Home | History | Annotate | Download | only in qemu
      1 /*
      2  * defines common to all virtual CPUs
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 #ifndef CPU_ALL_H
     20 #define CPU_ALL_H
     21 
     22 #include "qemu-common.h"
     23 #include "cpu-common.h"
     24 
     25 /* some important defines:
     26  *
     27  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
     28  * memory accesses.
     29  *
     30  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
     31  * otherwise little endian.
     32  *
     33  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
     34  *
     35  * TARGET_WORDS_BIGENDIAN : same for target cpu
     36  */
     37 
     38 #include "softfloat.h"
     39 
     40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
     41 #define BSWAP_NEEDED
     42 #endif
     43 
     44 #ifdef BSWAP_NEEDED
     45 
     46 static inline uint16_t tswap16(uint16_t s)
     47 {
     48     return bswap16(s);
     49 }
     50 
     51 static inline uint32_t tswap32(uint32_t s)
     52 {
     53     return bswap32(s);
     54 }
     55 
     56 static inline uint64_t tswap64(uint64_t s)
     57 {
     58     return bswap64(s);
     59 }
     60 
     61 static inline void tswap16s(uint16_t *s)
     62 {
     63     *s = bswap16(*s);
     64 }
     65 
     66 static inline void tswap32s(uint32_t *s)
     67 {
     68     *s = bswap32(*s);
     69 }
     70 
     71 static inline void tswap64s(uint64_t *s)
     72 {
     73     *s = bswap64(*s);
     74 }
     75 
     76 #else
     77 
     78 static inline uint16_t tswap16(uint16_t s)
     79 {
     80     return s;
     81 }
     82 
     83 static inline uint32_t tswap32(uint32_t s)
     84 {
     85     return s;
     86 }
     87 
     88 static inline uint64_t tswap64(uint64_t s)
     89 {
     90     return s;
     91 }
     92 
     93 static inline void tswap16s(uint16_t *s)
     94 {
     95 }
     96 
     97 static inline void tswap32s(uint32_t *s)
     98 {
     99 }
    100 
    101 static inline void tswap64s(uint64_t *s)
    102 {
    103 }
    104 
    105 #endif
    106 
    107 #if TARGET_LONG_SIZE == 4
    108 #define tswapl(s) tswap32(s)
    109 #define tswapls(s) tswap32s((uint32_t *)(s))
    110 #define bswaptls(s) bswap32s(s)
    111 #else
    112 #define tswapl(s) tswap64(s)
    113 #define tswapls(s) tswap64s((uint64_t *)(s))
    114 #define bswaptls(s) bswap64s(s)
    115 #endif
    116 
    117 typedef union {
    118     float32 f;
    119     uint32_t l;
    120 } CPU_FloatU;
    121 
    122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
    123    endian ! */
    124 typedef union {
    125     float64 d;
    126 #if defined(HOST_WORDS_BIGENDIAN) \
    127     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    128     struct {
    129         uint32_t upper;
    130         uint32_t lower;
    131     } l;
    132 #else
    133     struct {
    134         uint32_t lower;
    135         uint32_t upper;
    136     } l;
    137 #endif
    138     uint64_t ll;
    139 } CPU_DoubleU;
    140 
    141 #ifdef TARGET_SPARC
    142 typedef union {
    143     float128 q;
    144 #if defined(HOST_WORDS_BIGENDIAN) \
    145     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    146     struct {
    147         uint32_t upmost;
    148         uint32_t upper;
    149         uint32_t lower;
    150         uint32_t lowest;
    151     } l;
    152     struct {
    153         uint64_t upper;
    154         uint64_t lower;
    155     } ll;
    156 #else
    157     struct {
    158         uint32_t lowest;
    159         uint32_t lower;
    160         uint32_t upper;
    161         uint32_t upmost;
    162     } l;
    163     struct {
    164         uint64_t lower;
    165         uint64_t upper;
    166     } ll;
    167 #endif
    168 } CPU_QuadU;
    169 #endif
    170 
    171 /* CPU memory access without any memory or io remapping */
    172 
    173 /*
    174  * the generic syntax for the memory accesses is:
    175  *
    176  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
    177  *
    178  * store: st{type}{size}{endian}_{access_type}(ptr, val)
    179  *
    180  * type is:
    181  * (empty): integer access
    182  *   f    : float access
    183  *
    184  * sign is:
    185  * (empty): for floats or 32 bit size
    186  *   u    : unsigned
    187  *   s    : signed
    188  *
    189  * size is:
    190  *   b: 8 bits
    191  *   w: 16 bits
    192  *   l: 32 bits
    193  *   q: 64 bits
    194  *
    195  * endian is:
    196  * (empty): target cpu endianness or 8 bit access
    197  *   r    : reversed target cpu endianness (not implemented yet)
    198  *   be   : big endian (not implemented yet)
    199  *   le   : little endian (not implemented yet)
    200  *
    201  * access_type is:
    202  *   raw    : host memory access
    203  *   user   : user mode access using soft MMU
    204  *   kernel : kernel mode access using soft MMU
    205  */
    206 static inline int ldub_p(const void *ptr)
    207 {
    208     return *(uint8_t *)ptr;
    209 }
    210 
    211 static inline int ldsb_p(const void *ptr)
    212 {
    213     return *(int8_t *)ptr;
    214 }
    215 
    216 static inline void stb_p(void *ptr, int v)
    217 {
    218     *(uint8_t *)ptr = v;
    219 }
    220 
    221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
    222    kernel handles unaligned load/stores may give better results, but
    223    it is a system wide setting : bad */
    224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    225 
    226 /* conservative code for little endian unaligned accesses */
    227 static inline int lduw_le_p(const void *ptr)
    228 {
    229 #ifdef _ARCH_PPC
    230     int val;
    231     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    232     return val;
    233 #else
    234     const uint8_t *p = ptr;
    235     return p[0] | (p[1] << 8);
    236 #endif
    237 }
    238 
    239 static inline int ldsw_le_p(const void *ptr)
    240 {
    241 #ifdef _ARCH_PPC
    242     int val;
    243     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    244     return (int16_t)val;
    245 #else
    246     const uint8_t *p = ptr;
    247     return (int16_t)(p[0] | (p[1] << 8));
    248 #endif
    249 }
    250 
    251 static inline int ldl_le_p(const void *ptr)
    252 {
    253 #ifdef _ARCH_PPC
    254     int val;
    255     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    256     return val;
    257 #else
    258     const uint8_t *p = ptr;
    259     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
    260 #endif
    261 }
    262 
    263 static inline uint64_t ldq_le_p(const void *ptr)
    264 {
    265     const uint8_t *p = ptr;
    266     uint32_t v1, v2;
    267     v1 = ldl_le_p(p);
    268     v2 = ldl_le_p(p + 4);
    269     return v1 | ((uint64_t)v2 << 32);
    270 }
    271 
    272 static inline void stw_le_p(void *ptr, int v)
    273 {
    274 #ifdef _ARCH_PPC
    275     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
    276 #else
    277     uint8_t *p = ptr;
    278     p[0] = v;
    279     p[1] = v >> 8;
    280 #endif
    281 }
    282 
    283 static inline void stl_le_p(void *ptr, int v)
    284 {
    285 #ifdef _ARCH_PPC
    286     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
    287 #else
    288     uint8_t *p = ptr;
    289     p[0] = v;
    290     p[1] = v >> 8;
    291     p[2] = v >> 16;
    292     p[3] = v >> 24;
    293 #endif
    294 }
    295 
    296 static inline void stq_le_p(void *ptr, uint64_t v)
    297 {
    298     uint8_t *p = ptr;
    299     stl_le_p(p, (uint32_t)v);
    300     stl_le_p(p + 4, v >> 32);
    301 }
    302 
    303 /* float access */
    304 
    305 static inline float32 ldfl_le_p(const void *ptr)
    306 {
    307     union {
    308         float32 f;
    309         uint32_t i;
    310     } u;
    311     u.i = ldl_le_p(ptr);
    312     return u.f;
    313 }
    314 
    315 static inline void stfl_le_p(void *ptr, float32 v)
    316 {
    317     union {
    318         float32 f;
    319         uint32_t i;
    320     } u;
    321     u.f = v;
    322     stl_le_p(ptr, u.i);
    323 }
    324 
    325 static inline float64 ldfq_le_p(const void *ptr)
    326 {
    327     CPU_DoubleU u;
    328     u.l.lower = ldl_le_p(ptr);
    329     u.l.upper = ldl_le_p(ptr + 4);
    330     return u.d;
    331 }
    332 
    333 static inline void stfq_le_p(void *ptr, float64 v)
    334 {
    335     CPU_DoubleU u;
    336     u.d = v;
    337     stl_le_p(ptr, u.l.lower);
    338     stl_le_p(ptr + 4, u.l.upper);
    339 }
    340 
    341 #else
    342 
    343 static inline int lduw_le_p(const void *ptr)
    344 {
    345     return *(uint16_t *)ptr;
    346 }
    347 
    348 static inline int ldsw_le_p(const void *ptr)
    349 {
    350     return *(int16_t *)ptr;
    351 }
    352 
    353 static inline int ldl_le_p(const void *ptr)
    354 {
    355     return *(uint32_t *)ptr;
    356 }
    357 
    358 static inline uint64_t ldq_le_p(const void *ptr)
    359 {
    360     return *(uint64_t *)ptr;
    361 }
    362 
    363 static inline void stw_le_p(void *ptr, int v)
    364 {
    365     *(uint16_t *)ptr = v;
    366 }
    367 
    368 static inline void stl_le_p(void *ptr, int v)
    369 {
    370     *(uint32_t *)ptr = v;
    371 }
    372 
    373 static inline void stq_le_p(void *ptr, uint64_t v)
    374 {
    375     *(uint64_t *)ptr = v;
    376 }
    377 
    378 /* float access */
    379 
    380 static inline float32 ldfl_le_p(const void *ptr)
    381 {
    382     return *(float32 *)ptr;
    383 }
    384 
    385 static inline float64 ldfq_le_p(const void *ptr)
    386 {
    387     return *(float64 *)ptr;
    388 }
    389 
    390 static inline void stfl_le_p(void *ptr, float32 v)
    391 {
    392     *(float32 *)ptr = v;
    393 }
    394 
    395 static inline void stfq_le_p(void *ptr, float64 v)
    396 {
    397     *(float64 *)ptr = v;
    398 }
    399 #endif
    400 
    401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    402 
    403 static inline int lduw_be_p(const void *ptr)
    404 {
    405 #if defined(__i386__)
    406     int val;
    407     asm volatile ("movzwl %1, %0\n"
    408                   "xchgb %b0, %h0\n"
    409                   : "=q" (val)
    410                   : "m" (*(uint16_t *)ptr));
    411     return val;
    412 #else
    413     const uint8_t *b = ptr;
    414     return ((b[0] << 8) | b[1]);
    415 #endif
    416 }
    417 
    418 static inline int ldsw_be_p(const void *ptr)
    419 {
    420 #if defined(__i386__)
    421     int val;
    422     asm volatile ("movzwl %1, %0\n"
    423                   "xchgb %b0, %h0\n"
    424                   : "=q" (val)
    425                   : "m" (*(uint16_t *)ptr));
    426     return (int16_t)val;
    427 #else
    428     const uint8_t *b = ptr;
    429     return (int16_t)((b[0] << 8) | b[1]);
    430 #endif
    431 }
    432 
    433 static inline int ldl_be_p(const void *ptr)
    434 {
    435 #if defined(__i386__) || defined(__x86_64__)
    436     int val;
    437     asm volatile ("movl %1, %0\n"
    438                   "bswap %0\n"
    439                   : "=r" (val)
    440                   : "m" (*(uint32_t *)ptr));
    441     return val;
    442 #else
    443     const uint8_t *b = ptr;
    444     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
    445 #endif
    446 }
    447 
    448 static inline uint64_t ldq_be_p(const void *ptr)
    449 {
    450     uint32_t a,b;
    451     a = ldl_be_p(ptr);
    452     b = ldl_be_p((uint8_t *)ptr + 4);
    453     return (((uint64_t)a<<32)|b);
    454 }
    455 
    456 static inline void stw_be_p(void *ptr, int v)
    457 {
    458 #if defined(__i386__)
    459     asm volatile ("xchgb %b0, %h0\n"
    460                   "movw %w0, %1\n"
    461                   : "=q" (v)
    462                   : "m" (*(uint16_t *)ptr), "0" (v));
    463 #else
    464     uint8_t *d = (uint8_t *) ptr;
    465     d[0] = v >> 8;
    466     d[1] = v;
    467 #endif
    468 }
    469 
    470 static inline void stl_be_p(void *ptr, int v)
    471 {
    472 #if defined(__i386__) || defined(__x86_64__)
    473     asm volatile ("bswap %0\n"
    474                   "movl %0, %1\n"
    475                   : "=r" (v)
    476                   : "m" (*(uint32_t *)ptr), "0" (v));
    477 #else
    478     uint8_t *d = (uint8_t *) ptr;
    479     d[0] = v >> 24;
    480     d[1] = v >> 16;
    481     d[2] = v >> 8;
    482     d[3] = v;
    483 #endif
    484 }
    485 
    486 static inline void stq_be_p(void *ptr, uint64_t v)
    487 {
    488     stl_be_p(ptr, v >> 32);
    489     stl_be_p((uint8_t *)ptr + 4, v);
    490 }
    491 
    492 /* float access */
    493 
    494 static inline float32 ldfl_be_p(const void *ptr)
    495 {
    496     union {
    497         float32 f;
    498         uint32_t i;
    499     } u;
    500     u.i = ldl_be_p(ptr);
    501     return u.f;
    502 }
    503 
    504 static inline void stfl_be_p(void *ptr, float32 v)
    505 {
    506     union {
    507         float32 f;
    508         uint32_t i;
    509     } u;
    510     u.f = v;
    511     stl_be_p(ptr, u.i);
    512 }
    513 
    514 static inline float64 ldfq_be_p(const void *ptr)
    515 {
    516     CPU_DoubleU u;
    517     u.l.upper = ldl_be_p(ptr);
    518     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
    519     return u.d;
    520 }
    521 
    522 static inline void stfq_be_p(void *ptr, float64 v)
    523 {
    524     CPU_DoubleU u;
    525     u.d = v;
    526     stl_be_p(ptr, u.l.upper);
    527     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
    528 }
    529 
    530 #else
    531 
    532 static inline int lduw_be_p(const void *ptr)
    533 {
    534     return *(uint16_t *)ptr;
    535 }
    536 
    537 static inline int ldsw_be_p(const void *ptr)
    538 {
    539     return *(int16_t *)ptr;
    540 }
    541 
    542 static inline int ldl_be_p(const void *ptr)
    543 {
    544     return *(uint32_t *)ptr;
    545 }
    546 
    547 static inline uint64_t ldq_be_p(const void *ptr)
    548 {
    549     return *(uint64_t *)ptr;
    550 }
    551 
    552 static inline void stw_be_p(void *ptr, int v)
    553 {
    554     *(uint16_t *)ptr = v;
    555 }
    556 
    557 static inline void stl_be_p(void *ptr, int v)
    558 {
    559     *(uint32_t *)ptr = v;
    560 }
    561 
    562 static inline void stq_be_p(void *ptr, uint64_t v)
    563 {
    564     *(uint64_t *)ptr = v;
    565 }
    566 
    567 /* float access */
    568 
    569 static inline float32 ldfl_be_p(const void *ptr)
    570 {
    571     return *(float32 *)ptr;
    572 }
    573 
    574 static inline float64 ldfq_be_p(const void *ptr)
    575 {
    576     return *(float64 *)ptr;
    577 }
    578 
    579 static inline void stfl_be_p(void *ptr, float32 v)
    580 {
    581     *(float32 *)ptr = v;
    582 }
    583 
    584 static inline void stfq_be_p(void *ptr, float64 v)
    585 {
    586     *(float64 *)ptr = v;
    587 }
    588 
    589 #endif
    590 
    591 /* target CPU memory access functions */
    592 #if defined(TARGET_WORDS_BIGENDIAN)
    593 #define lduw_p(p) lduw_be_p(p)
    594 #define ldsw_p(p) ldsw_be_p(p)
    595 #define ldl_p(p) ldl_be_p(p)
    596 #define ldq_p(p) ldq_be_p(p)
    597 #define ldfl_p(p) ldfl_be_p(p)
    598 #define ldfq_p(p) ldfq_be_p(p)
    599 #define stw_p(p, v) stw_be_p(p, v)
    600 #define stl_p(p, v) stl_be_p(p, v)
    601 #define stq_p(p, v) stq_be_p(p, v)
    602 #define stfl_p(p, v) stfl_be_p(p, v)
    603 #define stfq_p(p, v) stfq_be_p(p, v)
    604 #else
    605 #define lduw_p(p) lduw_le_p(p)
    606 #define ldsw_p(p) ldsw_le_p(p)
    607 #define ldl_p(p) ldl_le_p(p)
    608 #define ldq_p(p) ldq_le_p(p)
    609 #define ldfl_p(p) ldfl_le_p(p)
    610 #define ldfq_p(p) ldfq_le_p(p)
    611 #define stw_p(p, v) stw_le_p(p, v)
    612 #define stl_p(p, v) stl_le_p(p, v)
    613 #define stq_p(p, v) stq_le_p(p, v)
    614 #define stfl_p(p, v) stfl_le_p(p, v)
    615 #define stfq_p(p, v) stfq_le_p(p, v)
    616 #endif
    617 
    618 /* MMU memory access macros */
    619 
    620 #if defined(CONFIG_USER_ONLY)
    621 #include <assert.h>
    622 #include "qemu-types.h"
    623 
    624 /* On some host systems the guest address space is reserved on the host.
    625  * This allows the guest address space to be offset to a convenient location.
    626  */
    627 #if defined(CONFIG_USE_GUEST_BASE)
    628 extern unsigned long guest_base;
    629 extern int have_guest_base;
    630 #define GUEST_BASE guest_base
    631 #else
    632 #define GUEST_BASE 0ul
    633 #endif
    634 
    635 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
    636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
    637 #define h2g(x) ({ \
    638     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    639     /* Check if given address fits target address space */ \
    640     assert(__ret == (abi_ulong)__ret); \
    641     (abi_ulong)__ret; \
    642 })
    643 #define h2g_valid(x) ({ \
    644     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    645     (__guest == (abi_ulong)__guest); \
    646 })
    647 
    648 #define saddr(x) g2h(x)
    649 #define laddr(x) g2h(x)
    650 
    651 #else /* !CONFIG_USER_ONLY */
    652 /* NOTE: we use double casts if pointers and target_ulong have
    653    different sizes */
    654 #define saddr(x) (uint8_t *)(long)(x)
    655 #define laddr(x) (uint8_t *)(long)(x)
    656 #endif
    657 
    658 #define ldub_raw(p) ldub_p(laddr((p)))
    659 #define ldsb_raw(p) ldsb_p(laddr((p)))
    660 #define lduw_raw(p) lduw_p(laddr((p)))
    661 #define ldsw_raw(p) ldsw_p(laddr((p)))
    662 #define ldl_raw(p) ldl_p(laddr((p)))
    663 #define ldq_raw(p) ldq_p(laddr((p)))
    664 #define ldfl_raw(p) ldfl_p(laddr((p)))
    665 #define ldfq_raw(p) ldfq_p(laddr((p)))
    666 #define stb_raw(p, v) stb_p(saddr((p)), v)
    667 #define stw_raw(p, v) stw_p(saddr((p)), v)
    668 #define stl_raw(p, v) stl_p(saddr((p)), v)
    669 #define stq_raw(p, v) stq_p(saddr((p)), v)
    670 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
    671 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
    672 
    673 
    674 #if defined(CONFIG_USER_ONLY)
    675 
    676 /* if user mode, no other memory access functions */
    677 #define ldub(p) ldub_raw(p)
    678 #define ldsb(p) ldsb_raw(p)
    679 #define lduw(p) lduw_raw(p)
    680 #define ldsw(p) ldsw_raw(p)
    681 #define ldl(p) ldl_raw(p)
    682 #define ldq(p) ldq_raw(p)
    683 #define ldfl(p) ldfl_raw(p)
    684 #define ldfq(p) ldfq_raw(p)
    685 #define stb(p, v) stb_raw(p, v)
    686 #define stw(p, v) stw_raw(p, v)
    687 #define stl(p, v) stl_raw(p, v)
    688 #define stq(p, v) stq_raw(p, v)
    689 #define stfl(p, v) stfl_raw(p, v)
    690 #define stfq(p, v) stfq_raw(p, v)
    691 
    692 #define ldub_code(p) ldub_raw(p)
    693 #define ldsb_code(p) ldsb_raw(p)
    694 #define lduw_code(p) lduw_raw(p)
    695 #define ldsw_code(p) ldsw_raw(p)
    696 #define ldl_code(p) ldl_raw(p)
    697 #define ldq_code(p) ldq_raw(p)
    698 
    699 #define ldub_kernel(p) ldub_raw(p)
    700 #define ldsb_kernel(p) ldsb_raw(p)
    701 #define lduw_kernel(p) lduw_raw(p)
    702 #define ldsw_kernel(p) ldsw_raw(p)
    703 #define ldl_kernel(p) ldl_raw(p)
    704 #define ldq_kernel(p) ldq_raw(p)
    705 #define ldfl_kernel(p) ldfl_raw(p)
    706 #define ldfq_kernel(p) ldfq_raw(p)
    707 #define stb_kernel(p, v) stb_raw(p, v)
    708 #define stw_kernel(p, v) stw_raw(p, v)
    709 #define stl_kernel(p, v) stl_raw(p, v)
    710 #define stq_kernel(p, v) stq_raw(p, v)
    711 #define stfl_kernel(p, v) stfl_raw(p, v)
    712 #define stfq_kernel(p, vt) stfq_raw(p, v)
    713 
    714 #endif /* defined(CONFIG_USER_ONLY) */
    715 
    716 /* page related stuff */
    717 
    718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
    719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
    720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
    721 
    722 /* ??? These should be the larger of unsigned long and target_ulong.  */
    723 extern unsigned long qemu_real_host_page_size;
    724 extern unsigned long qemu_host_page_bits;
    725 extern unsigned long qemu_host_page_size;
    726 extern unsigned long qemu_host_page_mask;
    727 
    728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
    729 
    730 /* same as PROT_xxx */
    731 #define PAGE_READ      0x0001
    732 #define PAGE_WRITE     0x0002
    733 #define PAGE_EXEC      0x0004
    734 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
    735 #define PAGE_VALID     0x0008
    736 /* original state of the write flag (used when tracking self-modifying
    737    code */
    738 #define PAGE_WRITE_ORG 0x0010
    739 #define PAGE_RESERVED  0x0020
    740 
    741 void page_dump(FILE *f);
    742 int walk_memory_regions(void *,
    743     int (*fn)(void *, unsigned long, unsigned long, unsigned long));
    744 int page_get_flags(target_ulong address);
    745 void page_set_flags(target_ulong start, target_ulong end, int flags);
    746 int page_check_range(target_ulong start, target_ulong len, int flags);
    747 
    748 void cpu_exec_init_all(unsigned long tb_size);
    749 CPUState *cpu_copy(CPUState *env);
    750 CPUState *qemu_get_cpu(int cpu);
    751 
    752 void cpu_dump_state(CPUState *env, FILE *f,
    753                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
    754                     int flags);
    755 void cpu_dump_statistics (CPUState *env, FILE *f,
    756                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
    757                           int flags);
    758 
    759 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
    760     __attribute__ ((__format__ (__printf__, 2, 3)));
    761 extern CPUState *first_cpu;
    762 extern CPUState *cpu_single_env;
    763 extern int64_t qemu_icount;
    764 extern int use_icount;
    765 
    766 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
    767 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
    768 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
    769 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
    770 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
    771 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
    772 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
    773 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
    774 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
    775 #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
    776 #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
    777 #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
    778 
    779 void cpu_interrupt(CPUState *s, int mask);
    780 void cpu_reset_interrupt(CPUState *env, int mask);
    781 
    782 void cpu_exit(CPUState *s);
    783 
    784 int qemu_cpu_has_work(CPUState *env);
    785 
    786 /* Breakpoint/watchpoint flags */
    787 #define BP_MEM_READ           0x01
    788 #define BP_MEM_WRITE          0x02
    789 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
    790 #define BP_STOP_BEFORE_ACCESS 0x04
    791 #define BP_WATCHPOINT_HIT     0x08
    792 #define BP_GDB                0x10
    793 #define BP_CPU                0x20
    794 
    795 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
    796                           CPUBreakpoint **breakpoint);
    797 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
    798 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
    799 void cpu_breakpoint_remove_all(CPUState *env, int mask);
    800 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
    801                           int flags, CPUWatchpoint **watchpoint);
    802 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
    803                           target_ulong len, int flags);
    804 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
    805 void cpu_watchpoint_remove_all(CPUState *env, int mask);
    806 
    807 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
    808 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
    809 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
    810 
    811 void cpu_single_step(CPUState *env, int enabled);
    812 void cpu_reset(CPUState *s);
    813 
    814 /* Return the physical page corresponding to a virtual one. Use it
    815    only for debugging because no protection checks are done. Return -1
    816    if no page found. */
    817 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
    818 
    819 #define CPU_LOG_TB_OUT_ASM (1 << 0)
    820 #define CPU_LOG_TB_IN_ASM  (1 << 1)
    821 #define CPU_LOG_TB_OP      (1 << 2)
    822 #define CPU_LOG_TB_OP_OPT  (1 << 3)
    823 #define CPU_LOG_INT        (1 << 4)
    824 #define CPU_LOG_EXEC       (1 << 5)
    825 #define CPU_LOG_PCALL      (1 << 6)
    826 #define CPU_LOG_IOPORT     (1 << 7)
    827 #define CPU_LOG_TB_CPU     (1 << 8)
    828 #define CPU_LOG_RESET      (1 << 9)
    829 
    830 /* define log items */
    831 typedef struct CPULogItem {
    832     int mask;
    833     const char *name;
    834     const char *help;
    835 } CPULogItem;
    836 
    837 extern const CPULogItem cpu_log_items[];
    838 
    839 void cpu_set_log(int log_flags);
    840 void cpu_set_log_filename(const char *filename);
    841 int cpu_str_to_log_mask(const char *str);
    842 
    843 /* IO ports API */
    844 #include "ioport.h"
    845 
    846 /* memory API */
    847 
    848 extern int phys_ram_fd;
    849 extern uint8_t *phys_ram_dirty;
    850 extern ram_addr_t ram_size;
    851 extern ram_addr_t last_ram_offset;
    852 
    853 /* physical memory access */
    854 
    855 /* MMIO pages are identified by a combination of an IO device index and
    856    3 flags.  The ROMD code stores the page ram offset in iotlb entry,
    857    so only a limited number of ids are avaiable.  */
    858 
    859 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
    860 
    861 /* Flags stored in the low bits of the TLB virtual address.  These are
    862    defined so that fast path ram access is all zeros.  */
    863 /* Zero if TLB entry is valid.  */
    864 #define TLB_INVALID_MASK   (1 << 3)
    865 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
    866    contain the page physical address.  */
    867 #define TLB_NOTDIRTY    (1 << 4)
    868 /* Set if TLB entry is an IO callback.  */
    869 #define TLB_MMIO        (1 << 5)
    870 
    871 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
    872                         uint8_t *buf, int len, int is_write);
    873 
    874 #define VGA_DIRTY_FLAG       0x01
    875 #define CODE_DIRTY_FLAG      0x02
    876 #define MIGRATION_DIRTY_FLAG 0x08
    877 
    878 /* read dirty bit (return 0 or 1) */
    879 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
    880 {
    881     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
    882 }
    883 
    884 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
    885                                                 int dirty_flags)
    886 {
    887     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
    888 }
    889 
    890 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
    891 {
    892     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
    893 }
    894 
    895 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
    896                                      int dirty_flags);
    897 void cpu_tlb_update_dirty(CPUState *env);
    898 
    899 int cpu_physical_memory_set_dirty_tracking(int enable);
    900 
    901 int cpu_physical_memory_get_dirty_tracking(void);
    902 
    903 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
    904                                    target_phys_addr_t end_addr);
    905 
    906 void dump_exec_info(FILE *f,
    907                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
    908 
    909 /* Coalesced MMIO regions are areas where write operations can be reordered.
    910  * This usually implies that write operations are side-effect free.  This allows
    911  * batching which can make a major impact on performance when using
    912  * virtualization.
    913  */
    914 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
    915 
    916 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
    917 
    918 void qemu_flush_coalesced_mmio_buffer(void);
    919 
    920 /*******************************************/
    921 /* host CPU ticks (if available) */
    922 
    923 #if defined(_ARCH_PPC)
    924 
    925 static inline int64_t cpu_get_real_ticks(void)
    926 {
    927     int64_t retval;
    928 #ifdef _ARCH_PPC64
    929     /* This reads timebase in one 64bit go and includes Cell workaround from:
    930        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
    931      */
    932     __asm__ __volatile__ (
    933         "mftb    %0\n\t"
    934         "cmpwi   %0,0\n\t"
    935         "beq-    $-8"
    936         : "=r" (retval));
    937 #else
    938     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
    939     unsigned long junk;
    940     __asm__ __volatile__ (
    941         "mftbu   %1\n\t"
    942         "mftb    %L0\n\t"
    943         "mftbu   %0\n\t"
    944         "cmpw    %0,%1\n\t"
    945         "bne     $-16"
    946         : "=r" (retval), "=r" (junk));
    947 #endif
    948     return retval;
    949 }
    950 
    951 #elif defined(__i386__)
    952 
    953 static inline int64_t cpu_get_real_ticks(void)
    954 {
    955     int64_t val;
    956     asm volatile ("rdtsc" : "=A" (val));
    957     return val;
    958 }
    959 
    960 #elif defined(__x86_64__)
    961 
    962 static inline int64_t cpu_get_real_ticks(void)
    963 {
    964     uint32_t low,high;
    965     int64_t val;
    966     asm volatile("rdtsc" : "=a" (low), "=d" (high));
    967     val = high;
    968     val <<= 32;
    969     val |= low;
    970     return val;
    971 }
    972 
    973 #elif defined(__hppa__)
    974 
    975 static inline int64_t cpu_get_real_ticks(void)
    976 {
    977     int val;
    978     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    979     return val;
    980 }
    981 
    982 #elif defined(__ia64)
    983 
    984 static inline int64_t cpu_get_real_ticks(void)
    985 {
    986 	int64_t val;
    987 	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
    988 	return val;
    989 }
    990 
    991 #elif defined(__s390__)
    992 
    993 static inline int64_t cpu_get_real_ticks(void)
    994 {
    995     int64_t val;
    996     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    997     return val;
    998 }
    999 
   1000 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
   1001 
   1002 static inline int64_t cpu_get_real_ticks (void)
   1003 {
   1004 #if     defined(_LP64)
   1005         uint64_t        rval;
   1006         asm volatile("rd %%tick,%0" : "=r"(rval));
   1007         return rval;
   1008 #else
   1009         union {
   1010                 uint64_t i64;
   1011                 struct {
   1012                         uint32_t high;
   1013                         uint32_t low;
   1014                 }       i32;
   1015         } rval;
   1016         asm volatile("rd %%tick,%1; srlx %1,32,%0"
   1017                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
   1018         return rval.i64;
   1019 #endif
   1020 }
   1021 
   1022 #elif defined(__mips__) && \
   1023       ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
   1024 /*
   1025  * binutils wants to use rdhwr only on mips32r2
   1026  * but as linux kernel emulate it, it's fine
   1027  * to use it.
   1028  *
   1029  */
   1030 #define MIPS_RDHWR(rd, value) {                 \
   1031     __asm__ __volatile__ (                      \
   1032                           ".set   push\n\t"     \
   1033                           ".set mips32r2\n\t"   \
   1034                           "rdhwr  %0, "rd"\n\t" \
   1035                           ".set   pop"          \
   1036                           : "=r" (value));      \
   1037 }
   1038 
   1039 static inline int64_t cpu_get_real_ticks(void)
   1040 {
   1041 /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
   1042     uint32_t count;
   1043     static uint32_t cyc_per_count = 0;
   1044 
   1045     if (!cyc_per_count)
   1046         MIPS_RDHWR("$3", cyc_per_count);
   1047 
   1048     MIPS_RDHWR("$2", count);
   1049     return (int64_t)(count * cyc_per_count);
   1050 }
   1051 
   1052 #else
   1053 /* The host CPU doesn't have an easily accessible cycle counter.
   1054    Just return a monotonically increasing value.  This will be
   1055    totally wrong, but hopefully better than nothing.  */
   1056 static inline int64_t cpu_get_real_ticks (void)
   1057 {
   1058     static int64_t ticks = 0;
   1059     return ticks++;
   1060 }
   1061 #endif
   1062 
   1063 /* profiling */
   1064 #ifdef CONFIG_PROFILER
   1065 static inline int64_t profile_getclock(void)
   1066 {
   1067     return cpu_get_real_ticks();
   1068 }
   1069 
   1070 extern int64_t qemu_time, qemu_time_start;
   1071 extern int64_t tlb_flush_time;
   1072 extern int64_t dev_time;
   1073 #endif
   1074 
   1075 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
   1076                         uint64_t mcg_status, uint64_t addr, uint64_t misc);
   1077 
   1078 #endif /* CPU_ALL_H */
   1079