1 /* 2 * defines common to all virtual CPUs 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #ifndef CPU_ALL_H 20 #define CPU_ALL_H 21 22 #include "qemu-common.h" 23 #include "cpu-common.h" 24 25 /* some important defines: 26 * 27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned 28 * memory accesses. 29 * 30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and 31 * otherwise little endian. 32 * 33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) 34 * 35 * TARGET_WORDS_BIGENDIAN : same for target cpu 36 */ 37 38 #include "softfloat.h" 39 40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 41 #define BSWAP_NEEDED 42 #endif 43 44 #ifdef BSWAP_NEEDED 45 46 static inline uint16_t tswap16(uint16_t s) 47 { 48 return bswap16(s); 49 } 50 51 static inline uint32_t tswap32(uint32_t s) 52 { 53 return bswap32(s); 54 } 55 56 static inline uint64_t tswap64(uint64_t s) 57 { 58 return bswap64(s); 59 } 60 61 static inline void tswap16s(uint16_t *s) 62 { 63 *s = bswap16(*s); 64 } 65 66 static inline void tswap32s(uint32_t *s) 67 { 68 *s = bswap32(*s); 69 } 70 71 static inline void tswap64s(uint64_t *s) 72 { 73 *s = bswap64(*s); 74 } 75 76 #else 77 78 static inline uint16_t tswap16(uint16_t s) 79 { 80 return s; 81 } 82 83 static inline uint32_t tswap32(uint32_t s) 84 { 85 return s; 86 } 87 88 static inline uint64_t tswap64(uint64_t s) 89 { 90 return s; 91 } 92 93 static inline void tswap16s(uint16_t *s) 94 { 95 } 96 97 static inline void tswap32s(uint32_t *s) 98 { 99 } 100 101 static inline void tswap64s(uint64_t *s) 102 { 103 } 104 105 #endif 106 107 #if TARGET_LONG_SIZE == 4 108 #define tswapl(s) tswap32(s) 109 #define tswapls(s) tswap32s((uint32_t *)(s)) 110 #define bswaptls(s) bswap32s(s) 111 #else 112 #define tswapl(s) tswap64(s) 113 #define tswapls(s) tswap64s((uint64_t *)(s)) 114 #define bswaptls(s) bswap64s(s) 115 #endif 116 117 typedef union { 118 float32 f; 119 uint32_t l; 120 } CPU_FloatU; 121 122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big 123 endian ! */ 124 typedef union { 125 float64 d; 126 #if defined(HOST_WORDS_BIGENDIAN) \ 127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) 128 struct { 129 uint32_t upper; 130 uint32_t lower; 131 } l; 132 #else 133 struct { 134 uint32_t lower; 135 uint32_t upper; 136 } l; 137 #endif 138 uint64_t ll; 139 } CPU_DoubleU; 140 141 #ifdef TARGET_SPARC 142 typedef union { 143 float128 q; 144 #if defined(HOST_WORDS_BIGENDIAN) \ 145 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) 146 struct { 147 uint32_t upmost; 148 uint32_t upper; 149 uint32_t lower; 150 uint32_t lowest; 151 } l; 152 struct { 153 uint64_t upper; 154 uint64_t lower; 155 } ll; 156 #else 157 struct { 158 uint32_t lowest; 159 uint32_t lower; 160 uint32_t upper; 161 uint32_t upmost; 162 } l; 163 struct { 164 uint64_t lower; 165 uint64_t upper; 166 } ll; 167 #endif 168 } CPU_QuadU; 169 #endif 170 171 /* CPU memory access without any memory or io remapping */ 172 173 /* 174 * the generic syntax for the memory accesses is: 175 * 176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) 177 * 178 * store: st{type}{size}{endian}_{access_type}(ptr, val) 179 * 180 * type is: 181 * (empty): integer access 182 * f : float access 183 * 184 * sign is: 185 * (empty): for floats or 32 bit size 186 * u : unsigned 187 * s : signed 188 * 189 * size is: 190 * b: 8 bits 191 * w: 16 bits 192 * l: 32 bits 193 * q: 64 bits 194 * 195 * endian is: 196 * (empty): target cpu endianness or 8 bit access 197 * r : reversed target cpu endianness (not implemented yet) 198 * be : big endian (not implemented yet) 199 * le : little endian (not implemented yet) 200 * 201 * access_type is: 202 * raw : host memory access 203 * user : user mode access using soft MMU 204 * kernel : kernel mode access using soft MMU 205 */ 206 static inline int ldub_p(const void *ptr) 207 { 208 return *(uint8_t *)ptr; 209 } 210 211 static inline int ldsb_p(const void *ptr) 212 { 213 return *(int8_t *)ptr; 214 } 215 216 static inline void stb_p(void *ptr, int v) 217 { 218 *(uint8_t *)ptr = v; 219 } 220 221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the 222 kernel handles unaligned load/stores may give better results, but 223 it is a system wide setting : bad */ 224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) 225 226 /* conservative code for little endian unaligned accesses */ 227 static inline int lduw_le_p(const void *ptr) 228 { 229 #ifdef _ARCH_PPC 230 int val; 231 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); 232 return val; 233 #else 234 const uint8_t *p = ptr; 235 return p[0] | (p[1] << 8); 236 #endif 237 } 238 239 static inline int ldsw_le_p(const void *ptr) 240 { 241 #ifdef _ARCH_PPC 242 int val; 243 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); 244 return (int16_t)val; 245 #else 246 const uint8_t *p = ptr; 247 return (int16_t)(p[0] | (p[1] << 8)); 248 #endif 249 } 250 251 static inline int ldl_le_p(const void *ptr) 252 { 253 #ifdef _ARCH_PPC 254 int val; 255 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); 256 return val; 257 #else 258 const uint8_t *p = ptr; 259 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); 260 #endif 261 } 262 263 static inline uint64_t ldq_le_p(const void *ptr) 264 { 265 const uint8_t *p = ptr; 266 uint32_t v1, v2; 267 v1 = ldl_le_p(p); 268 v2 = ldl_le_p(p + 4); 269 return v1 | ((uint64_t)v2 << 32); 270 } 271 272 static inline void stw_le_p(void *ptr, int v) 273 { 274 #ifdef _ARCH_PPC 275 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); 276 #else 277 uint8_t *p = ptr; 278 p[0] = v; 279 p[1] = v >> 8; 280 #endif 281 } 282 283 static inline void stl_le_p(void *ptr, int v) 284 { 285 #ifdef _ARCH_PPC 286 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); 287 #else 288 uint8_t *p = ptr; 289 p[0] = v; 290 p[1] = v >> 8; 291 p[2] = v >> 16; 292 p[3] = v >> 24; 293 #endif 294 } 295 296 static inline void stq_le_p(void *ptr, uint64_t v) 297 { 298 uint8_t *p = ptr; 299 stl_le_p(p, (uint32_t)v); 300 stl_le_p(p + 4, v >> 32); 301 } 302 303 /* float access */ 304 305 static inline float32 ldfl_le_p(const void *ptr) 306 { 307 union { 308 float32 f; 309 uint32_t i; 310 } u; 311 u.i = ldl_le_p(ptr); 312 return u.f; 313 } 314 315 static inline void stfl_le_p(void *ptr, float32 v) 316 { 317 union { 318 float32 f; 319 uint32_t i; 320 } u; 321 u.f = v; 322 stl_le_p(ptr, u.i); 323 } 324 325 static inline float64 ldfq_le_p(const void *ptr) 326 { 327 CPU_DoubleU u; 328 u.l.lower = ldl_le_p(ptr); 329 u.l.upper = ldl_le_p(ptr + 4); 330 return u.d; 331 } 332 333 static inline void stfq_le_p(void *ptr, float64 v) 334 { 335 CPU_DoubleU u; 336 u.d = v; 337 stl_le_p(ptr, u.l.lower); 338 stl_le_p(ptr + 4, u.l.upper); 339 } 340 341 #else 342 343 static inline int lduw_le_p(const void *ptr) 344 { 345 return *(uint16_t *)ptr; 346 } 347 348 static inline int ldsw_le_p(const void *ptr) 349 { 350 return *(int16_t *)ptr; 351 } 352 353 static inline int ldl_le_p(const void *ptr) 354 { 355 return *(uint32_t *)ptr; 356 } 357 358 static inline uint64_t ldq_le_p(const void *ptr) 359 { 360 return *(uint64_t *)ptr; 361 } 362 363 static inline void stw_le_p(void *ptr, int v) 364 { 365 *(uint16_t *)ptr = v; 366 } 367 368 static inline void stl_le_p(void *ptr, int v) 369 { 370 *(uint32_t *)ptr = v; 371 } 372 373 static inline void stq_le_p(void *ptr, uint64_t v) 374 { 375 *(uint64_t *)ptr = v; 376 } 377 378 /* float access */ 379 380 static inline float32 ldfl_le_p(const void *ptr) 381 { 382 return *(float32 *)ptr; 383 } 384 385 static inline float64 ldfq_le_p(const void *ptr) 386 { 387 return *(float64 *)ptr; 388 } 389 390 static inline void stfl_le_p(void *ptr, float32 v) 391 { 392 *(float32 *)ptr = v; 393 } 394 395 static inline void stfq_le_p(void *ptr, float64 v) 396 { 397 *(float64 *)ptr = v; 398 } 399 #endif 400 401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) 402 403 static inline int lduw_be_p(const void *ptr) 404 { 405 #if defined(__i386__) 406 int val; 407 asm volatile ("movzwl %1, %0\n" 408 "xchgb %b0, %h0\n" 409 : "=q" (val) 410 : "m" (*(uint16_t *)ptr)); 411 return val; 412 #else 413 const uint8_t *b = ptr; 414 return ((b[0] << 8) | b[1]); 415 #endif 416 } 417 418 static inline int ldsw_be_p(const void *ptr) 419 { 420 #if defined(__i386__) 421 int val; 422 asm volatile ("movzwl %1, %0\n" 423 "xchgb %b0, %h0\n" 424 : "=q" (val) 425 : "m" (*(uint16_t *)ptr)); 426 return (int16_t)val; 427 #else 428 const uint8_t *b = ptr; 429 return (int16_t)((b[0] << 8) | b[1]); 430 #endif 431 } 432 433 static inline int ldl_be_p(const void *ptr) 434 { 435 #if defined(__i386__) || defined(__x86_64__) 436 int val; 437 asm volatile ("movl %1, %0\n" 438 "bswap %0\n" 439 : "=r" (val) 440 : "m" (*(uint32_t *)ptr)); 441 return val; 442 #else 443 const uint8_t *b = ptr; 444 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; 445 #endif 446 } 447 448 static inline uint64_t ldq_be_p(const void *ptr) 449 { 450 uint32_t a,b; 451 a = ldl_be_p(ptr); 452 b = ldl_be_p((uint8_t *)ptr + 4); 453 return (((uint64_t)a<<32)|b); 454 } 455 456 static inline void stw_be_p(void *ptr, int v) 457 { 458 #if defined(__i386__) 459 asm volatile ("xchgb %b0, %h0\n" 460 "movw %w0, %1\n" 461 : "=q" (v) 462 : "m" (*(uint16_t *)ptr), "0" (v)); 463 #else 464 uint8_t *d = (uint8_t *) ptr; 465 d[0] = v >> 8; 466 d[1] = v; 467 #endif 468 } 469 470 static inline void stl_be_p(void *ptr, int v) 471 { 472 #if defined(__i386__) || defined(__x86_64__) 473 asm volatile ("bswap %0\n" 474 "movl %0, %1\n" 475 : "=r" (v) 476 : "m" (*(uint32_t *)ptr), "0" (v)); 477 #else 478 uint8_t *d = (uint8_t *) ptr; 479 d[0] = v >> 24; 480 d[1] = v >> 16; 481 d[2] = v >> 8; 482 d[3] = v; 483 #endif 484 } 485 486 static inline void stq_be_p(void *ptr, uint64_t v) 487 { 488 stl_be_p(ptr, v >> 32); 489 stl_be_p((uint8_t *)ptr + 4, v); 490 } 491 492 /* float access */ 493 494 static inline float32 ldfl_be_p(const void *ptr) 495 { 496 union { 497 float32 f; 498 uint32_t i; 499 } u; 500 u.i = ldl_be_p(ptr); 501 return u.f; 502 } 503 504 static inline void stfl_be_p(void *ptr, float32 v) 505 { 506 union { 507 float32 f; 508 uint32_t i; 509 } u; 510 u.f = v; 511 stl_be_p(ptr, u.i); 512 } 513 514 static inline float64 ldfq_be_p(const void *ptr) 515 { 516 CPU_DoubleU u; 517 u.l.upper = ldl_be_p(ptr); 518 u.l.lower = ldl_be_p((uint8_t *)ptr + 4); 519 return u.d; 520 } 521 522 static inline void stfq_be_p(void *ptr, float64 v) 523 { 524 CPU_DoubleU u; 525 u.d = v; 526 stl_be_p(ptr, u.l.upper); 527 stl_be_p((uint8_t *)ptr + 4, u.l.lower); 528 } 529 530 #else 531 532 static inline int lduw_be_p(const void *ptr) 533 { 534 return *(uint16_t *)ptr; 535 } 536 537 static inline int ldsw_be_p(const void *ptr) 538 { 539 return *(int16_t *)ptr; 540 } 541 542 static inline int ldl_be_p(const void *ptr) 543 { 544 return *(uint32_t *)ptr; 545 } 546 547 static inline uint64_t ldq_be_p(const void *ptr) 548 { 549 return *(uint64_t *)ptr; 550 } 551 552 static inline void stw_be_p(void *ptr, int v) 553 { 554 *(uint16_t *)ptr = v; 555 } 556 557 static inline void stl_be_p(void *ptr, int v) 558 { 559 *(uint32_t *)ptr = v; 560 } 561 562 static inline void stq_be_p(void *ptr, uint64_t v) 563 { 564 *(uint64_t *)ptr = v; 565 } 566 567 /* float access */ 568 569 static inline float32 ldfl_be_p(const void *ptr) 570 { 571 return *(float32 *)ptr; 572 } 573 574 static inline float64 ldfq_be_p(const void *ptr) 575 { 576 return *(float64 *)ptr; 577 } 578 579 static inline void stfl_be_p(void *ptr, float32 v) 580 { 581 *(float32 *)ptr = v; 582 } 583 584 static inline void stfq_be_p(void *ptr, float64 v) 585 { 586 *(float64 *)ptr = v; 587 } 588 589 #endif 590 591 /* target CPU memory access functions */ 592 #if defined(TARGET_WORDS_BIGENDIAN) 593 #define lduw_p(p) lduw_be_p(p) 594 #define ldsw_p(p) ldsw_be_p(p) 595 #define ldl_p(p) ldl_be_p(p) 596 #define ldq_p(p) ldq_be_p(p) 597 #define ldfl_p(p) ldfl_be_p(p) 598 #define ldfq_p(p) ldfq_be_p(p) 599 #define stw_p(p, v) stw_be_p(p, v) 600 #define stl_p(p, v) stl_be_p(p, v) 601 #define stq_p(p, v) stq_be_p(p, v) 602 #define stfl_p(p, v) stfl_be_p(p, v) 603 #define stfq_p(p, v) stfq_be_p(p, v) 604 #else 605 #define lduw_p(p) lduw_le_p(p) 606 #define ldsw_p(p) ldsw_le_p(p) 607 #define ldl_p(p) ldl_le_p(p) 608 #define ldq_p(p) ldq_le_p(p) 609 #define ldfl_p(p) ldfl_le_p(p) 610 #define ldfq_p(p) ldfq_le_p(p) 611 #define stw_p(p, v) stw_le_p(p, v) 612 #define stl_p(p, v) stl_le_p(p, v) 613 #define stq_p(p, v) stq_le_p(p, v) 614 #define stfl_p(p, v) stfl_le_p(p, v) 615 #define stfq_p(p, v) stfq_le_p(p, v) 616 #endif 617 618 /* MMU memory access macros */ 619 620 #if defined(CONFIG_USER_ONLY) 621 #include <assert.h> 622 #include "qemu-types.h" 623 624 /* On some host systems the guest address space is reserved on the host. 625 * This allows the guest address space to be offset to a convenient location. 626 */ 627 #if defined(CONFIG_USE_GUEST_BASE) 628 extern unsigned long guest_base; 629 extern int have_guest_base; 630 #define GUEST_BASE guest_base 631 #else 632 #define GUEST_BASE 0ul 633 #endif 634 635 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ 636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) 637 #define h2g(x) ({ \ 638 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ 639 /* Check if given address fits target address space */ \ 640 assert(__ret == (abi_ulong)__ret); \ 641 (abi_ulong)__ret; \ 642 }) 643 #define h2g_valid(x) ({ \ 644 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ 645 (__guest == (abi_ulong)__guest); \ 646 }) 647 648 #define saddr(x) g2h(x) 649 #define laddr(x) g2h(x) 650 651 #else /* !CONFIG_USER_ONLY */ 652 /* NOTE: we use double casts if pointers and target_ulong have 653 different sizes */ 654 #define saddr(x) (uint8_t *)(long)(x) 655 #define laddr(x) (uint8_t *)(long)(x) 656 #endif 657 658 #define ldub_raw(p) ldub_p(laddr((p))) 659 #define ldsb_raw(p) ldsb_p(laddr((p))) 660 #define lduw_raw(p) lduw_p(laddr((p))) 661 #define ldsw_raw(p) ldsw_p(laddr((p))) 662 #define ldl_raw(p) ldl_p(laddr((p))) 663 #define ldq_raw(p) ldq_p(laddr((p))) 664 #define ldfl_raw(p) ldfl_p(laddr((p))) 665 #define ldfq_raw(p) ldfq_p(laddr((p))) 666 #define stb_raw(p, v) stb_p(saddr((p)), v) 667 #define stw_raw(p, v) stw_p(saddr((p)), v) 668 #define stl_raw(p, v) stl_p(saddr((p)), v) 669 #define stq_raw(p, v) stq_p(saddr((p)), v) 670 #define stfl_raw(p, v) stfl_p(saddr((p)), v) 671 #define stfq_raw(p, v) stfq_p(saddr((p)), v) 672 673 674 #if defined(CONFIG_USER_ONLY) 675 676 /* if user mode, no other memory access functions */ 677 #define ldub(p) ldub_raw(p) 678 #define ldsb(p) ldsb_raw(p) 679 #define lduw(p) lduw_raw(p) 680 #define ldsw(p) ldsw_raw(p) 681 #define ldl(p) ldl_raw(p) 682 #define ldq(p) ldq_raw(p) 683 #define ldfl(p) ldfl_raw(p) 684 #define ldfq(p) ldfq_raw(p) 685 #define stb(p, v) stb_raw(p, v) 686 #define stw(p, v) stw_raw(p, v) 687 #define stl(p, v) stl_raw(p, v) 688 #define stq(p, v) stq_raw(p, v) 689 #define stfl(p, v) stfl_raw(p, v) 690 #define stfq(p, v) stfq_raw(p, v) 691 692 #define ldub_code(p) ldub_raw(p) 693 #define ldsb_code(p) ldsb_raw(p) 694 #define lduw_code(p) lduw_raw(p) 695 #define ldsw_code(p) ldsw_raw(p) 696 #define ldl_code(p) ldl_raw(p) 697 #define ldq_code(p) ldq_raw(p) 698 699 #define ldub_kernel(p) ldub_raw(p) 700 #define ldsb_kernel(p) ldsb_raw(p) 701 #define lduw_kernel(p) lduw_raw(p) 702 #define ldsw_kernel(p) ldsw_raw(p) 703 #define ldl_kernel(p) ldl_raw(p) 704 #define ldq_kernel(p) ldq_raw(p) 705 #define ldfl_kernel(p) ldfl_raw(p) 706 #define ldfq_kernel(p) ldfq_raw(p) 707 #define stb_kernel(p, v) stb_raw(p, v) 708 #define stw_kernel(p, v) stw_raw(p, v) 709 #define stl_kernel(p, v) stl_raw(p, v) 710 #define stq_kernel(p, v) stq_raw(p, v) 711 #define stfl_kernel(p, v) stfl_raw(p, v) 712 #define stfq_kernel(p, vt) stfq_raw(p, v) 713 714 #endif /* defined(CONFIG_USER_ONLY) */ 715 716 /* page related stuff */ 717 718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) 719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) 720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) 721 722 /* ??? These should be the larger of unsigned long and target_ulong. */ 723 extern unsigned long qemu_real_host_page_size; 724 extern unsigned long qemu_host_page_bits; 725 extern unsigned long qemu_host_page_size; 726 extern unsigned long qemu_host_page_mask; 727 728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) 729 730 /* same as PROT_xxx */ 731 #define PAGE_READ 0x0001 732 #define PAGE_WRITE 0x0002 733 #define PAGE_EXEC 0x0004 734 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) 735 #define PAGE_VALID 0x0008 736 /* original state of the write flag (used when tracking self-modifying 737 code */ 738 #define PAGE_WRITE_ORG 0x0010 739 #define PAGE_RESERVED 0x0020 740 741 void page_dump(FILE *f); 742 int walk_memory_regions(void *, 743 int (*fn)(void *, unsigned long, unsigned long, unsigned long)); 744 int page_get_flags(target_ulong address); 745 void page_set_flags(target_ulong start, target_ulong end, int flags); 746 int page_check_range(target_ulong start, target_ulong len, int flags); 747 748 void cpu_exec_init_all(unsigned long tb_size); 749 CPUState *cpu_copy(CPUState *env); 750 CPUState *qemu_get_cpu(int cpu); 751 752 void cpu_dump_state(CPUState *env, FILE *f, 753 int (*cpu_fprintf)(FILE *f, const char *fmt, ...), 754 int flags); 755 void cpu_dump_statistics (CPUState *env, FILE *f, 756 int (*cpu_fprintf)(FILE *f, const char *fmt, ...), 757 int flags); 758 759 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) 760 __attribute__ ((__format__ (__printf__, 2, 3))); 761 extern CPUState *first_cpu; 762 extern CPUState *cpu_single_env; 763 extern int64_t qemu_icount; 764 extern int use_icount; 765 766 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ 767 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ 768 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */ 769 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */ 770 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */ 771 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */ 772 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */ 773 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */ 774 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */ 775 #define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */ 776 #define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */ 777 #define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */ 778 779 void cpu_interrupt(CPUState *s, int mask); 780 void cpu_reset_interrupt(CPUState *env, int mask); 781 782 void cpu_exit(CPUState *s); 783 784 int qemu_cpu_has_work(CPUState *env); 785 786 /* Breakpoint/watchpoint flags */ 787 #define BP_MEM_READ 0x01 788 #define BP_MEM_WRITE 0x02 789 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 790 #define BP_STOP_BEFORE_ACCESS 0x04 791 #define BP_WATCHPOINT_HIT 0x08 792 #define BP_GDB 0x10 793 #define BP_CPU 0x20 794 795 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, 796 CPUBreakpoint **breakpoint); 797 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); 798 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); 799 void cpu_breakpoint_remove_all(CPUState *env, int mask); 800 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, 801 int flags, CPUWatchpoint **watchpoint); 802 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, 803 target_ulong len, int flags); 804 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); 805 void cpu_watchpoint_remove_all(CPUState *env, int mask); 806 807 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 808 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 809 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 810 811 void cpu_single_step(CPUState *env, int enabled); 812 void cpu_reset(CPUState *s); 813 814 /* Return the physical page corresponding to a virtual one. Use it 815 only for debugging because no protection checks are done. Return -1 816 if no page found. */ 817 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); 818 819 #define CPU_LOG_TB_OUT_ASM (1 << 0) 820 #define CPU_LOG_TB_IN_ASM (1 << 1) 821 #define CPU_LOG_TB_OP (1 << 2) 822 #define CPU_LOG_TB_OP_OPT (1 << 3) 823 #define CPU_LOG_INT (1 << 4) 824 #define CPU_LOG_EXEC (1 << 5) 825 #define CPU_LOG_PCALL (1 << 6) 826 #define CPU_LOG_IOPORT (1 << 7) 827 #define CPU_LOG_TB_CPU (1 << 8) 828 #define CPU_LOG_RESET (1 << 9) 829 830 /* define log items */ 831 typedef struct CPULogItem { 832 int mask; 833 const char *name; 834 const char *help; 835 } CPULogItem; 836 837 extern const CPULogItem cpu_log_items[]; 838 839 void cpu_set_log(int log_flags); 840 void cpu_set_log_filename(const char *filename); 841 int cpu_str_to_log_mask(const char *str); 842 843 /* IO ports API */ 844 #include "ioport.h" 845 846 /* memory API */ 847 848 extern int phys_ram_fd; 849 extern uint8_t *phys_ram_dirty; 850 extern ram_addr_t ram_size; 851 extern ram_addr_t last_ram_offset; 852 853 /* physical memory access */ 854 855 /* MMIO pages are identified by a combination of an IO device index and 856 3 flags. The ROMD code stores the page ram offset in iotlb entry, 857 so only a limited number of ids are avaiable. */ 858 859 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT)) 860 861 /* Flags stored in the low bits of the TLB virtual address. These are 862 defined so that fast path ram access is all zeros. */ 863 /* Zero if TLB entry is valid. */ 864 #define TLB_INVALID_MASK (1 << 3) 865 /* Set if TLB entry references a clean RAM page. The iotlb entry will 866 contain the page physical address. */ 867 #define TLB_NOTDIRTY (1 << 4) 868 /* Set if TLB entry is an IO callback. */ 869 #define TLB_MMIO (1 << 5) 870 871 int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 872 uint8_t *buf, int len, int is_write); 873 874 #define VGA_DIRTY_FLAG 0x01 875 #define CODE_DIRTY_FLAG 0x02 876 #define MIGRATION_DIRTY_FLAG 0x08 877 878 /* read dirty bit (return 0 or 1) */ 879 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) 880 { 881 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff; 882 } 883 884 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, 885 int dirty_flags) 886 { 887 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; 888 } 889 890 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) 891 { 892 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff; 893 } 894 895 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, 896 int dirty_flags); 897 void cpu_tlb_update_dirty(CPUState *env); 898 899 int cpu_physical_memory_set_dirty_tracking(int enable); 900 901 int cpu_physical_memory_get_dirty_tracking(void); 902 903 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, 904 target_phys_addr_t end_addr); 905 906 void dump_exec_info(FILE *f, 907 int (*cpu_fprintf)(FILE *f, const char *fmt, ...)); 908 909 /* Coalesced MMIO regions are areas where write operations can be reordered. 910 * This usually implies that write operations are side-effect free. This allows 911 * batching which can make a major impact on performance when using 912 * virtualization. 913 */ 914 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); 915 916 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); 917 918 void qemu_flush_coalesced_mmio_buffer(void); 919 920 /*******************************************/ 921 /* host CPU ticks (if available) */ 922 923 #if defined(_ARCH_PPC) 924 925 static inline int64_t cpu_get_real_ticks(void) 926 { 927 int64_t retval; 928 #ifdef _ARCH_PPC64 929 /* This reads timebase in one 64bit go and includes Cell workaround from: 930 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html 931 */ 932 __asm__ __volatile__ ( 933 "mftb %0\n\t" 934 "cmpwi %0,0\n\t" 935 "beq- $-8" 936 : "=r" (retval)); 937 #else 938 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */ 939 unsigned long junk; 940 __asm__ __volatile__ ( 941 "mftbu %1\n\t" 942 "mftb %L0\n\t" 943 "mftbu %0\n\t" 944 "cmpw %0,%1\n\t" 945 "bne $-16" 946 : "=r" (retval), "=r" (junk)); 947 #endif 948 return retval; 949 } 950 951 #elif defined(__i386__) 952 953 static inline int64_t cpu_get_real_ticks(void) 954 { 955 int64_t val; 956 asm volatile ("rdtsc" : "=A" (val)); 957 return val; 958 } 959 960 #elif defined(__x86_64__) 961 962 static inline int64_t cpu_get_real_ticks(void) 963 { 964 uint32_t low,high; 965 int64_t val; 966 asm volatile("rdtsc" : "=a" (low), "=d" (high)); 967 val = high; 968 val <<= 32; 969 val |= low; 970 return val; 971 } 972 973 #elif defined(__hppa__) 974 975 static inline int64_t cpu_get_real_ticks(void) 976 { 977 int val; 978 asm volatile ("mfctl %%cr16, %0" : "=r"(val)); 979 return val; 980 } 981 982 #elif defined(__ia64) 983 984 static inline int64_t cpu_get_real_ticks(void) 985 { 986 int64_t val; 987 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory"); 988 return val; 989 } 990 991 #elif defined(__s390__) 992 993 static inline int64_t cpu_get_real_ticks(void) 994 { 995 int64_t val; 996 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc"); 997 return val; 998 } 999 1000 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__) 1001 1002 static inline int64_t cpu_get_real_ticks (void) 1003 { 1004 #if defined(_LP64) 1005 uint64_t rval; 1006 asm volatile("rd %%tick,%0" : "=r"(rval)); 1007 return rval; 1008 #else 1009 union { 1010 uint64_t i64; 1011 struct { 1012 uint32_t high; 1013 uint32_t low; 1014 } i32; 1015 } rval; 1016 asm volatile("rd %%tick,%1; srlx %1,32,%0" 1017 : "=r"(rval.i32.high), "=r"(rval.i32.low)); 1018 return rval.i64; 1019 #endif 1020 } 1021 1022 #elif defined(__mips__) && \ 1023 ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__)) 1024 /* 1025 * binutils wants to use rdhwr only on mips32r2 1026 * but as linux kernel emulate it, it's fine 1027 * to use it. 1028 * 1029 */ 1030 #define MIPS_RDHWR(rd, value) { \ 1031 __asm__ __volatile__ ( \ 1032 ".set push\n\t" \ 1033 ".set mips32r2\n\t" \ 1034 "rdhwr %0, "rd"\n\t" \ 1035 ".set pop" \ 1036 : "=r" (value)); \ 1037 } 1038 1039 static inline int64_t cpu_get_real_ticks(void) 1040 { 1041 /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */ 1042 uint32_t count; 1043 static uint32_t cyc_per_count = 0; 1044 1045 if (!cyc_per_count) 1046 MIPS_RDHWR("$3", cyc_per_count); 1047 1048 MIPS_RDHWR("$2", count); 1049 return (int64_t)(count * cyc_per_count); 1050 } 1051 1052 #else 1053 /* The host CPU doesn't have an easily accessible cycle counter. 1054 Just return a monotonically increasing value. This will be 1055 totally wrong, but hopefully better than nothing. */ 1056 static inline int64_t cpu_get_real_ticks (void) 1057 { 1058 static int64_t ticks = 0; 1059 return ticks++; 1060 } 1061 #endif 1062 1063 /* profiling */ 1064 #ifdef CONFIG_PROFILER 1065 static inline int64_t profile_getclock(void) 1066 { 1067 return cpu_get_real_ticks(); 1068 } 1069 1070 extern int64_t qemu_time, qemu_time_start; 1071 extern int64_t tlb_flush_time; 1072 extern int64_t dev_time; 1073 #endif 1074 1075 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status, 1076 uint64_t mcg_status, uint64_t addr, uint64_t misc); 1077 1078 #endif /* CPU_ALL_H */ 1079