Home | History | Annotate | Download | only in tzcode
      1 /*
      2 ** This file is in the public domain, so clarified as of
      3 ** 1996-06-05 by Arthur David Olson.
      4 */
      5 
      6 #ifndef lint
      7 #ifndef NOID
      8 static char	elsieid[] = "@(#)localtime.c	8.9";
      9 #endif /* !defined NOID */
     10 #endif /* !defined lint */
     11 
     12 /*
     13 ** Leap second handling from Bradley White.
     14 ** POSIX-style TZ environment variable handling from Guy Harris.
     15 */
     16 
     17 /*LINTLIBRARY*/
     18 
     19 #include "private.h"
     20 #include "tzfile.h"
     21 #include "fcntl.h"
     22 #include "float.h"	/* for FLT_MAX and DBL_MAX */
     23 
     24 #ifndef TZ_ABBR_MAX_LEN
     25 #define TZ_ABBR_MAX_LEN	16
     26 #endif /* !defined TZ_ABBR_MAX_LEN */
     27 
     28 #ifndef TZ_ABBR_CHAR_SET
     29 #define TZ_ABBR_CHAR_SET \
     30 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     31 #endif /* !defined TZ_ABBR_CHAR_SET */
     32 
     33 #ifndef TZ_ABBR_ERR_CHAR
     34 #define TZ_ABBR_ERR_CHAR	'_'
     35 #endif /* !defined TZ_ABBR_ERR_CHAR */
     36 
     37 /*
     38 ** SunOS 4.1.1 headers lack O_BINARY.
     39 */
     40 
     41 #ifdef O_BINARY
     42 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     43 #endif /* defined O_BINARY */
     44 #ifndef O_BINARY
     45 #define OPEN_MODE	O_RDONLY
     46 #endif /* !defined O_BINARY */
     47 
     48 #ifndef WILDABBR
     49 /*
     50 ** Someone might make incorrect use of a time zone abbreviation:
     51 **	1.	They might reference tzname[0] before calling tzset (explicitly
     52 **		or implicitly).
     53 **	2.	They might reference tzname[1] before calling tzset (explicitly
     54 **		or implicitly).
     55 **	3.	They might reference tzname[1] after setting to a time zone
     56 **		in which Daylight Saving Time is never observed.
     57 **	4.	They might reference tzname[0] after setting to a time zone
     58 **		in which Standard Time is never observed.
     59 **	5.	They might reference tm.TM_ZONE after calling offtime.
     60 ** What's best to do in the above cases is open to debate;
     61 ** for now, we just set things up so that in any of the five cases
     62 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     63 ** string "tzname[0] used before set", and similarly for the other cases.
     64 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     65 ** manual page of what this "time zone abbreviation" means (doing this so
     66 ** that tzname[0] has the "normal" length of three characters).
     67 */
     68 #define WILDABBR	"   "
     69 #endif /* !defined WILDABBR */
     70 
     71 static char		wildabbr[] = WILDABBR;
     72 
     73 static const char	gmt[] = "GMT";
     74 
     75 /*
     76 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     77 ** We default to US rules as of 1999-08-17.
     78 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     79 ** implementation dependent; for historical reasons, US rules are a
     80 ** common default.
     81 */
     82 #ifndef TZDEFRULESTRING
     83 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     84 #endif /* !defined TZDEFDST */
     85 
     86 struct ttinfo {				/* time type information */
     87 	long		tt_gmtoff;	/* UTC offset in seconds */
     88 	int		tt_isdst;	/* used to set tm_isdst */
     89 	int		tt_abbrind;	/* abbreviation list index */
     90 	int		tt_ttisstd;	/* TRUE if transition is std time */
     91 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
     92 };
     93 
     94 struct lsinfo {				/* leap second information */
     95 	time_t		ls_trans;	/* transition time */
     96 	long		ls_corr;	/* correction to apply */
     97 };
     98 
     99 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    100 
    101 #ifdef TZNAME_MAX
    102 #define MY_TZNAME_MAX	TZNAME_MAX
    103 #endif /* defined TZNAME_MAX */
    104 #ifndef TZNAME_MAX
    105 #define MY_TZNAME_MAX	255
    106 #endif /* !defined TZNAME_MAX */
    107 
    108 struct state {
    109 	int		leapcnt;
    110 	int		timecnt;
    111 	int		typecnt;
    112 	int		charcnt;
    113 	int		goback;
    114 	int		goahead;
    115 	time_t		ats[TZ_MAX_TIMES];
    116 	unsigned char	types[TZ_MAX_TIMES];
    117 	struct ttinfo	ttis[TZ_MAX_TYPES];
    118 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    119 				(2 * (MY_TZNAME_MAX + 1)))];
    120 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    121 };
    122 
    123 struct rule {
    124 	int		r_type;		/* type of rule--see below */
    125 	int		r_day;		/* day number of rule */
    126 	int		r_week;		/* week number of rule */
    127 	int		r_mon;		/* month number of rule */
    128 	long		r_time;		/* transition time of rule */
    129 };
    130 
    131 #define JULIAN_DAY		0	/* Jn - Julian day */
    132 #define DAY_OF_YEAR		1	/* n - day of year */
    133 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    134 
    135 /*
    136 ** Prototypes for static functions.
    137 */
    138 
    139 static long		detzcode(const char * codep);
    140 static time_t		detzcode64(const char * codep);
    141 static int		differ_by_repeat(time_t t1, time_t t0);
    142 static const char *	getzname(const char * strp);
    143 static const char *	getqzname(const char * strp, const int delim);
    144 static const char *	getnum(const char * strp, int * nump, int min,
    145 				int max);
    146 static const char *	getsecs(const char * strp, long * secsp);
    147 static const char *	getoffset(const char * strp, long * offsetp);
    148 static const char *	getrule(const char * strp, struct rule * rulep);
    149 static void		gmtload(struct state * sp);
    150 static struct tm *	gmtsub(const time_t * timep, long offset,
    151 				struct tm * tmp);
    152 static struct tm *	localsub(const time_t * timep, long offset,
    153 				struct tm * tmp);
    154 static int		increment_overflow(int * number, int delta);
    155 static int		leaps_thru_end_of(int y);
    156 static int		long_increment_overflow(long * number, int delta);
    157 static int		long_normalize_overflow(long * tensptr,
    158 				int * unitsptr, int base);
    159 static int		normalize_overflow(int * tensptr, int * unitsptr,
    160 				int base);
    161 static void		settzname(void);
    162 static time_t		time1(struct tm * tmp,
    163 				struct tm * (*funcp)(const time_t *,
    164 				long, struct tm *),
    165 				long offset);
    166 static time_t		time2(struct tm *tmp,
    167 				struct tm * (*funcp)(const time_t *,
    168 				long, struct tm*),
    169 				long offset, int * okayp);
    170 static time_t		time2sub(struct tm *tmp,
    171 				struct tm * (*funcp)(const time_t *,
    172 				long, struct tm*),
    173 				long offset, int * okayp, int do_norm_secs);
    174 static struct tm *	timesub(const time_t * timep, long offset,
    175 				const struct state * sp, struct tm * tmp);
    176 static int		tmcomp(const struct tm * atmp,
    177 				const struct tm * btmp);
    178 static time_t		transtime(time_t janfirst, int year,
    179 				const struct rule * rulep, long offset);
    180 static int		typesequiv(const struct state * sp, int a, int b);
    181 static int		tzload(const char * name, struct state * sp,
    182 				int doextend);
    183 static int		tzparse(const char * name, struct state * sp,
    184 				int lastditch);
    185 
    186 #ifdef ALL_STATE
    187 static struct state *	lclptr;
    188 static struct state *	gmtptr;
    189 #endif /* defined ALL_STATE */
    190 
    191 #ifndef ALL_STATE
    192 static struct state	lclmem;
    193 static struct state	gmtmem;
    194 #define lclptr		(&lclmem)
    195 #define gmtptr		(&gmtmem)
    196 #endif /* State Farm */
    197 
    198 #ifndef TZ_STRLEN_MAX
    199 #define TZ_STRLEN_MAX 255
    200 #endif /* !defined TZ_STRLEN_MAX */
    201 
    202 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    203 static int		lcl_is_set;
    204 static int		gmt_is_set;
    205 
    206 char *			tzname[2] = {
    207 	wildabbr,
    208 	wildabbr
    209 };
    210 
    211 /*
    212 ** Section 4.12.3 of X3.159-1989 requires that
    213 **	Except for the strftime function, these functions [asctime,
    214 **	ctime, gmtime, localtime] return values in one of two static
    215 **	objects: a broken-down time structure and an array of char.
    216 ** Thanks to Paul Eggert for noting this.
    217 */
    218 
    219 static struct tm	tm;
    220 
    221 #ifdef USG_COMPAT
    222 time_t			timezone = 0;
    223 int			daylight = 0;
    224 #endif /* defined USG_COMPAT */
    225 
    226 #ifdef ALTZONE
    227 time_t			altzone = 0;
    228 #endif /* defined ALTZONE */
    229 
    230 static long
    231 detzcode(codep)
    232 const char * const	codep;
    233 {
    234 	register long	result;
    235 	register int	i;
    236 
    237 	result = (codep[0] & 0x80) ? ~0L : 0;
    238 	for (i = 0; i < 4; ++i)
    239 		result = (result << 8) | (codep[i] & 0xff);
    240 	return result;
    241 }
    242 
    243 static time_t
    244 detzcode64(codep)
    245 const char * const	codep;
    246 {
    247 	register time_t	result;
    248 	register int	i;
    249 
    250 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
    251 	for (i = 0; i < 8; ++i)
    252 		result = result * 256 + (codep[i] & 0xff);
    253 	return result;
    254 }
    255 
    256 static void
    257 settzname(void)
    258 {
    259 	register struct state * const	sp = lclptr;
    260 	register int			i;
    261 
    262 	tzname[0] = wildabbr;
    263 	tzname[1] = wildabbr;
    264 #ifdef USG_COMPAT
    265 	daylight = 0;
    266 	timezone = 0;
    267 #endif /* defined USG_COMPAT */
    268 #ifdef ALTZONE
    269 	altzone = 0;
    270 #endif /* defined ALTZONE */
    271 #ifdef ALL_STATE
    272 	if (sp == NULL) {
    273 		tzname[0] = tzname[1] = gmt;
    274 		return;
    275 	}
    276 #endif /* defined ALL_STATE */
    277 	for (i = 0; i < sp->typecnt; ++i) {
    278 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    279 
    280 		tzname[ttisp->tt_isdst] =
    281 			&sp->chars[ttisp->tt_abbrind];
    282 #ifdef USG_COMPAT
    283 		if (ttisp->tt_isdst)
    284 			daylight = 1;
    285 		if (i == 0 || !ttisp->tt_isdst)
    286 			timezone = -(ttisp->tt_gmtoff);
    287 #endif /* defined USG_COMPAT */
    288 #ifdef ALTZONE
    289 		if (i == 0 || ttisp->tt_isdst)
    290 			altzone = -(ttisp->tt_gmtoff);
    291 #endif /* defined ALTZONE */
    292 	}
    293 	/*
    294 	** And to get the latest zone names into tzname. . .
    295 	*/
    296 	for (i = 0; i < sp->timecnt; ++i) {
    297 		register const struct ttinfo * const	ttisp =
    298 							&sp->ttis[
    299 								sp->types[i]];
    300 
    301 		tzname[ttisp->tt_isdst] =
    302 			&sp->chars[ttisp->tt_abbrind];
    303 	}
    304 	/*
    305 	** Finally, scrub the abbreviations.
    306 	** First, replace bogus characters.
    307 	*/
    308 	for (i = 0; i < sp->charcnt; ++i)
    309 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    310 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    311 	/*
    312 	** Second, truncate long abbreviations.
    313 	*/
    314 	for (i = 0; i < sp->typecnt; ++i) {
    315 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    316 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
    317 
    318 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    319 			strcmp(cp, GRANDPARENTED) != 0)
    320 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    321 	}
    322 }
    323 
    324 static int
    325 differ_by_repeat(t1, t0)
    326 const time_t	t1;
    327 const time_t	t0;
    328 {
    329 	if (TYPE_INTEGRAL(time_t) &&
    330 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    331 			return 0;
    332 	return t1 - t0 == SECSPERREPEAT;
    333 }
    334 
    335 static int
    336 tzload(name, sp, doextend)
    337 register const char *		name;
    338 register struct state * const	sp;
    339 register const int		doextend;
    340 {
    341 	register const char *		p;
    342 	register int			i;
    343 	register int			fid;
    344 	register int			stored;
    345 	register int			nread;
    346 	union {
    347 		struct tzhead	tzhead;
    348 		char		buf[2 * sizeof(struct tzhead) +
    349 					2 * sizeof *sp +
    350 					4 * TZ_MAX_TIMES];
    351 	} u;
    352 
    353 	if (name == NULL && (name = TZDEFAULT) == NULL)
    354 		return -1;
    355 	{
    356 		register int	doaccess;
    357 		/*
    358 		** Section 4.9.1 of the C standard says that
    359 		** "FILENAME_MAX expands to an integral constant expression
    360 		** that is the size needed for an array of char large enough
    361 		** to hold the longest file name string that the implementation
    362 		** guarantees can be opened."
    363 		*/
    364 		char		fullname[FILENAME_MAX + 1];
    365 
    366 		if (name[0] == ':')
    367 			++name;
    368 		doaccess = name[0] == '/';
    369 		if (!doaccess) {
    370 			if ((p = TZDIR) == NULL)
    371 				return -1;
    372 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    373 				return -1;
    374 			(void) strcpy(fullname, p);
    375 			(void) strcat(fullname, "/");
    376 			(void) strcat(fullname, name);
    377 			/*
    378 			** Set doaccess if '.' (as in "../") shows up in name.
    379 			*/
    380 			if (strchr(name, '.') != NULL)
    381 				doaccess = TRUE;
    382 			name = fullname;
    383 		}
    384 		if (doaccess && access(name, R_OK) != 0)
    385 			return -1;
    386 		if ((fid = open(name, OPEN_MODE)) == -1)
    387 			return -1;
    388 	}
    389 	nread = read(fid, u.buf, sizeof u.buf);
    390 	if (close(fid) < 0 || nread <= 0)
    391 		return -1;
    392 	for (stored = 4; stored <= 8; stored *= 2) {
    393 		int		ttisstdcnt;
    394 		int		ttisgmtcnt;
    395 
    396 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    397 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    398 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    399 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    400 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    401 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    402 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    403 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    404 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    405 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    406 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    407 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    408 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    409 				return -1;
    410 		if (nread - (p - u.buf) <
    411 			sp->timecnt * stored +		/* ats */
    412 			sp->timecnt +			/* types */
    413 			sp->typecnt * 6 +		/* ttinfos */
    414 			sp->charcnt +			/* chars */
    415 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    416 			ttisstdcnt +			/* ttisstds */
    417 			ttisgmtcnt)			/* ttisgmts */
    418 				return -1;
    419 		for (i = 0; i < sp->timecnt; ++i) {
    420 			sp->ats[i] = (stored == 4) ?
    421 				detzcode(p) : detzcode64(p);
    422 			p += stored;
    423 		}
    424 		for (i = 0; i < sp->timecnt; ++i) {
    425 			sp->types[i] = (unsigned char) *p++;
    426 			if (sp->types[i] >= sp->typecnt)
    427 				return -1;
    428 		}
    429 		for (i = 0; i < sp->typecnt; ++i) {
    430 			register struct ttinfo *	ttisp;
    431 
    432 			ttisp = &sp->ttis[i];
    433 			ttisp->tt_gmtoff = detzcode(p);
    434 			p += 4;
    435 			ttisp->tt_isdst = (unsigned char) *p++;
    436 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    437 				return -1;
    438 			ttisp->tt_abbrind = (unsigned char) *p++;
    439 			if (ttisp->tt_abbrind < 0 ||
    440 				ttisp->tt_abbrind > sp->charcnt)
    441 					return -1;
    442 		}
    443 		for (i = 0; i < sp->charcnt; ++i)
    444 			sp->chars[i] = *p++;
    445 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    446 		for (i = 0; i < sp->leapcnt; ++i) {
    447 			register struct lsinfo *	lsisp;
    448 
    449 			lsisp = &sp->lsis[i];
    450 			lsisp->ls_trans = (stored == 4) ?
    451 				detzcode(p) : detzcode64(p);
    452 			p += stored;
    453 			lsisp->ls_corr = detzcode(p);
    454 			p += 4;
    455 		}
    456 		for (i = 0; i < sp->typecnt; ++i) {
    457 			register struct ttinfo *	ttisp;
    458 
    459 			ttisp = &sp->ttis[i];
    460 			if (ttisstdcnt == 0)
    461 				ttisp->tt_ttisstd = FALSE;
    462 			else {
    463 				ttisp->tt_ttisstd = *p++;
    464 				if (ttisp->tt_ttisstd != TRUE &&
    465 					ttisp->tt_ttisstd != FALSE)
    466 						return -1;
    467 			}
    468 		}
    469 		for (i = 0; i < sp->typecnt; ++i) {
    470 			register struct ttinfo *	ttisp;
    471 
    472 			ttisp = &sp->ttis[i];
    473 			if (ttisgmtcnt == 0)
    474 				ttisp->tt_ttisgmt = FALSE;
    475 			else {
    476 				ttisp->tt_ttisgmt = *p++;
    477 				if (ttisp->tt_ttisgmt != TRUE &&
    478 					ttisp->tt_ttisgmt != FALSE)
    479 						return -1;
    480 			}
    481 		}
    482 		/*
    483 		** Out-of-sort ats should mean we're running on a
    484 		** signed time_t system but using a data file with
    485 		** unsigned values (or vice versa).
    486 		*/
    487 		for (i = 0; i < sp->timecnt - 2; ++i)
    488 			if (sp->ats[i] > sp->ats[i + 1]) {
    489 				++i;
    490 				if (TYPE_SIGNED(time_t)) {
    491 					/*
    492 					** Ignore the end (easy).
    493 					*/
    494 					sp->timecnt = i;
    495 				} else {
    496 					/*
    497 					** Ignore the beginning (harder).
    498 					*/
    499 					register int	j;
    500 
    501 					for (j = 0; j + i < sp->timecnt; ++j) {
    502 						sp->ats[j] = sp->ats[j + i];
    503 						sp->types[j] = sp->types[j + i];
    504 					}
    505 					sp->timecnt = j;
    506 				}
    507 				break;
    508 			}
    509 		/*
    510 		** If this is an old file, we're done.
    511 		*/
    512 		if (u.tzhead.tzh_version[0] == '\0')
    513 			break;
    514 		nread -= p - u.buf;
    515 		for (i = 0; i < nread; ++i)
    516 			u.buf[i] = p[i];
    517 		/*
    518 		** If this is a narrow integer time_t system, we're done.
    519 		*/
    520 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
    521 			break;
    522 	}
    523 	if (doextend && nread > 2 &&
    524 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    525 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    526 			struct state	ts;
    527 			register int	result;
    528 
    529 			u.buf[nread - 1] = '\0';
    530 			result = tzparse(&u.buf[1], &ts, FALSE);
    531 			if (result == 0 && ts.typecnt == 2 &&
    532 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    533 					for (i = 0; i < 2; ++i)
    534 						ts.ttis[i].tt_abbrind +=
    535 							sp->charcnt;
    536 					for (i = 0; i < ts.charcnt; ++i)
    537 						sp->chars[sp->charcnt++] =
    538 							ts.chars[i];
    539 					i = 0;
    540 					while (i < ts.timecnt &&
    541 						ts.ats[i] <=
    542 						sp->ats[sp->timecnt - 1])
    543 							++i;
    544 					while (i < ts.timecnt &&
    545 					    sp->timecnt < TZ_MAX_TIMES) {
    546 						sp->ats[sp->timecnt] =
    547 							ts.ats[i];
    548 						sp->types[sp->timecnt] =
    549 							sp->typecnt +
    550 							ts.types[i];
    551 						++sp->timecnt;
    552 						++i;
    553 					}
    554 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    555 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    556 			}
    557 	}
    558 	sp->goback = sp->goahead = FALSE;
    559 	if (sp->timecnt > 1) {
    560 		for (i = 1; i < sp->timecnt; ++i)
    561 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    562 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    563 					sp->goback = TRUE;
    564 					break;
    565 				}
    566 		for (i = sp->timecnt - 2; i >= 0; --i)
    567 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    568 				sp->types[i]) &&
    569 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    570 				sp->ats[i])) {
    571 					sp->goahead = TRUE;
    572 					break;
    573 		}
    574 	}
    575 	return 0;
    576 }
    577 
    578 static int
    579 typesequiv(sp, a, b)
    580 const struct state * const	sp;
    581 const int			a;
    582 const int			b;
    583 {
    584 	register int	result;
    585 
    586 	if (sp == NULL ||
    587 		a < 0 || a >= sp->typecnt ||
    588 		b < 0 || b >= sp->typecnt)
    589 			result = FALSE;
    590 	else {
    591 		register const struct ttinfo *	ap = &sp->ttis[a];
    592 		register const struct ttinfo *	bp = &sp->ttis[b];
    593 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    594 			ap->tt_isdst == bp->tt_isdst &&
    595 			ap->tt_ttisstd == bp->tt_ttisstd &&
    596 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    597 			strcmp(&sp->chars[ap->tt_abbrind],
    598 			&sp->chars[bp->tt_abbrind]) == 0;
    599 	}
    600 	return result;
    601 }
    602 
    603 static const int	mon_lengths[2][MONSPERYEAR] = {
    604 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    605 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    606 };
    607 
    608 static const int	year_lengths[2] = {
    609 	DAYSPERNYEAR, DAYSPERLYEAR
    610 };
    611 
    612 /*
    613 ** Given a pointer into a time zone string, scan until a character that is not
    614 ** a valid character in a zone name is found. Return a pointer to that
    615 ** character.
    616 */
    617 
    618 static const char *
    619 getzname(strp)
    620 register const char *	strp;
    621 {
    622 	register char	c;
    623 
    624 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    625 		c != '+')
    626 			++strp;
    627 	return strp;
    628 }
    629 
    630 /*
    631 ** Given a pointer into an extended time zone string, scan until the ending
    632 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    633 **
    634 ** As with getzname above, the legal character set is actually quite
    635 ** restricted, with other characters producing undefined results.
    636 ** We don't do any checking here; checking is done later in common-case code.
    637 */
    638 
    639 static const char *
    640 getqzname(register const char *strp, const int delim)
    641 {
    642 	register int	c;
    643 
    644 	while ((c = *strp) != '\0' && c != delim)
    645 		++strp;
    646 	return strp;
    647 }
    648 
    649 /*
    650 ** Given a pointer into a time zone string, extract a number from that string.
    651 ** Check that the number is within a specified range; if it is not, return
    652 ** NULL.
    653 ** Otherwise, return a pointer to the first character not part of the number.
    654 */
    655 
    656 static const char *
    657 getnum(strp, nump, min, max)
    658 register const char *	strp;
    659 int * const		nump;
    660 const int		min;
    661 const int		max;
    662 {
    663 	register char	c;
    664 	register int	num;
    665 
    666 	if (strp == NULL || !is_digit(c = *strp))
    667 		return NULL;
    668 	num = 0;
    669 	do {
    670 		num = num * 10 + (c - '0');
    671 		if (num > max)
    672 			return NULL;	/* illegal value */
    673 		c = *++strp;
    674 	} while (is_digit(c));
    675 	if (num < min)
    676 		return NULL;		/* illegal value */
    677 	*nump = num;
    678 	return strp;
    679 }
    680 
    681 /*
    682 ** Given a pointer into a time zone string, extract a number of seconds,
    683 ** in hh[:mm[:ss]] form, from the string.
    684 ** If any error occurs, return NULL.
    685 ** Otherwise, return a pointer to the first character not part of the number
    686 ** of seconds.
    687 */
    688 
    689 static const char *
    690 getsecs(strp, secsp)
    691 register const char *	strp;
    692 long * const		secsp;
    693 {
    694 	int	num;
    695 
    696 	/*
    697 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    698 	** "M10.4.6/26", which does not conform to Posix,
    699 	** but which specifies the equivalent of
    700 	** ``02:00 on the first Sunday on or after 23 Oct''.
    701 	*/
    702 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    703 	if (strp == NULL)
    704 		return NULL;
    705 	*secsp = num * (long) SECSPERHOUR;
    706 	if (*strp == ':') {
    707 		++strp;
    708 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    709 		if (strp == NULL)
    710 			return NULL;
    711 		*secsp += num * SECSPERMIN;
    712 		if (*strp == ':') {
    713 			++strp;
    714 			/* `SECSPERMIN' allows for leap seconds. */
    715 			strp = getnum(strp, &num, 0, SECSPERMIN);
    716 			if (strp == NULL)
    717 				return NULL;
    718 			*secsp += num;
    719 		}
    720 	}
    721 	return strp;
    722 }
    723 
    724 /*
    725 ** Given a pointer into a time zone string, extract an offset, in
    726 ** [+-]hh[:mm[:ss]] form, from the string.
    727 ** If any error occurs, return NULL.
    728 ** Otherwise, return a pointer to the first character not part of the time.
    729 */
    730 
    731 static const char *
    732 getoffset(strp, offsetp)
    733 register const char *	strp;
    734 long * const		offsetp;
    735 {
    736 	register int	neg = 0;
    737 
    738 	if (*strp == '-') {
    739 		neg = 1;
    740 		++strp;
    741 	} else if (*strp == '+')
    742 		++strp;
    743 	strp = getsecs(strp, offsetp);
    744 	if (strp == NULL)
    745 		return NULL;		/* illegal time */
    746 	if (neg)
    747 		*offsetp = -*offsetp;
    748 	return strp;
    749 }
    750 
    751 /*
    752 ** Given a pointer into a time zone string, extract a rule in the form
    753 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    754 ** If a valid rule is not found, return NULL.
    755 ** Otherwise, return a pointer to the first character not part of the rule.
    756 */
    757 
    758 static const char *
    759 getrule(strp, rulep)
    760 const char *			strp;
    761 register struct rule * const	rulep;
    762 {
    763 	if (*strp == 'J') {
    764 		/*
    765 		** Julian day.
    766 		*/
    767 		rulep->r_type = JULIAN_DAY;
    768 		++strp;
    769 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    770 	} else if (*strp == 'M') {
    771 		/*
    772 		** Month, week, day.
    773 		*/
    774 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    775 		++strp;
    776 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    777 		if (strp == NULL)
    778 			return NULL;
    779 		if (*strp++ != '.')
    780 			return NULL;
    781 		strp = getnum(strp, &rulep->r_week, 1, 5);
    782 		if (strp == NULL)
    783 			return NULL;
    784 		if (*strp++ != '.')
    785 			return NULL;
    786 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    787 	} else if (is_digit(*strp)) {
    788 		/*
    789 		** Day of year.
    790 		*/
    791 		rulep->r_type = DAY_OF_YEAR;
    792 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    793 	} else	return NULL;		/* invalid format */
    794 	if (strp == NULL)
    795 		return NULL;
    796 	if (*strp == '/') {
    797 		/*
    798 		** Time specified.
    799 		*/
    800 		++strp;
    801 		strp = getsecs(strp, &rulep->r_time);
    802 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    803 	return strp;
    804 }
    805 
    806 /*
    807 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    808 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    809 ** calculate the Epoch-relative time that rule takes effect.
    810 */
    811 
    812 static time_t
    813 transtime(janfirst, year, rulep, offset)
    814 const time_t				janfirst;
    815 const int				year;
    816 register const struct rule * const	rulep;
    817 const long				offset;
    818 {
    819 	register int	leapyear;
    820 	register time_t	value;
    821 	register int	i;
    822 	int		d, m1, yy0, yy1, yy2, dow;
    823 
    824 	INITIALIZE(value);
    825 	leapyear = isleap(year);
    826 	switch (rulep->r_type) {
    827 
    828 	case JULIAN_DAY:
    829 		/*
    830 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    831 		** years.
    832 		** In non-leap years, or if the day number is 59 or less, just
    833 		** add SECSPERDAY times the day number-1 to the time of
    834 		** January 1, midnight, to get the day.
    835 		*/
    836 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    837 		if (leapyear && rulep->r_day >= 60)
    838 			value += SECSPERDAY;
    839 		break;
    840 
    841 	case DAY_OF_YEAR:
    842 		/*
    843 		** n - day of year.
    844 		** Just add SECSPERDAY times the day number to the time of
    845 		** January 1, midnight, to get the day.
    846 		*/
    847 		value = janfirst + rulep->r_day * SECSPERDAY;
    848 		break;
    849 
    850 	case MONTH_NTH_DAY_OF_WEEK:
    851 		/*
    852 		** Mm.n.d - nth "dth day" of month m.
    853 		*/
    854 		value = janfirst;
    855 		for (i = 0; i < rulep->r_mon - 1; ++i)
    856 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    857 
    858 		/*
    859 		** Use Zeller's Congruence to get day-of-week of first day of
    860 		** month.
    861 		*/
    862 		m1 = (rulep->r_mon + 9) % 12 + 1;
    863 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    864 		yy1 = yy0 / 100;
    865 		yy2 = yy0 % 100;
    866 		dow = ((26 * m1 - 2) / 10 +
    867 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    868 		if (dow < 0)
    869 			dow += DAYSPERWEEK;
    870 
    871 		/*
    872 		** "dow" is the day-of-week of the first day of the month. Get
    873 		** the day-of-month (zero-origin) of the first "dow" day of the
    874 		** month.
    875 		*/
    876 		d = rulep->r_day - dow;
    877 		if (d < 0)
    878 			d += DAYSPERWEEK;
    879 		for (i = 1; i < rulep->r_week; ++i) {
    880 			if (d + DAYSPERWEEK >=
    881 				mon_lengths[leapyear][rulep->r_mon - 1])
    882 					break;
    883 			d += DAYSPERWEEK;
    884 		}
    885 
    886 		/*
    887 		** "d" is the day-of-month (zero-origin) of the day we want.
    888 		*/
    889 		value += d * SECSPERDAY;
    890 		break;
    891 	}
    892 
    893 	/*
    894 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    895 	** question. To get the Epoch-relative time of the specified local
    896 	** time on that day, add the transition time and the current offset
    897 	** from UTC.
    898 	*/
    899 	return value + rulep->r_time + offset;
    900 }
    901 
    902 /*
    903 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    904 ** appropriate.
    905 */
    906 
    907 static int
    908 tzparse(name, sp, lastditch)
    909 const char *			name;
    910 register struct state * const	sp;
    911 const int			lastditch;
    912 {
    913 	const char *			stdname;
    914 	const char *			dstname;
    915 	size_t				stdlen;
    916 	size_t				dstlen;
    917 	long				stdoffset;
    918 	long				dstoffset;
    919 	register time_t *		atp;
    920 	register unsigned char *	typep;
    921 	register char *			cp;
    922 	register int			load_result;
    923 
    924 	INITIALIZE(dstname);
    925 	stdname = name;
    926 	if (lastditch) {
    927 		stdlen = strlen(name);	/* length of standard zone name */
    928 		name += stdlen;
    929 		if (stdlen >= sizeof sp->chars)
    930 			stdlen = (sizeof sp->chars) - 1;
    931 		stdoffset = 0;
    932 	} else {
    933 		if (*name == '<') {
    934 			name++;
    935 			stdname = name;
    936 			name = getqzname(name, '>');
    937 			if (*name != '>')
    938 				return (-1);
    939 			stdlen = name - stdname;
    940 			name++;
    941 		} else {
    942 			name = getzname(name);
    943 			stdlen = name - stdname;
    944 		}
    945 		if (*name == '\0')
    946 			return -1;
    947 		name = getoffset(name, &stdoffset);
    948 		if (name == NULL)
    949 			return -1;
    950 	}
    951 	load_result = tzload(TZDEFRULES, sp, FALSE);
    952 	if (load_result != 0)
    953 		sp->leapcnt = 0;		/* so, we're off a little */
    954 	if (*name != '\0') {
    955 		if (*name == '<') {
    956 			dstname = ++name;
    957 			name = getqzname(name, '>');
    958 			if (*name != '>')
    959 				return -1;
    960 			dstlen = name - dstname;
    961 			name++;
    962 		} else {
    963 			dstname = name;
    964 			name = getzname(name);
    965 			dstlen = name - dstname; /* length of DST zone name */
    966 		}
    967 		if (*name != '\0' && *name != ',' && *name != ';') {
    968 			name = getoffset(name, &dstoffset);
    969 			if (name == NULL)
    970 				return -1;
    971 		} else	dstoffset = stdoffset - SECSPERHOUR;
    972 		if (*name == '\0' && load_result != 0)
    973 			name = TZDEFRULESTRING;
    974 		if (*name == ',' || *name == ';') {
    975 			struct rule	start;
    976 			struct rule	end;
    977 			register int	year;
    978 			register time_t	janfirst;
    979 			time_t		starttime;
    980 			time_t		endtime;
    981 
    982 			++name;
    983 			if ((name = getrule(name, &start)) == NULL)
    984 				return -1;
    985 			if (*name++ != ',')
    986 				return -1;
    987 			if ((name = getrule(name, &end)) == NULL)
    988 				return -1;
    989 			if (*name != '\0')
    990 				return -1;
    991 			sp->typecnt = 2;	/* standard time and DST */
    992 			/*
    993 			** Two transitions per year, from EPOCH_YEAR forward.
    994 			*/
    995 			sp->ttis[0].tt_gmtoff = -dstoffset;
    996 			sp->ttis[0].tt_isdst = 1;
    997 			sp->ttis[0].tt_abbrind = stdlen + 1;
    998 			sp->ttis[1].tt_gmtoff = -stdoffset;
    999 			sp->ttis[1].tt_isdst = 0;
   1000 			sp->ttis[1].tt_abbrind = 0;
   1001 			atp = sp->ats;
   1002 			typep = sp->types;
   1003 			janfirst = 0;
   1004 			sp->timecnt = 0;
   1005 			for (year = EPOCH_YEAR;
   1006 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1007 			    ++year) {
   1008 			    	time_t	newfirst;
   1009 
   1010 				starttime = transtime(janfirst, year, &start,
   1011 					stdoffset);
   1012 				endtime = transtime(janfirst, year, &end,
   1013 					dstoffset);
   1014 				if (starttime > endtime) {
   1015 					*atp++ = endtime;
   1016 					*typep++ = 1;	/* DST ends */
   1017 					*atp++ = starttime;
   1018 					*typep++ = 0;	/* DST begins */
   1019 				} else {
   1020 					*atp++ = starttime;
   1021 					*typep++ = 0;	/* DST begins */
   1022 					*atp++ = endtime;
   1023 					*typep++ = 1;	/* DST ends */
   1024 				}
   1025 				sp->timecnt += 2;
   1026 				newfirst = janfirst;
   1027 				newfirst += year_lengths[isleap(year)] *
   1028 					SECSPERDAY;
   1029 				if (newfirst <= janfirst)
   1030 					break;
   1031 				janfirst = newfirst;
   1032 			}
   1033 		} else {
   1034 			register long	theirstdoffset;
   1035 			register long	theirdstoffset;
   1036 			register long	theiroffset;
   1037 			register int	isdst;
   1038 			register int	i;
   1039 			register int	j;
   1040 
   1041 			if (*name != '\0')
   1042 				return -1;
   1043 			/*
   1044 			** Initial values of theirstdoffset and theirdstoffset.
   1045 			*/
   1046 			theirstdoffset = 0;
   1047 			for (i = 0; i < sp->timecnt; ++i) {
   1048 				j = sp->types[i];
   1049 				if (!sp->ttis[j].tt_isdst) {
   1050 					theirstdoffset =
   1051 						-sp->ttis[j].tt_gmtoff;
   1052 					break;
   1053 				}
   1054 			}
   1055 			theirdstoffset = 0;
   1056 			for (i = 0; i < sp->timecnt; ++i) {
   1057 				j = sp->types[i];
   1058 				if (sp->ttis[j].tt_isdst) {
   1059 					theirdstoffset =
   1060 						-sp->ttis[j].tt_gmtoff;
   1061 					break;
   1062 				}
   1063 			}
   1064 			/*
   1065 			** Initially we're assumed to be in standard time.
   1066 			*/
   1067 			isdst = FALSE;
   1068 			theiroffset = theirstdoffset;
   1069 			/*
   1070 			** Now juggle transition times and types
   1071 			** tracking offsets as you do.
   1072 			*/
   1073 			for (i = 0; i < sp->timecnt; ++i) {
   1074 				j = sp->types[i];
   1075 				sp->types[i] = sp->ttis[j].tt_isdst;
   1076 				if (sp->ttis[j].tt_ttisgmt) {
   1077 					/* No adjustment to transition time */
   1078 				} else {
   1079 					/*
   1080 					** If summer time is in effect, and the
   1081 					** transition time was not specified as
   1082 					** standard time, add the summer time
   1083 					** offset to the transition time;
   1084 					** otherwise, add the standard time
   1085 					** offset to the transition time.
   1086 					*/
   1087 					/*
   1088 					** Transitions from DST to DDST
   1089 					** will effectively disappear since
   1090 					** POSIX provides for only one DST
   1091 					** offset.
   1092 					*/
   1093 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1094 						sp->ats[i] += dstoffset -
   1095 							theirdstoffset;
   1096 					} else {
   1097 						sp->ats[i] += stdoffset -
   1098 							theirstdoffset;
   1099 					}
   1100 				}
   1101 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1102 				if (sp->ttis[j].tt_isdst)
   1103 					theirdstoffset = theiroffset;
   1104 				else	theirstdoffset = theiroffset;
   1105 			}
   1106 			/*
   1107 			** Finally, fill in ttis.
   1108 			** ttisstd and ttisgmt need not be handled.
   1109 			*/
   1110 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1111 			sp->ttis[0].tt_isdst = FALSE;
   1112 			sp->ttis[0].tt_abbrind = 0;
   1113 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1114 			sp->ttis[1].tt_isdst = TRUE;
   1115 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1116 			sp->typecnt = 2;
   1117 		}
   1118 	} else {
   1119 		dstlen = 0;
   1120 		sp->typecnt = 1;		/* only standard time */
   1121 		sp->timecnt = 0;
   1122 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1123 		sp->ttis[0].tt_isdst = 0;
   1124 		sp->ttis[0].tt_abbrind = 0;
   1125 	}
   1126 	sp->charcnt = stdlen + 1;
   1127 	if (dstlen != 0)
   1128 		sp->charcnt += dstlen + 1;
   1129 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1130 		return -1;
   1131 	cp = sp->chars;
   1132 	(void) strncpy(cp, stdname, stdlen);
   1133 	cp += stdlen;
   1134 	*cp++ = '\0';
   1135 	if (dstlen != 0) {
   1136 		(void) strncpy(cp, dstname, dstlen);
   1137 		*(cp + dstlen) = '\0';
   1138 	}
   1139 	return 0;
   1140 }
   1141 
   1142 static void
   1143 gmtload(sp)
   1144 struct state * const	sp;
   1145 {
   1146 	if (tzload(gmt, sp, TRUE) != 0)
   1147 		(void) tzparse(gmt, sp, TRUE);
   1148 }
   1149 
   1150 #ifndef STD_INSPIRED
   1151 /*
   1152 ** A non-static declaration of tzsetwall in a system header file
   1153 ** may cause a warning about this upcoming static declaration...
   1154 */
   1155 static
   1156 #endif /* !defined STD_INSPIRED */
   1157 void
   1158 tzsetwall(void)
   1159 {
   1160 	if (lcl_is_set < 0)
   1161 		return;
   1162 	lcl_is_set = -1;
   1163 
   1164 #ifdef ALL_STATE
   1165 	if (lclptr == NULL) {
   1166 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1167 		if (lclptr == NULL) {
   1168 			settzname();	/* all we can do */
   1169 			return;
   1170 		}
   1171 	}
   1172 #endif /* defined ALL_STATE */
   1173 	if (tzload((char *) NULL, lclptr, TRUE) != 0)
   1174 		gmtload(lclptr);
   1175 	settzname();
   1176 }
   1177 
   1178 void
   1179 tzset(void)
   1180 {
   1181 	register const char *	name;
   1182 
   1183 	name = getenv("TZ");
   1184 	if (name == NULL) {
   1185 		tzsetwall();
   1186 		return;
   1187 	}
   1188 
   1189 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1190 		return;
   1191 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1192 	if (lcl_is_set)
   1193 		(void) strcpy(lcl_TZname, name);
   1194 
   1195 #ifdef ALL_STATE
   1196 	if (lclptr == NULL) {
   1197 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1198 		if (lclptr == NULL) {
   1199 			settzname();	/* all we can do */
   1200 			return;
   1201 		}
   1202 	}
   1203 #endif /* defined ALL_STATE */
   1204 	if (*name == '\0') {
   1205 		/*
   1206 		** User wants it fast rather than right.
   1207 		*/
   1208 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1209 		lclptr->timecnt = 0;
   1210 		lclptr->typecnt = 0;
   1211 		lclptr->ttis[0].tt_isdst = 0;
   1212 		lclptr->ttis[0].tt_gmtoff = 0;
   1213 		lclptr->ttis[0].tt_abbrind = 0;
   1214 		(void) strcpy(lclptr->chars, gmt);
   1215 	} else if (tzload(name, lclptr, TRUE) != 0)
   1216 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1217 			(void) gmtload(lclptr);
   1218 	settzname();
   1219 }
   1220 
   1221 /*
   1222 ** The easy way to behave "as if no library function calls" localtime
   1223 ** is to not call it--so we drop its guts into "localsub", which can be
   1224 ** freely called. (And no, the PANS doesn't require the above behavior--
   1225 ** but it *is* desirable.)
   1226 **
   1227 ** The unused offset argument is for the benefit of mktime variants.
   1228 */
   1229 
   1230 /*ARGSUSED*/
   1231 static struct tm *
   1232 localsub(timep, offset, tmp)
   1233 const time_t * const	timep;
   1234 const long		offset;
   1235 struct tm * const	tmp;
   1236 {
   1237 	register struct state *		sp;
   1238 	register const struct ttinfo *	ttisp;
   1239 	register int			i;
   1240 	register struct tm *		result;
   1241 	const time_t			t = *timep;
   1242 
   1243 	sp = lclptr;
   1244 #ifdef ALL_STATE
   1245 	if (sp == NULL)
   1246 		return gmtsub(timep, offset, tmp);
   1247 #endif /* defined ALL_STATE */
   1248 	if ((sp->goback && t < sp->ats[0]) ||
   1249 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1250 			time_t			newt = t;
   1251 			register time_t		seconds;
   1252 			register time_t		tcycles;
   1253 			register int_fast64_t	icycles;
   1254 
   1255 			if (t < sp->ats[0])
   1256 				seconds = sp->ats[0] - t;
   1257 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1258 			--seconds;
   1259 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1260 			++tcycles;
   1261 			icycles = tcycles;
   1262 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1263 				return NULL;
   1264 			seconds = icycles;
   1265 			seconds *= YEARSPERREPEAT;
   1266 			seconds *= AVGSECSPERYEAR;
   1267 			if (t < sp->ats[0])
   1268 				newt += seconds;
   1269 			else	newt -= seconds;
   1270 			if (newt < sp->ats[0] ||
   1271 				newt > sp->ats[sp->timecnt - 1])
   1272 					return NULL;	/* "cannot happen" */
   1273 			result = localsub(&newt, offset, tmp);
   1274 			if (result == tmp) {
   1275 				register time_t	newy;
   1276 
   1277 				newy = tmp->tm_year;
   1278 				if (t < sp->ats[0])
   1279 					newy -= icycles * YEARSPERREPEAT;
   1280 				else	newy += icycles * YEARSPERREPEAT;
   1281 				tmp->tm_year = newy;
   1282 				if (tmp->tm_year != newy)
   1283 					return NULL;
   1284 			}
   1285 			return result;
   1286 	}
   1287 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1288 		i = 0;
   1289 		while (sp->ttis[i].tt_isdst)
   1290 			if (++i >= sp->typecnt) {
   1291 				i = 0;
   1292 				break;
   1293 			}
   1294 	} else {
   1295 		register int	lo = 1;
   1296 		register int	hi = sp->timecnt;
   1297 
   1298 		while (lo < hi) {
   1299 			register int	mid = (lo + hi) >> 1;
   1300 
   1301 			if (t < sp->ats[mid])
   1302 				hi = mid;
   1303 			else	lo = mid + 1;
   1304 		}
   1305 		i = (int) sp->types[lo - 1];
   1306 	}
   1307 	ttisp = &sp->ttis[i];
   1308 	/*
   1309 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1310 	** you'd replace the statement below with
   1311 	**	t += ttisp->tt_gmtoff;
   1312 	**	timesub(&t, 0L, sp, tmp);
   1313 	*/
   1314 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1315 	tmp->tm_isdst = ttisp->tt_isdst;
   1316 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1317 #ifdef TM_ZONE
   1318 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1319 #endif /* defined TM_ZONE */
   1320 	return result;
   1321 }
   1322 
   1323 struct tm *
   1324 localtime(timep)
   1325 const time_t * const	timep;
   1326 {
   1327 	tzset();
   1328 	return localsub(timep, 0L, &tm);
   1329 }
   1330 
   1331 /*
   1332 ** Re-entrant version of localtime.
   1333 */
   1334 
   1335 struct tm *
   1336 localtime_r(timep, tmp)
   1337 const time_t * const	timep;
   1338 struct tm *		tmp;
   1339 {
   1340 	return localsub(timep, 0L, tmp);
   1341 }
   1342 
   1343 /*
   1344 ** gmtsub is to gmtime as localsub is to localtime.
   1345 */
   1346 
   1347 static struct tm *
   1348 gmtsub(timep, offset, tmp)
   1349 const time_t * const	timep;
   1350 const long		offset;
   1351 struct tm * const	tmp;
   1352 {
   1353 	register struct tm *	result;
   1354 
   1355 	if (!gmt_is_set) {
   1356 		gmt_is_set = TRUE;
   1357 #ifdef ALL_STATE
   1358 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1359 		if (gmtptr != NULL)
   1360 #endif /* defined ALL_STATE */
   1361 			gmtload(gmtptr);
   1362 	}
   1363 	result = timesub(timep, offset, gmtptr, tmp);
   1364 #ifdef TM_ZONE
   1365 	/*
   1366 	** Could get fancy here and deliver something such as
   1367 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1368 	** but this is no time for a treasure hunt.
   1369 	*/
   1370 	if (offset != 0)
   1371 		tmp->TM_ZONE = wildabbr;
   1372 	else {
   1373 #ifdef ALL_STATE
   1374 		if (gmtptr == NULL)
   1375 			tmp->TM_ZONE = gmt;
   1376 		else	tmp->TM_ZONE = gmtptr->chars;
   1377 #endif /* defined ALL_STATE */
   1378 #ifndef ALL_STATE
   1379 		tmp->TM_ZONE = gmtptr->chars;
   1380 #endif /* State Farm */
   1381 	}
   1382 #endif /* defined TM_ZONE */
   1383 	return result;
   1384 }
   1385 
   1386 struct tm *
   1387 gmtime(timep)
   1388 const time_t * const	timep;
   1389 {
   1390 	return gmtsub(timep, 0L, &tm);
   1391 }
   1392 
   1393 /*
   1394 * Re-entrant version of gmtime.
   1395 */
   1396 
   1397 struct tm *
   1398 gmtime_r(timep, tmp)
   1399 const time_t * const	timep;
   1400 struct tm *		tmp;
   1401 {
   1402 	return gmtsub(timep, 0L, tmp);
   1403 }
   1404 
   1405 #ifdef STD_INSPIRED
   1406 
   1407 struct tm *
   1408 offtime(timep, offset)
   1409 const time_t * const	timep;
   1410 const long		offset;
   1411 {
   1412 	return gmtsub(timep, offset, &tm);
   1413 }
   1414 
   1415 #endif /* defined STD_INSPIRED */
   1416 
   1417 /*
   1418 ** Return the number of leap years through the end of the given year
   1419 ** where, to make the math easy, the answer for year zero is defined as zero.
   1420 */
   1421 
   1422 static int
   1423 leaps_thru_end_of(y)
   1424 register const int	y;
   1425 {
   1426 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1427 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1428 }
   1429 
   1430 static struct tm *
   1431 timesub(timep, offset, sp, tmp)
   1432 const time_t * const			timep;
   1433 const long				offset;
   1434 register const struct state * const	sp;
   1435 register struct tm * const		tmp;
   1436 {
   1437 	register const struct lsinfo *	lp;
   1438 	register time_t			tdays;
   1439 	register int			idays;	/* unsigned would be so 2003 */
   1440 	register long			rem;
   1441 	int				y;
   1442 	register const int *		ip;
   1443 	register long			corr;
   1444 	register int			hit;
   1445 	register int			i;
   1446 
   1447 	corr = 0;
   1448 	hit = 0;
   1449 #ifdef ALL_STATE
   1450 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1451 #endif /* defined ALL_STATE */
   1452 #ifndef ALL_STATE
   1453 	i = sp->leapcnt;
   1454 #endif /* State Farm */
   1455 	while (--i >= 0) {
   1456 		lp = &sp->lsis[i];
   1457 		if (*timep >= lp->ls_trans) {
   1458 			if (*timep == lp->ls_trans) {
   1459 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1460 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1461 				if (hit)
   1462 					while (i > 0 &&
   1463 						sp->lsis[i].ls_trans ==
   1464 						sp->lsis[i - 1].ls_trans + 1 &&
   1465 						sp->lsis[i].ls_corr ==
   1466 						sp->lsis[i - 1].ls_corr + 1) {
   1467 							++hit;
   1468 							--i;
   1469 					}
   1470 			}
   1471 			corr = lp->ls_corr;
   1472 			break;
   1473 		}
   1474 	}
   1475 	y = EPOCH_YEAR;
   1476 	tdays = *timep / SECSPERDAY;
   1477 	rem = *timep - tdays * SECSPERDAY;
   1478 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1479 		int		newy;
   1480 		register time_t	tdelta;
   1481 		register int	idelta;
   1482 		register int	leapdays;
   1483 
   1484 		tdelta = tdays / DAYSPERLYEAR;
   1485 		idelta = tdelta;
   1486 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1487 			return NULL;
   1488 		if (idelta == 0)
   1489 			idelta = (tdays < 0) ? -1 : 1;
   1490 		newy = y;
   1491 		if (increment_overflow(&newy, idelta))
   1492 			return NULL;
   1493 		leapdays = leaps_thru_end_of(newy - 1) -
   1494 			leaps_thru_end_of(y - 1);
   1495 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1496 		tdays -= leapdays;
   1497 		y = newy;
   1498 	}
   1499 	{
   1500 		register long	seconds;
   1501 
   1502 		seconds = tdays * SECSPERDAY + 0.5;
   1503 		tdays = seconds / SECSPERDAY;
   1504 		rem += seconds - tdays * SECSPERDAY;
   1505 	}
   1506 	/*
   1507 	** Given the range, we can now fearlessly cast...
   1508 	*/
   1509 	idays = tdays;
   1510 	rem += offset - corr;
   1511 	while (rem < 0) {
   1512 		rem += SECSPERDAY;
   1513 		--idays;
   1514 	}
   1515 	while (rem >= SECSPERDAY) {
   1516 		rem -= SECSPERDAY;
   1517 		++idays;
   1518 	}
   1519 	while (idays < 0) {
   1520 		if (increment_overflow(&y, -1))
   1521 			return NULL;
   1522 		idays += year_lengths[isleap(y)];
   1523 	}
   1524 	while (idays >= year_lengths[isleap(y)]) {
   1525 		idays -= year_lengths[isleap(y)];
   1526 		if (increment_overflow(&y, 1))
   1527 			return NULL;
   1528 	}
   1529 	tmp->tm_year = y;
   1530 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1531 		return NULL;
   1532 	tmp->tm_yday = idays;
   1533 	/*
   1534 	** The "extra" mods below avoid overflow problems.
   1535 	*/
   1536 	tmp->tm_wday = EPOCH_WDAY +
   1537 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1538 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1539 		leaps_thru_end_of(y - 1) -
   1540 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1541 		idays;
   1542 	tmp->tm_wday %= DAYSPERWEEK;
   1543 	if (tmp->tm_wday < 0)
   1544 		tmp->tm_wday += DAYSPERWEEK;
   1545 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1546 	rem %= SECSPERHOUR;
   1547 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1548 	/*
   1549 	** A positive leap second requires a special
   1550 	** representation. This uses "... ??:59:60" et seq.
   1551 	*/
   1552 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1553 	ip = mon_lengths[isleap(y)];
   1554 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1555 		idays -= ip[tmp->tm_mon];
   1556 	tmp->tm_mday = (int) (idays + 1);
   1557 	tmp->tm_isdst = 0;
   1558 #ifdef TM_GMTOFF
   1559 	tmp->TM_GMTOFF = offset;
   1560 #endif /* defined TM_GMTOFF */
   1561 	return tmp;
   1562 }
   1563 
   1564 char *
   1565 ctime(timep)
   1566 const time_t * const	timep;
   1567 {
   1568 /*
   1569 ** Section 4.12.3.2 of X3.159-1989 requires that
   1570 **	The ctime function converts the calendar time pointed to by timer
   1571 **	to local time in the form of a string. It is equivalent to
   1572 **		asctime(localtime(timer))
   1573 */
   1574 	return asctime(localtime(timep));
   1575 }
   1576 
   1577 char *
   1578 ctime_r(timep, buf)
   1579 const time_t * const	timep;
   1580 char *			buf;
   1581 {
   1582 	struct tm	mytm;
   1583 
   1584 	return asctime_r(localtime_r(timep, &mytm), buf);
   1585 }
   1586 
   1587 /*
   1588 ** Adapted from code provided by Robert Elz, who writes:
   1589 **	The "best" way to do mktime I think is based on an idea of Bob
   1590 **	Kridle's (so its said...) from a long time ago.
   1591 **	It does a binary search of the time_t space. Since time_t's are
   1592 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1593 **	would still be very reasonable).
   1594 */
   1595 
   1596 #ifndef WRONG
   1597 #define WRONG	(-1)
   1598 #endif /* !defined WRONG */
   1599 
   1600 /*
   1601 ** Simplified normalize logic courtesy Paul Eggert.
   1602 */
   1603 
   1604 static int
   1605 increment_overflow(number, delta)
   1606 int *	number;
   1607 int	delta;
   1608 {
   1609 	int	number0;
   1610 
   1611 	number0 = *number;
   1612 	*number += delta;
   1613 	return (*number < number0) != (delta < 0);
   1614 }
   1615 
   1616 static int
   1617 long_increment_overflow(number, delta)
   1618 long *	number;
   1619 int	delta;
   1620 {
   1621 	long	number0;
   1622 
   1623 	number0 = *number;
   1624 	*number += delta;
   1625 	return (*number < number0) != (delta < 0);
   1626 }
   1627 
   1628 static int
   1629 normalize_overflow(tensptr, unitsptr, base)
   1630 int * const	tensptr;
   1631 int * const	unitsptr;
   1632 const int	base;
   1633 {
   1634 	register int	tensdelta;
   1635 
   1636 	tensdelta = (*unitsptr >= 0) ?
   1637 		(*unitsptr / base) :
   1638 		(-1 - (-1 - *unitsptr) / base);
   1639 	*unitsptr -= tensdelta * base;
   1640 	return increment_overflow(tensptr, tensdelta);
   1641 }
   1642 
   1643 static int
   1644 long_normalize_overflow(tensptr, unitsptr, base)
   1645 long * const	tensptr;
   1646 int * const	unitsptr;
   1647 const int	base;
   1648 {
   1649 	register int	tensdelta;
   1650 
   1651 	tensdelta = (*unitsptr >= 0) ?
   1652 		(*unitsptr / base) :
   1653 		(-1 - (-1 - *unitsptr) / base);
   1654 	*unitsptr -= tensdelta * base;
   1655 	return long_increment_overflow(tensptr, tensdelta);
   1656 }
   1657 
   1658 static int
   1659 tmcomp(atmp, btmp)
   1660 register const struct tm * const atmp;
   1661 register const struct tm * const btmp;
   1662 {
   1663 	register int	result;
   1664 
   1665 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1666 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1667 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1668 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1669 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1670 			result = atmp->tm_sec - btmp->tm_sec;
   1671 	return result;
   1672 }
   1673 
   1674 static time_t
   1675 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1676 struct tm * const	tmp;
   1677 struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1678 const long		offset;
   1679 int * const		okayp;
   1680 const int		do_norm_secs;
   1681 {
   1682 	register const struct state *	sp;
   1683 	register int			dir;
   1684 	register int			i, j;
   1685 	register int			saved_seconds;
   1686 	register long			li;
   1687 	register time_t			lo;
   1688 	register time_t			hi;
   1689 	long				y;
   1690 	time_t				newt;
   1691 	time_t				t;
   1692 	struct tm			yourtm, mytm;
   1693 
   1694 	*okayp = FALSE;
   1695 	yourtm = *tmp;
   1696 	if (do_norm_secs) {
   1697 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1698 			SECSPERMIN))
   1699 				return WRONG;
   1700 	}
   1701 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1702 		return WRONG;
   1703 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1704 		return WRONG;
   1705 	y = yourtm.tm_year;
   1706 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1707 		return WRONG;
   1708 	/*
   1709 	** Turn y into an actual year number for now.
   1710 	** It is converted back to an offset from TM_YEAR_BASE later.
   1711 	*/
   1712 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1713 		return WRONG;
   1714 	while (yourtm.tm_mday <= 0) {
   1715 		if (long_increment_overflow(&y, -1))
   1716 			return WRONG;
   1717 		li = y + (1 < yourtm.tm_mon);
   1718 		yourtm.tm_mday += year_lengths[isleap(li)];
   1719 	}
   1720 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1721 		li = y + (1 < yourtm.tm_mon);
   1722 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1723 		if (long_increment_overflow(&y, 1))
   1724 			return WRONG;
   1725 	}
   1726 	for ( ; ; ) {
   1727 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1728 		if (yourtm.tm_mday <= i)
   1729 			break;
   1730 		yourtm.tm_mday -= i;
   1731 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1732 			yourtm.tm_mon = 0;
   1733 			if (long_increment_overflow(&y, 1))
   1734 				return WRONG;
   1735 		}
   1736 	}
   1737 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1738 		return WRONG;
   1739 	yourtm.tm_year = y;
   1740 	if (yourtm.tm_year != y)
   1741 		return WRONG;
   1742 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1743 		saved_seconds = 0;
   1744 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1745 		/*
   1746 		** We can't set tm_sec to 0, because that might push the
   1747 		** time below the minimum representable time.
   1748 		** Set tm_sec to 59 instead.
   1749 		** This assumes that the minimum representable time is
   1750 		** not in the same minute that a leap second was deleted from,
   1751 		** which is a safer assumption than using 58 would be.
   1752 		*/
   1753 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1754 			return WRONG;
   1755 		saved_seconds = yourtm.tm_sec;
   1756 		yourtm.tm_sec = SECSPERMIN - 1;
   1757 	} else {
   1758 		saved_seconds = yourtm.tm_sec;
   1759 		yourtm.tm_sec = 0;
   1760 	}
   1761 	/*
   1762 	** Do a binary search (this works whatever time_t's type is).
   1763 	*/
   1764 	if (!TYPE_SIGNED(time_t)) {
   1765 		lo = 0;
   1766 		hi = lo - 1;
   1767 	} else if (!TYPE_INTEGRAL(time_t)) {
   1768 		if (sizeof(time_t) > sizeof(float))
   1769 			hi = (time_t) DBL_MAX;
   1770 		else	hi = (time_t) FLT_MAX;
   1771 		lo = -hi;
   1772 	} else {
   1773 		lo = 1;
   1774 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1775 			lo *= 2;
   1776 		hi = -(lo + 1);
   1777 	}
   1778 	for ( ; ; ) {
   1779 		t = lo / 2 + hi / 2;
   1780 		if (t < lo)
   1781 			t = lo;
   1782 		else if (t > hi)
   1783 			t = hi;
   1784 		if ((*funcp)(&t, offset, &mytm) == NULL) {
   1785 			/*
   1786 			** Assume that t is too extreme to be represented in
   1787 			** a struct tm; arrange things so that it is less
   1788 			** extreme on the next pass.
   1789 			*/
   1790 			dir = (t > 0) ? 1 : -1;
   1791 		} else	dir = tmcomp(&mytm, &yourtm);
   1792 		if (dir != 0) {
   1793 			if (t == lo) {
   1794 				++t;
   1795 				if (t <= lo)
   1796 					return WRONG;
   1797 				++lo;
   1798 			} else if (t == hi) {
   1799 				--t;
   1800 				if (t >= hi)
   1801 					return WRONG;
   1802 				--hi;
   1803 			}
   1804 			if (lo > hi)
   1805 				return WRONG;
   1806 			if (dir > 0)
   1807 				hi = t;
   1808 			else	lo = t;
   1809 			continue;
   1810 		}
   1811 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1812 			break;
   1813 		/*
   1814 		** Right time, wrong type.
   1815 		** Hunt for right time, right type.
   1816 		** It's okay to guess wrong since the guess
   1817 		** gets checked.
   1818 		*/
   1819 		sp = (const struct state *)
   1820 			((funcp == localsub) ? lclptr : gmtptr);
   1821 #ifdef ALL_STATE
   1822 		if (sp == NULL)
   1823 			return WRONG;
   1824 #endif /* defined ALL_STATE */
   1825 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1826 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1827 				continue;
   1828 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1829 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1830 					continue;
   1831 				newt = t + sp->ttis[j].tt_gmtoff -
   1832 					sp->ttis[i].tt_gmtoff;
   1833 				if ((*funcp)(&newt, offset, &mytm) == NULL)
   1834 					continue;
   1835 				if (tmcomp(&mytm, &yourtm) != 0)
   1836 					continue;
   1837 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1838 					continue;
   1839 				/*
   1840 				** We have a match.
   1841 				*/
   1842 				t = newt;
   1843 				goto label;
   1844 			}
   1845 		}
   1846 		return WRONG;
   1847 	}
   1848 label:
   1849 	newt = t + saved_seconds;
   1850 	if ((newt < t) != (saved_seconds < 0))
   1851 		return WRONG;
   1852 	t = newt;
   1853 	if ((*funcp)(&t, offset, tmp))
   1854 		*okayp = TRUE;
   1855 	return t;
   1856 }
   1857 
   1858 static time_t
   1859 time2(tmp, funcp, offset, okayp)
   1860 struct tm * const	tmp;
   1861 struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1862 const long		offset;
   1863 int * const		okayp;
   1864 {
   1865 	time_t	t;
   1866 
   1867 	/*
   1868 	** First try without normalization of seconds
   1869 	** (in case tm_sec contains a value associated with a leap second).
   1870 	** If that fails, try with normalization of seconds.
   1871 	*/
   1872 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1873 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1874 }
   1875 
   1876 static time_t
   1877 time1(tmp, funcp, offset)
   1878 struct tm * const	tmp;
   1879 struct tm * (* const	funcp)(const time_t *, long, struct tm *);
   1880 const long		offset;
   1881 {
   1882 	register time_t			t;
   1883 	register const struct state *	sp;
   1884 	register int			samei, otheri;
   1885 	register int			sameind, otherind;
   1886 	register int			i;
   1887 	register int			nseen;
   1888 	int				seen[TZ_MAX_TYPES];
   1889 	int				types[TZ_MAX_TYPES];
   1890 	int				okay;
   1891 
   1892 	if (tmp->tm_isdst > 1)
   1893 		tmp->tm_isdst = 1;
   1894 	t = time2(tmp, funcp, offset, &okay);
   1895 #ifdef PCTS
   1896 	/*
   1897 	** PCTS code courtesy Grant Sullivan.
   1898 	*/
   1899 	if (okay)
   1900 		return t;
   1901 	if (tmp->tm_isdst < 0)
   1902 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1903 #endif /* defined PCTS */
   1904 #ifndef PCTS
   1905 	if (okay || tmp->tm_isdst < 0)
   1906 		return t;
   1907 #endif /* !defined PCTS */
   1908 	/*
   1909 	** We're supposed to assume that somebody took a time of one type
   1910 	** and did some math on it that yielded a "struct tm" that's bad.
   1911 	** We try to divine the type they started from and adjust to the
   1912 	** type they need.
   1913 	*/
   1914 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
   1915 #ifdef ALL_STATE
   1916 	if (sp == NULL)
   1917 		return WRONG;
   1918 #endif /* defined ALL_STATE */
   1919 	for (i = 0; i < sp->typecnt; ++i)
   1920 		seen[i] = FALSE;
   1921 	nseen = 0;
   1922 	for (i = sp->timecnt - 1; i >= 0; --i)
   1923 		if (!seen[sp->types[i]]) {
   1924 			seen[sp->types[i]] = TRUE;
   1925 			types[nseen++] = sp->types[i];
   1926 		}
   1927 	for (sameind = 0; sameind < nseen; ++sameind) {
   1928 		samei = types[sameind];
   1929 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1930 			continue;
   1931 		for (otherind = 0; otherind < nseen; ++otherind) {
   1932 			otheri = types[otherind];
   1933 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1934 				continue;
   1935 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1936 					sp->ttis[samei].tt_gmtoff;
   1937 			tmp->tm_isdst = !tmp->tm_isdst;
   1938 			t = time2(tmp, funcp, offset, &okay);
   1939 			if (okay)
   1940 				return t;
   1941 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1942 					sp->ttis[samei].tt_gmtoff;
   1943 			tmp->tm_isdst = !tmp->tm_isdst;
   1944 		}
   1945 	}
   1946 	return WRONG;
   1947 }
   1948 
   1949 time_t
   1950 mktime(tmp)
   1951 struct tm * const	tmp;
   1952 {
   1953 	tzset();
   1954 	return time1(tmp, localsub, 0L);
   1955 }
   1956 
   1957 #ifdef STD_INSPIRED
   1958 
   1959 time_t
   1960 timelocal(tmp)
   1961 struct tm * const	tmp;
   1962 {
   1963 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1964 	return mktime(tmp);
   1965 }
   1966 
   1967 time_t
   1968 timegm(tmp)
   1969 struct tm * const	tmp;
   1970 {
   1971 	tmp->tm_isdst = 0;
   1972 	return time1(tmp, gmtsub, 0L);
   1973 }
   1974 
   1975 time_t
   1976 timeoff(tmp, offset)
   1977 struct tm * const	tmp;
   1978 const long		offset;
   1979 {
   1980 	tmp->tm_isdst = 0;
   1981 	return time1(tmp, gmtsub, offset);
   1982 }
   1983 
   1984 #endif /* defined STD_INSPIRED */
   1985 
   1986 #ifdef CMUCS
   1987 
   1988 /*
   1989 ** The following is supplied for compatibility with
   1990 ** previous versions of the CMUCS runtime library.
   1991 */
   1992 
   1993 long
   1994 gtime(tmp)
   1995 struct tm * const	tmp;
   1996 {
   1997 	const time_t	t = mktime(tmp);
   1998 
   1999 	if (t == WRONG)
   2000 		return -1;
   2001 	return t;
   2002 }
   2003 
   2004 #endif /* defined CMUCS */
   2005 
   2006 /*
   2007 ** XXX--is the below the right way to conditionalize??
   2008 */
   2009 
   2010 #ifdef STD_INSPIRED
   2011 
   2012 /*
   2013 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2014 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2015 ** is not the case if we are accounting for leap seconds.
   2016 ** So, we provide the following conversion routines for use
   2017 ** when exchanging timestamps with POSIX conforming systems.
   2018 */
   2019 
   2020 static long
   2021 leapcorr(timep)
   2022 time_t *	timep;
   2023 {
   2024 	register struct state *		sp;
   2025 	register struct lsinfo *	lp;
   2026 	register int			i;
   2027 
   2028 	sp = lclptr;
   2029 	i = sp->leapcnt;
   2030 	while (--i >= 0) {
   2031 		lp = &sp->lsis[i];
   2032 		if (*timep >= lp->ls_trans)
   2033 			return lp->ls_corr;
   2034 	}
   2035 	return 0;
   2036 }
   2037 
   2038 time_t
   2039 time2posix(t)
   2040 time_t	t;
   2041 {
   2042 	tzset();
   2043 	return t - leapcorr(&t);
   2044 }
   2045 
   2046 time_t
   2047 posix2time(t)
   2048 time_t	t;
   2049 {
   2050 	time_t	x;
   2051 	time_t	y;
   2052 
   2053 	tzset();
   2054 	/*
   2055 	** For a positive leap second hit, the result
   2056 	** is not unique. For a negative leap second
   2057 	** hit, the corresponding time doesn't exist,
   2058 	** so we return an adjacent second.
   2059 	*/
   2060 	x = t + leapcorr(&t);
   2061 	y = x - leapcorr(&x);
   2062 	if (y < t) {
   2063 		do {
   2064 			x++;
   2065 			y = x - leapcorr(&x);
   2066 		} while (y < t);
   2067 		if (t != y)
   2068 			return x - 1;
   2069 	} else if (y > t) {
   2070 		do {
   2071 			--x;
   2072 			y = x - leapcorr(&x);
   2073 		} while (y > t);
   2074 		if (t != y)
   2075 			return x + 1;
   2076 	}
   2077 	return x;
   2078 }
   2079 
   2080 #endif /* defined STD_INSPIRED */
   2081