Home | History | Annotate | Download | only in common
      1 /*
      2  *****************************************************************************
      3  * Copyright (C) 1996-2010, International Business Machines Corporation and  *
      4  * others. All Rights Reserved.                                              *
      5  *****************************************************************************
      6  */
      7 
      8 #include "unicode/utypes.h"
      9 
     10 #if !UCONFIG_NO_NORMALIZATION
     11 
     12 #include "unicode/uset.h"
     13 #include "unicode/ustring.h"
     14 #include "hash.h"
     15 #include "normalizer2impl.h"
     16 #include "unormimp.h"
     17 #include "unicode/caniter.h"
     18 #include "unicode/normlzr.h"
     19 #include "unicode/uchar.h"
     20 #include "cmemory.h"
     21 
     22 /**
     23  * This class allows one to iterate through all the strings that are canonically equivalent to a given
     24  * string. For example, here are some sample results:
     25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     26 1: \u0041\u030A\u0064\u0307\u0327
     27  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     28 2: \u0041\u030A\u0064\u0327\u0307
     29  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     30 3: \u0041\u030A\u1E0B\u0327
     31  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     32 4: \u0041\u030A\u1E11\u0307
     33  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     34 5: \u00C5\u0064\u0307\u0327
     35  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     36 6: \u00C5\u0064\u0327\u0307
     37  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     38 7: \u00C5\u1E0B\u0327
     39  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     40 8: \u00C5\u1E11\u0307
     41  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     42 9: \u212B\u0064\u0307\u0327
     43  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     44 10: \u212B\u0064\u0327\u0307
     45  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     46 11: \u212B\u1E0B\u0327
     47  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     48 12: \u212B\u1E11\u0307
     49  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     50  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
     51  * since it has not been optimized for that situation.
     52  *@author M. Davis
     53  *@draft
     54  */
     55 
     56 // public
     57 
     58 U_NAMESPACE_BEGIN
     59 
     60 // TODO: add boilerplate methods.
     61 
     62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
     63 
     64 /**
     65  *@param source string to get results for
     66  */
     67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
     68     pieces(NULL),
     69     pieces_length(0),
     70     pieces_lengths(NULL),
     71     current(NULL),
     72     current_length(0),
     73     nfd(*Normalizer2Factory::getNFDInstance(status))
     74 {
     75     if(U_SUCCESS(status)) {
     76       setSource(sourceStr, status);
     77     }
     78 }
     79 
     80 CanonicalIterator::~CanonicalIterator() {
     81   cleanPieces();
     82 }
     83 
     84 void CanonicalIterator::cleanPieces() {
     85     int32_t i = 0;
     86     if(pieces != NULL) {
     87         for(i = 0; i < pieces_length; i++) {
     88             if(pieces[i] != NULL) {
     89                 delete[] pieces[i];
     90             }
     91         }
     92         uprv_free(pieces);
     93         pieces = NULL;
     94         pieces_length = 0;
     95     }
     96     if(pieces_lengths != NULL) {
     97         uprv_free(pieces_lengths);
     98         pieces_lengths = NULL;
     99     }
    100     if(current != NULL) {
    101         uprv_free(current);
    102         current = NULL;
    103         current_length = 0;
    104     }
    105 }
    106 
    107 /**
    108  *@return gets the source: NOTE: it is the NFD form of source
    109  */
    110 UnicodeString CanonicalIterator::getSource() {
    111   return source;
    112 }
    113 
    114 /**
    115  * Resets the iterator so that one can start again from the beginning.
    116  */
    117 void CanonicalIterator::reset() {
    118     done = FALSE;
    119     for (int i = 0; i < current_length; ++i) {
    120         current[i] = 0;
    121     }
    122 }
    123 
    124 /**
    125  *@return the next string that is canonically equivalent. The value null is returned when
    126  * the iteration is done.
    127  */
    128 UnicodeString CanonicalIterator::next() {
    129     int32_t i = 0;
    130 
    131     if (done) {
    132       buffer.setToBogus();
    133       return buffer;
    134     }
    135 
    136     // delete old contents
    137     buffer.remove();
    138 
    139     // construct return value
    140 
    141     for (i = 0; i < pieces_length; ++i) {
    142         buffer.append(pieces[i][current[i]]);
    143     }
    144     //String result = buffer.toString(); // not needed
    145 
    146     // find next value for next time
    147 
    148     for (i = current_length - 1; ; --i) {
    149         if (i < 0) {
    150             done = TRUE;
    151             break;
    152         }
    153         current[i]++;
    154         if (current[i] < pieces_lengths[i]) break; // got sequence
    155         current[i] = 0;
    156     }
    157     return buffer;
    158 }
    159 
    160 /**
    161  *@param set the source string to iterate against. This allows the same iterator to be used
    162  * while changing the source string, saving object creation.
    163  */
    164 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
    165     int32_t list_length = 0;
    166     UChar32 cp = 0;
    167     int32_t start = 0;
    168     int32_t i = 0;
    169     UnicodeString *list = NULL;
    170 
    171     Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
    172     if(U_FAILURE(status)) {
    173       return;
    174     }
    175     done = FALSE;
    176 
    177     cleanPieces();
    178 
    179     // catch degenerate case
    180     if (newSource.length() == 0) {
    181         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
    182         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    183         pieces_length = 1;
    184         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    185         current_length = 1;
    186         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    187             status = U_MEMORY_ALLOCATION_ERROR;
    188             goto CleanPartialInitialization;
    189         }
    190         current[0] = 0;
    191         pieces[0] = new UnicodeString[1];
    192         pieces_lengths[0] = 1;
    193         if (pieces[0] == 0) {
    194             status = U_MEMORY_ALLOCATION_ERROR;
    195             goto CleanPartialInitialization;
    196         }
    197         return;
    198     }
    199 
    200 
    201     list = new UnicodeString[source.length()];
    202     if (list == 0) {
    203         status = U_MEMORY_ALLOCATION_ERROR;
    204         goto CleanPartialInitialization;
    205     }
    206 
    207     // i should initialy be the number of code units at the
    208     // start of the string
    209     i = UTF16_CHAR_LENGTH(source.char32At(0));
    210     //int32_t i = 1;
    211     // find the segments
    212     // This code iterates through the source string and
    213     // extracts segments that end up on a codepoint that
    214     // doesn't start any decompositions. (Analysis is done
    215     // on the NFD form - see above).
    216     for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
    217         cp = source.char32At(i);
    218         if (unorm_isCanonSafeStart(cp)) {
    219             source.extract(start, i-start, list[list_length++]); // add up to i
    220             start = i;
    221         }
    222     }
    223     source.extract(start, i-start, list[list_length++]); // add last one
    224 
    225 
    226     // allocate the arrays, and find the strings that are CE to each segment
    227     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
    228     pieces_length = list_length;
    229     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    230     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    231     current_length = list_length;
    232     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    233         status = U_MEMORY_ALLOCATION_ERROR;
    234         goto CleanPartialInitialization;
    235     }
    236 
    237     for (i = 0; i < current_length; i++) {
    238         current[i] = 0;
    239     }
    240     // for each segment, get all the combinations that can produce
    241     // it after NFD normalization
    242     for (i = 0; i < pieces_length; ++i) {
    243         //if (PROGRESS) printf("SEGMENT\n");
    244         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
    245     }
    246 
    247     delete[] list;
    248     return;
    249 // Common section to cleanup all local variables and reset object variables.
    250 CleanPartialInitialization:
    251     if (list != NULL) {
    252         delete[] list;
    253     }
    254     cleanPieces();
    255 }
    256 
    257 /**
    258  * Dumb recursive implementation of permutation.
    259  * TODO: optimize
    260  * @param source the string to find permutations for
    261  * @return the results in a set.
    262  */
    263 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
    264     if(U_FAILURE(status)) {
    265         return;
    266     }
    267     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
    268     int32_t i = 0;
    269 
    270     // optimization:
    271     // if zero or one character, just return a set with it
    272     // we check for length < 2 to keep from counting code points all the time
    273     if (source.length() <= 2 && source.countChar32() <= 1) {
    274         UnicodeString *toPut = new UnicodeString(source);
    275         /* test for NULL */
    276         if (toPut == 0) {
    277             status = U_MEMORY_ALLOCATION_ERROR;
    278             return;
    279         }
    280         result->put(source, toPut, status);
    281         return;
    282     }
    283 
    284     // otherwise iterate through the string, and recursively permute all the other characters
    285     UChar32 cp;
    286     Hashtable subpermute(status);
    287     if(U_FAILURE(status)) {
    288         return;
    289     }
    290     subpermute.setValueDeleter(uhash_deleteUnicodeString);
    291 
    292     for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
    293         cp = source.char32At(i);
    294         const UHashElement *ne = NULL;
    295         int32_t el = -1;
    296         UnicodeString subPermuteString = source;
    297 
    298         // optimization:
    299         // if the character is canonical combining class zero,
    300         // don't permute it
    301         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
    302             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
    303             continue;
    304         }
    305 
    306         subpermute.removeAll();
    307 
    308         // see what the permutations of the characters before and after this one are
    309         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
    310         permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
    311         /* Test for buffer overflows */
    312         if(U_FAILURE(status)) {
    313             return;
    314         }
    315         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
    316         // of source at this point.
    317 
    318         // prefix this character to all of them
    319         ne = subpermute.nextElement(el);
    320         while (ne != NULL) {
    321             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
    322             UnicodeString *chStr = new UnicodeString(cp);
    323             //test for  NULL
    324             if (chStr == NULL) {
    325                 status = U_MEMORY_ALLOCATION_ERROR;
    326                 return;
    327             }
    328             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
    329             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
    330             result->put(*chStr, chStr, status);
    331             ne = subpermute.nextElement(el);
    332         }
    333     }
    334     //return result;
    335 }
    336 
    337 // privates
    338 
    339 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
    340 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
    341     Hashtable result(status);
    342     Hashtable permutations(status);
    343     Hashtable basic(status);
    344     if (U_FAILURE(status)) {
    345         return 0;
    346     }
    347     result.setValueDeleter(uhash_deleteUnicodeString);
    348     permutations.setValueDeleter(uhash_deleteUnicodeString);
    349     basic.setValueDeleter(uhash_deleteUnicodeString);
    350 
    351     UChar USeg[256];
    352     int32_t segLen = segment.extract(USeg, 256, status);
    353     getEquivalents2(&basic, USeg, segLen, status);
    354 
    355     // now get all the permutations
    356     // add only the ones that are canonically equivalent
    357     // TODO: optimize by not permuting any class zero.
    358 
    359     const UHashElement *ne = NULL;
    360     int32_t el = -1;
    361     //Iterator it = basic.iterator();
    362     ne = basic.nextElement(el);
    363     //while (it.hasNext())
    364     while (ne != NULL) {
    365         //String item = (String) it.next();
    366         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    367 
    368         permutations.removeAll();
    369         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
    370         const UHashElement *ne2 = NULL;
    371         int32_t el2 = -1;
    372         //Iterator it2 = permutations.iterator();
    373         ne2 = permutations.nextElement(el2);
    374         //while (it2.hasNext())
    375         while (ne2 != NULL) {
    376             //String possible = (String) it2.next();
    377             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
    378             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
    379             UnicodeString attempt;
    380             Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
    381 
    382             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
    383             if (attempt==segment) {
    384                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
    385                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
    386                 result.put(possible, new UnicodeString(possible), status); //add(possible);
    387             } else {
    388                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
    389             }
    390 
    391             ne2 = permutations.nextElement(el2);
    392         }
    393         ne = basic.nextElement(el);
    394     }
    395 
    396     /* Test for buffer overflows */
    397     if(U_FAILURE(status)) {
    398         return 0;
    399     }
    400     // convert into a String[] to clean up storage
    401     //String[] finalResult = new String[result.size()];
    402     UnicodeString *finalResult = NULL;
    403     int32_t resultCount;
    404     if((resultCount = result.count())) {
    405         finalResult = new UnicodeString[resultCount];
    406         if (finalResult == 0) {
    407             status = U_MEMORY_ALLOCATION_ERROR;
    408             return NULL;
    409         }
    410     }
    411     else {
    412         status = U_ILLEGAL_ARGUMENT_ERROR;
    413         return NULL;
    414     }
    415     //result.toArray(finalResult);
    416     result_len = 0;
    417     el = -1;
    418     ne = result.nextElement(el);
    419     while(ne != NULL) {
    420         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
    421         ne = result.nextElement(el);
    422     }
    423 
    424 
    425     return finalResult;
    426 }
    427 
    428 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
    429 
    430     if (U_FAILURE(status)) {
    431         return NULL;
    432     }
    433 
    434     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
    435 
    436     UnicodeString toPut(segment, segLen);
    437 
    438     fillinResult->put(toPut, new UnicodeString(toPut), status);
    439 
    440     USerializedSet starts;
    441 
    442     // cycle through all the characters
    443     UChar32 cp, end = 0;
    444     int32_t i = 0, j;
    445     for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
    446         // see if any character is at the start of some decomposition
    447         UTF_GET_CHAR(segment, 0, i, segLen, cp);
    448         if (!unorm_getCanonStartSet(cp, &starts)) {
    449             continue;
    450         }
    451         // if so, see which decompositions match
    452         for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
    453             Hashtable remainder(status);
    454             remainder.setValueDeleter(uhash_deleteUnicodeString);
    455             if (extract(&remainder, cp, segment, segLen, i, status) == NULL) {
    456                 continue;
    457             }
    458 
    459             // there were some matches, so add all the possibilities to the set.
    460             UnicodeString prefix(segment, i);
    461             prefix += cp;
    462 
    463             int32_t el = -1;
    464             const UHashElement *ne = remainder.nextElement(el);
    465             while (ne != NULL) {
    466                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    467                 UnicodeString *toAdd = new UnicodeString(prefix);
    468                 /* test for NULL */
    469                 if (toAdd == 0) {
    470                     status = U_MEMORY_ALLOCATION_ERROR;
    471                     return NULL;
    472                 }
    473                 *toAdd += item;
    474                 fillinResult->put(*toAdd, toAdd, status);
    475 
    476                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
    477 
    478                 ne = remainder.nextElement(el);
    479             }
    480         }
    481     }
    482 
    483     /* Test for buffer overflows */
    484     if(U_FAILURE(status)) {
    485         return NULL;
    486     }
    487     return fillinResult;
    488 }
    489 
    490 /**
    491  * See if the decomposition of cp2 is at segment starting at segmentPos
    492  * (with canonical rearrangment!)
    493  * If so, take the remainder, and return the equivalents
    494  */
    495 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    496 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    497     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
    498     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
    499 
    500     if (U_FAILURE(status)) {
    501         return NULL;
    502     }
    503 
    504     UnicodeString temp(comp);
    505     int32_t inputLen=temp.length();
    506     UnicodeString decompString;
    507     nfd.normalize(temp, decompString, status);
    508     const UChar *decomp=decompString.getBuffer();
    509     int32_t decompLen=decompString.length();
    510 
    511     // See if it matches the start of segment (at segmentPos)
    512     UBool ok = FALSE;
    513     UChar32 cp;
    514     int32_t decompPos = 0;
    515     UChar32 decompCp;
    516     U16_NEXT(decomp, decompPos, decompLen, decompCp);
    517 
    518     int32_t i = segmentPos;
    519     while(i < segLen) {
    520         U16_NEXT(segment, i, segLen, cp);
    521 
    522         if (cp == decompCp) { // if equal, eat another cp from decomp
    523 
    524             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
    525 
    526             if (decompPos == decompLen) { // done, have all decomp characters!
    527                 temp.append(segment+i, segLen-i);
    528                 ok = TRUE;
    529                 break;
    530             }
    531             U16_NEXT(decomp, decompPos, decompLen, decompCp);
    532         } else {
    533             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
    534 
    535             // brute force approach
    536             temp.append(cp);
    537 
    538             /* TODO: optimize
    539             // since we know that the classes are monotonically increasing, after zero
    540             // e.g. 0 5 7 9 0 3
    541             // we can do an optimization
    542             // there are only a few cases that work: zero, less, same, greater
    543             // if both classes are the same, we fail
    544             // if the decomp class < the segment class, we fail
    545 
    546             segClass = getClass(cp);
    547             if (decompClass <= segClass) return null;
    548             */
    549         }
    550     }
    551     if (!ok)
    552         return NULL; // we failed, characters left over
    553 
    554     //if (PROGRESS) printf("Matches\n");
    555 
    556     if (inputLen == temp.length()) {
    557         fillinResult->put(UnicodeString(), new UnicodeString(), status);
    558         return fillinResult; // succeed, but no remainder
    559     }
    560 
    561     // brute force approach
    562     // check to make sure result is canonically equivalent
    563     UnicodeString trial;
    564     nfd.normalize(temp, trial, status);
    565     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
    566         return NULL;
    567     }
    568 
    569     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
    570 }
    571 
    572 U_NAMESPACE_END
    573 
    574 #endif /* #if !UCONFIG_NO_NORMALIZATION */
    575