instructions
   3733  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
   3734  * matches "this", and the verificaion code is generated by this routine.
   3735  *
   3736  * (C) means the instruction is inlined from the callee, and (PI) means the
   3737  * instruction is the predicted inlined invoke, whose corresponding
   3738  * instructions are still generated to handle the mispredicted case.
   3739  *
   3740  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
   3741  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
   3742  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
   3743  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
   3744  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
   3745  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
   3746  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
   3747  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
   3748  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
   3749  * v4, v17, (#8)
   3750  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
   3751  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
   3752  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
   3753  * +invoke-virtual-quick/range (PI) v17..v17
   3754  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
   3755  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
   3756  * D/dalvikvm(   86): -------- BARRIER
   3757  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
   3758  * D/dalvikvm(   86): -------- BARRIER
   3759  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
   3760  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
   3761  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
   3762  * D/dalvikvm(   86): -------- BARRIER
   3763  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
   3764  * D/dalvikvm(   86): -------- BARRIER
   3765  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
   3766  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
   3767  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
   3768  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
   3769  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
   3770  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
   3771  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
   3772  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
   3773  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
   3774  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
   3775  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
   3776  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
   3777  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
   3778  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
   3779  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
   3780  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
   3781  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
   3782  * D/dalvikvm(   86): 0x4858deac (0048): .align4
   3783  * D/dalvikvm(   86): L0x004f:
   3784  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
   3785  * v4, (#0), (#0)
   3786  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
   3787  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
   3788  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
   3789  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   3790  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
   3791  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
   3792  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   3793  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
   3794  * D/dalvikvm(   86): Exception_Handling:
   3795  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
   3796  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
   3797  * D/dalvikvm(   86): 0x4858debc (0058): .align4
   3798  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
   3799  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
   3800  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
   3801  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
   3802  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
   3803  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
   3804  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
   3805  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
   3806  * D/dalvikvm(   86): -------- chaining cell (predicted)
   3807  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
   3808  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
   3809  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
   3810  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
   3811  * :
   3812  */
   3813 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
   3814 {
   3815     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   3816     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
   3817 
   3818     rlThis = loadValue(cUnit, rlThis, kCoreReg);
   3819     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
   3820     loadConstant(cUnit, regPredictedClass, (int) callsiteInfo->clazz);
   3821     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
   3822                  NULL);/* null object? */
   3823     int regActualClass = dvmCompilerAllocTemp(cUnit);
   3824     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
   3825     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
   3826     /*
   3827      * Set the misPredBranchOver target so that it will be generated when the
   3828      * code for the non-optimized invoke is generated.
   3829      */
   3830     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
   3831 }
   3832 
   3833 /* Extended MIR instructions like PHI */
   3834 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   3835 {
   3836     int opOffset = mir->dalvikInsn.opCode - kMirOpFirst;
   3837     char *msg = dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   3838                                false);
   3839     strcpy(msg, extendedMIROpNames[opOffset]);
   3840     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   3841 
   3842     switch (mir->dalvikInsn.opCode) {
   3843         case kMirOpPhi: {
   3844             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   3845             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   3846             break;
   3847         }
   3848         case kMirOpNullNRangeUpCheck: {
   3849             genHoistedChecksForCountUpLoop(cUnit, mir);
   3850             break;
   3851         }
   3852         case kMirOpNullNRangeDownCheck: {
   3853             genHoistedChecksForCountDownLoop(cUnit, mir);
   3854             break;
   3855         }
   3856         case kMirOpLowerBound: {
   3857             genHoistedLowerBoundCheck(cUnit, mir);
   3858             break;
   3859         }
   3860         case kMirOpPunt: {
   3861             genUnconditionalBranch(cUnit,
   3862                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3863             break;
   3864         }
   3865         case kMirOpCheckInlinePrediction: {
   3866             genValidationForPredictedInline(cUnit, mir);
   3867             break;
   3868         }
   3869         default:
   3870             break;
   3871     }
   3872 }
   3873 
   3874 /*
   3875  * Create a PC-reconstruction cell for the starting offset of this trace.
   3876  * Since the PCR cell is placed near the end of the compiled code which is
   3877  * usually out of range for a conditional branch, we put two branches (one
   3878  * branch over to the loop body and one layover branch to the actual PCR) at the
   3879  * end of the entry block.
   3880  */
   3881 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   3882                                 ArmLIR *bodyLabel)
   3883 {
   3884     /* Set up the place holder to reconstruct this Dalvik PC */
   3885     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   3886     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   3887     pcrLabel->operands[0] =
   3888         (int) (cUnit->method->insns + entry->startOffset);
   3889     pcrLabel->operands[1] = entry->startOffset;
   3890     /* Insert the place holder to the growable list */
   3891     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   3892 
   3893     /*
   3894      * Next, create two branches - one branch over to the loop body and the
   3895      * other branch to the PCR cell to punt.
   3896      */
   3897     ArmLIR *branchToBody = dvmCompilerNew(sizeof(ArmLIR), true);
   3898     branchToBody->opCode = kThumbBUncond;
   3899     branchToBody->generic.target = (LIR *) bodyLabel;
   3900     setupResourceMasks(branchToBody);
   3901     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   3902 
   3903     ArmLIR *branchToPCR = dvmCompilerNew(sizeof(ArmLIR), true);
   3904     branchToPCR->opCode = kThumbBUncond;
   3905     branchToPCR->generic.target = (LIR *) pcrLabel;
   3906     setupResourceMasks(branchToPCR);
   3907     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   3908 }
   3909 
   3910 #if defined(WITH_SELF_VERIFICATION)
   3911 static bool selfVerificationPuntOps(MIR *mir)
   3912 {
   3913     DecodedInstruction *decInsn = &mir->dalvikInsn;
   3914     OpCode op = decInsn->opCode;
   3915 
   3916     /*
   3917      * All opcodes that can throw exceptions and use the
   3918      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   3919      * under self-verification mode.
   3920      */
   3921     return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT ||
   3922             op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY ||
   3923             op == OP_CHECK_CAST || op == OP_MOVE_EXCEPTION ||
   3924             op == OP_FILL_ARRAY_DATA || op == OP_EXECUTE_INLINE ||
   3925             op == OP_EXECUTE_INLINE_RANGE);
   3926 }
   3927 #endif
   3928 
   3929 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   3930 {
   3931     /* Used to hold the labels of each block */
   3932     ArmLIR *labelList =
   3933         dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   3934     GrowableList chainingListByType[kChainingCellGap];
   3935     int i;
   3936 
   3937     /*
   3938      * Initialize various types chaining lists.
   3939      */
   3940     for (i = 0; i < kChainingCellGap; i++) {
   3941         dvmInitGrowableList(&chainingListByType[i], 2);
   3942     }
   3943 
   3944     BasicBlock **blockList = cUnit->blockList;
   3945 
   3946     if (cUnit->executionCount) {
   3947         /*
   3948          * Reserve 6 bytes at the beginning of the trace
   3949          *        +----------------------------+
   3950          *        | execution count (4 bytes)  |
   3951          *        +----------------------------+
   3952          *        | chain cell offset (2 bytes)|
   3953          *        +----------------------------+
   3954          * ...and then code to increment the execution
   3955          * count:
   3956          *       mov   r0, pc       @ move adr of "mov r0,pc" + 4 to r0
   3957          *       sub   r0, #10      @ back up to addr of executionCount
   3958          *       ldr   r1, [r0]
   3959          *       add   r1, #1
   3960          *       str   r1, [r0]
   3961          */
   3962         newLIR1(cUnit, kArm16BitData, 0);
   3963         newLIR1(cUnit, kArm16BitData, 0);
   3964         cUnit->chainCellOffsetLIR =
   3965             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3966         cUnit->headerSize = 6;
   3967         /* Thumb instruction used directly here to ensure correct size */
   3968         newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc);
   3969         newLIR2(cUnit, kThumbSubRI8, r0, 10);
   3970         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
   3971         newLIR2(cUnit, kThumbAddRI8, r1, 1);
   3972         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
   3973     } else {
   3974          /* Just reserve 2 bytes for the chain cell offset */
   3975         cUnit->chainCellOffsetLIR =
   3976             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3977         cUnit->headerSize = 2;
   3978     }
   3979 
   3980     /* Handle the content in each basic block */
   3981     for (i = 0; i < cUnit->numBlocks; i++) {
   3982         blockList[i]->visited = true;
   3983         MIR *mir;
   3984 
   3985         labelList[i].operands[0] = blockList[i]->startOffset;
   3986 
   3987         if (blockList[i]->blockType >= kChainingCellGap) {
   3988             if (blockList[i]->isFallThroughFromInvoke == true) {
   3989                 /* Align this block first since it is a return chaining cell */
   3990                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
   3991             }
   3992             /*
   3993              * Append the label pseudo LIR first. Chaining cells will be handled
   3994              * separately afterwards.
   3995              */
   3996             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   3997         }
   3998 
   3999         if (blockList[i]->blockType == kTraceEntryBlock) {
   4000             labelList[i].opCode = kArmPseudoEntryBlock;
   4001             if (blockList[i]->firstMIRInsn == NULL) {
   4002                 continue;
   4003             } else {
   4004               setupLoopEntryBlock(cUnit, blockList[i],
   4005                                   &labelList[blockList[i]->fallThrough->id]);
   4006             }
   4007         } else if (blockList[i]->blockType == kTraceExitBlock) {
   4008             labelList[i].opCode = kArmPseudoExitBlock;
   4009             goto gen_fallthrough;
   4010         } else if (blockList[i]->blockType == kDalvikByteCode) {
   4011             labelList[i].opCode = kArmPseudoNormalBlockLabel;
   4012             /* Reset the register state */
   4013             dvmCompilerResetRegPool(cUnit);
   4014             dvmCompilerClobberAllRegs(cUnit);
   4015             dvmCompilerResetNullCheck(cUnit);
   4016         } else {
   4017             switch (blockList[i]->blockType) {
   4018                 case kChainingCellNormal:
   4019                     labelList[i].opCode = kArmPseudoChainingCellNormal;
   4020                     /* handle the codegen later */
   4021                     dvmInsertGrowableList(
   4022                         &chainingListByType[kChainingCellNormal], (void *) i);
   4023                     break;
   4024                 case kChainingCellInvokeSingleton:
   4025                     labelList[i].opCode =
   4026                         kArmPseudoChainingCellInvokeSingleton;
   4027                     labelList[i].operands[0] =
   4028                         (int) blockList[i]->containingMethod;
   4029                     /* handle the codegen later */
   4030                     dvmInsertGrowableList(
   4031                         &chainingListByType[kChainingCellInvokeSingleton],
   4032                         (void *) i);
   4033                     break;
   4034                 case kChainingCellInvokePredicted:
   4035                     labelList[i].opCode =
   4036                         kArmPseudoChainingCellInvokePredicted;
   4037                     /* handle the codegen later */
   4038                     dvmInsertGrowableList(
   4039                         &chainingListByType[kChainingCellInvokePredicted],
   4040                         (void *) i);
   4041                     break;
   4042                 case kChainingCellHot:
   4043                     labelList[i].opCode =
   4044                         kArmPseudoChainingCellHot;
   4045                     /* handle the codegen later */
   4046                     dvmInsertGrowableList(
   4047                         &chainingListByType[kChainingCellHot],
   4048                         (void *) i);
   4049                     break;
   4050                 case kPCReconstruction:
   4051                     /* Make sure exception handling block is next */
   4052                     labelList[i].opCode =
   4053                         kArmPseudoPCReconstructionBlockLabel;
   4054                     assert (i == cUnit->numBlocks - 2);
   4055                     handlePCReconstruction(cUnit, &labelList[i+1]);
   4056                     break;
   4057                 case kExceptionHandling:
   4058                     labelList[i].opCode = kArmPseudoEHBlockLabel;
   4059                     if (cUnit->pcReconstructionList.numUsed) {
   4060                         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   4061                                      jitToInterpEntries.dvmJitToInterpPunt),
   4062                                      r1);
   4063                         opReg(cUnit, kOpBlx, r1);
   4064                     }
   4065                     break;
   4066 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   4067                 case kChainingCellBackwardBranch:
   4068                     labelList[i].opCode =
   4069                         kArmPseudoChainingCellBackwardBranch;
   4070                     /* handle the codegen later */
   4071                     dvmInsertGrowableList(
   4072                         &chainingListByType[kChainingCellBackwardBranch],
   4073                         (void *) i);
   4074                     break;
   4075 #endif
   4076                 default:
   4077                     break;
   4078             }
   4079             continue;
   4080         }
   4081 
   4082         ArmLIR *headLIR = NULL;
   4083 
   4084         for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
   4085 
   4086             dvmCompilerResetRegPool(cUnit);
   4087             if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   4088                 dvmCompilerClobberAllRegs(cUnit);
   4089             }
   4090 
   4091             if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   4092                 dvmCompilerResetDefTracking(cUnit);
   4093             }
   4094 
   4095             if (mir->dalvikInsn.opCode >= kMirOpFirst) {
   4096                 handleExtendedMIR(cUnit, mir);
   4097                 continue;
   4098             }
   4099 
   4100 
   4101             OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   4102             InstructionFormat dalvikFormat =
   4103                 dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
   4104             char *note;
   4105             if (mir->OptimizationFlags & MIR_INLINED) {
   4106                 note = " (I)";
   4107             } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
   4108                 note = " (PI)";
   4109             } else if (mir->OptimizationFlags & MIR_CALLEE) {
   4110                 note = " (C)";
   4111             } else {
   4112                 note = NULL;
   4113             }
   4114 
   4115             ArmLIR *boundaryLIR =
   4116                 newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   4117                         mir->offset,
   4118                         (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
   4119                                                               note));
   4120             if (mir->ssaRep) {
   4121                 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   4122                 newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4123             }
   4124 
   4125             /* Remember the first LIR for this block */
   4126             if (headLIR == NULL) {
   4127                 headLIR = boundaryLIR;
   4128                 /* Set the first boundaryLIR as a scheduling barrier */
   4129                 headLIR->defMask = ENCODE_ALL;
   4130             }
   4131 
   4132             bool notHandled;
   4133             /*
   4134              * Debugging: screen the opcode first to see if it is in the
   4135              * do[-not]-compile list
   4136              */
   4137             bool singleStepMe = SINGLE_STEP_OP(dalvikOpCode);
   4138 #if defined(WITH_SELF_VERIFICATION)
   4139           if (singleStepMe == false) {
   4140               singleStepMe = selfVerificationPuntOps(mir);
   4141           }
   4142 #endif
   4143             if (singleStepMe || cUnit->allSingleStep) {
   4144                 notHandled = false;
   4145                 genInterpSingleStep(cUnit, mir);
   4146             } else {
   4147                 opcodeCoverage[dalvikOpCode]++;
   4148                 switch (dalvikFormat) {
   4149                     case kFmt10t:
   4150                     case kFmt20t:
   4151                     case kFmt30t:
   4152                         notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   4153                                   mir, blockList[i], labelList);
   4154                         break;
   4155                     case kFmt10x:
   4156                         notHandled = handleFmt10x(cUnit, mir);
   4157                         break;
   4158                     case kFmt11n:
   4159                     case kFmt31i:
   4160                         notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   4161                         break;
   4162                     case kFmt11x:
   4163                         notHandled = handleFmt11x(cUnit, mir);
   4164                         break;
   4165                     case kFmt12x:
   4166                         notHandled = handleFmt12x(cUnit, mir);
   4167                         break;
   4168                     case kFmt20bc:
   4169                         notHandled = handleFmt20bc(cUnit, mir);
   4170                         break;
   4171                     case kFmt21c:
   4172                     case kFmt31c:
   4173                         notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   4174                         break;
   4175                     case kFmt21h:
   4176                         notHandled = handleFmt21h(cUnit, mir);
   4177                         break;
   4178                     case kFmt21s:
   4179                         notHandled = handleFmt21s(cUnit, mir);
   4180                         break;
   4181                     case kFmt21t:
   4182                         notHandled = handleFmt21t(cUnit, mir, blockList[i],
   4183                                                   labelList);
   4184                         break;
   4185                     case kFmt22b:
   4186                     case kFmt22s:
   4187                         notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   4188                         break;
   4189                     case kFmt22c:
   4190                         notHandled = handleFmt22c(cUnit, mir);
   4191                         break;
   4192                     case kFmt22cs:
   4193                         notHandled = handleFmt22cs(cUnit, mir);
   4194                         break;
   4195                     case kFmt22t:
   4196                         notHandled = handleFmt22t(cUnit, mir, blockList[i],
   4197                                                   labelList);
   4198                         break;
   4199                     case kFmt22x:
   4200                     case kFmt32x:
   4201                         notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   4202                         break;
   4203                     case kFmt23x:
   4204                         notHandled = handleFmt23x(cUnit, mir);
   4205                         break;
   4206                     case kFmt31t:
   4207                         notHandled = handleFmt31t(cUnit, mir);
   4208                         break;
   4209                     case kFmt3rc:
   4210                     case kFmt35c:
   4211                         notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
   4212                                                       labelList);
   4213                         break;
   4214                     case kFmt3rms:
   4215                     case kFmt35ms:
   4216                         notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
   4217                                                         labelList);
   4218                         break;
   4219                     case kFmt3inline:
   4220                     case kFmt3rinline:
   4221                         notHandled = handleExecuteInline(cUnit, mir);
   4222                         break;
   4223                     case kFmt51l:
   4224                         notHandled = handleFmt51l(cUnit, mir);
   4225                         break;
   4226                     default:
   4227                         notHandled = true;
   4228                         break;
   4229                 }
   4230             }
   4231             if (notHandled) {
   4232                 LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
   4233                      mir->offset,
   4234                      dalvikOpCode, dexGetOpcodeName(dalvikOpCode),
   4235                      dalvikFormat);
   4236                 dvmCompilerAbort(cUnit);
   4237                 break;
   4238             }
   4239         }
   4240 
   4241         if (blockList[i]->blockType == kTraceEntryBlock) {
   4242             dvmCompilerAppendLIR(cUnit,
   4243                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   4244             dvmCompilerAppendLIR(cUnit,
   4245                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   4246         }
   4247 
   4248         if (headLIR) {
   4249             /*
   4250              * Eliminate redundant loads/stores and delay stores into later
   4251              * slots
   4252              */
   4253             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   4254                                                cUnit->lastLIRInsn);
   4255         }
   4256 
   4257 gen_fallthrough:
   4258         /*
   4259          * Check if the block is terminated due to trace length constraint -
   4260          * insert an unconditional branch to the chaining cell.
   4261          */
   4262         if (blockList[i]->needFallThroughBranch) {
   4263             genUnconditionalBranch(cUnit,
   4264                                    &labelList[blockList[i]->fallThrough->id]);
   4265         }
   4266 
   4267     }
   4268 
   4269     /* Handle the chaining cells in predefined order */
   4270     for (i = 0; i < kChainingCellGap; i++) {
   4271         size_t j;
   4272         int *blockIdList = (int *) chainingListByType[i].elemList;
   4273 
   4274         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   4275 
   4276         /* No chaining cells of this type */
   4277         if (cUnit->numChainingCells[i] == 0)
   4278             continue;
   4279 
   4280         /* Record the first LIR for a new type of chaining cell */
   4281         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   4282 
   4283         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   4284             int blockId = blockIdList[j];
   4285 
   4286             /* Align this chaining cell first */
   4287             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4288 
   4289             /* Insert the pseudo chaining instruction */
   4290             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   4291 
   4292 
   4293             switch (blockList[blockId]->blockType) {
   4294                 case kChainingCellNormal:
   4295                     handleNormalChainingCell(cUnit,
   4296                       blockList[blockId]->startOffset);
   4297                     break;
   4298                 case kChainingCellInvokeSingleton:
   4299                     handleInvokeSingletonChainingCell(cUnit,
   4300                         blockList[blockId]->containingMethod);
   4301                     break;
   4302                 case kChainingCellInvokePredicted:
   4303                     handleInvokePredictedChainingCell(cUnit);
   4304                     break;
   4305                 case kChainingCellHot:
   4306                     handleHotChainingCell(cUnit,
   4307                         blockList[blockId]->startOffset);
   4308                     break;
   4309 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   4310                 case kChainingCellBackwardBranch:
   4311                     handleBackwardBranchChainingCell(cUnit,
   4312                         blockList[blockId]->startOffset);
   4313                     break;
   4314 #endif
   4315                 default:
   4316                     LOGE("Bad blocktype %d", blockList[blockId]->blockType);
   4317                     dvmCompilerAbort(cUnit);
   4318             }
   4319         }
   4320     }
   4321 
   4322     /* Mark the bottom of chaining cells */
   4323     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   4324 
   4325     /*
   4326      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   4327      * of all chaining cells for the overflow cases.
   4328      */
   4329     if (cUnit->switchOverflowPad) {
   4330         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   4331         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   4332                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   4333         opRegReg(cUnit, kOpAdd, r1, r1);
   4334         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   4335 #if defined(WITH_JIT_TUNING)
   4336         loadConstant(cUnit, r0, kSwitchOverflow);
   4337 #endif
   4338         opReg(cUnit, kOpBlx, r2);
   4339     }
   4340 
   4341     dvmCompilerApplyGlobalOptimizations(cUnit);
   4342 
   4343 #if defined(WITH_SELF_VERIFICATION)
   4344     selfVerificationBranchInsertPass(cUnit);
   4345 #endif
   4346 }
   4347 
   4348 /* Accept the work and start compiling */
   4349 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   4350 {
   4351     bool res;
   4352 
   4353     if (gDvmJit.codeCacheFull) {
   4354         return false;
   4355     }
   4356 
   4357     switch (work->kind) {
   4358         case kWorkOrderTrace:
   4359             /* Start compilation with maximally allowed trace length */
   4360             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   4361                                   work->bailPtr, 0 /* no hints */);
   4362             break;
   4363         case kWorkOrderTraceDebug: {
   4364             bool oldPrintMe = gDvmJit.printMe;
   4365             gDvmJit.printMe = true;
   4366             /* Start compilation with maximally allowed trace length */
   4367             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   4368                                   work->bailPtr, 0 /* no hints */);
   4369             gDvmJit.printMe = oldPrintMe;
   4370             break;
   4371         }
   4372         default:
   4373             res = false;
   4374             LOGE("Jit: unknown work order type");
   4375             assert(0);  // Bail if debug build, discard otherwise
   4376     }
   4377     return res;
   4378 }
   4379 
   4380 /* Architectural-specific debugging helpers go here */
   4381 void dvmCompilerArchDump(void)
   4382 {
   4383     /* Print compiled opcode in this VM instance */
   4384     int i, start, streak;
   4385     char buf[1024];
   4386 
   4387     streak = i = 0;
   4388     buf[0] = 0;
   4389     while (opcodeCoverage[i] == 0 && i < 256) {
   4390         i++;
   4391     }
   4392     if (i == 256) {
   4393         return;
   4394     }
   4395     for (start = i++, streak = 1; i < 256; i++) {
   4396         if (opcodeCoverage[i]) {
   4397             streak++;
   4398         } else {
   4399             if (streak == 1) {
   4400                 sprintf(buf+strlen(buf), "%x,", start);
   4401             } else {
   4402                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   4403             }
   4404             streak = 0;
   4405             while (opcodeCoverage[i] == 0 && i < 256) {
   4406                 i++;
   4407             }
   4408             if (i < 256) {
   4409                 streak = 1;
   4410                 start = i;
   4411             }
   4412         }
   4413     }
   4414     if (streak) {
   4415         if (streak == 1) {
   4416             sprintf(buf+strlen(buf), "%x", start);
   4417         } else {
   4418             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4419         }
   4420     }
   4421     if (strlen(buf)) {
   4422         LOGD("dalvik.vm.jit.op = %s", buf);
   4423     }
   4424 }
   4425 
   4426 /* Common initialization routine for an architecture family */
   4427 bool dvmCompilerArchInit()
   4428 {
   4429     int i;
   4430 
   4431     for (i = 0; i < kArmLast; i++) {
   4432         if (EncodingMap[i].opCode != i) {
   4433             LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4434                  EncodingMap[i].name, i, EncodingMap[i].opCode);
   4435             dvmAbort();  // OK to dvmAbort - build error
   4436         }
   4437     }
   4438 
   4439     return dvmCompilerArchVariantInit();
   4440 }
   4441 
   4442 void *dvmCompilerGetInterpretTemplate()
   4443 {
   4444       return (void*) ((int)gDvmJit.codeCache +
   4445                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4446 }
   4447 
   4448 /* Needed by the Assembler */
   4449 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
   4450 {
   4451     setupResourceMasks(lir);
   4452 }
   4453 
   4454 /* Needed by the ld/st optmizatons */
   4455 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4456 {
   4457     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4458 }
   4459 
   4460 /* Needed by the register allocator */
   4461 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4462 {
   4463     return genRegCopy(cUnit, rDest, rSrc);
   4464 }
   4465 
   4466 /* Needed by the register allocator */
   4467 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4468                             int srcLo, int srcHi)
   4469 {
   4470     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4471 }
   4472 
   4473 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4474                              int displacement, int rSrc, OpSize size)
   4475 {
   4476     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4477 }
   4478 
   4479 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4480                                  int displacement, int rSrcLo, int rSrcHi)
   4481 {
   4482     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4483 }
   4484