Home | History | Annotate | Download | only in core
      1 /* libs/graphics/sgl/SkGeometry.h
      2 **
      3 ** Copyright 2006, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 #ifndef SkGeometry_DEFINED
     19 #define SkGeometry_DEFINED
     20 
     21 #include "SkMatrix.h"
     22 
     23 /** An XRay is a half-line that runs from the specific point/origin to
     24     +infinity in the X direction. e.g. XRay(3,5) is the half-line
     25     (3,5)....(infinity, 5)
     26  */
     27 typedef SkPoint SkXRay;
     28 
     29 /** Given a line segment from pts[0] to pts[1], and ax xray, return true if
     30     they intersect.
     31 */
     32 bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2]);
     33 
     34 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
     35     equation.
     36 */
     37 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
     38 
     39 ///////////////////////////////////////////////////////////////////////////////
     40 
     41 /** Set pt to the point on the src quadratic specified by t. t must be
     42     0 <= t <= 1.0
     43 */
     44 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
     45 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL);
     46 
     47 /** Given a src quadratic bezier, chop it at the specified t value,
     48     where 0 < t < 1, and return the two new quadratics in dst:
     49     dst[0..2] and dst[2..4]
     50 */
     51 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
     52 
     53 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
     54     The new quads are returned in dst[0..2] and dst[2..4]
     55 */
     56 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
     57 
     58 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
     59     for extrema, and return the number of t-values that are found that represent
     60     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
     61     function returns 0.
     62     Returned count      tValues[]
     63     0                   ignored
     64     1                   0 < tValues[0] < 1
     65 */
     66 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
     67 
     68 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
     69     the resulting beziers are monotonic in Y. This is called by the scan converter.
     70     Depending on what is returned, dst[] is treated as follows
     71     0   dst[0..2] is the original quad
     72     1   dst[0..2] and dst[2..4] are the two new quads
     73 */
     74 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
     75 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
     76 
     77 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
     78     if the point of maximum curvature exists on the quad segment.
     79     Depending on what is returned, dst[] is treated as follows
     80     1   dst[0..2] is the original quad
     81     2   dst[0..2] and dst[2..4] are the two new quads
     82     If dst == null, it is ignored and only the count is returned.
     83 */
     84 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
     85 
     86 /** Given 3 points on a quadratic bezier, use degree elevation to
     87     convert it into the cubic fitting the same curve. The new cubic
     88     curve is returned in dst[0..3].
     89 */
     90 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
     91 
     92 ////////////////////////////////////////////////////////////////////////////////////////
     93 
     94 /** Convert from parametric from (pts) to polynomial coefficients
     95     coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
     96 */
     97 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
     98 
     99 /** Set pt to the point on the src cubic specified by t. t must be
    100     0 <= t <= 1.0
    101 */
    102 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull);
    103 
    104 /** Given a src cubic bezier, chop it at the specified t value,
    105     where 0 < t < 1, and return the two new cubics in dst:
    106     dst[0..3] and dst[3..6]
    107 */
    108 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
    109 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
    110 
    111 /** Given a src cubic bezier, chop it at the specified t == 1/2,
    112     The new cubics are returned in dst[0..3] and dst[3..6]
    113 */
    114 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
    115 
    116 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    117     for extrema, and return the number of t-values that are found that represent
    118     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    119     function returns 0.
    120     Returned count      tValues[]
    121     0                   ignored
    122     1                   0 < tValues[0] < 1
    123     2                   0 < tValues[0] < tValues[1] < 1
    124 */
    125 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
    126 
    127 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    128     the resulting beziers are monotonic in Y. This is called by the scan converter.
    129     Depending on what is returned, dst[] is treated as follows
    130     0   dst[0..3] is the original cubic
    131     1   dst[0..3] and dst[3..6] are the two new cubics
    132     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    133     If dst == null, it is ignored and only the count is returned.
    134 */
    135 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
    136 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
    137 
    138 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    139     inflection points.
    140 */
    141 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
    142 
    143 /** Return 1 for no chop, or 2 for having chopped the cubic at its
    144     inflection point.
    145 */
    146 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
    147 
    148 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
    149 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL);
    150 
    151 /** Given a monotonic cubic bezier, determine whether an xray intersects the
    152     cubic.
    153     By definition the cubic is open at the starting point; in other
    154     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    155     left of the curve, the line is not considered to cross the curve,
    156     but if it is equal to cubic[3].fY then it is considered to
    157     cross.
    158  */
    159 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]);
    160 
    161 /** Given an arbitrary cubic bezier, return the number of times an xray crosses
    162     the cubic. Valid return values are [0..3]
    163     By definition the cubic is open at the starting point; in other
    164     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    165     left of the curve, the line is not considered to cross the curve,
    166     but if it is equal to cubic[3].fY then it is considered to
    167     cross.
    168  */
    169 int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4]);
    170 
    171 ///////////////////////////////////////////////////////////////////////////////////////////
    172 
    173 enum SkRotationDirection {
    174     kCW_SkRotationDirection,
    175     kCCW_SkRotationDirection
    176 };
    177 
    178 /** Maximum number of points needed in the quadPoints[] parameter for
    179     SkBuildQuadArc()
    180 */
    181 #define kSkBuildQuadArcStorage  17
    182 
    183 /** Given 2 unit vectors and a rotation direction, fill out the specified
    184     array of points with quadratic segments. Return is the number of points
    185     written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
    186 
    187     matrix, if not null, is appled to the points before they are returned.
    188 */
    189 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection,
    190                    const SkMatrix* matrix, SkPoint quadPoints[]);
    191 
    192 #endif
    193