Home | History | Annotate | Download | only in libcameraservice
      1 /*
      2 **
      3 ** Copyright 2008, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 #define LOG_TAG "FakeCamera"
     19 #include <utils/Log.h>
     20 
     21 #include <string.h>
     22 #include <stdlib.h>
     23 #include <utils/String8.h>
     24 
     25 #include "FakeCamera.h"
     26 
     27 
     28 namespace android {
     29 
     30 // TODO: All this rgb to yuv should probably be in a util class.
     31 
     32 // TODO: I think something is wrong in this class because the shadow is kBlue
     33 // and the square color should alternate between kRed and kGreen. However on the
     34 // emulator screen these are all shades of gray. Y seems ok but the U and V are
     35 // probably not.
     36 
     37 static int tables_initialized = 0;
     38 uint8_t *gYTable, *gCbTable, *gCrTable;
     39 
     40 static int
     41 clamp(int  x)
     42 {
     43     if (x > 255) return 255;
     44     if (x < 0)   return 0;
     45     return x;
     46 }
     47 
     48 /* the equation used by the video code to translate YUV to RGB looks like this
     49  *
     50  *    Y  = (Y0 - 16)*k0
     51  *    Cb = Cb0 - 128
     52  *    Cr = Cr0 - 128
     53  *
     54  *    G = ( Y - k1*Cr - k2*Cb )
     55  *    R = ( Y + k3*Cr )
     56  *    B = ( Y + k4*Cb )
     57  *
     58  */
     59 
     60 static const double  k0 = 1.164;
     61 static const double  k1 = 0.813;
     62 static const double  k2 = 0.391;
     63 static const double  k3 = 1.596;
     64 static const double  k4 = 2.018;
     65 
     66 /* let's try to extract the value of Y
     67  *
     68  *   G + k1/k3*R + k2/k4*B = Y*( 1 + k1/k3 + k2/k4 )
     69  *
     70  *   Y  = ( G + k1/k3*R + k2/k4*B ) / (1 + k1/k3 + k2/k4)
     71  *   Y0 = ( G0 + k1/k3*R0 + k2/k4*B0 ) / ((1 + k1/k3 + k2/k4)*k0) + 16
     72  *
     73  * let define:
     74  *   kYr = k1/k3
     75  *   kYb = k2/k4
     76  *   kYy = k0 * ( 1 + kYr + kYb )
     77  *
     78  * we have:
     79  *    Y  = ( G + kYr*R + kYb*B )
     80  *    Y0 = clamp[ Y/kYy + 16 ]
     81  */
     82 
     83 static const double kYr = k1/k3;
     84 static const double kYb = k2/k4;
     85 static const double kYy = k0*( 1. + kYr + kYb );
     86 
     87 static void
     88 initYtab( void )
     89 {
     90     const  int imax = (int)( (kYr + kYb)*(31 << 2) + (61 << 3) + 0.1 );
     91     int    i;
     92 
     93     gYTable = (uint8_t *)malloc(imax);
     94 
     95     for(i=0; i<imax; i++) {
     96         int  x = (int)(i/kYy + 16.5);
     97         if (x < 16) x = 16;
     98         else if (x > 235) x = 235;
     99         gYTable[i] = (uint8_t) x;
    100     }
    101 }
    102 
    103 /*
    104  *   the source is RGB565, so adjust for 8-bit range of input values:
    105  *
    106  *   G = (pixels >> 3) & 0xFC;
    107  *   R = (pixels >> 8) & 0xF8;
    108  *   B = (pixels & 0x1f) << 3;
    109  *
    110  *   R2 = (pixels >> 11)      R = R2*8
    111  *   B2 = (pixels & 0x1f)     B = B2*8
    112  *
    113  *   kYr*R = kYr2*R2 =>  kYr2 = kYr*8
    114  *   kYb*B = kYb2*B2 =>  kYb2 = kYb*8
    115  *
    116  *   we want to use integer multiplications:
    117  *
    118  *   SHIFT1 = 9
    119  *
    120  *   (ALPHA*R2) >> SHIFT1 == R*kYr  =>  ALPHA = kYr*8*(1 << SHIFT1)
    121  *
    122  *   ALPHA = kYr*(1 << (SHIFT1+3))
    123  *   BETA  = kYb*(1 << (SHIFT1+3))
    124  */
    125 
    126 static const int  SHIFT1  = 9;
    127 static const int  ALPHA   = (int)( kYr*(1 << (SHIFT1+3)) + 0.5 );
    128 static const int  BETA    = (int)( kYb*(1 << (SHIFT1+3)) + 0.5 );
    129 
    130 /*
    131  *  now let's try to get the values of Cb and Cr
    132  *
    133  *  R-B = (k3*Cr - k4*Cb)
    134  *
    135  *    k3*Cr = k4*Cb + (R-B)
    136  *    k4*Cb = k3*Cr - (R-B)
    137  *
    138  *  R-G = (k1+k3)*Cr + k2*Cb
    139  *      = (k1+k3)*Cr + k2/k4*(k3*Cr - (R-B)/k0)
    140  *      = (k1 + k3 + k2*k3/k4)*Cr - k2/k4*(R-B)
    141  *
    142  *  kRr*Cr = (R-G) + kYb*(R-B)
    143  *
    144  *  Cr  = ((R-G) + kYb*(R-B))/kRr
    145  *  Cr0 = clamp(Cr + 128)
    146  */
    147 
    148 static const double  kRr = (k1 + k3 + k2*k3/k4);
    149 
    150 static void
    151 initCrtab( void )
    152 {
    153     uint8_t *pTable;
    154     int i;
    155 
    156     gCrTable = (uint8_t *)malloc(768*2);
    157 
    158     pTable = gCrTable + 384;
    159     for(i=-384; i<384; i++)
    160         pTable[i] = (uint8_t) clamp( i/kRr + 128.5 );
    161 }
    162 
    163 /*
    164  *  B-G = (k2 + k4)*Cb + k1*Cr
    165  *      = (k2 + k4)*Cb + k1/k3*(k4*Cb + (R-B))
    166  *      = (k2 + k4 + k1*k4/k3)*Cb + k1/k3*(R-B)
    167  *
    168  *  kBb*Cb = (B-G) - kYr*(R-B)
    169  *
    170  *  Cb   = ((B-G) - kYr*(R-B))/kBb
    171  *  Cb0  = clamp(Cb + 128)
    172  *
    173  */
    174 
    175 static const double  kBb = (k2 + k4 + k1*k4/k3);
    176 
    177 static void
    178 initCbtab( void )
    179 {
    180     uint8_t *pTable;
    181     int i;
    182 
    183     gCbTable = (uint8_t *)malloc(768*2);
    184 
    185     pTable = gCbTable + 384;
    186     for(i=-384; i<384; i++)
    187         pTable[i] = (uint8_t) clamp( i/kBb + 128.5 );
    188 }
    189 
    190 /*
    191  *   SHIFT2 = 16
    192  *
    193  *   DELTA = kYb*(1 << SHIFT2)
    194  *   GAMMA = kYr*(1 << SHIFT2)
    195  */
    196 
    197 static const int  SHIFT2 = 16;
    198 static const int  DELTA  = kYb*(1 << SHIFT2);
    199 static const int  GAMMA  = kYr*(1 << SHIFT2);
    200 
    201 int32_t ccrgb16toyuv_wo_colorkey(uint8_t *rgb16, uint8_t *yuv420,
    202         uint32_t *param, uint8_t *table[])
    203 {
    204     uint16_t *inputRGB = (uint16_t*)rgb16;
    205     uint8_t *outYUV = yuv420;
    206     int32_t width_dst = param[0];
    207     int32_t height_dst = param[1];
    208     int32_t pitch_dst = param[2];
    209     int32_t mheight_dst = param[3];
    210     int32_t pitch_src = param[4];
    211     uint8_t *y_tab = table[0];
    212     uint8_t *cb_tab = table[1];
    213     uint8_t *cr_tab = table[2];
    214 
    215     int32_t size16 = pitch_dst*mheight_dst;
    216     int32_t i,j,count;
    217     int32_t ilimit,jlimit;
    218     uint8_t *tempY,*tempU,*tempV;
    219     uint16_t pixels;
    220     int   tmp;
    221 uint32_t temp;
    222 
    223     tempY = outYUV;
    224     tempU = outYUV + (height_dst * pitch_dst);
    225     tempV = tempU + 1;
    226 
    227     jlimit = height_dst;
    228     ilimit = width_dst;
    229 
    230     for(j=0; j<jlimit; j+=1)
    231     {
    232         for (i=0; i<ilimit; i+=2)
    233         {
    234             int32_t   G_ds = 0, B_ds = 0, R_ds = 0;
    235             uint8_t   y0, y1, u, v;
    236 
    237             pixels =  inputRGB[i];
    238             temp = (BETA*(pixels & 0x001F) + ALPHA*(pixels>>11) );
    239             y0   = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)];
    240 
    241             G_ds    += (pixels>>1) & 0x03E0;
    242             B_ds    += (pixels<<5) & 0x03E0;
    243             R_ds    += (pixels>>6) & 0x03E0;
    244 
    245             pixels =  inputRGB[i+1];
    246             temp = (BETA*(pixels & 0x001F) + ALPHA*(pixels>>11) );
    247             y1   = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)];
    248 
    249             G_ds    += (pixels>>1) & 0x03E0;
    250             B_ds    += (pixels<<5) & 0x03E0;
    251             R_ds    += (pixels>>6) & 0x03E0;
    252 
    253             R_ds >>= 1;
    254             B_ds >>= 1;
    255             G_ds >>= 1;
    256 
    257             tmp = R_ds - B_ds;
    258 
    259             u = cb_tab[(((B_ds-G_ds)<<SHIFT2) - GAMMA*tmp)>>(SHIFT2+2)];
    260             v = cr_tab[(((R_ds-G_ds)<<SHIFT2) + DELTA*tmp)>>(SHIFT2+2)];
    261 
    262             tempY[0] = y0;
    263             tempY[1] = y1;
    264             tempY += 2;
    265 
    266             if ((j&1) == 0) {
    267                 tempU[0] = u;
    268                 tempV[0] = v;
    269                 tempU += 2;
    270                 tempV += 2;
    271             }
    272         }
    273 
    274         inputRGB += pitch_src;
    275     }
    276 
    277     return 1;
    278 }
    279 
    280 #define min(a,b) ((a)<(b)?(a):(b))
    281 #define max(a,b) ((a)>(b)?(a):(b))
    282 
    283 static void convert_rgb16_to_yuv420(uint8_t *rgb, uint8_t *yuv, int width, int height)
    284 {
    285     if (!tables_initialized) {
    286         initYtab();
    287         initCrtab();
    288         initCbtab();
    289         tables_initialized = 1;
    290     }
    291 
    292     uint32_t param[6];
    293     param[0] = (uint32_t) width;
    294     param[1] = (uint32_t) height;
    295     param[2] = (uint32_t) width;
    296     param[3] = (uint32_t) height;
    297     param[4] = (uint32_t) width;
    298     param[5] = (uint32_t) 0;
    299 
    300     uint8_t *table[3];
    301     table[0] = gYTable;
    302     table[1] = gCbTable + 384;
    303     table[2] = gCrTable + 384;
    304 
    305     ccrgb16toyuv_wo_colorkey(rgb, yuv, param, table);
    306 }
    307 
    308 const int FakeCamera::kRed;
    309 const int FakeCamera::kGreen;
    310 const int FakeCamera::kBlue;
    311 
    312 FakeCamera::FakeCamera(int width, int height)
    313           : mTmpRgb16Buffer(0)
    314 {
    315     setSize(width, height);
    316 }
    317 
    318 FakeCamera::~FakeCamera()
    319 {
    320     delete[] mTmpRgb16Buffer;
    321 }
    322 
    323 void FakeCamera::setSize(int width, int height)
    324 {
    325     mWidth = width;
    326     mHeight = height;
    327     mCounter = 0;
    328     mCheckX = 0;
    329     mCheckY = 0;
    330 
    331     // This will cause it to be reallocated on the next call
    332     // to getNextFrameAsYuv420().
    333     delete[] mTmpRgb16Buffer;
    334     mTmpRgb16Buffer = 0;
    335 }
    336 
    337 void FakeCamera::getNextFrameAsRgb565(uint16_t *buffer)
    338 {
    339     int size = mWidth / 10;
    340 
    341     drawCheckerboard(buffer, size);
    342 
    343     int x = ((mCounter*3)&255);
    344     if(x>128) x = 255 - x;
    345     int y = ((mCounter*5)&255);
    346     if(y>128) y = 255 - y;
    347 
    348     drawSquare(buffer, x*size/32, y*size/32, (size*5)>>1, (mCounter&0x100)?kRed:kGreen, kBlue);
    349 
    350     mCounter++;
    351 }
    352 
    353 void FakeCamera::getNextFrameAsYuv420(uint8_t *buffer)
    354 {
    355     if (mTmpRgb16Buffer == 0)
    356         mTmpRgb16Buffer = new uint16_t[mWidth * mHeight];
    357 
    358     getNextFrameAsRgb565(mTmpRgb16Buffer);
    359     convert_rgb16_to_yuv420((uint8_t*)mTmpRgb16Buffer, buffer, mWidth, mHeight);
    360 }
    361 
    362 void FakeCamera::drawSquare(uint16_t *dst, int x, int y, int size, int color, int shadow)
    363 {
    364     int square_xstop, square_ystop, shadow_xstop, shadow_ystop;
    365 
    366     square_xstop = min(mWidth, x+size);
    367     square_ystop = min(mHeight, y+size);
    368     shadow_xstop = min(mWidth, x+size+(size/4));
    369     shadow_ystop = min(mHeight, y+size+(size/4));
    370 
    371     // Do the shadow.
    372     uint16_t *sh = &dst[(y+(size/4))*mWidth];
    373     for (int j = y + (size/4); j < shadow_ystop; j++) {
    374         for (int i = x + (size/4); i < shadow_xstop; i++) {
    375             sh[i] &= shadow;
    376         }
    377         sh += mWidth;
    378     }
    379 
    380     // Draw the square.
    381     uint16_t *sq = &dst[y*mWidth];
    382     for (int j = y; j < square_ystop; j++) {
    383         for (int i = x; i < square_xstop; i++) {
    384             sq[i] = color;
    385         }
    386         sq += mWidth;
    387     }
    388 }
    389 
    390 void FakeCamera::drawCheckerboard(uint16_t *dst, int size)
    391 {
    392     bool black = true;
    393 
    394     if((mCheckX/size)&1)
    395         black = false;
    396     if((mCheckY/size)&1)
    397         black = !black;
    398 
    399     int county = mCheckY%size;
    400     int checkxremainder = mCheckX%size;
    401 
    402     for(int y=0;y<mHeight;y++) {
    403         int countx = checkxremainder;
    404         bool current = black;
    405         for(int x=0;x<mWidth;x++) {
    406             dst[y*mWidth+x] = current?0:0xffff;
    407             if(countx++ >= size) {
    408                 countx=0;
    409                 current = !current;
    410             }
    411         }
    412         if(county++ >= size) {
    413             county=0;
    414             black = !black;
    415         }
    416     }
    417     mCheckX += 3;
    418     mCheckY++;
    419 }
    420 
    421 
    422 void FakeCamera::dump(int fd) const
    423 {
    424     const size_t SIZE = 256;
    425     char buffer[SIZE];
    426     String8 result;
    427     snprintf(buffer, 255, " width x height (%d x %d), counter (%d), check x-y coordinate(%d, %d)\n", mWidth, mHeight, mCounter, mCheckX, mCheckY);
    428     result.append(buffer);
    429     ::write(fd, result.string(), result.size());
    430 }
    431 
    432 
    433 }; // namespace android
    434