Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea, Bill Scherer, and Michael Scott with
      3  * assistance from members of JCP JSR-166 Expert Group and released to
      4  * the public domain, as explained at
      5  * http://creativecommons.org/licenses/publicdomain
      6  */
      7 
      8 package java.util.concurrent;
      9 
     10 import java.util.AbstractQueue;
     11 import java.util.Collection;
     12 import java.util.Collections;
     13 import java.util.Iterator;
     14 import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
     15 import java.util.concurrent.locks.LockSupport;
     16 import java.util.concurrent.locks.ReentrantLock;
     17 
     18 // BEGIN android-note
     19 // removed link to collections framework docs
     20 // END android-note
     21 
     22 /**
     23  * A {@linkplain BlockingQueue blocking queue} in which each insert
     24  * operation must wait for a corresponding remove operation by another
     25  * thread, and vice versa.  A synchronous queue does not have any
     26  * internal capacity, not even a capacity of one.  You cannot
     27  * <tt>peek</tt> at a synchronous queue because an element is only
     28  * present when you try to remove it; you cannot insert an element
     29  * (using any method) unless another thread is trying to remove it;
     30  * you cannot iterate as there is nothing to iterate.  The
     31  * <em>head</em> of the queue is the element that the first queued
     32  * inserting thread is trying to add to the queue; if there is no such
     33  * queued thread then no element is available for removal and
     34  * <tt>poll()</tt> will return <tt>null</tt>.  For purposes of other
     35  * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
     36  * <tt>SynchronousQueue</tt> acts as an empty collection.  This queue
     37  * does not permit <tt>null</tt> elements.
     38  *
     39  * <p>Synchronous queues are similar to rendezvous channels used in
     40  * CSP and Ada. They are well suited for handoff designs, in which an
     41  * object running in one thread must sync up with an object running
     42  * in another thread in order to hand it some information, event, or
     43  * task.
     44  *
     45  * <p> This class supports an optional fairness policy for ordering
     46  * waiting producer and consumer threads.  By default, this ordering
     47  * is not guaranteed. However, a queue constructed with fairness set
     48  * to <tt>true</tt> grants threads access in FIFO order.
     49  *
     50  * <p>This class and its iterator implement all of the
     51  * <em>optional</em> methods of the {@link Collection} and {@link
     52  * Iterator} interfaces.
     53  *
     54  * @since 1.5
     55  * @author Doug Lea and Bill Scherer and Michael Scott
     56  * @param <E> the type of elements held in this collection
     57  */
     58 public class SynchronousQueue<E> extends AbstractQueue<E>
     59     implements BlockingQueue<E>, java.io.Serializable {
     60     private static final long serialVersionUID = -3223113410248163686L;
     61 
     62     /*
     63      * This class implements extensions of the dual stack and dual
     64      * queue algorithms described in "Nonblocking Concurrent Objects
     65      * with Condition Synchronization", by W. N. Scherer III and
     66      * M. L. Scott.  18th Annual Conf. on Distributed Computing,
     67      * Oct. 2004 (see also
     68      * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
     69      * The (Lifo) stack is used for non-fair mode, and the (Fifo)
     70      * queue for fair mode. The performance of the two is generally
     71      * similar. Fifo usually supports higher throughput under
     72      * contention but Lifo maintains higher thread locality in common
     73      * applications.
     74      *
     75      * A dual queue (and similarly stack) is one that at any given
     76      * time either holds "data" -- items provided by put operations,
     77      * or "requests" -- slots representing take operations, or is
     78      * empty. A call to "fulfill" (i.e., a call requesting an item
     79      * from a queue holding data or vice versa) dequeues a
     80      * complementary node.  The most interesting feature of these
     81      * queues is that any operation can figure out which mode the
     82      * queue is in, and act accordingly without needing locks.
     83      *
     84      * Both the queue and stack extend abstract class Transferer
     85      * defining the single method transfer that does a put or a
     86      * take. These are unified into a single method because in dual
     87      * data structures, the put and take operations are symmetrical,
     88      * so nearly all code can be combined. The resulting transfer
     89      * methods are on the long side, but are easier to follow than
     90      * they would be if broken up into nearly-duplicated parts.
     91      *
     92      * The queue and stack data structures share many conceptual
     93      * similarities but very few concrete details. For simplicity,
     94      * they are kept distinct so that they can later evolve
     95      * separately.
     96      *
     97      * The algorithms here differ from the versions in the above paper
     98      * in extending them for use in synchronous queues, as well as
     99      * dealing with cancellation. The main differences include:
    100      *
    101      *  1. The original algorithms used bit-marked pointers, but
    102      *     the ones here use mode bits in nodes, leading to a number
    103      *     of further adaptations.
    104      *  2. SynchronousQueues must block threads waiting to become
    105      *     fulfilled.
    106      *  3. Support for cancellation via timeout and interrupts,
    107      *     including cleaning out cancelled nodes/threads
    108      *     from lists to avoid garbage retention and memory depletion.
    109      *
    110      * Blocking is mainly accomplished using LockSupport park/unpark,
    111      * except that nodes that appear to be the next ones to become
    112      * fulfilled first spin a bit (on multiprocessors only). On very
    113      * busy synchronous queues, spinning can dramatically improve
    114      * throughput. And on less busy ones, the amount of spinning is
    115      * small enough not to be noticeable.
    116      *
    117      * Cleaning is done in different ways in queues vs stacks.  For
    118      * queues, we can almost always remove a node immediately in O(1)
    119      * time (modulo retries for consistency checks) when it is
    120      * cancelled. But if it may be pinned as the current tail, it must
    121      * wait until some subsequent cancellation. For stacks, we need a
    122      * potentially O(n) traversal to be sure that we can remove the
    123      * node, but this can run concurrently with other threads
    124      * accessing the stack.
    125      *
    126      * While garbage collection takes care of most node reclamation
    127      * issues that otherwise complicate nonblocking algorithms, care
    128      * is taken to "forget" references to data, other nodes, and
    129      * threads that might be held on to long-term by blocked
    130      * threads. In cases where setting to null would otherwise
    131      * conflict with main algorithms, this is done by changing a
    132      * node's link to now point to the node itself. This doesn't arise
    133      * much for Stack nodes (because blocked threads do not hang on to
    134      * old head pointers), but references in Queue nodes must be
    135      * aggressively forgotten to avoid reachability of everything any
    136      * node has ever referred to since arrival.
    137      */
    138 
    139     /**
    140      * Shared internal API for dual stacks and queues.
    141      */
    142     static abstract class Transferer {
    143         /**
    144          * Performs a put or take.
    145          *
    146          * @param e if non-null, the item to be handed to a consumer;
    147          *          if null, requests that transfer return an item
    148          *          offered by producer.
    149          * @param timed if this operation should timeout
    150          * @param nanos the timeout, in nanoseconds
    151          * @return if non-null, the item provided or received; if null,
    152          *         the operation failed due to timeout or interrupt --
    153          *         the caller can distinguish which of these occurred
    154          *         by checking Thread.interrupted.
    155          */
    156         abstract Object transfer(Object e, boolean timed, long nanos);
    157     }
    158 
    159     /** The number of CPUs, for spin control */
    160     static final int NCPUS = Runtime.getRuntime().availableProcessors();
    161 
    162     /**
    163      * The number of times to spin before blocking in timed waits.
    164      * The value is empirically derived -- it works well across a
    165      * variety of processors and OSes. Empirically, the best value
    166      * seems not to vary with number of CPUs (beyond 2) so is just
    167      * a constant.
    168      */
    169     static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
    170 
    171     /**
    172      * The number of times to spin before blocking in untimed waits.
    173      * This is greater than timed value because untimed waits spin
    174      * faster since they don't need to check times on each spin.
    175      */
    176     static final int maxUntimedSpins = maxTimedSpins * 16;
    177 
    178     /**
    179      * The number of nanoseconds for which it is faster to spin
    180      * rather than to use timed park. A rough estimate suffices.
    181      */
    182     static final long spinForTimeoutThreshold = 1000L;
    183 
    184     /** Dual stack */
    185     static final class TransferStack extends Transferer {
    186         /*
    187          * This extends Scherer-Scott dual stack algorithm, differing,
    188          * among other ways, by using "covering" nodes rather than
    189          * bit-marked pointers: Fulfilling operations push on marker
    190          * nodes (with FULFILLING bit set in mode) to reserve a spot
    191          * to match a waiting node.
    192          */
    193 
    194         /* Modes for SNodes, ORed together in node fields */
    195         /** Node represents an unfulfilled consumer */
    196         static final int REQUEST    = 0;
    197         /** Node represents an unfulfilled producer */
    198         static final int DATA       = 1;
    199         /** Node is fulfilling another unfulfilled DATA or REQUEST */
    200         static final int FULFILLING = 2;
    201 
    202         /** Return true if m has fulfilling bit set */
    203         static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
    204 
    205         /** Node class for TransferStacks. */
    206         static final class SNode {
    207             volatile SNode next;        // next node in stack
    208             volatile SNode match;       // the node matched to this
    209             volatile Thread waiter;     // to control park/unpark
    210             Object item;                // data; or null for REQUESTs
    211             int mode;
    212             // Note: item and mode fields don't need to be volatile
    213             // since they are always written before, and read after,
    214             // other volatile/atomic operations.
    215 
    216             SNode(Object item) {
    217                 this.item = item;
    218             }
    219 
    220             static final AtomicReferenceFieldUpdater<SNode, SNode>
    221                 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
    222                 (SNode.class, SNode.class, "next");
    223 
    224             boolean casNext(SNode cmp, SNode val) {
    225                 return (cmp == next &&
    226                         nextUpdater.compareAndSet(this, cmp, val));
    227             }
    228 
    229             static final AtomicReferenceFieldUpdater<SNode, SNode>
    230                 matchUpdater = AtomicReferenceFieldUpdater.newUpdater
    231                 (SNode.class, SNode.class, "match");
    232 
    233             /**
    234              * Tries to match node s to this node, if so, waking up thread.
    235              * Fulfillers call tryMatch to identify their waiters.
    236              * Waiters block until they have been matched.
    237              *
    238              * @param s the node to match
    239              * @return true if successfully matched to s
    240              */
    241             boolean tryMatch(SNode s) {
    242                 if (match == null &&
    243                     matchUpdater.compareAndSet(this, null, s)) {
    244                     Thread w = waiter;
    245                     if (w != null) {    // waiters need at most one unpark
    246                         waiter = null;
    247                         LockSupport.unpark(w);
    248                     }
    249                     return true;
    250                 }
    251                 return match == s;
    252             }
    253 
    254             /**
    255              * Tries to cancel a wait by matching node to itself.
    256              */
    257             void tryCancel() {
    258                 matchUpdater.compareAndSet(this, null, this);
    259             }
    260 
    261             boolean isCancelled() {
    262                 return match == this;
    263             }
    264         }
    265 
    266         /** The head (top) of the stack */
    267         volatile SNode head;
    268 
    269         static final AtomicReferenceFieldUpdater<TransferStack, SNode>
    270             headUpdater = AtomicReferenceFieldUpdater.newUpdater
    271             (TransferStack.class,  SNode.class, "head");
    272 
    273         boolean casHead(SNode h, SNode nh) {
    274             return h == head && headUpdater.compareAndSet(this, h, nh);
    275         }
    276 
    277         /**
    278          * Creates or resets fields of a node. Called only from transfer
    279          * where the node to push on stack is lazily created and
    280          * reused when possible to help reduce intervals between reads
    281          * and CASes of head and to avoid surges of garbage when CASes
    282          * to push nodes fail due to contention.
    283          */
    284         static SNode snode(SNode s, Object e, SNode next, int mode) {
    285             if (s == null) s = new SNode(e);
    286             s.mode = mode;
    287             s.next = next;
    288             return s;
    289         }
    290 
    291         /**
    292          * Puts or takes an item.
    293          */
    294         Object transfer(Object e, boolean timed, long nanos) {
    295             /*
    296              * Basic algorithm is to loop trying one of three actions:
    297              *
    298              * 1. If apparently empty or already containing nodes of same
    299              *    mode, try to push node on stack and wait for a match,
    300              *    returning it, or null if cancelled.
    301              *
    302              * 2. If apparently containing node of complementary mode,
    303              *    try to push a fulfilling node on to stack, match
    304              *    with corresponding waiting node, pop both from
    305              *    stack, and return matched item. The matching or
    306              *    unlinking might not actually be necessary because of
    307              *    other threads performing action 3:
    308              *
    309              * 3. If top of stack already holds another fulfilling node,
    310              *    help it out by doing its match and/or pop
    311              *    operations, and then continue. The code for helping
    312              *    is essentially the same as for fulfilling, except
    313              *    that it doesn't return the item.
    314              */
    315 
    316             SNode s = null; // constructed/reused as needed
    317             int mode = (e == null)? REQUEST : DATA;
    318 
    319             for (;;) {
    320                 SNode h = head;
    321                 if (h == null || h.mode == mode) {  // empty or same-mode
    322                     if (timed && nanos <= 0) {      // can't wait
    323                         if (h != null && h.isCancelled())
    324                             casHead(h, h.next);     // pop cancelled node
    325                         else
    326                             return null;
    327                     } else if (casHead(h, s = snode(s, e, h, mode))) {
    328                         SNode m = awaitFulfill(s, timed, nanos);
    329                         if (m == s) {               // wait was cancelled
    330                             clean(s);
    331                             return null;
    332                         }
    333                         if ((h = head) != null && h.next == s)
    334                             casHead(h, s.next);     // help s's fulfiller
    335                         return mode == REQUEST? m.item : s.item;
    336                     }
    337                 } else if (!isFulfilling(h.mode)) { // try to fulfill
    338                     if (h.isCancelled())            // already cancelled
    339                         casHead(h, h.next);         // pop and retry
    340                     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
    341                         for (;;) { // loop until matched or waiters disappear
    342                             SNode m = s.next;       // m is s's match
    343                             if (m == null) {        // all waiters are gone
    344                                 casHead(s, null);   // pop fulfill node
    345                                 s = null;           // use new node next time
    346                                 break;              // restart main loop
    347                             }
    348                             SNode mn = m.next;
    349                             if (m.tryMatch(s)) {
    350                                 casHead(s, mn);     // pop both s and m
    351                                 return (mode == REQUEST)? m.item : s.item;
    352                             } else                  // lost match
    353                                 s.casNext(m, mn);   // help unlink
    354                         }
    355                     }
    356                 } else {                            // help a fulfiller
    357                     SNode m = h.next;               // m is h's match
    358                     if (m == null)                  // waiter is gone
    359                         casHead(h, null);           // pop fulfilling node
    360                     else {
    361                         SNode mn = m.next;
    362                         if (m.tryMatch(h))          // help match
    363                             casHead(h, mn);         // pop both h and m
    364                         else                        // lost match
    365                             h.casNext(m, mn);       // help unlink
    366                     }
    367                 }
    368             }
    369         }
    370 
    371         /**
    372          * Spins/blocks until node s is matched by a fulfill operation.
    373          *
    374          * @param s the waiting node
    375          * @param timed true if timed wait
    376          * @param nanos timeout value
    377          * @return matched node, or s if cancelled
    378          */
    379         SNode awaitFulfill(SNode s, boolean timed, long nanos) {
    380             /*
    381              * When a node/thread is about to block, it sets its waiter
    382              * field and then rechecks state at least one more time
    383              * before actually parking, thus covering race vs
    384              * fulfiller noticing that waiter is non-null so should be
    385              * woken.
    386              *
    387              * When invoked by nodes that appear at the point of call
    388              * to be at the head of the stack, calls to park are
    389              * preceded by spins to avoid blocking when producers and
    390              * consumers are arriving very close in time.  This can
    391              * happen enough to bother only on multiprocessors.
    392              *
    393              * The order of checks for returning out of main loop
    394              * reflects fact that interrupts have precedence over
    395              * normal returns, which have precedence over
    396              * timeouts. (So, on timeout, one last check for match is
    397              * done before giving up.) Except that calls from untimed
    398              * SynchronousQueue.{poll/offer} don't check interrupts
    399              * and don't wait at all, so are trapped in transfer
    400              * method rather than calling awaitFulfill.
    401              */
    402             long lastTime = (timed)? System.nanoTime() : 0;
    403             Thread w = Thread.currentThread();
    404             SNode h = head;
    405             int spins = (shouldSpin(s)?
    406                          (timed? maxTimedSpins : maxUntimedSpins) : 0);
    407             for (;;) {
    408                 if (w.isInterrupted())
    409                     s.tryCancel();
    410                 SNode m = s.match;
    411                 if (m != null)
    412                     return m;
    413                 if (timed) {
    414                     long now = System.nanoTime();
    415                     nanos -= now - lastTime;
    416                     lastTime = now;
    417                     if (nanos <= 0) {
    418                         s.tryCancel();
    419                         continue;
    420                     }
    421                 }
    422                 if (spins > 0)
    423                     spins = shouldSpin(s)? (spins-1) : 0;
    424                 else if (s.waiter == null)
    425                     s.waiter = w; // establish waiter so can park next iter
    426                 else if (!timed)
    427                     LockSupport.park(this);
    428                 else if (nanos > spinForTimeoutThreshold)
    429                     LockSupport.parkNanos(this, nanos);
    430             }
    431         }
    432 
    433         /**
    434          * Returns true if node s is at head or there is an active
    435          * fulfiller.
    436          */
    437         boolean shouldSpin(SNode s) {
    438             SNode h = head;
    439             return (h == s || h == null || isFulfilling(h.mode));
    440         }
    441 
    442         /**
    443          * Unlinks s from the stack.
    444          */
    445         void clean(SNode s) {
    446             s.item = null;   // forget item
    447             s.waiter = null; // forget thread
    448 
    449             /*
    450              * At worst we may need to traverse entire stack to unlink
    451              * s. If there are multiple concurrent calls to clean, we
    452              * might not see s if another thread has already removed
    453              * it. But we can stop when we see any node known to
    454              * follow s. We use s.next unless it too is cancelled, in
    455              * which case we try the node one past. We don't check any
    456              * further because we don't want to doubly traverse just to
    457              * find sentinel.
    458              */
    459 
    460             SNode past = s.next;
    461             if (past != null && past.isCancelled())
    462                 past = past.next;
    463 
    464             // Absorb cancelled nodes at head
    465             SNode p;
    466             while ((p = head) != null && p != past && p.isCancelled())
    467                 casHead(p, p.next);
    468 
    469             // Unsplice embedded nodes
    470             while (p != null && p != past) {
    471                 SNode n = p.next;
    472                 if (n != null && n.isCancelled())
    473                     p.casNext(n, n.next);
    474                 else
    475                     p = n;
    476             }
    477         }
    478     }
    479 
    480     /** Dual Queue */
    481     static final class TransferQueue extends Transferer {
    482         /*
    483          * This extends Scherer-Scott dual queue algorithm, differing,
    484          * among other ways, by using modes within nodes rather than
    485          * marked pointers. The algorithm is a little simpler than
    486          * that for stacks because fulfillers do not need explicit
    487          * nodes, and matching is done by CAS'ing QNode.item field
    488          * from non-null to null (for put) or vice versa (for take).
    489          */
    490 
    491         /** Node class for TransferQueue. */
    492         static final class QNode {
    493             volatile QNode next;          // next node in queue
    494             volatile Object item;         // CAS'ed to or from null
    495             volatile Thread waiter;       // to control park/unpark
    496             final boolean isData;
    497 
    498             QNode(Object item, boolean isData) {
    499                 this.item = item;
    500                 this.isData = isData;
    501             }
    502 
    503             static final AtomicReferenceFieldUpdater<QNode, QNode>
    504                 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
    505                 (QNode.class, QNode.class, "next");
    506 
    507             boolean casNext(QNode cmp, QNode val) {
    508                 return (next == cmp &&
    509                         nextUpdater.compareAndSet(this, cmp, val));
    510             }
    511 
    512             static final AtomicReferenceFieldUpdater<QNode, Object>
    513                 itemUpdater = AtomicReferenceFieldUpdater.newUpdater
    514                 (QNode.class, Object.class, "item");
    515 
    516             boolean casItem(Object cmp, Object val) {
    517                 return (item == cmp &&
    518                         itemUpdater.compareAndSet(this, cmp, val));
    519             }
    520 
    521             /**
    522              * Tries to cancel by CAS'ing ref to this as item.
    523              */
    524             void tryCancel(Object cmp) {
    525                 itemUpdater.compareAndSet(this, cmp, this);
    526             }
    527 
    528             boolean isCancelled() {
    529                 return item == this;
    530             }
    531 
    532             /**
    533              * Returns true if this node is known to be off the queue
    534              * because its next pointer has been forgotten due to
    535              * an advanceHead operation.
    536              */
    537             boolean isOffList() {
    538                 return next == this;
    539             }
    540         }
    541 
    542         /** Head of queue */
    543         transient volatile QNode head;
    544         /** Tail of queue */
    545         transient volatile QNode tail;
    546         /**
    547          * Reference to a cancelled node that might not yet have been
    548          * unlinked from queue because it was the last inserted node
    549          * when it cancelled.
    550          */
    551         transient volatile QNode cleanMe;
    552 
    553         TransferQueue() {
    554             QNode h = new QNode(null, false); // initialize to dummy node.
    555             head = h;
    556             tail = h;
    557         }
    558 
    559         static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
    560             headUpdater = AtomicReferenceFieldUpdater.newUpdater
    561             (TransferQueue.class,  QNode.class, "head");
    562 
    563         /**
    564          * Tries to cas nh as new head; if successful, unlink
    565          * old head's next node to avoid garbage retention.
    566          */
    567         void advanceHead(QNode h, QNode nh) {
    568             if (h == head && headUpdater.compareAndSet(this, h, nh))
    569                 h.next = h; // forget old next
    570         }
    571 
    572         static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
    573             tailUpdater = AtomicReferenceFieldUpdater.newUpdater
    574             (TransferQueue.class, QNode.class, "tail");
    575 
    576         /**
    577          * Tries to cas nt as new tail.
    578          */
    579         void advanceTail(QNode t, QNode nt) {
    580             if (tail == t)
    581                 tailUpdater.compareAndSet(this, t, nt);
    582         }
    583 
    584         static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
    585             cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
    586             (TransferQueue.class, QNode.class, "cleanMe");
    587 
    588         /**
    589          * Tries to CAS cleanMe slot.
    590          */
    591         boolean casCleanMe(QNode cmp, QNode val) {
    592             return (cleanMe == cmp &&
    593                     cleanMeUpdater.compareAndSet(this, cmp, val));
    594         }
    595 
    596         /**
    597          * Puts or takes an item.
    598          */
    599         Object transfer(Object e, boolean timed, long nanos) {
    600             /* Basic algorithm is to loop trying to take either of
    601              * two actions:
    602              *
    603              * 1. If queue apparently empty or holding same-mode nodes,
    604              *    try to add node to queue of waiters, wait to be
    605              *    fulfilled (or cancelled) and return matching item.
    606              *
    607              * 2. If queue apparently contains waiting items, and this
    608              *    call is of complementary mode, try to fulfill by CAS'ing
    609              *    item field of waiting node and dequeuing it, and then
    610              *    returning matching item.
    611              *
    612              * In each case, along the way, check for and try to help
    613              * advance head and tail on behalf of other stalled/slow
    614              * threads.
    615              *
    616              * The loop starts off with a null check guarding against
    617              * seeing uninitialized head or tail values. This never
    618              * happens in current SynchronousQueue, but could if
    619              * callers held non-volatile/final ref to the
    620              * transferer. The check is here anyway because it places
    621              * null checks at top of loop, which is usually faster
    622              * than having them implicitly interspersed.
    623              */
    624 
    625             QNode s = null; // constructed/reused as needed
    626             boolean isData = (e != null);
    627 
    628             for (;;) {
    629                 QNode t = tail;
    630                 QNode h = head;
    631                 if (t == null || h == null)         // saw uninitialized value
    632                     continue;                       // spin
    633 
    634                 if (h == t || t.isData == isData) { // empty or same-mode
    635                     QNode tn = t.next;
    636                     if (t != tail)                  // inconsistent read
    637                         continue;
    638                     if (tn != null) {               // lagging tail
    639                         advanceTail(t, tn);
    640                         continue;
    641                     }
    642                     if (timed && nanos <= 0)        // can't wait
    643                         return null;
    644                     if (s == null)
    645                         s = new QNode(e, isData);
    646                     if (!t.casNext(null, s))        // failed to link in
    647                         continue;
    648 
    649                     advanceTail(t, s);              // swing tail and wait
    650                     Object x = awaitFulfill(s, e, timed, nanos);
    651                     if (x == s) {                   // wait was cancelled
    652                         clean(t, s);
    653                         return null;
    654                     }
    655 
    656                     if (!s.isOffList()) {           // not already unlinked
    657                         advanceHead(t, s);          // unlink if head
    658                         if (x != null)              // and forget fields
    659                             s.item = s;
    660                         s.waiter = null;
    661                     }
    662                     return (x != null)? x : e;
    663 
    664                 } else {                            // complementary-mode
    665                     QNode m = h.next;               // node to fulfill
    666                     if (t != tail || m == null || h != head)
    667                         continue;                   // inconsistent read
    668 
    669                     Object x = m.item;
    670                     if (isData == (x != null) ||    // m already fulfilled
    671                         x == m ||                   // m cancelled
    672                         !m.casItem(x, e)) {         // lost CAS
    673                         advanceHead(h, m);          // dequeue and retry
    674                         continue;
    675                     }
    676 
    677                     advanceHead(h, m);              // successfully fulfilled
    678                     LockSupport.unpark(m.waiter);
    679                     return (x != null)? x : e;
    680                 }
    681             }
    682         }
    683 
    684         /**
    685          * Spins/blocks until node s is fulfilled.
    686          *
    687          * @param s the waiting node
    688          * @param e the comparison value for checking match
    689          * @param timed true if timed wait
    690          * @param nanos timeout value
    691          * @return matched item, or s if cancelled
    692          */
    693         Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
    694             /* Same idea as TransferStack.awaitFulfill */
    695             long lastTime = (timed)? System.nanoTime() : 0;
    696             Thread w = Thread.currentThread();
    697             int spins = ((head.next == s) ?
    698                          (timed? maxTimedSpins : maxUntimedSpins) : 0);
    699             for (;;) {
    700                 if (w.isInterrupted())
    701                     s.tryCancel(e);
    702                 Object x = s.item;
    703                 if (x != e)
    704                     return x;
    705                 if (timed) {
    706                     long now = System.nanoTime();
    707                     nanos -= now - lastTime;
    708                     lastTime = now;
    709                     if (nanos <= 0) {
    710                         s.tryCancel(e);
    711                         continue;
    712                     }
    713                 }
    714                 if (spins > 0)
    715                     --spins;
    716                 else if (s.waiter == null)
    717                     s.waiter = w;
    718                 else if (!timed)
    719                     LockSupport.park(this);
    720                 else if (nanos > spinForTimeoutThreshold)
    721                     LockSupport.parkNanos(this, nanos);
    722             }
    723         }
    724 
    725         /**
    726          * Gets rid of cancelled node s with original predecessor pred.
    727          */
    728         void clean(QNode pred, QNode s) {
    729             s.waiter = null; // forget thread
    730             /*
    731              * At any given time, exactly one node on list cannot be
    732              * deleted -- the last inserted node. To accommodate this,
    733              * if we cannot delete s, we save its predecessor as
    734              * "cleanMe", deleting the previously saved version
    735              * first. At least one of node s or the node previously
    736              * saved can always be deleted, so this always terminates.
    737              */
    738             while (pred.next == s) { // Return early if already unlinked
    739                 QNode h = head;
    740                 QNode hn = h.next;   // Absorb cancelled first node as head
    741                 if (hn != null && hn.isCancelled()) {
    742                     advanceHead(h, hn);
    743                     continue;
    744                 }
    745                 QNode t = tail;      // Ensure consistent read for tail
    746                 if (t == h)
    747                     return;
    748                 QNode tn = t.next;
    749                 if (t != tail)
    750                     continue;
    751                 if (tn != null) {
    752                     advanceTail(t, tn);
    753                     continue;
    754                 }
    755                 if (s != t) {        // If not tail, try to unsplice
    756                     QNode sn = s.next;
    757                     if (sn == s || pred.casNext(s, sn))
    758                         return;
    759                 }
    760                 QNode dp = cleanMe;
    761                 if (dp != null) {    // Try unlinking previous cancelled node
    762                     QNode d = dp.next;
    763                     QNode dn;
    764                     if (d == null ||               // d is gone or
    765                         d == dp ||                 // d is off list or
    766                         !d.isCancelled() ||        // d not cancelled or
    767                         (d != t &&                 // d not tail and
    768                          (dn = d.next) != null &&  //   has successor
    769                          dn != d &&                //   that is on list
    770                          dp.casNext(d, dn)))       // d unspliced
    771                         casCleanMe(dp, null);
    772                     if (dp == pred)
    773                         return;      // s is already saved node
    774                 } else if (casCleanMe(null, pred))
    775                     return;          // Postpone cleaning s
    776             }
    777         }
    778     }
    779 
    780     /**
    781      * The transferer. Set only in constructor, but cannot be declared
    782      * as final without further complicating serialization.  Since
    783      * this is accessed only at most once per public method, there
    784      * isn't a noticeable performance penalty for using volatile
    785      * instead of final here.
    786      */
    787     private transient volatile Transferer transferer;
    788 
    789     /**
    790      * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
    791      */
    792     public SynchronousQueue() {
    793         this(false);
    794     }
    795 
    796     /**
    797      * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
    798      *
    799      * @param fair if true, waiting threads contend in FIFO order for
    800      *        access; otherwise the order is unspecified.
    801      */
    802     public SynchronousQueue(boolean fair) {
    803         transferer = (fair)? new TransferQueue() : new TransferStack();
    804     }
    805 
    806     /**
    807      * Adds the specified element to this queue, waiting if necessary for
    808      * another thread to receive it.
    809      *
    810      * @throws InterruptedException {@inheritDoc}
    811      * @throws NullPointerException {@inheritDoc}
    812      */
    813     public void put(E o) throws InterruptedException {
    814         if (o == null) throw new NullPointerException();
    815         if (transferer.transfer(o, false, 0) == null) {
    816             Thread.interrupted();
    817             throw new InterruptedException();
    818         }
    819     }
    820 
    821     /**
    822      * Inserts the specified element into this queue, waiting if necessary
    823      * up to the specified wait time for another thread to receive it.
    824      *
    825      * @return <tt>true</tt> if successful, or <tt>false</tt> if the
    826      *         specified waiting time elapses before a consumer appears.
    827      * @throws InterruptedException {@inheritDoc}
    828      * @throws NullPointerException {@inheritDoc}
    829      */
    830     public boolean offer(E o, long timeout, TimeUnit unit)
    831         throws InterruptedException {
    832         if (o == null) throw new NullPointerException();
    833         if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
    834             return true;
    835         if (!Thread.interrupted())
    836             return false;
    837         throw new InterruptedException();
    838     }
    839 
    840     /**
    841      * Inserts the specified element into this queue, if another thread is
    842      * waiting to receive it.
    843      *
    844      * @param e the element to add
    845      * @return <tt>true</tt> if the element was added to this queue, else
    846      *         <tt>false</tt>
    847      * @throws NullPointerException if the specified element is null
    848      */
    849     public boolean offer(E e) {
    850         if (e == null) throw new NullPointerException();
    851         return transferer.transfer(e, true, 0) != null;
    852     }
    853 
    854     /**
    855      * Retrieves and removes the head of this queue, waiting if necessary
    856      * for another thread to insert it.
    857      *
    858      * @return the head of this queue
    859      * @throws InterruptedException {@inheritDoc}
    860      */
    861     public E take() throws InterruptedException {
    862         Object e = transferer.transfer(null, false, 0);
    863         if (e != null)
    864             return (E)e;
    865         Thread.interrupted();
    866         throw new InterruptedException();
    867     }
    868 
    869     /**
    870      * Retrieves and removes the head of this queue, waiting
    871      * if necessary up to the specified wait time, for another thread
    872      * to insert it.
    873      *
    874      * @return the head of this queue, or <tt>null</tt> if the
    875      *         specified waiting time elapses before an element is present.
    876      * @throws InterruptedException {@inheritDoc}
    877      */
    878     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
    879         Object e = transferer.transfer(null, true, unit.toNanos(timeout));
    880         if (e != null || !Thread.interrupted())
    881             return (E)e;
    882         throw new InterruptedException();
    883     }
    884 
    885     /**
    886      * Retrieves and removes the head of this queue, if another thread
    887      * is currently making an element available.
    888      *
    889      * @return the head of this queue, or <tt>null</tt> if no
    890      *         element is available.
    891      */
    892     public E poll() {
    893         return (E)transferer.transfer(null, true, 0);
    894     }
    895 
    896     /**
    897      * Always returns <tt>true</tt>.
    898      * A <tt>SynchronousQueue</tt> has no internal capacity.
    899      *
    900      * @return <tt>true</tt>
    901      */
    902     public boolean isEmpty() {
    903         return true;
    904     }
    905 
    906     /**
    907      * Always returns zero.
    908      * A <tt>SynchronousQueue</tt> has no internal capacity.
    909      *
    910      * @return zero.
    911      */
    912     public int size() {
    913         return 0;
    914     }
    915 
    916     /**
    917      * Always returns zero.
    918      * A <tt>SynchronousQueue</tt> has no internal capacity.
    919      *
    920      * @return zero.
    921      */
    922     public int remainingCapacity() {
    923         return 0;
    924     }
    925 
    926     /**
    927      * Does nothing.
    928      * A <tt>SynchronousQueue</tt> has no internal capacity.
    929      */
    930     public void clear() {
    931     }
    932 
    933     /**
    934      * Always returns <tt>false</tt>.
    935      * A <tt>SynchronousQueue</tt> has no internal capacity.
    936      *
    937      * @param o the element
    938      * @return <tt>false</tt>
    939      */
    940     public boolean contains(Object o) {
    941         return false;
    942     }
    943 
    944     /**
    945      * Always returns <tt>false</tt>.
    946      * A <tt>SynchronousQueue</tt> has no internal capacity.
    947      *
    948      * @param o the element to remove
    949      * @return <tt>false</tt>
    950      */
    951     public boolean remove(Object o) {
    952         return false;
    953     }
    954 
    955     /**
    956      * Returns <tt>false</tt> unless the given collection is empty.
    957      * A <tt>SynchronousQueue</tt> has no internal capacity.
    958      *
    959      * @param c the collection
    960      * @return <tt>false</tt> unless given collection is empty
    961      */
    962     public boolean containsAll(Collection<?> c) {
    963         return c.isEmpty();
    964     }
    965 
    966     /**
    967      * Always returns <tt>false</tt>.
    968      * A <tt>SynchronousQueue</tt> has no internal capacity.
    969      *
    970      * @param c the collection
    971      * @return <tt>false</tt>
    972      */
    973     public boolean removeAll(Collection<?> c) {
    974         return false;
    975     }
    976 
    977     /**
    978      * Always returns <tt>false</tt>.
    979      * A <tt>SynchronousQueue</tt> has no internal capacity.
    980      *
    981      * @param c the collection
    982      * @return <tt>false</tt>
    983      */
    984     public boolean retainAll(Collection<?> c) {
    985         return false;
    986     }
    987 
    988     /**
    989      * Always returns <tt>null</tt>.
    990      * A <tt>SynchronousQueue</tt> does not return elements
    991      * unless actively waited on.
    992      *
    993      * @return <tt>null</tt>
    994      */
    995     public E peek() {
    996         return null;
    997     }
    998 
    999     /**
   1000      * Returns an empty iterator in which <tt>hasNext</tt> always returns
   1001      * <tt>false</tt>.
   1002      *
   1003      * @return an empty iterator
   1004      */
   1005     public Iterator<E> iterator() {
   1006         return Collections.<E>emptySet().iterator(); // android-changed
   1007     }
   1008 
   1009     /**
   1010      * Returns a zero-length array.
   1011      * @return a zero-length array
   1012      */
   1013     public Object[] toArray() {
   1014         return new Object[0];
   1015     }
   1016 
   1017     /**
   1018      * Sets the zeroeth element of the specified array to <tt>null</tt>
   1019      * (if the array has non-zero length) and returns it.
   1020      *
   1021      * @param a the array
   1022      * @return the specified array
   1023      * @throws NullPointerException if the specified array is null
   1024      */
   1025     public <T> T[] toArray(T[] a) {
   1026         if (a.length > 0)
   1027             a[0] = null;
   1028         return a;
   1029     }
   1030 
   1031     /**
   1032      * @throws UnsupportedOperationException {@inheritDoc}
   1033      * @throws ClassCastException            {@inheritDoc}
   1034      * @throws NullPointerException          {@inheritDoc}
   1035      * @throws IllegalArgumentException      {@inheritDoc}
   1036      */
   1037     public int drainTo(Collection<? super E> c) {
   1038         if (c == null)
   1039             throw new NullPointerException();
   1040         if (c == this)
   1041             throw new IllegalArgumentException();
   1042         int n = 0;
   1043         E e;
   1044         while ( (e = poll()) != null) {
   1045             c.add(e);
   1046             ++n;
   1047         }
   1048         return n;
   1049     }
   1050 
   1051     /**
   1052      * @throws UnsupportedOperationException {@inheritDoc}
   1053      * @throws ClassCastException            {@inheritDoc}
   1054      * @throws NullPointerException          {@inheritDoc}
   1055      * @throws IllegalArgumentException      {@inheritDoc}
   1056      */
   1057     public int drainTo(Collection<? super E> c, int maxElements) {
   1058         if (c == null)
   1059             throw new NullPointerException();
   1060         if (c == this)
   1061             throw new IllegalArgumentException();
   1062         int n = 0;
   1063         E e;
   1064         while (n < maxElements && (e = poll()) != null) {
   1065             c.add(e);
   1066             ++n;
   1067         }
   1068         return n;
   1069     }
   1070 
   1071     /*
   1072      * To cope with serialization strategy in the 1.5 version of
   1073      * SynchronousQueue, we declare some unused classes and fields
   1074      * that exist solely to enable serializability across versions.
   1075      * These fields are never used, so are initialized only if this
   1076      * object is ever serialized or deserialized.
   1077      */
   1078 
   1079     static class WaitQueue implements java.io.Serializable { }
   1080     static class LifoWaitQueue extends WaitQueue {
   1081         private static final long serialVersionUID = -3633113410248163686L;
   1082     }
   1083     static class FifoWaitQueue extends WaitQueue {
   1084         private static final long serialVersionUID = -3623113410248163686L;
   1085     }
   1086     private ReentrantLock qlock;
   1087     private WaitQueue waitingProducers;
   1088     private WaitQueue waitingConsumers;
   1089 
   1090     /**
   1091      * Save the state to a stream (that is, serialize it).
   1092      *
   1093      * @param s the stream
   1094      */
   1095     private void writeObject(java.io.ObjectOutputStream s)
   1096         throws java.io.IOException {
   1097         boolean fair = transferer instanceof TransferQueue;
   1098         if (fair) {
   1099             qlock = new ReentrantLock(true);
   1100             waitingProducers = new FifoWaitQueue();
   1101             waitingConsumers = new FifoWaitQueue();
   1102         }
   1103         else {
   1104             qlock = new ReentrantLock();
   1105             waitingProducers = new LifoWaitQueue();
   1106             waitingConsumers = new LifoWaitQueue();
   1107         }
   1108         s.defaultWriteObject();
   1109     }
   1110 
   1111     private void readObject(final java.io.ObjectInputStream s)
   1112         throws java.io.IOException, ClassNotFoundException {
   1113         s.defaultReadObject();
   1114         if (waitingProducers instanceof FifoWaitQueue)
   1115             transferer = new TransferQueue();
   1116         else
   1117             transferer = new TransferStack();
   1118     }
   1119 
   1120 }
   1121