Home | History | Annotate | Download | only in common
      1 /*
      2 *******************************************************************************
      3 *
      4 *   Copyright (C) 2008, International Business Machines
      5 *   Corporation, Google and others.  All Rights Reserved.
      6 *
      7 *******************************************************************************
      8 */
      9 // Author : eldawy (at) google.com (Mohamed Eldawy)
     10 // ucnvsel.cpp
     11 //
     12 // Purpose: To generate a list of encodings capable of handling
     13 // a given Unicode text
     14 //
     15 // Started 09-April-2008
     16 
     17 /**
     18  * \file
     19  *
     20  * This is an implementation of an encoding selector.
     21  * The goal is, given a unicode string, find the encodings
     22  * this string can be mapped to. To make processing faster
     23  * a trie is built when you call ucnvsel_open() that
     24  * stores all encodings a codepoint can map to
     25  */
     26 
     27 #include "unicode/ucnvsel.h"
     28 
     29 #include <string.h>
     30 
     31 #include "unicode/uchar.h"
     32 #include "unicode/uniset.h"
     33 #include "unicode/ucnv.h"
     34 #include "unicode/ustring.h"
     35 #include "unicode/uchriter.h"
     36 #include "utrie2.h"
     37 #include "propsvec.h"
     38 #include "uassert.h"
     39 #include "ucmndata.h"
     40 #include "uenumimp.h"
     41 #include "cmemory.h"
     42 #include "cstring.h"
     43 
     44 U_NAMESPACE_USE
     45 
     46 struct UConverterSelector {
     47   UTrie2 *trie;              // 16 bit trie containing offsets into pv
     48   uint32_t* pv;              // table of bits!
     49   int32_t pvCount;
     50   char** encodings;          // which encodings did user ask to use?
     51   int32_t encodingsCount;
     52   int32_t encodingStrLength;
     53   uint8_t* swapped;
     54   UBool ownPv, ownEncodingStrings;
     55 };
     56 
     57 static void generateSelectorData(UConverterSelector* result,
     58                                  UPropsVectors *upvec,
     59                                  const USet* excludedCodePoints,
     60                                  const UConverterUnicodeSet whichSet,
     61                                  UErrorCode* status) {
     62   if (U_FAILURE(*status)) {
     63     return;
     64   }
     65 
     66   int32_t columns = (result->encodingsCount+31)/32;
     67 
     68   // set errorValue to all-ones
     69   for (int32_t col = 0; col < columns; col++) {
     70     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
     71                    col, ~0, ~0, status);
     72   }
     73 
     74   for (int32_t i = 0; i < result->encodingsCount; ++i) {
     75     uint32_t mask;
     76     uint32_t column;
     77     int32_t item_count;
     78     int32_t j;
     79     UConverter* test_converter = ucnv_open(result->encodings[i], status);
     80     if (U_FAILURE(*status)) {
     81       return;
     82     }
     83     USet* unicode_point_set;
     84     unicode_point_set = uset_open(1, 0);  // empty set
     85 
     86     ucnv_getUnicodeSet(test_converter, unicode_point_set,
     87                        whichSet, status);
     88     if (U_FAILURE(*status)) {
     89       ucnv_close(test_converter);
     90       return;
     91     }
     92 
     93     column = i / 32;
     94     mask = 1 << (i%32);
     95     // now iterate over intervals on set i!
     96     item_count = uset_getItemCount(unicode_point_set);
     97 
     98     for (j = 0; j < item_count; ++j) {
     99       UChar32 start_char;
    100       UChar32 end_char;
    101       UErrorCode smallStatus = U_ZERO_ERROR;
    102       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
    103                    &smallStatus);
    104       if (U_FAILURE(smallStatus)) {
    105         // this will be reached for the converters that fill the set with
    106         // strings. Those should be ignored by our system
    107       } else {
    108         upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
    109                        status);
    110       }
    111     }
    112     ucnv_close(test_converter);
    113     uset_close(unicode_point_set);
    114     if (U_FAILURE(*status)) {
    115       return;
    116     }
    117   }
    118 
    119   // handle excluded encodings! Simply set their values to all 1's in the upvec
    120   if (excludedCodePoints) {
    121     int32_t item_count = uset_getItemCount(excludedCodePoints);
    122     for (int32_t j = 0; j < item_count; ++j) {
    123       UChar32 start_char;
    124       UChar32 end_char;
    125 
    126       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
    127                    status);
    128       for (int32_t col = 0; col < columns; col++) {
    129         upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
    130                       status);
    131       }
    132     }
    133   }
    134 
    135   // alright. Now, let's put things in the same exact form you'd get when you
    136   // unserialize things.
    137   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
    138   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
    139   result->pvCount *= columns;  // number of uint32_t = rows * columns
    140   result->ownPv = TRUE;
    141 }
    142 
    143 /* open a selector. If converterListSize is 0, build for all converters.
    144    If excludedCodePoints is NULL, don't exclude any codepoints */
    145 U_CAPI UConverterSelector* U_EXPORT2
    146 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
    147              const USet* excludedCodePoints,
    148              const UConverterUnicodeSet whichSet, UErrorCode* status) {
    149   // check if already failed
    150   if (U_FAILURE(*status)) {
    151     return NULL;
    152   }
    153   // ensure args make sense!
    154   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
    155     *status = U_ILLEGAL_ARGUMENT_ERROR;
    156     return NULL;
    157   }
    158 
    159   // allocate a new converter
    160   UConverterSelector* newSelector =
    161     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
    162   if (!newSelector) {
    163     *status = U_MEMORY_ALLOCATION_ERROR;
    164     return NULL;
    165   }
    166   uprv_memset(newSelector, 0, sizeof(UConverterSelector));
    167 
    168   if (converterListSize == 0) {
    169     converterList = NULL;
    170     converterListSize = ucnv_countAvailable();
    171   }
    172   newSelector->encodings =
    173     (char**)uprv_malloc(converterListSize * sizeof(char*));
    174   if (!newSelector->encodings) {
    175     *status = U_MEMORY_ALLOCATION_ERROR;
    176     uprv_free(newSelector);
    177     return NULL;
    178   }
    179   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
    180 
    181   // make a backup copy of the list of converters
    182   int32_t totalSize = 0;
    183   int32_t i;
    184   for (i = 0; i < converterListSize; i++) {
    185     totalSize +=
    186       uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
    187   }
    188   // 4-align the totalSize to 4-align the size of the serialized form
    189   int32_t encodingStrPadding = totalSize & 3;
    190   if (encodingStrPadding != 0) {
    191     encodingStrPadding = 4 - encodingStrPadding;
    192   }
    193   newSelector->encodingStrLength = totalSize += encodingStrPadding;
    194   char* allStrings = (char*) uprv_malloc(totalSize);
    195   if (!allStrings) {
    196     *status = U_MEMORY_ALLOCATION_ERROR;
    197     ucnvsel_close(newSelector);
    198     return NULL;
    199   }
    200 
    201   for (i = 0; i < converterListSize; i++) {
    202     newSelector->encodings[i] = allStrings;
    203     uprv_strcpy(newSelector->encodings[i],
    204                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
    205     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
    206   }
    207   while (encodingStrPadding > 0) {
    208     *allStrings++ = 0;
    209     --encodingStrPadding;
    210   }
    211 
    212   newSelector->ownEncodingStrings = TRUE;
    213   newSelector->encodingsCount = converterListSize;
    214   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
    215   generateSelectorData(newSelector, upvec, excludedCodePoints, whichSet, status);
    216   upvec_close(upvec);
    217 
    218   if (U_FAILURE(*status)) {
    219     ucnvsel_close(newSelector);
    220     return NULL;
    221   }
    222 
    223   return newSelector;
    224 }
    225 
    226 /* close opened selector */
    227 U_CAPI void U_EXPORT2
    228 ucnvsel_close(UConverterSelector *sel) {
    229   if (!sel) {
    230     return;
    231   }
    232   if (sel->ownEncodingStrings) {
    233     uprv_free(sel->encodings[0]);
    234   }
    235   uprv_free(sel->encodings);
    236   if (sel->ownPv) {
    237     uprv_free(sel->pv);
    238   }
    239   utrie2_close(sel->trie);
    240   uprv_free(sel->swapped);
    241   uprv_free(sel);
    242 }
    243 
    244 static const UDataInfo dataInfo = {
    245   sizeof(UDataInfo),
    246   0,
    247 
    248   U_IS_BIG_ENDIAN,
    249   U_CHARSET_FAMILY,
    250   U_SIZEOF_UCHAR,
    251   0,
    252 
    253   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
    254   { 1, 0, 0, 0 },               /* formatVersion */
    255   { 0, 0, 0, 0 }                /* dataVersion */
    256 };
    257 
    258 enum {
    259   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
    260   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
    261   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
    262   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
    263   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
    264   UCNVSEL_INDEX_COUNT = 16
    265 };
    266 
    267 /*
    268  * Serialized form of a UConverterSelector, formatVersion 1:
    269  *
    270  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
    271  * as the template above.
    272  * This is followed by:
    273  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
    274  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
    275  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
    276  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
    277  */
    278 
    279 /* serialize a selector */
    280 U_CAPI int32_t U_EXPORT2
    281 ucnvsel_serialize(const UConverterSelector* sel,
    282                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
    283   // check if already failed
    284   if (U_FAILURE(*status)) {
    285     return 0;
    286   }
    287   // ensure args make sense!
    288   uint8_t *p = (uint8_t *)buffer;
    289   if (bufferCapacity < 0 ||
    290       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    291   ) {
    292     *status = U_ILLEGAL_ARGUMENT_ERROR;
    293     return 0;
    294   }
    295   // add up the size of the serialized form
    296   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
    297   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
    298     return 0;
    299   }
    300   *status = U_ZERO_ERROR;
    301 
    302   DataHeader header;
    303   uprv_memset(&header, 0, sizeof(header));
    304   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
    305   header.dataHeader.magic1 = 0xda;
    306   header.dataHeader.magic2 = 0x27;
    307   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
    308 
    309   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
    310     serializedTrieSize,
    311     sel->pvCount,
    312     sel->encodingsCount,
    313     sel->encodingStrLength
    314   };
    315 
    316   int32_t totalSize =
    317     header.dataHeader.headerSize +
    318     (int32_t)sizeof(indexes) +
    319     serializedTrieSize +
    320     sel->pvCount * 4 +
    321     sel->encodingStrLength;
    322   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
    323   if (totalSize > bufferCapacity) {
    324     *status = U_BUFFER_OVERFLOW_ERROR;
    325     return totalSize;
    326   }
    327   // ok, save!
    328   int32_t length = header.dataHeader.headerSize;
    329   uprv_memcpy(p, &header, sizeof(header));
    330   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
    331   p += length;
    332 
    333   length = (int32_t)sizeof(indexes);
    334   uprv_memcpy(p, indexes, length);
    335   p += length;
    336 
    337   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
    338   p += serializedTrieSize;
    339 
    340   length = sel->pvCount * 4;
    341   uprv_memcpy(p, sel->pv, length);
    342   p += length;
    343 
    344   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
    345   p += sel->encodingStrLength;
    346 
    347   return totalSize;
    348 }
    349 
    350 /**
    351  * swap a selector into the desired Endianness and Asciiness of
    352  * the system. Just as FYI, selectors are always saved in the format
    353  * of the system that created them. They are only converted if used
    354  * on another system. In other words, selectors created on different
    355  * system can be different even if the params are identical (endianness
    356  * and Asciiness differences only)
    357  *
    358  * @param ds pointer to data swapper containing swapping info
    359  * @param inData pointer to incoming data
    360  * @param length length of inData in bytes
    361  * @param outData pointer to output data. Capacity should
    362  *                be at least equal to capacity of inData
    363  * @param status an in/out ICU UErrorCode
    364  * @return 0 on failure, number of bytes swapped on success
    365  *         number of bytes swapped can be smaller than length
    366  */
    367 static int32_t
    368 ucnvsel_swap(const UDataSwapper *ds,
    369              const void *inData, int32_t length,
    370              void *outData, UErrorCode *status) {
    371   /* udata_swapDataHeader checks the arguments */
    372   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
    373   if(U_FAILURE(*status)) {
    374     return 0;
    375   }
    376 
    377   /* check data format and format version */
    378   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
    379   if(!(
    380     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
    381     pInfo->dataFormat[1] == 0x53 &&
    382     pInfo->dataFormat[2] == 0x65 &&
    383     pInfo->dataFormat[3] == 0x6c
    384   )) {
    385     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
    386                      pInfo->dataFormat[0], pInfo->dataFormat[1],
    387                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
    388     *status = U_INVALID_FORMAT_ERROR;
    389     return 0;
    390   }
    391   if(pInfo->formatVersion[0] != 1) {
    392     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
    393                      pInfo->formatVersion[0]);
    394     *status = U_UNSUPPORTED_ERROR;
    395     return 0;
    396   }
    397 
    398   if(length >= 0) {
    399     length -= headerSize;
    400     if(length < 16*4) {
    401       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
    402                        length);
    403       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    404       return 0;
    405     }
    406   }
    407 
    408   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
    409   uint8_t *outBytes = (uint8_t *)outData + headerSize;
    410 
    411   /* read the indexes */
    412   const int32_t *inIndexes = (const int32_t *)inBytes;
    413   int32_t indexes[16];
    414   int32_t i;
    415   for(i = 0; i < 16; ++i) {
    416     indexes[i] = udata_readInt32(ds, inIndexes[i]);
    417   }
    418 
    419   /* get the total length of the data */
    420   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
    421   if(length >= 0) {
    422     if(length < size) {
    423       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
    424                        length);
    425       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    426       return 0;
    427     }
    428 
    429     /* copy the data for inaccessible bytes */
    430     if(inBytes != outBytes) {
    431       uprv_memcpy(outBytes, inBytes, size);
    432     }
    433 
    434     int32_t offset = 0, count;
    435 
    436     /* swap the int32_t indexes[] */
    437     count = UCNVSEL_INDEX_COUNT*4;
    438     ds->swapArray32(ds, inBytes, count, outBytes, status);
    439     offset += count;
    440 
    441     /* swap the UTrie2 */
    442     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
    443     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
    444     offset += count;
    445 
    446     /* swap the uint32_t pv[] */
    447     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
    448     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
    449     offset += count;
    450 
    451     /* swap the encoding names */
    452     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    453     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
    454     offset += count;
    455 
    456     U_ASSERT(offset == size);
    457   }
    458 
    459   return headerSize + size;
    460 }
    461 
    462 /* unserialize a selector */
    463 U_CAPI UConverterSelector* U_EXPORT2
    464 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
    465   // check if already failed
    466   if (U_FAILURE(*status)) {
    467     return NULL;
    468   }
    469   // ensure args make sense!
    470   const uint8_t *p = (const uint8_t *)buffer;
    471   if (length <= 0 ||
    472       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    473   ) {
    474     *status = U_ILLEGAL_ARGUMENT_ERROR;
    475     return NULL;
    476   }
    477   // header
    478   if (length < 32) {
    479     // not even enough space for a minimal header
    480     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    481     return NULL;
    482   }
    483   const DataHeader *pHeader = (const DataHeader *)p;
    484   if (!(
    485     pHeader->dataHeader.magic1==0xda &&
    486     pHeader->dataHeader.magic2==0x27 &&
    487     pHeader->info.dataFormat[0] == 0x43 &&
    488     pHeader->info.dataFormat[1] == 0x53 &&
    489     pHeader->info.dataFormat[2] == 0x65 &&
    490     pHeader->info.dataFormat[3] == 0x6c
    491   )) {
    492     /* header not valid or dataFormat not recognized */
    493     *status = U_INVALID_FORMAT_ERROR;
    494     return NULL;
    495   }
    496   if (pHeader->info.formatVersion[0] != 1) {
    497     *status = U_UNSUPPORTED_ERROR;
    498     return NULL;
    499   }
    500   uint8_t* swapped = NULL;
    501   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
    502       pHeader->info.charsetFamily != U_CHARSET_FAMILY
    503   ) {
    504     // swap the data
    505     UDataSwapper *ds =
    506       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
    507     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
    508     if (U_FAILURE(*status)) {
    509       udata_closeSwapper(ds);
    510       return NULL;
    511     }
    512     if (length < totalSize) {
    513       udata_closeSwapper(ds);
    514       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    515       return NULL;
    516     }
    517     swapped = (uint8_t*)uprv_malloc(totalSize);
    518     if (swapped == NULL) {
    519       udata_closeSwapper(ds);
    520       *status = U_MEMORY_ALLOCATION_ERROR;
    521       return NULL;
    522     }
    523     ucnvsel_swap(ds, p, length, swapped, status);
    524     udata_closeSwapper(ds);
    525     if (U_FAILURE(*status)) {
    526       uprv_free(swapped);
    527       return NULL;
    528     }
    529     p = swapped;
    530     pHeader = (const DataHeader *)p;
    531   }
    532   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
    533     // not even enough space for the header and the indexes
    534     uprv_free(swapped);
    535     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    536     return NULL;
    537   }
    538   p += pHeader->dataHeader.headerSize;
    539   length -= pHeader->dataHeader.headerSize;
    540   // indexes
    541   const int32_t *indexes = (const int32_t *)p;
    542   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
    543     uprv_free(swapped);
    544     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    545     return NULL;
    546   }
    547   p += UCNVSEL_INDEX_COUNT * 4;
    548   // create and populate the selector object
    549   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
    550   char **encodings =
    551     (char **)uprv_malloc(
    552       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
    553   if (sel == NULL || encodings == NULL) {
    554     uprv_free(swapped);
    555     uprv_free(sel);
    556     uprv_free(encodings);
    557     *status = U_MEMORY_ALLOCATION_ERROR;
    558     return NULL;
    559   }
    560   uprv_memset(sel, 0, sizeof(UConverterSelector));
    561   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
    562   sel->encodings = encodings;
    563   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
    564   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    565   sel->swapped = swapped;
    566   // trie
    567   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    568                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
    569                                         status);
    570   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
    571   if (U_FAILURE(*status)) {
    572     ucnvsel_close(sel);
    573     return NULL;
    574   }
    575   // bit vectors
    576   sel->pv = (uint32_t *)p;
    577   p += sel->pvCount * 4;
    578   // encoding names
    579   char* s = (char*)p;
    580   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
    581     sel->encodings[i] = s;
    582     s += uprv_strlen(s) + 1;
    583   }
    584   p += sel->encodingStrLength;
    585 
    586   return sel;
    587 }
    588 
    589 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
    590 // iterate over the selected encodings
    591 struct Enumerator {
    592   int16_t* index;
    593   int16_t length;
    594   int16_t cur;
    595   const UConverterSelector* sel;
    596 };
    597 
    598 U_CDECL_BEGIN
    599 
    600 static void U_CALLCONV
    601 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
    602   uprv_free(((Enumerator*)(enumerator->context))->index);
    603   uprv_free(enumerator->context);
    604   uprv_free(enumerator);
    605 }
    606 
    607 
    608 static int32_t U_CALLCONV
    609 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
    610   // check if already failed
    611   if (U_FAILURE(*status)) {
    612     return 0;
    613   }
    614   return ((Enumerator*)(enumerator->context))->length;
    615 }
    616 
    617 
    618 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
    619                                                  int32_t* resultLength,
    620                                                  UErrorCode* status) {
    621   // check if already failed
    622   if (U_FAILURE(*status)) {
    623     return NULL;
    624   }
    625 
    626   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
    627   const UConverterSelector* sel;
    628   const char* result;
    629   if (cur >= ((Enumerator*)(enumerator->context))->length) {
    630     return NULL;
    631   }
    632   sel = ((Enumerator*)(enumerator->context))->sel;
    633   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
    634   ((Enumerator*)(enumerator->context))->cur++;
    635   if (resultLength) {
    636     *resultLength = uprv_strlen(result);
    637   }
    638   return result;
    639 }
    640 
    641 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
    642                                            UErrorCode* status) {
    643   // check if already failed
    644   if (U_FAILURE(*status)) {
    645     return ;
    646   }
    647   ((Enumerator*)(enumerator->context))->cur = 0;
    648 }
    649 
    650 U_CDECL_END
    651 
    652 
    653 static const UEnumeration defaultEncodings = {
    654   NULL,
    655     NULL,
    656     ucnvsel_close_selector_iterator,
    657     ucnvsel_count_encodings,
    658     uenum_unextDefault,
    659     ucnvsel_next_encoding,
    660     ucnvsel_reset_iterator
    661 };
    662 
    663 
    664 // internal fn to intersect two sets of masks
    665 // returns whether the mask has reduced to all zeros
    666 UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
    667   int32_t i;
    668   uint32_t oredDest = 0;
    669   for (i = 0 ; i < len ; ++i) {
    670     oredDest |= (dest[i] &= source1[i]);
    671   }
    672   return oredDest == 0;
    673 }
    674 
    675 // internal fn to count how many 1's are there in a mask
    676 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
    677 int16_t countOnes(uint32_t* mask, int32_t len) {
    678   int32_t i, totalOnes = 0;
    679   for (i = 0 ; i < len ; ++i) {
    680     uint32_t ent = mask[i];
    681     for (; ent; totalOnes++)
    682     {
    683       ent &= ent - 1; // clear the least significant bit set
    684     }
    685   }
    686   return totalOnes;
    687 }
    688 
    689 
    690 /* internal function! */
    691 static UEnumeration *selectForMask(const UConverterSelector* sel,
    692                                    uint32_t *mask, UErrorCode *status) {
    693   // this is the context we will use. Store a table of indices to which
    694   // encodings are legit.
    695   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
    696   if (result == NULL) {
    697     uprv_free(mask);
    698     *status = U_MEMORY_ALLOCATION_ERROR;
    699     return NULL;
    700   }
    701   result->index = NULL;  // this will be allocated later!
    702   result->length = result->cur = 0;
    703   result->sel = sel;
    704 
    705   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
    706   if (en == NULL) {
    707     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
    708     uprv_free(mask);
    709     uprv_free(result);
    710     *status = U_MEMORY_ALLOCATION_ERROR;
    711     return NULL;
    712   }
    713   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
    714   en->context = result;
    715 
    716   int32_t columns = (sel->encodingsCount+31)/32;
    717   int16_t numOnes = countOnes(mask, columns);
    718   // now, we know the exact space we need for index
    719   if (numOnes > 0) {
    720     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
    721 
    722     int32_t i, j;
    723     int16_t k = 0;
    724     for (j = 0 ; j < columns; j++) {
    725       uint32_t v = mask[j];
    726       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
    727         if ((v & 1) != 0) {
    728           result->index[result->length++] = k;
    729         }
    730         v >>= 1;
    731       }
    732     }
    733   } //otherwise, index will remain NULL (and will never be touched by
    734     //the enumerator code anyway)
    735   uprv_free(mask);
    736   return en;
    737 }
    738 
    739 /* check a string against the selector - UTF16 version */
    740 U_CAPI UEnumeration * U_EXPORT2
    741 ucnvsel_selectForString(const UConverterSelector* sel,
    742                         const UChar *s, int32_t length, UErrorCode *status) {
    743   // check if already failed
    744   if (U_FAILURE(*status)) {
    745     return NULL;
    746   }
    747   // ensure args make sense!
    748   if (sel == NULL || (s == NULL && length != 0)) {
    749     *status = U_ILLEGAL_ARGUMENT_ERROR;
    750     return NULL;
    751   }
    752 
    753   int32_t columns = (sel->encodingsCount+31)/32;
    754   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    755   if (mask == NULL) {
    756     *status = U_MEMORY_ALLOCATION_ERROR;
    757     return NULL;
    758   }
    759   uprv_memset(mask, ~0, columns *4);
    760 
    761   const UChar *limit;
    762   if (length >= 0) {
    763     limit = s + length;
    764   } else {
    765     limit = NULL;
    766   }
    767 
    768   while (limit == NULL ? *s != 0 : s != limit) {
    769     UChar32 c;
    770     uint16_t pvIndex;
    771     UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
    772     if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    773       break;
    774     }
    775   }
    776   return selectForMask(sel, mask, status);
    777 }
    778 
    779 /* check a string against the selector - UTF8 version */
    780 U_CAPI UEnumeration * U_EXPORT2
    781 ucnvsel_selectForUTF8(const UConverterSelector* sel,
    782                       const char *s, int32_t length, UErrorCode *status) {
    783   // check if already failed
    784   if (U_FAILURE(*status)) {
    785     return NULL;
    786   }
    787   // ensure args make sense!
    788   if (sel == NULL || (s == NULL && length != 0)) {
    789     *status = U_ILLEGAL_ARGUMENT_ERROR;
    790     return NULL;
    791   }
    792 
    793   int32_t columns = (sel->encodingsCount+31)/32;
    794   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    795   if (mask == NULL) {
    796     *status = U_MEMORY_ALLOCATION_ERROR;
    797     return NULL;
    798   }
    799   uprv_memset(mask, ~0, columns *4);
    800 
    801   if (length < 0) {
    802     length = uprv_strlen(s);
    803   }
    804   const char *limit = s + length;
    805 
    806   while (s != limit) {
    807     uint16_t pvIndex;
    808     UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
    809     if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    810       break;
    811     }
    812   }
    813   return selectForMask(sel, mask, status);
    814 }
    815