Home | History | Annotate | Download | only in platform
      1 /*
      2  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
      3  * Copyright (C) 2009 Google Inc. All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
     15  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     17  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
     18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     22  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include "config.h"
     28 #include "Timer.h"
     29 
     30 #include "SharedTimer.h"
     31 #include "ThreadGlobalData.h"
     32 #include "ThreadTimers.h"
     33 #include <limits.h>
     34 #include <limits>
     35 #include <math.h>
     36 #include <wtf/CurrentTime.h>
     37 #include <wtf/HashSet.h>
     38 #include <wtf/Vector.h>
     39 
     40 using namespace std;
     41 
     42 namespace WebCore {
     43 
     44 // Timers are stored in a heap data structure, used to implement a priority queue.
     45 // This allows us to efficiently determine which timer needs to fire the soonest.
     46 // Then we set a single shared system timer to fire at that time.
     47 //
     48 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
     49 
     50 // Simple accessors to thread-specific data.
     51 static Vector<TimerBase*>& timerHeap()
     52 {
     53     return threadGlobalData().threadTimers().timerHeap();
     54 }
     55 
     56 // Class to represent elements in the heap when calling the standard library heap algorithms.
     57 // Maintains the m_heapIndex value in the timers themselves, which allows us to do efficient
     58 // modification of the heap.
     59 class TimerHeapElement {
     60 public:
     61     explicit TimerHeapElement(int i)
     62         : m_index(i)
     63         , m_timer(timerHeap()[m_index])
     64     {
     65         checkConsistency();
     66     }
     67 
     68     TimerHeapElement(const TimerHeapElement&);
     69     TimerHeapElement& operator=(const TimerHeapElement&);
     70 
     71     TimerBase* timer() const { return m_timer; }
     72 
     73     void checkConsistency() const
     74     {
     75         ASSERT(m_index >= 0);
     76         ASSERT(m_index < static_cast<int>(timerHeap().size()));
     77     }
     78 
     79 private:
     80     TimerHeapElement();
     81 
     82     int m_index;
     83     TimerBase* m_timer;
     84 };
     85 
     86 inline TimerHeapElement::TimerHeapElement(const TimerHeapElement& o)
     87     : m_index(-1), m_timer(o.timer())
     88 {
     89 }
     90 
     91 inline TimerHeapElement& TimerHeapElement::operator=(const TimerHeapElement& o)
     92 {
     93     TimerBase* t = o.timer();
     94     m_timer = t;
     95     if (m_index != -1) {
     96         checkConsistency();
     97         timerHeap()[m_index] = t;
     98         t->m_heapIndex = m_index;
     99     }
    100     return *this;
    101 }
    102 
    103 inline bool operator<(const TimerHeapElement& a, const TimerHeapElement& b)
    104 {
    105     // The comparisons below are "backwards" because the heap puts the largest
    106     // element first and we want the lowest time to be the first one in the heap.
    107     double aFireTime = a.timer()->m_nextFireTime;
    108     double bFireTime = b.timer()->m_nextFireTime;
    109     if (bFireTime != aFireTime)
    110         return bFireTime < aFireTime;
    111 
    112     // We need to look at the difference of the insertion orders instead of comparing the two
    113     // outright in case of overflow.
    114     unsigned difference = a.timer()->m_heapInsertionOrder - b.timer()->m_heapInsertionOrder;
    115     return difference < UINT_MAX / 2;
    116 }
    117 
    118 // ----------------
    119 
    120 // Class to represent iterators in the heap when calling the standard library heap algorithms.
    121 // Returns TimerHeapElement for elements in the heap rather than the TimerBase pointers themselves.
    122 class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerHeapElement, int> {
    123 public:
    124     TimerHeapIterator() : m_index(-1) { }
    125     TimerHeapIterator(int i) : m_index(i) { checkConsistency(); }
    126 
    127     TimerHeapIterator& operator++() { checkConsistency(); ++m_index; checkConsistency(); return *this; }
    128     TimerHeapIterator operator++(int) { checkConsistency(); checkConsistency(1); return m_index++; }
    129 
    130     TimerHeapIterator& operator--() { checkConsistency(); --m_index; checkConsistency(); return *this; }
    131     TimerHeapIterator operator--(int) { checkConsistency(); checkConsistency(-1); return m_index--; }
    132 
    133     TimerHeapIterator& operator+=(int i) { checkConsistency(); m_index += i; checkConsistency(); return *this; }
    134     TimerHeapIterator& operator-=(int i) { checkConsistency(); m_index -= i; checkConsistency(); return *this; }
    135 
    136     TimerHeapElement operator*() const { return TimerHeapElement(m_index); }
    137     TimerHeapElement operator[](int i) const { return TimerHeapElement(m_index + i); }
    138 
    139     int index() const { return m_index; }
    140 
    141     void checkConsistency(int offset = 0) const
    142     {
    143         ASSERT_UNUSED(offset, m_index + offset >= 0);
    144         ASSERT_UNUSED(offset, m_index + offset <= static_cast<int>(timerHeap().size()));
    145     }
    146 
    147 private:
    148     int m_index;
    149 };
    150 
    151 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.index() == b.index(); }
    152 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.index() != b.index(); }
    153 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.index() < b.index(); }
    154 
    155 inline TimerHeapIterator operator+(TimerHeapIterator a, int b) { return a.index() + b; }
    156 inline TimerHeapIterator operator+(int a, TimerHeapIterator b) { return a + b.index(); }
    157 
    158 inline TimerHeapIterator operator-(TimerHeapIterator a, int b) { return a.index() - b; }
    159 inline int operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.index() - b.index(); }
    160 
    161 // ----------------
    162 
    163 TimerBase::TimerBase()
    164     : m_nextFireTime(0)
    165     , m_repeatInterval(0)
    166     , m_heapIndex(-1)
    167 #ifndef NDEBUG
    168     , m_thread(currentThread())
    169 #endif
    170 {
    171 }
    172 
    173 TimerBase::~TimerBase()
    174 {
    175     stop();
    176     ASSERT(!inHeap());
    177 }
    178 
    179 void TimerBase::start(double nextFireInterval, double repeatInterval)
    180 {
    181     ASSERT(m_thread == currentThread());
    182 
    183     m_repeatInterval = repeatInterval;
    184     setNextFireTime(currentTime() + nextFireInterval);
    185 }
    186 
    187 void TimerBase::stop()
    188 {
    189     ASSERT(m_thread == currentThread());
    190 
    191     m_repeatInterval = 0;
    192     setNextFireTime(0);
    193 
    194     ASSERT(m_nextFireTime == 0);
    195     ASSERT(m_repeatInterval == 0);
    196     ASSERT(!inHeap());
    197 }
    198 
    199 double TimerBase::nextFireInterval() const
    200 {
    201     ASSERT(isActive());
    202     double current = currentTime();
    203     if (m_nextFireTime < current)
    204         return 0;
    205     return m_nextFireTime - current;
    206 }
    207 
    208 inline void TimerBase::checkHeapIndex() const
    209 {
    210     ASSERT(!timerHeap().isEmpty());
    211     ASSERT(m_heapIndex >= 0);
    212     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
    213     ASSERT(timerHeap()[m_heapIndex] == this);
    214 }
    215 
    216 inline void TimerBase::checkConsistency() const
    217 {
    218     // Timers should be in the heap if and only if they have a non-zero next fire time.
    219     ASSERT(inHeap() == (m_nextFireTime != 0));
    220     if (inHeap())
    221         checkHeapIndex();
    222 }
    223 
    224 void TimerBase::heapDecreaseKey()
    225 {
    226     ASSERT(m_nextFireTime != 0);
    227     checkHeapIndex();
    228     push_heap(TimerHeapIterator(0), TimerHeapIterator(m_heapIndex + 1));
    229     checkHeapIndex();
    230 }
    231 
    232 inline void TimerBase::heapDelete()
    233 {
    234     ASSERT(m_nextFireTime == 0);
    235     heapPop();
    236     timerHeap().removeLast();
    237     m_heapIndex = -1;
    238 }
    239 
    240 void TimerBase::heapDeleteMin()
    241 {
    242     ASSERT(m_nextFireTime == 0);
    243     heapPopMin();
    244     timerHeap().removeLast();
    245     m_heapIndex = -1;
    246 }
    247 
    248 inline void TimerBase::heapIncreaseKey()
    249 {
    250     ASSERT(m_nextFireTime != 0);
    251     heapPop();
    252     heapDecreaseKey();
    253 }
    254 
    255 inline void TimerBase::heapInsert()
    256 {
    257     ASSERT(!inHeap());
    258     timerHeap().append(this);
    259     m_heapIndex = timerHeap().size() - 1;
    260     heapDecreaseKey();
    261 }
    262 
    263 inline void TimerBase::heapPop()
    264 {
    265     // Temporarily force this timer to have the minimum key so we can pop it.
    266     double fireTime = m_nextFireTime;
    267     m_nextFireTime = -numeric_limits<double>::infinity();
    268     heapDecreaseKey();
    269     heapPopMin();
    270     m_nextFireTime = fireTime;
    271 }
    272 
    273 void TimerBase::heapPopMin()
    274 {
    275     ASSERT(this == timerHeap().first());
    276     checkHeapIndex();
    277     pop_heap(TimerHeapIterator(0), TimerHeapIterator(timerHeap().size()));
    278     checkHeapIndex();
    279     ASSERT(this == timerHeap().last());
    280 }
    281 
    282 void TimerBase::setNextFireTime(double newTime)
    283 {
    284     ASSERT(m_thread == currentThread());
    285 
    286     // Keep heap valid while changing the next-fire time.
    287     double oldTime = m_nextFireTime;
    288     if (oldTime != newTime) {
    289         m_nextFireTime = newTime;
    290         static unsigned currentHeapInsertionOrder;
    291         m_heapInsertionOrder = currentHeapInsertionOrder++;
    292 
    293         bool wasFirstTimerInHeap = m_heapIndex == 0;
    294 
    295         if (oldTime == 0)
    296             heapInsert();
    297         else if (newTime == 0)
    298             heapDelete();
    299         else if (newTime < oldTime)
    300             heapDecreaseKey();
    301         else
    302             heapIncreaseKey();
    303 
    304         bool isFirstTimerInHeap = m_heapIndex == 0;
    305 
    306         if (wasFirstTimerInHeap || isFirstTimerInHeap)
    307             threadGlobalData().threadTimers().updateSharedTimer();
    308     }
    309 
    310     checkConsistency();
    311 }
    312 
    313 void TimerBase::fireTimersInNestedEventLoop()
    314 {
    315     // Redirect to ThreadTimers.
    316     threadGlobalData().threadTimers().fireTimersInNestedEventLoop();
    317 }
    318 
    319 } // namespace WebCore
    320