Home | History | Annotate | Download | only in qemu
      1 /*
      2  * internal execution defines for qemu
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #ifndef _EXEC_ALL_H_
     21 #define _EXEC_ALL_H_
     22 
     23 #include "qemu-common.h"
     24 
     25 /* allow to see translation results - the slowdown should be negligible, so we leave it */
     26 #define DEBUG_DISAS
     27 
     28 /* is_jmp field values */
     29 #define DISAS_NEXT    0 /* next instruction can be analyzed */
     30 #define DISAS_JUMP    1 /* only pc was modified dynamically */
     31 #define DISAS_UPDATE  2 /* cpu state was modified dynamically */
     32 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
     33 
     34 typedef struct TranslationBlock TranslationBlock;
     35 
     36 /* XXX: make safe guess about sizes */
     37 #define MAX_OP_PER_INSTR 96
     38 /* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
     39 #define MAX_OPC_PARAM 10
     40 #define OPC_BUF_SIZE 2048
     41 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
     42 
     43 /* Maximum size a TCG op can expand to.  This is complicated because a
     44    single op may require several host instructions and register reloads.
     45    For now take a wild guess at 192 bytes, which should allow at least
     46    a couple of fixup instructions per argument.  */
     47 #define TCG_MAX_OP_SIZE 192
     48 
     49 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
     50 
     51 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
     52 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
     53 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
     54 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
     55 extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
     56 extern target_ulong gen_opc_jump_pc[2];
     57 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
     58 
     59 #include "qemu-log.h"
     60 
     61 void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
     62 void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
     63 void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
     64                  unsigned long searched_pc, int pc_pos, void *puc);
     65 
     66 unsigned long code_gen_max_block_size(void);
     67 void cpu_gen_init(void);
     68 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
     69                  int *gen_code_size_ptr);
     70 int cpu_restore_state(struct TranslationBlock *tb,
     71                       CPUState *env, unsigned long searched_pc,
     72                       void *puc);
     73 int cpu_restore_state_copy(struct TranslationBlock *tb,
     74                            CPUState *env, unsigned long searched_pc,
     75                            void *puc);
     76 void cpu_resume_from_signal(CPUState *env1, void *puc);
     77 void cpu_io_recompile(CPUState *env, void *retaddr);
     78 TranslationBlock *tb_gen_code(CPUState *env,
     79                               target_ulong pc, target_ulong cs_base, int flags,
     80                               int cflags);
     81 void cpu_exec_init(CPUState *env);
     82 void QEMU_NORETURN cpu_loop_exit(void);
     83 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
     84 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
     85                                    int is_cpu_write_access);
     86 void tb_invalidate_page_range(target_ulong start, target_ulong end);
     87 void tlb_flush_page(CPUState *env, target_ulong addr);
     88 void tlb_flush(CPUState *env, int flush_global);
     89 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
     90                       target_phys_addr_t paddr, int prot,
     91                       int mmu_idx, int is_softmmu);
     92 static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
     93                                target_phys_addr_t paddr, int prot,
     94                                int mmu_idx, int is_softmmu)
     95 {
     96     if (prot & PAGE_READ)
     97         prot |= PAGE_EXEC;
     98     return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
     99 }
    100 
    101 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
    102 
    103 #define CODE_GEN_PHYS_HASH_BITS     15
    104 #define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
    105 
    106 #define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
    107 
    108 /* estimated block size for TB allocation */
    109 /* XXX: use a per code average code fragment size and modulate it
    110    according to the host CPU */
    111 #if defined(CONFIG_SOFTMMU)
    112 #define CODE_GEN_AVG_BLOCK_SIZE 128
    113 #else
    114 #define CODE_GEN_AVG_BLOCK_SIZE 64
    115 #endif
    116 
    117 #if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__)
    118 #define USE_DIRECT_JUMP
    119 #endif
    120 
    121 struct TranslationBlock {
    122     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
    123     target_ulong cs_base; /* CS base for this block */
    124     uint64_t flags; /* flags defining in which context the code was generated */
    125     uint16_t size;      /* size of target code for this block (1 <=
    126                            size <= TARGET_PAGE_SIZE) */
    127     uint16_t cflags;    /* compile flags */
    128 #define CF_COUNT_MASK  0x7fff
    129 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
    130 
    131     uint8_t *tc_ptr;    /* pointer to the translated code */
    132     /* next matching tb for physical address. */
    133     struct TranslationBlock *phys_hash_next;
    134     /* first and second physical page containing code. The lower bit
    135        of the pointer tells the index in page_next[] */
    136     struct TranslationBlock *page_next[2];
    137     target_ulong page_addr[2];
    138 
    139     /* the following data are used to directly call another TB from
    140        the code of this one. */
    141     uint16_t tb_next_offset[2]; /* offset of original jump target */
    142 #ifdef USE_DIRECT_JUMP
    143     uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
    144 #else
    145     unsigned long tb_next[2]; /* address of jump generated code */
    146 #endif
    147     /* list of TBs jumping to this one. This is a circular list using
    148        the two least significant bits of the pointers to tell what is
    149        the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
    150        jmp_first */
    151     struct TranslationBlock *jmp_next[2];
    152     struct TranslationBlock *jmp_first;
    153 #ifdef CONFIG_TRACE
    154     struct BBRec *bb_rec;
    155     uint64_t prev_time;
    156 #endif
    157 
    158 #ifdef CONFIG_MEMCHECK
    159     /* Maps PCs in this translation block to corresponding PCs in guest address
    160      * space. The array is arranged in such way, that every even entry contains
    161      * PC in the translation block, followed by an odd entry that contains
    162      * guest PC corresponding to that PC in the translation block. This
    163      * arrangement is set by tcg_gen_code_common that initializes this array
    164      * when performing guest code translation. */
    165     target_ulong*   tpc2gpc;
    166     /* Number of pairs (pc_tb, pc_guest) in tpc2gpc array. */
    167     unsigned int    tpc2gpc_pairs;
    168 #endif  // CONFIG_MEMCHECK
    169 
    170     uint32_t icount;
    171 };
    172 
    173 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
    174 {
    175     target_ulong tmp;
    176     tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
    177     return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
    178 }
    179 
    180 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
    181 {
    182     target_ulong tmp;
    183     tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
    184     return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
    185 	    | (tmp & TB_JMP_ADDR_MASK));
    186 }
    187 
    188 static inline unsigned int tb_phys_hash_func(unsigned long pc)
    189 {
    190     return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
    191 }
    192 
    193 #ifdef CONFIG_MEMCHECK
    194 /* Gets translated PC for a given (translated PC, guest PC) pair.
    195  * Return:
    196  *  Translated PC, or NULL if pair index was too large.
    197  */
    198 static inline target_ulong
    199 tb_get_tb_pc(const TranslationBlock* tb, unsigned int pair)
    200 {
    201     return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ?
    202                                                     tb->tpc2gpc[pair * 2] : 0;
    203 }
    204 
    205 /* Gets guest PC for a given (translated PC, guest PC) pair.
    206  * Return:
    207  *  Guest PC, or NULL if pair index was too large.
    208  */
    209 static inline target_ulong
    210 tb_get_guest_pc(const TranslationBlock* tb, unsigned int pair)
    211 {
    212     return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ?
    213             tb->tpc2gpc[pair * 2 + 1] : 0;
    214 }
    215 
    216 /* Gets guest PC for a given translated PC.
    217  * Return:
    218  *  Guest PC for a given translated PC, or NULL if there was no pair, matching
    219  *  translated PC in tb's tpc2gpc array.
    220  */
    221 static inline target_ulong
    222 tb_search_guest_pc_from_tb_pc(const TranslationBlock* tb, target_ulong tb_pc)
    223 {
    224     if (tb->tpc2gpc != NULL && tb->tpc2gpc_pairs != 0) {
    225         unsigned int m_min = 0;
    226         unsigned int m_max = (tb->tpc2gpc_pairs - 1) << 1;
    227         /* Make sure that tb_pc is within TB array. */
    228         if (tb_pc < tb->tpc2gpc[0]) {
    229             return 0;
    230         }
    231         while (m_min <= m_max) {
    232             const unsigned int m = ((m_min + m_max) >> 1) & ~1;
    233             if (tb_pc < tb->tpc2gpc[m]) {
    234                 m_max = m - 2;
    235             } else if (m == m_max || tb_pc < tb->tpc2gpc[m + 2]) {
    236                 return tb->tpc2gpc[m + 1];
    237             } else {
    238                 m_min = m + 2;
    239             }
    240         }
    241         return tb->tpc2gpc[m_max + 1];
    242     }
    243     return 0;
    244 }
    245 #endif  // CONFIG_MEMCHECK
    246 
    247 TranslationBlock *tb_alloc(target_ulong pc);
    248 void tb_free(TranslationBlock *tb);
    249 void tb_flush(CPUState *env);
    250 void tb_link_phys(TranslationBlock *tb,
    251                   target_ulong phys_pc, target_ulong phys_page2);
    252 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
    253 
    254 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
    255 extern uint8_t *code_gen_ptr;
    256 extern int code_gen_max_blocks;
    257 
    258 #if defined(USE_DIRECT_JUMP)
    259 
    260 #if defined(_ARCH_PPC)
    261 extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
    262 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
    263 #elif defined(__i386__) || defined(__x86_64__)
    264 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
    265 {
    266     /* patch the branch destination */
    267     *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
    268     /* no need to flush icache explicitly */
    269 }
    270 #elif defined(__arm__)
    271 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
    272 {
    273 #if QEMU_GNUC_PREREQ(4, 1)
    274     void __clear_cache(char *beg, char *end);
    275 #else
    276     register unsigned long _beg __asm ("a1");
    277     register unsigned long _end __asm ("a2");
    278     register unsigned long _flg __asm ("a3");
    279 #endif
    280 
    281     /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
    282     *(uint32_t *)jmp_addr =
    283         (*(uint32_t *)jmp_addr & ~0xffffff)
    284         | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
    285 
    286 #if QEMU_GNUC_PREREQ(4, 1)
    287     __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
    288 #else
    289     /* flush icache */
    290     _beg = jmp_addr;
    291     _end = jmp_addr + 4;
    292     _flg = 0;
    293     __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
    294 #endif
    295 }
    296 #endif
    297 
    298 static inline void tb_set_jmp_target(TranslationBlock *tb,
    299                                      int n, unsigned long addr)
    300 {
    301     unsigned long offset;
    302 
    303     offset = tb->tb_jmp_offset[n];
    304     tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
    305     offset = tb->tb_jmp_offset[n + 2];
    306     if (offset != 0xffff)
    307         tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
    308 }
    309 
    310 #else
    311 
    312 /* set the jump target */
    313 static inline void tb_set_jmp_target(TranslationBlock *tb,
    314                                      int n, unsigned long addr)
    315 {
    316     tb->tb_next[n] = addr;
    317 }
    318 
    319 #endif
    320 
    321 static inline void tb_add_jump(TranslationBlock *tb, int n,
    322                                TranslationBlock *tb_next)
    323 {
    324     /* NOTE: this test is only needed for thread safety */
    325     if (!tb->jmp_next[n]) {
    326         /* patch the native jump address */
    327         tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
    328 
    329         /* add in TB jmp circular list */
    330         tb->jmp_next[n] = tb_next->jmp_first;
    331         tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
    332     }
    333 }
    334 
    335 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
    336 
    337 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
    338 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
    339 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
    340 
    341 #include "qemu-lock.h"
    342 
    343 extern spinlock_t tb_lock;
    344 
    345 extern int tb_invalidated_flag;
    346 
    347 #if !defined(CONFIG_USER_ONLY)
    348 
    349 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
    350               void *retaddr);
    351 
    352 #include "softmmu_defs.h"
    353 
    354 #define ACCESS_TYPE (NB_MMU_MODES + 1)
    355 #define MEMSUFFIX _code
    356 #define env cpu_single_env
    357 
    358 #define DATA_SIZE 1
    359 #include "softmmu_header.h"
    360 
    361 #define DATA_SIZE 2
    362 #include "softmmu_header.h"
    363 
    364 #define DATA_SIZE 4
    365 #include "softmmu_header.h"
    366 
    367 #define DATA_SIZE 8
    368 #include "softmmu_header.h"
    369 
    370 #undef ACCESS_TYPE
    371 #undef MEMSUFFIX
    372 #undef env
    373 
    374 #endif
    375 
    376 #if defined(CONFIG_USER_ONLY)
    377 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
    378 {
    379     return addr;
    380 }
    381 #else
    382 /* NOTE: this function can trigger an exception */
    383 /* NOTE2: the returned address is not exactly the physical address: it
    384    is the offset relative to phys_ram_base */
    385 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
    386 {
    387     int mmu_idx, page_index, pd;
    388     void *p;
    389 
    390     page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    391     mmu_idx = cpu_mmu_index(env1);
    392     if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
    393                  (addr & TARGET_PAGE_MASK))) {
    394         ldub_code(addr);
    395     }
    396     pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
    397     if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
    398 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
    399         do_unassigned_access(addr, 0, 1, 0, 4);
    400 #else
    401         cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
    402 #endif
    403     }
    404     p = (void *)(unsigned long)addr
    405         + env1->tlb_table[mmu_idx][page_index].addend;
    406     return qemu_ram_addr_from_host(p);
    407 }
    408 
    409 /* Deterministic execution requires that IO only be performed on the last
    410    instruction of a TB so that interrupts take effect immediately.  */
    411 static inline int can_do_io(CPUState *env)
    412 {
    413     if (!use_icount)
    414         return 1;
    415 
    416     /* If not executing code then assume we are ok.  */
    417     if (!env->current_tb)
    418         return 1;
    419 
    420     return env->can_do_io != 0;
    421 }
    422 #endif
    423 
    424 #ifdef CONFIG_KQEMU
    425 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
    426 
    427 #define MSR_QPI_COMMBASE 0xfabe0010
    428 
    429 int kqemu_init(CPUState *env);
    430 int kqemu_cpu_exec(CPUState *env);
    431 void kqemu_flush_page(CPUState *env, target_ulong addr);
    432 void kqemu_flush(CPUState *env, int global);
    433 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
    434 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
    435 void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
    436                         ram_addr_t phys_offset);
    437 void kqemu_cpu_interrupt(CPUState *env);
    438 void kqemu_record_dump(void);
    439 
    440 extern uint32_t kqemu_comm_base;
    441 
    442 extern ram_addr_t kqemu_phys_ram_size;
    443 extern uint8_t *kqemu_phys_ram_base;
    444 
    445 static inline int kqemu_is_ok(CPUState *env)
    446 {
    447     return(env->kqemu_enabled &&
    448            (env->cr[0] & CR0_PE_MASK) &&
    449            !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
    450            (env->eflags & IF_MASK) &&
    451            !(env->eflags & VM_MASK) &&
    452            (env->kqemu_enabled == 2 ||
    453             ((env->hflags & HF_CPL_MASK) == 3 &&
    454              (env->eflags & IOPL_MASK) != IOPL_MASK)));
    455 }
    456 
    457 #endif
    458 
    459 typedef void (CPUDebugExcpHandler)(CPUState *env);
    460 
    461 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
    462 
    463 /* vl.c */
    464 extern int singlestep;
    465 
    466 #endif
    467