Home | History | Annotate | Download | only in Sema
      1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/CXXFieldCollector.h"
     16 #include "clang/Sema/Scope.h"
     17 #include "clang/Sema/Initialization.h"
     18 #include "clang/Sema/Lookup.h"
     19 #include "clang/AST/ASTConsumer.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/ASTMutationListener.h"
     22 #include "clang/AST/CharUnits.h"
     23 #include "clang/AST/CXXInheritance.h"
     24 #include "clang/AST/DeclVisitor.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/RecordLayout.h"
     27 #include "clang/AST/StmtVisitor.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/AST/TypeOrdering.h"
     30 #include "clang/Sema/DeclSpec.h"
     31 #include "clang/Sema/ParsedTemplate.h"
     32 #include "clang/Basic/PartialDiagnostic.h"
     33 #include "clang/Lex/Preprocessor.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/STLExtras.h"
     36 #include <map>
     37 #include <set>
     38 
     39 using namespace clang;
     40 
     41 //===----------------------------------------------------------------------===//
     42 // CheckDefaultArgumentVisitor
     43 //===----------------------------------------------------------------------===//
     44 
     45 namespace {
     46   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
     47   /// the default argument of a parameter to determine whether it
     48   /// contains any ill-formed subexpressions. For example, this will
     49   /// diagnose the use of local variables or parameters within the
     50   /// default argument expression.
     51   class CheckDefaultArgumentVisitor
     52     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
     53     Expr *DefaultArg;
     54     Sema *S;
     55 
     56   public:
     57     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
     58       : DefaultArg(defarg), S(s) {}
     59 
     60     bool VisitExpr(Expr *Node);
     61     bool VisitDeclRefExpr(DeclRefExpr *DRE);
     62     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
     63   };
     64 
     65   /// VisitExpr - Visit all of the children of this expression.
     66   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
     67     bool IsInvalid = false;
     68     for (Stmt::child_range I = Node->children(); I; ++I)
     69       IsInvalid |= Visit(*I);
     70     return IsInvalid;
     71   }
     72 
     73   /// VisitDeclRefExpr - Visit a reference to a declaration, to
     74   /// determine whether this declaration can be used in the default
     75   /// argument expression.
     76   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
     77     NamedDecl *Decl = DRE->getDecl();
     78     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
     79       // C++ [dcl.fct.default]p9
     80       //   Default arguments are evaluated each time the function is
     81       //   called. The order of evaluation of function arguments is
     82       //   unspecified. Consequently, parameters of a function shall not
     83       //   be used in default argument expressions, even if they are not
     84       //   evaluated. Parameters of a function declared before a default
     85       //   argument expression are in scope and can hide namespace and
     86       //   class member names.
     87       return S->Diag(DRE->getSourceRange().getBegin(),
     88                      diag::err_param_default_argument_references_param)
     89          << Param->getDeclName() << DefaultArg->getSourceRange();
     90     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
     91       // C++ [dcl.fct.default]p7
     92       //   Local variables shall not be used in default argument
     93       //   expressions.
     94       if (VDecl->isLocalVarDecl())
     95         return S->Diag(DRE->getSourceRange().getBegin(),
     96                        diag::err_param_default_argument_references_local)
     97           << VDecl->getDeclName() << DefaultArg->getSourceRange();
     98     }
     99 
    100     return false;
    101   }
    102 
    103   /// VisitCXXThisExpr - Visit a C++ "this" expression.
    104   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
    105     // C++ [dcl.fct.default]p8:
    106     //   The keyword this shall not be used in a default argument of a
    107     //   member function.
    108     return S->Diag(ThisE->getSourceRange().getBegin(),
    109                    diag::err_param_default_argument_references_this)
    110                << ThisE->getSourceRange();
    111   }
    112 }
    113 
    114 void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
    115   assert(Context && "ImplicitExceptionSpecification without an ASTContext");
    116   // If we have an MSAny or unknown spec already, don't bother.
    117   if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
    118     return;
    119 
    120   const FunctionProtoType *Proto
    121     = Method->getType()->getAs<FunctionProtoType>();
    122 
    123   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    124 
    125   // If this function can throw any exceptions, make a note of that.
    126   if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
    127     ClearExceptions();
    128     ComputedEST = EST;
    129     return;
    130   }
    131 
    132   // FIXME: If the call to this decl is using any of its default arguments, we
    133   // need to search them for potentially-throwing calls.
    134 
    135   // If this function has a basic noexcept, it doesn't affect the outcome.
    136   if (EST == EST_BasicNoexcept)
    137     return;
    138 
    139   // If we have a throw-all spec at this point, ignore the function.
    140   if (ComputedEST == EST_None)
    141     return;
    142 
    143   // If we're still at noexcept(true) and there's a nothrow() callee,
    144   // change to that specification.
    145   if (EST == EST_DynamicNone) {
    146     if (ComputedEST == EST_BasicNoexcept)
    147       ComputedEST = EST_DynamicNone;
    148     return;
    149   }
    150 
    151   // Check out noexcept specs.
    152   if (EST == EST_ComputedNoexcept) {
    153     FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
    154     assert(NR != FunctionProtoType::NR_NoNoexcept &&
    155            "Must have noexcept result for EST_ComputedNoexcept.");
    156     assert(NR != FunctionProtoType::NR_Dependent &&
    157            "Should not generate implicit declarations for dependent cases, "
    158            "and don't know how to handle them anyway.");
    159 
    160     // noexcept(false) -> no spec on the new function
    161     if (NR == FunctionProtoType::NR_Throw) {
    162       ClearExceptions();
    163       ComputedEST = EST_None;
    164     }
    165     // noexcept(true) won't change anything either.
    166     return;
    167   }
    168 
    169   assert(EST == EST_Dynamic && "EST case not considered earlier.");
    170   assert(ComputedEST != EST_None &&
    171          "Shouldn't collect exceptions when throw-all is guaranteed.");
    172   ComputedEST = EST_Dynamic;
    173   // Record the exceptions in this function's exception specification.
    174   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
    175                                           EEnd = Proto->exception_end();
    176        E != EEnd; ++E)
    177     if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
    178       Exceptions.push_back(*E);
    179 }
    180 
    181 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
    182   if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
    183     return;
    184 
    185   // FIXME:
    186   //
    187   // C++0x [except.spec]p14:
    188   //   [An] implicit exception-specification specifies the type-id T if and
    189   // only if T is allowed by the exception-specification of a function directly
    190   // invoked by f's implicit definition; f shall allow all exceptions if any
    191   // function it directly invokes allows all exceptions, and f shall allow no
    192   // exceptions if every function it directly invokes allows no exceptions.
    193   //
    194   // Note in particular that if an implicit exception-specification is generated
    195   // for a function containing a throw-expression, that specification can still
    196   // be noexcept(true).
    197   //
    198   // Note also that 'directly invoked' is not defined in the standard, and there
    199   // is no indication that we should only consider potentially-evaluated calls.
    200   //
    201   // Ultimately we should implement the intent of the standard: the exception
    202   // specification should be the set of exceptions which can be thrown by the
    203   // implicit definition. For now, we assume that any non-nothrow expression can
    204   // throw any exception.
    205 
    206   if (E->CanThrow(*Context))
    207     ComputedEST = EST_None;
    208 }
    209 
    210 bool
    211 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
    212                               SourceLocation EqualLoc) {
    213   if (RequireCompleteType(Param->getLocation(), Param->getType(),
    214                           diag::err_typecheck_decl_incomplete_type)) {
    215     Param->setInvalidDecl();
    216     return true;
    217   }
    218 
    219   // C++ [dcl.fct.default]p5
    220   //   A default argument expression is implicitly converted (clause
    221   //   4) to the parameter type. The default argument expression has
    222   //   the same semantic constraints as the initializer expression in
    223   //   a declaration of a variable of the parameter type, using the
    224   //   copy-initialization semantics (8.5).
    225   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
    226                                                                     Param);
    227   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
    228                                                            EqualLoc);
    229   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
    230   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
    231                                       MultiExprArg(*this, &Arg, 1));
    232   if (Result.isInvalid())
    233     return true;
    234   Arg = Result.takeAs<Expr>();
    235 
    236   CheckImplicitConversions(Arg, EqualLoc);
    237   Arg = MaybeCreateExprWithCleanups(Arg);
    238 
    239   // Okay: add the default argument to the parameter
    240   Param->setDefaultArg(Arg);
    241 
    242   // We have already instantiated this parameter; provide each of the
    243   // instantiations with the uninstantiated default argument.
    244   UnparsedDefaultArgInstantiationsMap::iterator InstPos
    245     = UnparsedDefaultArgInstantiations.find(Param);
    246   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
    247     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
    248       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
    249 
    250     // We're done tracking this parameter's instantiations.
    251     UnparsedDefaultArgInstantiations.erase(InstPos);
    252   }
    253 
    254   return false;
    255 }
    256 
    257 /// ActOnParamDefaultArgument - Check whether the default argument
    258 /// provided for a function parameter is well-formed. If so, attach it
    259 /// to the parameter declaration.
    260 void
    261 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
    262                                 Expr *DefaultArg) {
    263   if (!param || !DefaultArg)
    264     return;
    265 
    266   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    267   UnparsedDefaultArgLocs.erase(Param);
    268 
    269   // Default arguments are only permitted in C++
    270   if (!getLangOptions().CPlusPlus) {
    271     Diag(EqualLoc, diag::err_param_default_argument)
    272       << DefaultArg->getSourceRange();
    273     Param->setInvalidDecl();
    274     return;
    275   }
    276 
    277   // Check for unexpanded parameter packs.
    278   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
    279     Param->setInvalidDecl();
    280     return;
    281   }
    282 
    283   // Check that the default argument is well-formed
    284   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
    285   if (DefaultArgChecker.Visit(DefaultArg)) {
    286     Param->setInvalidDecl();
    287     return;
    288   }
    289 
    290   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
    291 }
    292 
    293 /// ActOnParamUnparsedDefaultArgument - We've seen a default
    294 /// argument for a function parameter, but we can't parse it yet
    295 /// because we're inside a class definition. Note that this default
    296 /// argument will be parsed later.
    297 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
    298                                              SourceLocation EqualLoc,
    299                                              SourceLocation ArgLoc) {
    300   if (!param)
    301     return;
    302 
    303   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    304   if (Param)
    305     Param->setUnparsedDefaultArg();
    306 
    307   UnparsedDefaultArgLocs[Param] = ArgLoc;
    308 }
    309 
    310 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
    311 /// the default argument for the parameter param failed.
    312 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
    313   if (!param)
    314     return;
    315 
    316   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    317 
    318   Param->setInvalidDecl();
    319 
    320   UnparsedDefaultArgLocs.erase(Param);
    321 }
    322 
    323 /// CheckExtraCXXDefaultArguments - Check for any extra default
    324 /// arguments in the declarator, which is not a function declaration
    325 /// or definition and therefore is not permitted to have default
    326 /// arguments. This routine should be invoked for every declarator
    327 /// that is not a function declaration or definition.
    328 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
    329   // C++ [dcl.fct.default]p3
    330   //   A default argument expression shall be specified only in the
    331   //   parameter-declaration-clause of a function declaration or in a
    332   //   template-parameter (14.1). It shall not be specified for a
    333   //   parameter pack. If it is specified in a
    334   //   parameter-declaration-clause, it shall not occur within a
    335   //   declarator or abstract-declarator of a parameter-declaration.
    336   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    337     DeclaratorChunk &chunk = D.getTypeObject(i);
    338     if (chunk.Kind == DeclaratorChunk::Function) {
    339       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
    340         ParmVarDecl *Param =
    341           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
    342         if (Param->hasUnparsedDefaultArg()) {
    343           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
    344           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    345             << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
    346           delete Toks;
    347           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
    348         } else if (Param->getDefaultArg()) {
    349           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    350             << Param->getDefaultArg()->getSourceRange();
    351           Param->setDefaultArg(0);
    352         }
    353       }
    354     }
    355   }
    356 }
    357 
    358 // MergeCXXFunctionDecl - Merge two declarations of the same C++
    359 // function, once we already know that they have the same
    360 // type. Subroutine of MergeFunctionDecl. Returns true if there was an
    361 // error, false otherwise.
    362 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
    363   bool Invalid = false;
    364 
    365   // C++ [dcl.fct.default]p4:
    366   //   For non-template functions, default arguments can be added in
    367   //   later declarations of a function in the same
    368   //   scope. Declarations in different scopes have completely
    369   //   distinct sets of default arguments. That is, declarations in
    370   //   inner scopes do not acquire default arguments from
    371   //   declarations in outer scopes, and vice versa. In a given
    372   //   function declaration, all parameters subsequent to a
    373   //   parameter with a default argument shall have default
    374   //   arguments supplied in this or previous declarations. A
    375   //   default argument shall not be redefined by a later
    376   //   declaration (not even to the same value).
    377   //
    378   // C++ [dcl.fct.default]p6:
    379   //   Except for member functions of class templates, the default arguments
    380   //   in a member function definition that appears outside of the class
    381   //   definition are added to the set of default arguments provided by the
    382   //   member function declaration in the class definition.
    383   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
    384     ParmVarDecl *OldParam = Old->getParamDecl(p);
    385     ParmVarDecl *NewParam = New->getParamDecl(p);
    386 
    387     if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
    388 
    389       unsigned DiagDefaultParamID =
    390         diag::err_param_default_argument_redefinition;
    391 
    392       // MSVC accepts that default parameters be redefined for member functions
    393       // of template class. The new default parameter's value is ignored.
    394       Invalid = true;
    395       if (getLangOptions().Microsoft) {
    396         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
    397         if (MD && MD->getParent()->getDescribedClassTemplate()) {
    398           // Merge the old default argument into the new parameter.
    399           NewParam->setHasInheritedDefaultArg();
    400           if (OldParam->hasUninstantiatedDefaultArg())
    401             NewParam->setUninstantiatedDefaultArg(
    402                                       OldParam->getUninstantiatedDefaultArg());
    403           else
    404             NewParam->setDefaultArg(OldParam->getInit());
    405           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
    406           Invalid = false;
    407         }
    408       }
    409 
    410       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
    411       // hint here. Alternatively, we could walk the type-source information
    412       // for NewParam to find the last source location in the type... but it
    413       // isn't worth the effort right now. This is the kind of test case that
    414       // is hard to get right:
    415       //   int f(int);
    416       //   void g(int (*fp)(int) = f);
    417       //   void g(int (*fp)(int) = &f);
    418       Diag(NewParam->getLocation(), DiagDefaultParamID)
    419         << NewParam->getDefaultArgRange();
    420 
    421       // Look for the function declaration where the default argument was
    422       // actually written, which may be a declaration prior to Old.
    423       for (FunctionDecl *Older = Old->getPreviousDeclaration();
    424            Older; Older = Older->getPreviousDeclaration()) {
    425         if (!Older->getParamDecl(p)->hasDefaultArg())
    426           break;
    427 
    428         OldParam = Older->getParamDecl(p);
    429       }
    430 
    431       Diag(OldParam->getLocation(), diag::note_previous_definition)
    432         << OldParam->getDefaultArgRange();
    433     } else if (OldParam->hasDefaultArg()) {
    434       // Merge the old default argument into the new parameter.
    435       // It's important to use getInit() here;  getDefaultArg()
    436       // strips off any top-level ExprWithCleanups.
    437       NewParam->setHasInheritedDefaultArg();
    438       if (OldParam->hasUninstantiatedDefaultArg())
    439         NewParam->setUninstantiatedDefaultArg(
    440                                       OldParam->getUninstantiatedDefaultArg());
    441       else
    442         NewParam->setDefaultArg(OldParam->getInit());
    443     } else if (NewParam->hasDefaultArg()) {
    444       if (New->getDescribedFunctionTemplate()) {
    445         // Paragraph 4, quoted above, only applies to non-template functions.
    446         Diag(NewParam->getLocation(),
    447              diag::err_param_default_argument_template_redecl)
    448           << NewParam->getDefaultArgRange();
    449         Diag(Old->getLocation(), diag::note_template_prev_declaration)
    450           << false;
    451       } else if (New->getTemplateSpecializationKind()
    452                    != TSK_ImplicitInstantiation &&
    453                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
    454         // C++ [temp.expr.spec]p21:
    455         //   Default function arguments shall not be specified in a declaration
    456         //   or a definition for one of the following explicit specializations:
    457         //     - the explicit specialization of a function template;
    458         //     - the explicit specialization of a member function template;
    459         //     - the explicit specialization of a member function of a class
    460         //       template where the class template specialization to which the
    461         //       member function specialization belongs is implicitly
    462         //       instantiated.
    463         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
    464           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
    465           << New->getDeclName()
    466           << NewParam->getDefaultArgRange();
    467       } else if (New->getDeclContext()->isDependentContext()) {
    468         // C++ [dcl.fct.default]p6 (DR217):
    469         //   Default arguments for a member function of a class template shall
    470         //   be specified on the initial declaration of the member function
    471         //   within the class template.
    472         //
    473         // Reading the tea leaves a bit in DR217 and its reference to DR205
    474         // leads me to the conclusion that one cannot add default function
    475         // arguments for an out-of-line definition of a member function of a
    476         // dependent type.
    477         int WhichKind = 2;
    478         if (CXXRecordDecl *Record
    479               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
    480           if (Record->getDescribedClassTemplate())
    481             WhichKind = 0;
    482           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
    483             WhichKind = 1;
    484           else
    485             WhichKind = 2;
    486         }
    487 
    488         Diag(NewParam->getLocation(),
    489              diag::err_param_default_argument_member_template_redecl)
    490           << WhichKind
    491           << NewParam->getDefaultArgRange();
    492       } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
    493         CXXSpecialMember NewSM = getSpecialMember(Ctor),
    494                          OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
    495         if (NewSM != OldSM) {
    496           Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
    497             << NewParam->getDefaultArgRange() << NewSM;
    498           Diag(Old->getLocation(), diag::note_previous_declaration_special)
    499             << OldSM;
    500         }
    501       }
    502     }
    503   }
    504 
    505   if (CheckEquivalentExceptionSpec(Old, New))
    506     Invalid = true;
    507 
    508   return Invalid;
    509 }
    510 
    511 /// \brief Merge the exception specifications of two variable declarations.
    512 ///
    513 /// This is called when there's a redeclaration of a VarDecl. The function
    514 /// checks if the redeclaration might have an exception specification and
    515 /// validates compatibility and merges the specs if necessary.
    516 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
    517   // Shortcut if exceptions are disabled.
    518   if (!getLangOptions().CXXExceptions)
    519     return;
    520 
    521   assert(Context.hasSameType(New->getType(), Old->getType()) &&
    522          "Should only be called if types are otherwise the same.");
    523 
    524   QualType NewType = New->getType();
    525   QualType OldType = Old->getType();
    526 
    527   // We're only interested in pointers and references to functions, as well
    528   // as pointers to member functions.
    529   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
    530     NewType = R->getPointeeType();
    531     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
    532   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
    533     NewType = P->getPointeeType();
    534     OldType = OldType->getAs<PointerType>()->getPointeeType();
    535   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
    536     NewType = M->getPointeeType();
    537     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
    538   }
    539 
    540   if (!NewType->isFunctionProtoType())
    541     return;
    542 
    543   // There's lots of special cases for functions. For function pointers, system
    544   // libraries are hopefully not as broken so that we don't need these
    545   // workarounds.
    546   if (CheckEquivalentExceptionSpec(
    547         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
    548         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
    549     New->setInvalidDecl();
    550   }
    551 }
    552 
    553 /// CheckCXXDefaultArguments - Verify that the default arguments for a
    554 /// function declaration are well-formed according to C++
    555 /// [dcl.fct.default].
    556 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
    557   unsigned NumParams = FD->getNumParams();
    558   unsigned p;
    559 
    560   // Find first parameter with a default argument
    561   for (p = 0; p < NumParams; ++p) {
    562     ParmVarDecl *Param = FD->getParamDecl(p);
    563     if (Param->hasDefaultArg())
    564       break;
    565   }
    566 
    567   // C++ [dcl.fct.default]p4:
    568   //   In a given function declaration, all parameters
    569   //   subsequent to a parameter with a default argument shall
    570   //   have default arguments supplied in this or previous
    571   //   declarations. A default argument shall not be redefined
    572   //   by a later declaration (not even to the same value).
    573   unsigned LastMissingDefaultArg = 0;
    574   for (; p < NumParams; ++p) {
    575     ParmVarDecl *Param = FD->getParamDecl(p);
    576     if (!Param->hasDefaultArg()) {
    577       if (Param->isInvalidDecl())
    578         /* We already complained about this parameter. */;
    579       else if (Param->getIdentifier())
    580         Diag(Param->getLocation(),
    581              diag::err_param_default_argument_missing_name)
    582           << Param->getIdentifier();
    583       else
    584         Diag(Param->getLocation(),
    585              diag::err_param_default_argument_missing);
    586 
    587       LastMissingDefaultArg = p;
    588     }
    589   }
    590 
    591   if (LastMissingDefaultArg > 0) {
    592     // Some default arguments were missing. Clear out all of the
    593     // default arguments up to (and including) the last missing
    594     // default argument, so that we leave the function parameters
    595     // in a semantically valid state.
    596     for (p = 0; p <= LastMissingDefaultArg; ++p) {
    597       ParmVarDecl *Param = FD->getParamDecl(p);
    598       if (Param->hasDefaultArg()) {
    599         Param->setDefaultArg(0);
    600       }
    601     }
    602   }
    603 }
    604 
    605 /// isCurrentClassName - Determine whether the identifier II is the
    606 /// name of the class type currently being defined. In the case of
    607 /// nested classes, this will only return true if II is the name of
    608 /// the innermost class.
    609 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
    610                               const CXXScopeSpec *SS) {
    611   assert(getLangOptions().CPlusPlus && "No class names in C!");
    612 
    613   CXXRecordDecl *CurDecl;
    614   if (SS && SS->isSet() && !SS->isInvalid()) {
    615     DeclContext *DC = computeDeclContext(*SS, true);
    616     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
    617   } else
    618     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
    619 
    620   if (CurDecl && CurDecl->getIdentifier())
    621     return &II == CurDecl->getIdentifier();
    622   else
    623     return false;
    624 }
    625 
    626 /// \brief Check the validity of a C++ base class specifier.
    627 ///
    628 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
    629 /// and returns NULL otherwise.
    630 CXXBaseSpecifier *
    631 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
    632                          SourceRange SpecifierRange,
    633                          bool Virtual, AccessSpecifier Access,
    634                          TypeSourceInfo *TInfo,
    635                          SourceLocation EllipsisLoc) {
    636   QualType BaseType = TInfo->getType();
    637 
    638   // C++ [class.union]p1:
    639   //   A union shall not have base classes.
    640   if (Class->isUnion()) {
    641     Diag(Class->getLocation(), diag::err_base_clause_on_union)
    642       << SpecifierRange;
    643     return 0;
    644   }
    645 
    646   if (EllipsisLoc.isValid() &&
    647       !TInfo->getType()->containsUnexpandedParameterPack()) {
    648     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
    649       << TInfo->getTypeLoc().getSourceRange();
    650     EllipsisLoc = SourceLocation();
    651   }
    652 
    653   if (BaseType->isDependentType())
    654     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
    655                                           Class->getTagKind() == TTK_Class,
    656                                           Access, TInfo, EllipsisLoc);
    657 
    658   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
    659 
    660   // Base specifiers must be record types.
    661   if (!BaseType->isRecordType()) {
    662     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
    663     return 0;
    664   }
    665 
    666   // C++ [class.union]p1:
    667   //   A union shall not be used as a base class.
    668   if (BaseType->isUnionType()) {
    669     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
    670     return 0;
    671   }
    672 
    673   // C++ [class.derived]p2:
    674   //   The class-name in a base-specifier shall not be an incompletely
    675   //   defined class.
    676   if (RequireCompleteType(BaseLoc, BaseType,
    677                           PDiag(diag::err_incomplete_base_class)
    678                             << SpecifierRange)) {
    679     Class->setInvalidDecl();
    680     return 0;
    681   }
    682 
    683   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
    684   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
    685   assert(BaseDecl && "Record type has no declaration");
    686   BaseDecl = BaseDecl->getDefinition();
    687   assert(BaseDecl && "Base type is not incomplete, but has no definition");
    688   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
    689   assert(CXXBaseDecl && "Base type is not a C++ type");
    690 
    691   // C++ [class]p3:
    692   //   If a class is marked final and it appears as a base-type-specifier in
    693   //   base-clause, the program is ill-formed.
    694   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
    695     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
    696       << CXXBaseDecl->getDeclName();
    697     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
    698       << CXXBaseDecl->getDeclName();
    699     return 0;
    700   }
    701 
    702   if (BaseDecl->isInvalidDecl())
    703     Class->setInvalidDecl();
    704 
    705   // Create the base specifier.
    706   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
    707                                         Class->getTagKind() == TTK_Class,
    708                                         Access, TInfo, EllipsisLoc);
    709 }
    710 
    711 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
    712 /// one entry in the base class list of a class specifier, for
    713 /// example:
    714 ///    class foo : public bar, virtual private baz {
    715 /// 'public bar' and 'virtual private baz' are each base-specifiers.
    716 BaseResult
    717 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
    718                          bool Virtual, AccessSpecifier Access,
    719                          ParsedType basetype, SourceLocation BaseLoc,
    720                          SourceLocation EllipsisLoc) {
    721   if (!classdecl)
    722     return true;
    723 
    724   AdjustDeclIfTemplate(classdecl);
    725   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
    726   if (!Class)
    727     return true;
    728 
    729   TypeSourceInfo *TInfo = 0;
    730   GetTypeFromParser(basetype, &TInfo);
    731 
    732   if (EllipsisLoc.isInvalid() &&
    733       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
    734                                       UPPC_BaseType))
    735     return true;
    736 
    737   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
    738                                                       Virtual, Access, TInfo,
    739                                                       EllipsisLoc))
    740     return BaseSpec;
    741 
    742   return true;
    743 }
    744 
    745 /// \brief Performs the actual work of attaching the given base class
    746 /// specifiers to a C++ class.
    747 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
    748                                 unsigned NumBases) {
    749  if (NumBases == 0)
    750     return false;
    751 
    752   // Used to keep track of which base types we have already seen, so
    753   // that we can properly diagnose redundant direct base types. Note
    754   // that the key is always the unqualified canonical type of the base
    755   // class.
    756   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
    757 
    758   // Copy non-redundant base specifiers into permanent storage.
    759   unsigned NumGoodBases = 0;
    760   bool Invalid = false;
    761   for (unsigned idx = 0; idx < NumBases; ++idx) {
    762     QualType NewBaseType
    763       = Context.getCanonicalType(Bases[idx]->getType());
    764     NewBaseType = NewBaseType.getLocalUnqualifiedType();
    765     if (KnownBaseTypes[NewBaseType]) {
    766       // C++ [class.mi]p3:
    767       //   A class shall not be specified as a direct base class of a
    768       //   derived class more than once.
    769       Diag(Bases[idx]->getSourceRange().getBegin(),
    770            diag::err_duplicate_base_class)
    771         << KnownBaseTypes[NewBaseType]->getType()
    772         << Bases[idx]->getSourceRange();
    773 
    774       // Delete the duplicate base class specifier; we're going to
    775       // overwrite its pointer later.
    776       Context.Deallocate(Bases[idx]);
    777 
    778       Invalid = true;
    779     } else {
    780       // Okay, add this new base class.
    781       KnownBaseTypes[NewBaseType] = Bases[idx];
    782       Bases[NumGoodBases++] = Bases[idx];
    783     }
    784   }
    785 
    786   // Attach the remaining base class specifiers to the derived class.
    787   Class->setBases(Bases, NumGoodBases);
    788 
    789   // Delete the remaining (good) base class specifiers, since their
    790   // data has been copied into the CXXRecordDecl.
    791   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
    792     Context.Deallocate(Bases[idx]);
    793 
    794   return Invalid;
    795 }
    796 
    797 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
    798 /// class, after checking whether there are any duplicate base
    799 /// classes.
    800 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
    801                                unsigned NumBases) {
    802   if (!ClassDecl || !Bases || !NumBases)
    803     return;
    804 
    805   AdjustDeclIfTemplate(ClassDecl);
    806   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
    807                        (CXXBaseSpecifier**)(Bases), NumBases);
    808 }
    809 
    810 static CXXRecordDecl *GetClassForType(QualType T) {
    811   if (const RecordType *RT = T->getAs<RecordType>())
    812     return cast<CXXRecordDecl>(RT->getDecl());
    813   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
    814     return ICT->getDecl();
    815   else
    816     return 0;
    817 }
    818 
    819 /// \brief Determine whether the type \p Derived is a C++ class that is
    820 /// derived from the type \p Base.
    821 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
    822   if (!getLangOptions().CPlusPlus)
    823     return false;
    824 
    825   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
    826   if (!DerivedRD)
    827     return false;
    828 
    829   CXXRecordDecl *BaseRD = GetClassForType(Base);
    830   if (!BaseRD)
    831     return false;
    832 
    833   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
    834   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
    835 }
    836 
    837 /// \brief Determine whether the type \p Derived is a C++ class that is
    838 /// derived from the type \p Base.
    839 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
    840   if (!getLangOptions().CPlusPlus)
    841     return false;
    842 
    843   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
    844   if (!DerivedRD)
    845     return false;
    846 
    847   CXXRecordDecl *BaseRD = GetClassForType(Base);
    848   if (!BaseRD)
    849     return false;
    850 
    851   return DerivedRD->isDerivedFrom(BaseRD, Paths);
    852 }
    853 
    854 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
    855                               CXXCastPath &BasePathArray) {
    856   assert(BasePathArray.empty() && "Base path array must be empty!");
    857   assert(Paths.isRecordingPaths() && "Must record paths!");
    858 
    859   const CXXBasePath &Path = Paths.front();
    860 
    861   // We first go backward and check if we have a virtual base.
    862   // FIXME: It would be better if CXXBasePath had the base specifier for
    863   // the nearest virtual base.
    864   unsigned Start = 0;
    865   for (unsigned I = Path.size(); I != 0; --I) {
    866     if (Path[I - 1].Base->isVirtual()) {
    867       Start = I - 1;
    868       break;
    869     }
    870   }
    871 
    872   // Now add all bases.
    873   for (unsigned I = Start, E = Path.size(); I != E; ++I)
    874     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
    875 }
    876 
    877 /// \brief Determine whether the given base path includes a virtual
    878 /// base class.
    879 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
    880   for (CXXCastPath::const_iterator B = BasePath.begin(),
    881                                 BEnd = BasePath.end();
    882        B != BEnd; ++B)
    883     if ((*B)->isVirtual())
    884       return true;
    885 
    886   return false;
    887 }
    888 
    889 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
    890 /// conversion (where Derived and Base are class types) is
    891 /// well-formed, meaning that the conversion is unambiguous (and
    892 /// that all of the base classes are accessible). Returns true
    893 /// and emits a diagnostic if the code is ill-formed, returns false
    894 /// otherwise. Loc is the location where this routine should point to
    895 /// if there is an error, and Range is the source range to highlight
    896 /// if there is an error.
    897 bool
    898 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
    899                                    unsigned InaccessibleBaseID,
    900                                    unsigned AmbigiousBaseConvID,
    901                                    SourceLocation Loc, SourceRange Range,
    902                                    DeclarationName Name,
    903                                    CXXCastPath *BasePath) {
    904   // First, determine whether the path from Derived to Base is
    905   // ambiguous. This is slightly more expensive than checking whether
    906   // the Derived to Base conversion exists, because here we need to
    907   // explore multiple paths to determine if there is an ambiguity.
    908   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
    909                      /*DetectVirtual=*/false);
    910   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
    911   assert(DerivationOkay &&
    912          "Can only be used with a derived-to-base conversion");
    913   (void)DerivationOkay;
    914 
    915   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
    916     if (InaccessibleBaseID) {
    917       // Check that the base class can be accessed.
    918       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
    919                                    InaccessibleBaseID)) {
    920         case AR_inaccessible:
    921           return true;
    922         case AR_accessible:
    923         case AR_dependent:
    924         case AR_delayed:
    925           break;
    926       }
    927     }
    928 
    929     // Build a base path if necessary.
    930     if (BasePath)
    931       BuildBasePathArray(Paths, *BasePath);
    932     return false;
    933   }
    934 
    935   // We know that the derived-to-base conversion is ambiguous, and
    936   // we're going to produce a diagnostic. Perform the derived-to-base
    937   // search just one more time to compute all of the possible paths so
    938   // that we can print them out. This is more expensive than any of
    939   // the previous derived-to-base checks we've done, but at this point
    940   // performance isn't as much of an issue.
    941   Paths.clear();
    942   Paths.setRecordingPaths(true);
    943   bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
    944   assert(StillOkay && "Can only be used with a derived-to-base conversion");
    945   (void)StillOkay;
    946 
    947   // Build up a textual representation of the ambiguous paths, e.g.,
    948   // D -> B -> A, that will be used to illustrate the ambiguous
    949   // conversions in the diagnostic. We only print one of the paths
    950   // to each base class subobject.
    951   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
    952 
    953   Diag(Loc, AmbigiousBaseConvID)
    954   << Derived << Base << PathDisplayStr << Range << Name;
    955   return true;
    956 }
    957 
    958 bool
    959 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
    960                                    SourceLocation Loc, SourceRange Range,
    961                                    CXXCastPath *BasePath,
    962                                    bool IgnoreAccess) {
    963   return CheckDerivedToBaseConversion(Derived, Base,
    964                                       IgnoreAccess ? 0
    965                                        : diag::err_upcast_to_inaccessible_base,
    966                                       diag::err_ambiguous_derived_to_base_conv,
    967                                       Loc, Range, DeclarationName(),
    968                                       BasePath);
    969 }
    970 
    971 
    972 /// @brief Builds a string representing ambiguous paths from a
    973 /// specific derived class to different subobjects of the same base
    974 /// class.
    975 ///
    976 /// This function builds a string that can be used in error messages
    977 /// to show the different paths that one can take through the
    978 /// inheritance hierarchy to go from the derived class to different
    979 /// subobjects of a base class. The result looks something like this:
    980 /// @code
    981 /// struct D -> struct B -> struct A
    982 /// struct D -> struct C -> struct A
    983 /// @endcode
    984 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
    985   std::string PathDisplayStr;
    986   std::set<unsigned> DisplayedPaths;
    987   for (CXXBasePaths::paths_iterator Path = Paths.begin();
    988        Path != Paths.end(); ++Path) {
    989     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
    990       // We haven't displayed a path to this particular base
    991       // class subobject yet.
    992       PathDisplayStr += "\n    ";
    993       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
    994       for (CXXBasePath::const_iterator Element = Path->begin();
    995            Element != Path->end(); ++Element)
    996         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
    997     }
    998   }
    999 
   1000   return PathDisplayStr;
   1001 }
   1002 
   1003 //===----------------------------------------------------------------------===//
   1004 // C++ class member Handling
   1005 //===----------------------------------------------------------------------===//
   1006 
   1007 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
   1008 Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
   1009                                  SourceLocation ASLoc,
   1010                                  SourceLocation ColonLoc) {
   1011   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
   1012   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
   1013                                                   ASLoc, ColonLoc);
   1014   CurContext->addHiddenDecl(ASDecl);
   1015   return ASDecl;
   1016 }
   1017 
   1018 /// CheckOverrideControl - Check C++0x override control semantics.
   1019 void Sema::CheckOverrideControl(const Decl *D) {
   1020   const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
   1021   if (!MD || !MD->isVirtual())
   1022     return;
   1023 
   1024   if (MD->isDependentContext())
   1025     return;
   1026 
   1027   // C++0x [class.virtual]p3:
   1028   //   If a virtual function is marked with the virt-specifier override and does
   1029   //   not override a member function of a base class,
   1030   //   the program is ill-formed.
   1031   bool HasOverriddenMethods =
   1032     MD->begin_overridden_methods() != MD->end_overridden_methods();
   1033   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
   1034     Diag(MD->getLocation(),
   1035                  diag::err_function_marked_override_not_overriding)
   1036       << MD->getDeclName();
   1037     return;
   1038   }
   1039 }
   1040 
   1041 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
   1042 /// function overrides a virtual member function marked 'final', according to
   1043 /// C++0x [class.virtual]p3.
   1044 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
   1045                                                   const CXXMethodDecl *Old) {
   1046   if (!Old->hasAttr<FinalAttr>())
   1047     return false;
   1048 
   1049   Diag(New->getLocation(), diag::err_final_function_overridden)
   1050     << New->getDeclName();
   1051   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   1052   return true;
   1053 }
   1054 
   1055 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
   1056 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
   1057 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
   1058 /// one has been parsed, and 'HasDeferredInit' is true if an initializer is
   1059 /// present but parsing it has been deferred.
   1060 Decl *
   1061 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
   1062                                MultiTemplateParamsArg TemplateParameterLists,
   1063                                ExprTy *BW, const VirtSpecifiers &VS,
   1064                                ExprTy *InitExpr, bool HasDeferredInit,
   1065                                bool IsDefinition) {
   1066   const DeclSpec &DS = D.getDeclSpec();
   1067   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   1068   DeclarationName Name = NameInfo.getName();
   1069   SourceLocation Loc = NameInfo.getLoc();
   1070 
   1071   // For anonymous bitfields, the location should point to the type.
   1072   if (Loc.isInvalid())
   1073     Loc = D.getSourceRange().getBegin();
   1074 
   1075   Expr *BitWidth = static_cast<Expr*>(BW);
   1076   Expr *Init = static_cast<Expr*>(InitExpr);
   1077 
   1078   assert(isa<CXXRecordDecl>(CurContext));
   1079   assert(!DS.isFriendSpecified());
   1080   assert(!Init || !HasDeferredInit);
   1081 
   1082   bool isFunc = D.isDeclarationOfFunction();
   1083 
   1084   // C++ 9.2p6: A member shall not be declared to have automatic storage
   1085   // duration (auto, register) or with the extern storage-class-specifier.
   1086   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
   1087   // data members and cannot be applied to names declared const or static,
   1088   // and cannot be applied to reference members.
   1089   switch (DS.getStorageClassSpec()) {
   1090     case DeclSpec::SCS_unspecified:
   1091     case DeclSpec::SCS_typedef:
   1092     case DeclSpec::SCS_static:
   1093       // FALL THROUGH.
   1094       break;
   1095     case DeclSpec::SCS_mutable:
   1096       if (isFunc) {
   1097         if (DS.getStorageClassSpecLoc().isValid())
   1098           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
   1099         else
   1100           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
   1101 
   1102         // FIXME: It would be nicer if the keyword was ignored only for this
   1103         // declarator. Otherwise we could get follow-up errors.
   1104         D.getMutableDeclSpec().ClearStorageClassSpecs();
   1105       }
   1106       break;
   1107     default:
   1108       if (DS.getStorageClassSpecLoc().isValid())
   1109         Diag(DS.getStorageClassSpecLoc(),
   1110              diag::err_storageclass_invalid_for_member);
   1111       else
   1112         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
   1113       D.getMutableDeclSpec().ClearStorageClassSpecs();
   1114   }
   1115 
   1116   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
   1117                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
   1118                       !isFunc);
   1119 
   1120   Decl *Member;
   1121   if (isInstField) {
   1122     CXXScopeSpec &SS = D.getCXXScopeSpec();
   1123 
   1124     if (SS.isSet() && !SS.isInvalid()) {
   1125       // The user provided a superfluous scope specifier inside a class
   1126       // definition:
   1127       //
   1128       // class X {
   1129       //   int X::member;
   1130       // };
   1131       DeclContext *DC = 0;
   1132       if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
   1133         Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
   1134         << Name << FixItHint::CreateRemoval(SS.getRange());
   1135       else
   1136         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
   1137           << Name << SS.getRange();
   1138 
   1139       SS.clear();
   1140     }
   1141 
   1142     // FIXME: Check for template parameters!
   1143     // FIXME: Check that the name is an identifier!
   1144     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
   1145                          HasDeferredInit, AS);
   1146     assert(Member && "HandleField never returns null");
   1147   } else {
   1148     assert(!HasDeferredInit);
   1149 
   1150     Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
   1151     if (!Member) {
   1152       return 0;
   1153     }
   1154 
   1155     // Non-instance-fields can't have a bitfield.
   1156     if (BitWidth) {
   1157       if (Member->isInvalidDecl()) {
   1158         // don't emit another diagnostic.
   1159       } else if (isa<VarDecl>(Member)) {
   1160         // C++ 9.6p3: A bit-field shall not be a static member.
   1161         // "static member 'A' cannot be a bit-field"
   1162         Diag(Loc, diag::err_static_not_bitfield)
   1163           << Name << BitWidth->getSourceRange();
   1164       } else if (isa<TypedefDecl>(Member)) {
   1165         // "typedef member 'x' cannot be a bit-field"
   1166         Diag(Loc, diag::err_typedef_not_bitfield)
   1167           << Name << BitWidth->getSourceRange();
   1168       } else {
   1169         // A function typedef ("typedef int f(); f a;").
   1170         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   1171         Diag(Loc, diag::err_not_integral_type_bitfield)
   1172           << Name << cast<ValueDecl>(Member)->getType()
   1173           << BitWidth->getSourceRange();
   1174       }
   1175 
   1176       BitWidth = 0;
   1177       Member->setInvalidDecl();
   1178     }
   1179 
   1180     Member->setAccess(AS);
   1181 
   1182     // If we have declared a member function template, set the access of the
   1183     // templated declaration as well.
   1184     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
   1185       FunTmpl->getTemplatedDecl()->setAccess(AS);
   1186   }
   1187 
   1188   if (VS.isOverrideSpecified()) {
   1189     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
   1190     if (!MD || !MD->isVirtual()) {
   1191       Diag(Member->getLocStart(),
   1192            diag::override_keyword_only_allowed_on_virtual_member_functions)
   1193         << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
   1194     } else
   1195       MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
   1196   }
   1197   if (VS.isFinalSpecified()) {
   1198     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
   1199     if (!MD || !MD->isVirtual()) {
   1200       Diag(Member->getLocStart(),
   1201            diag::override_keyword_only_allowed_on_virtual_member_functions)
   1202       << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
   1203     } else
   1204       MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
   1205   }
   1206 
   1207   if (VS.getLastLocation().isValid()) {
   1208     // Update the end location of a method that has a virt-specifiers.
   1209     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
   1210       MD->setRangeEnd(VS.getLastLocation());
   1211   }
   1212 
   1213   CheckOverrideControl(Member);
   1214 
   1215   assert((Name || isInstField) && "No identifier for non-field ?");
   1216 
   1217   if (Init)
   1218     AddInitializerToDecl(Member, Init, false,
   1219                          DS.getTypeSpecType() == DeclSpec::TST_auto);
   1220   else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
   1221            DS.getStorageClassSpec() == DeclSpec::SCS_static) {
   1222     // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
   1223     // data member if a brace-or-equal-initializer is provided.
   1224     Diag(Loc, diag::err_auto_var_requires_init)
   1225       << Name << cast<ValueDecl>(Member)->getType();
   1226     Member->setInvalidDecl();
   1227   }
   1228 
   1229   FinalizeDeclaration(Member);
   1230 
   1231   if (isInstField)
   1232     FieldCollector->Add(cast<FieldDecl>(Member));
   1233   return Member;
   1234 }
   1235 
   1236 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
   1237 /// in-class initializer for a non-static C++ class member, and after
   1238 /// instantiating an in-class initializer in a class template. Such actions
   1239 /// are deferred until the class is complete.
   1240 void
   1241 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
   1242                                        Expr *InitExpr) {
   1243   FieldDecl *FD = cast<FieldDecl>(D);
   1244 
   1245   if (!InitExpr) {
   1246     FD->setInvalidDecl();
   1247     FD->removeInClassInitializer();
   1248     return;
   1249   }
   1250 
   1251   ExprResult Init = InitExpr;
   1252   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
   1253     // FIXME: if there is no EqualLoc, this is list-initialization.
   1254     Init = PerformCopyInitialization(
   1255       InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
   1256     if (Init.isInvalid()) {
   1257       FD->setInvalidDecl();
   1258       return;
   1259     }
   1260 
   1261     CheckImplicitConversions(Init.get(), EqualLoc);
   1262   }
   1263 
   1264   // C++0x [class.base.init]p7:
   1265   //   The initialization of each base and member constitutes a
   1266   //   full-expression.
   1267   Init = MaybeCreateExprWithCleanups(Init);
   1268   if (Init.isInvalid()) {
   1269     FD->setInvalidDecl();
   1270     return;
   1271   }
   1272 
   1273   InitExpr = Init.release();
   1274 
   1275   FD->setInClassInitializer(InitExpr);
   1276 }
   1277 
   1278 /// \brief Find the direct and/or virtual base specifiers that
   1279 /// correspond to the given base type, for use in base initialization
   1280 /// within a constructor.
   1281 static bool FindBaseInitializer(Sema &SemaRef,
   1282                                 CXXRecordDecl *ClassDecl,
   1283                                 QualType BaseType,
   1284                                 const CXXBaseSpecifier *&DirectBaseSpec,
   1285                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
   1286   // First, check for a direct base class.
   1287   DirectBaseSpec = 0;
   1288   for (CXXRecordDecl::base_class_const_iterator Base
   1289          = ClassDecl->bases_begin();
   1290        Base != ClassDecl->bases_end(); ++Base) {
   1291     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
   1292       // We found a direct base of this type. That's what we're
   1293       // initializing.
   1294       DirectBaseSpec = &*Base;
   1295       break;
   1296     }
   1297   }
   1298 
   1299   // Check for a virtual base class.
   1300   // FIXME: We might be able to short-circuit this if we know in advance that
   1301   // there are no virtual bases.
   1302   VirtualBaseSpec = 0;
   1303   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
   1304     // We haven't found a base yet; search the class hierarchy for a
   1305     // virtual base class.
   1306     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   1307                        /*DetectVirtual=*/false);
   1308     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
   1309                               BaseType, Paths)) {
   1310       for (CXXBasePaths::paths_iterator Path = Paths.begin();
   1311            Path != Paths.end(); ++Path) {
   1312         if (Path->back().Base->isVirtual()) {
   1313           VirtualBaseSpec = Path->back().Base;
   1314           break;
   1315         }
   1316       }
   1317     }
   1318   }
   1319 
   1320   return DirectBaseSpec || VirtualBaseSpec;
   1321 }
   1322 
   1323 /// ActOnMemInitializer - Handle a C++ member initializer.
   1324 MemInitResult
   1325 Sema::ActOnMemInitializer(Decl *ConstructorD,
   1326                           Scope *S,
   1327                           CXXScopeSpec &SS,
   1328                           IdentifierInfo *MemberOrBase,
   1329                           ParsedType TemplateTypeTy,
   1330                           SourceLocation IdLoc,
   1331                           SourceLocation LParenLoc,
   1332                           ExprTy **Args, unsigned NumArgs,
   1333                           SourceLocation RParenLoc,
   1334                           SourceLocation EllipsisLoc) {
   1335   if (!ConstructorD)
   1336     return true;
   1337 
   1338   AdjustDeclIfTemplate(ConstructorD);
   1339 
   1340   CXXConstructorDecl *Constructor
   1341     = dyn_cast<CXXConstructorDecl>(ConstructorD);
   1342   if (!Constructor) {
   1343     // The user wrote a constructor initializer on a function that is
   1344     // not a C++ constructor. Ignore the error for now, because we may
   1345     // have more member initializers coming; we'll diagnose it just
   1346     // once in ActOnMemInitializers.
   1347     return true;
   1348   }
   1349 
   1350   CXXRecordDecl *ClassDecl = Constructor->getParent();
   1351 
   1352   // C++ [class.base.init]p2:
   1353   //   Names in a mem-initializer-id are looked up in the scope of the
   1354   //   constructor's class and, if not found in that scope, are looked
   1355   //   up in the scope containing the constructor's definition.
   1356   //   [Note: if the constructor's class contains a member with the
   1357   //   same name as a direct or virtual base class of the class, a
   1358   //   mem-initializer-id naming the member or base class and composed
   1359   //   of a single identifier refers to the class member. A
   1360   //   mem-initializer-id for the hidden base class may be specified
   1361   //   using a qualified name. ]
   1362   if (!SS.getScopeRep() && !TemplateTypeTy) {
   1363     // Look for a member, first.
   1364     FieldDecl *Member = 0;
   1365     DeclContext::lookup_result Result
   1366       = ClassDecl->lookup(MemberOrBase);
   1367     if (Result.first != Result.second) {
   1368       Member = dyn_cast<FieldDecl>(*Result.first);
   1369 
   1370       if (Member) {
   1371         if (EllipsisLoc.isValid())
   1372           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
   1373             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
   1374 
   1375         return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
   1376                                     LParenLoc, RParenLoc);
   1377       }
   1378 
   1379       // Handle anonymous union case.
   1380       if (IndirectFieldDecl* IndirectField
   1381             = dyn_cast<IndirectFieldDecl>(*Result.first)) {
   1382         if (EllipsisLoc.isValid())
   1383           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
   1384             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
   1385 
   1386          return BuildMemberInitializer(IndirectField, (Expr**)Args,
   1387                                        NumArgs, IdLoc,
   1388                                        LParenLoc, RParenLoc);
   1389       }
   1390     }
   1391   }
   1392   // It didn't name a member, so see if it names a class.
   1393   QualType BaseType;
   1394   TypeSourceInfo *TInfo = 0;
   1395 
   1396   if (TemplateTypeTy) {
   1397     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
   1398   } else {
   1399     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
   1400     LookupParsedName(R, S, &SS);
   1401 
   1402     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
   1403     if (!TyD) {
   1404       if (R.isAmbiguous()) return true;
   1405 
   1406       // We don't want access-control diagnostics here.
   1407       R.suppressDiagnostics();
   1408 
   1409       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
   1410         bool NotUnknownSpecialization = false;
   1411         DeclContext *DC = computeDeclContext(SS, false);
   1412         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
   1413           NotUnknownSpecialization = !Record->hasAnyDependentBases();
   1414 
   1415         if (!NotUnknownSpecialization) {
   1416           // When the scope specifier can refer to a member of an unknown
   1417           // specialization, we take it as a type name.
   1418           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
   1419                                        SS.getWithLocInContext(Context),
   1420                                        *MemberOrBase, IdLoc);
   1421           if (BaseType.isNull())
   1422             return true;
   1423 
   1424           R.clear();
   1425           R.setLookupName(MemberOrBase);
   1426         }
   1427       }
   1428 
   1429       // If no results were found, try to correct typos.
   1430       TypoCorrection Corr;
   1431       if (R.empty() && BaseType.isNull() &&
   1432           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
   1433                               ClassDecl, false, CTC_NoKeywords))) {
   1434         std::string CorrectedStr(Corr.getAsString(getLangOptions()));
   1435         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
   1436         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
   1437           if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
   1438             // We have found a non-static data member with a similar
   1439             // name to what was typed; complain and initialize that
   1440             // member.
   1441             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
   1442               << MemberOrBase << true << CorrectedQuotedStr
   1443               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1444             Diag(Member->getLocation(), diag::note_previous_decl)
   1445               << CorrectedQuotedStr;
   1446 
   1447             return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
   1448                                           LParenLoc, RParenLoc);
   1449           }
   1450         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
   1451           const CXXBaseSpecifier *DirectBaseSpec;
   1452           const CXXBaseSpecifier *VirtualBaseSpec;
   1453           if (FindBaseInitializer(*this, ClassDecl,
   1454                                   Context.getTypeDeclType(Type),
   1455                                   DirectBaseSpec, VirtualBaseSpec)) {
   1456             // We have found a direct or virtual base class with a
   1457             // similar name to what was typed; complain and initialize
   1458             // that base class.
   1459             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
   1460               << MemberOrBase << false << CorrectedQuotedStr
   1461               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1462 
   1463             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
   1464                                                              : VirtualBaseSpec;
   1465             Diag(BaseSpec->getSourceRange().getBegin(),
   1466                  diag::note_base_class_specified_here)
   1467               << BaseSpec->getType()
   1468               << BaseSpec->getSourceRange();
   1469 
   1470             TyD = Type;
   1471           }
   1472         }
   1473       }
   1474 
   1475       if (!TyD && BaseType.isNull()) {
   1476         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
   1477           << MemberOrBase << SourceRange(IdLoc, RParenLoc);
   1478         return true;
   1479       }
   1480     }
   1481 
   1482     if (BaseType.isNull()) {
   1483       BaseType = Context.getTypeDeclType(TyD);
   1484       if (SS.isSet()) {
   1485         NestedNameSpecifier *Qualifier =
   1486           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   1487 
   1488         // FIXME: preserve source range information
   1489         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
   1490       }
   1491     }
   1492   }
   1493 
   1494   if (!TInfo)
   1495     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
   1496 
   1497   return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
   1498                               LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
   1499 }
   1500 
   1501 /// Checks an initializer expression for use of uninitialized fields, such as
   1502 /// containing the field that is being initialized. Returns true if there is an
   1503 /// uninitialized field was used an updates the SourceLocation parameter; false
   1504 /// otherwise.
   1505 static bool InitExprContainsUninitializedFields(const Stmt *S,
   1506                                                 const ValueDecl *LhsField,
   1507                                                 SourceLocation *L) {
   1508   assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
   1509 
   1510   if (isa<CallExpr>(S)) {
   1511     // Do not descend into function calls or constructors, as the use
   1512     // of an uninitialized field may be valid. One would have to inspect
   1513     // the contents of the function/ctor to determine if it is safe or not.
   1514     // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
   1515     // may be safe, depending on what the function/ctor does.
   1516     return false;
   1517   }
   1518   if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
   1519     const NamedDecl *RhsField = ME->getMemberDecl();
   1520 
   1521     if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
   1522       // The member expression points to a static data member.
   1523       assert(VD->isStaticDataMember() &&
   1524              "Member points to non-static data member!");
   1525       (void)VD;
   1526       return false;
   1527     }
   1528 
   1529     if (isa<EnumConstantDecl>(RhsField)) {
   1530       // The member expression points to an enum.
   1531       return false;
   1532     }
   1533 
   1534     if (RhsField == LhsField) {
   1535       // Initializing a field with itself. Throw a warning.
   1536       // But wait; there are exceptions!
   1537       // Exception #1:  The field may not belong to this record.
   1538       // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
   1539       const Expr *base = ME->getBase();
   1540       if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
   1541         // Even though the field matches, it does not belong to this record.
   1542         return false;
   1543       }
   1544       // None of the exceptions triggered; return true to indicate an
   1545       // uninitialized field was used.
   1546       *L = ME->getMemberLoc();
   1547       return true;
   1548     }
   1549   } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
   1550     // sizeof/alignof doesn't reference contents, do not warn.
   1551     return false;
   1552   } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
   1553     // address-of doesn't reference contents (the pointer may be dereferenced
   1554     // in the same expression but it would be rare; and weird).
   1555     if (UOE->getOpcode() == UO_AddrOf)
   1556       return false;
   1557   }
   1558   for (Stmt::const_child_range it = S->children(); it; ++it) {
   1559     if (!*it) {
   1560       // An expression such as 'member(arg ?: "")' may trigger this.
   1561       continue;
   1562     }
   1563     if (InitExprContainsUninitializedFields(*it, LhsField, L))
   1564       return true;
   1565   }
   1566   return false;
   1567 }
   1568 
   1569 MemInitResult
   1570 Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
   1571                              unsigned NumArgs, SourceLocation IdLoc,
   1572                              SourceLocation LParenLoc,
   1573                              SourceLocation RParenLoc) {
   1574   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
   1575   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
   1576   assert((DirectMember || IndirectMember) &&
   1577          "Member must be a FieldDecl or IndirectFieldDecl");
   1578 
   1579   if (Member->isInvalidDecl())
   1580     return true;
   1581 
   1582   // Diagnose value-uses of fields to initialize themselves, e.g.
   1583   //   foo(foo)
   1584   // where foo is not also a parameter to the constructor.
   1585   // TODO: implement -Wuninitialized and fold this into that framework.
   1586   for (unsigned i = 0; i < NumArgs; ++i) {
   1587     SourceLocation L;
   1588     if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
   1589       // FIXME: Return true in the case when other fields are used before being
   1590       // uninitialized. For example, let this field be the i'th field. When
   1591       // initializing the i'th field, throw a warning if any of the >= i'th
   1592       // fields are used, as they are not yet initialized.
   1593       // Right now we are only handling the case where the i'th field uses
   1594       // itself in its initializer.
   1595       Diag(L, diag::warn_field_is_uninit);
   1596     }
   1597   }
   1598 
   1599   bool HasDependentArg = false;
   1600   for (unsigned i = 0; i < NumArgs; i++)
   1601     HasDependentArg |= Args[i]->isTypeDependent();
   1602 
   1603   Expr *Init;
   1604   if (Member->getType()->isDependentType() || HasDependentArg) {
   1605     // Can't check initialization for a member of dependent type or when
   1606     // any of the arguments are type-dependent expressions.
   1607     Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
   1608                                        RParenLoc,
   1609                                        Member->getType().getNonReferenceType());
   1610 
   1611     DiscardCleanupsInEvaluationContext();
   1612   } else {
   1613     // Initialize the member.
   1614     InitializedEntity MemberEntity =
   1615       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
   1616                    : InitializedEntity::InitializeMember(IndirectMember, 0);
   1617     InitializationKind Kind =
   1618       InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
   1619 
   1620     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
   1621 
   1622     ExprResult MemberInit =
   1623       InitSeq.Perform(*this, MemberEntity, Kind,
   1624                       MultiExprArg(*this, Args, NumArgs), 0);
   1625     if (MemberInit.isInvalid())
   1626       return true;
   1627 
   1628     CheckImplicitConversions(MemberInit.get(), LParenLoc);
   1629 
   1630     // C++0x [class.base.init]p7:
   1631     //   The initialization of each base and member constitutes a
   1632     //   full-expression.
   1633     MemberInit = MaybeCreateExprWithCleanups(MemberInit);
   1634     if (MemberInit.isInvalid())
   1635       return true;
   1636 
   1637     // If we are in a dependent context, template instantiation will
   1638     // perform this type-checking again. Just save the arguments that we
   1639     // received in a ParenListExpr.
   1640     // FIXME: This isn't quite ideal, since our ASTs don't capture all
   1641     // of the information that we have about the member
   1642     // initializer. However, deconstructing the ASTs is a dicey process,
   1643     // and this approach is far more likely to get the corner cases right.
   1644     if (CurContext->isDependentContext())
   1645       Init = new (Context) ParenListExpr(
   1646           Context, LParenLoc, Args, NumArgs, RParenLoc,
   1647           Member->getType().getNonReferenceType());
   1648     else
   1649       Init = MemberInit.get();
   1650   }
   1651 
   1652   if (DirectMember) {
   1653     return new (Context) CXXCtorInitializer(Context, DirectMember,
   1654                                                     IdLoc, LParenLoc, Init,
   1655                                                     RParenLoc);
   1656   } else {
   1657     return new (Context) CXXCtorInitializer(Context, IndirectMember,
   1658                                                     IdLoc, LParenLoc, Init,
   1659                                                     RParenLoc);
   1660   }
   1661 }
   1662 
   1663 MemInitResult
   1664 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
   1665                                  Expr **Args, unsigned NumArgs,
   1666                                  SourceLocation NameLoc,
   1667                                  SourceLocation LParenLoc,
   1668                                  SourceLocation RParenLoc,
   1669                                  CXXRecordDecl *ClassDecl) {
   1670   SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
   1671   if (!LangOpts.CPlusPlus0x)
   1672     return Diag(Loc, diag::err_delegation_0x_only)
   1673       << TInfo->getTypeLoc().getLocalSourceRange();
   1674 
   1675   // Initialize the object.
   1676   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
   1677                                      QualType(ClassDecl->getTypeForDecl(), 0));
   1678   InitializationKind Kind =
   1679     InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
   1680 
   1681   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
   1682 
   1683   ExprResult DelegationInit =
   1684     InitSeq.Perform(*this, DelegationEntity, Kind,
   1685                     MultiExprArg(*this, Args, NumArgs), 0);
   1686   if (DelegationInit.isInvalid())
   1687     return true;
   1688 
   1689   CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
   1690   CXXConstructorDecl *Constructor
   1691     = ConExpr->getConstructor();
   1692   assert(Constructor && "Delegating constructor with no target?");
   1693 
   1694   CheckImplicitConversions(DelegationInit.get(), LParenLoc);
   1695 
   1696   // C++0x [class.base.init]p7:
   1697   //   The initialization of each base and member constitutes a
   1698   //   full-expression.
   1699   DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
   1700   if (DelegationInit.isInvalid())
   1701     return true;
   1702 
   1703   assert(!CurContext->isDependentContext());
   1704   return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
   1705                                           DelegationInit.takeAs<Expr>(),
   1706                                           RParenLoc);
   1707 }
   1708 
   1709 MemInitResult
   1710 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
   1711                            Expr **Args, unsigned NumArgs,
   1712                            SourceLocation LParenLoc, SourceLocation RParenLoc,
   1713                            CXXRecordDecl *ClassDecl,
   1714                            SourceLocation EllipsisLoc) {
   1715   bool HasDependentArg = false;
   1716   for (unsigned i = 0; i < NumArgs; i++)
   1717     HasDependentArg |= Args[i]->isTypeDependent();
   1718 
   1719   SourceLocation BaseLoc
   1720     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
   1721 
   1722   if (!BaseType->isDependentType() && !BaseType->isRecordType())
   1723     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
   1724              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   1725 
   1726   // C++ [class.base.init]p2:
   1727   //   [...] Unless the mem-initializer-id names a nonstatic data
   1728   //   member of the constructor's class or a direct or virtual base
   1729   //   of that class, the mem-initializer is ill-formed. A
   1730   //   mem-initializer-list can initialize a base class using any
   1731   //   name that denotes that base class type.
   1732   bool Dependent = BaseType->isDependentType() || HasDependentArg;
   1733 
   1734   if (EllipsisLoc.isValid()) {
   1735     // This is a pack expansion.
   1736     if (!BaseType->containsUnexpandedParameterPack())  {
   1737       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1738         << SourceRange(BaseLoc, RParenLoc);
   1739 
   1740       EllipsisLoc = SourceLocation();
   1741     }
   1742   } else {
   1743     // Check for any unexpanded parameter packs.
   1744     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
   1745       return true;
   1746 
   1747     for (unsigned I = 0; I != NumArgs; ++I)
   1748       if (DiagnoseUnexpandedParameterPack(Args[I]))
   1749         return true;
   1750   }
   1751 
   1752   // Check for direct and virtual base classes.
   1753   const CXXBaseSpecifier *DirectBaseSpec = 0;
   1754   const CXXBaseSpecifier *VirtualBaseSpec = 0;
   1755   if (!Dependent) {
   1756     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
   1757                                        BaseType))
   1758       return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
   1759                                         LParenLoc, RParenLoc, ClassDecl);
   1760 
   1761     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
   1762                         VirtualBaseSpec);
   1763 
   1764     // C++ [base.class.init]p2:
   1765     // Unless the mem-initializer-id names a nonstatic data member of the
   1766     // constructor's class or a direct or virtual base of that class, the
   1767     // mem-initializer is ill-formed.
   1768     if (!DirectBaseSpec && !VirtualBaseSpec) {
   1769       // If the class has any dependent bases, then it's possible that
   1770       // one of those types will resolve to the same type as
   1771       // BaseType. Therefore, just treat this as a dependent base
   1772       // class initialization.  FIXME: Should we try to check the
   1773       // initialization anyway? It seems odd.
   1774       if (ClassDecl->hasAnyDependentBases())
   1775         Dependent = true;
   1776       else
   1777         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
   1778           << BaseType << Context.getTypeDeclType(ClassDecl)
   1779           << BaseTInfo->getTypeLoc().getLocalSourceRange();
   1780     }
   1781   }
   1782 
   1783   if (Dependent) {
   1784     // Can't check initialization for a base of dependent type or when
   1785     // any of the arguments are type-dependent expressions.
   1786     ExprResult BaseInit
   1787       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
   1788                                           RParenLoc, BaseType));
   1789 
   1790     DiscardCleanupsInEvaluationContext();
   1791 
   1792     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   1793                                                     /*IsVirtual=*/false,
   1794                                                     LParenLoc,
   1795                                                     BaseInit.takeAs<Expr>(),
   1796                                                     RParenLoc,
   1797                                                     EllipsisLoc);
   1798   }
   1799 
   1800   // C++ [base.class.init]p2:
   1801   //   If a mem-initializer-id is ambiguous because it designates both
   1802   //   a direct non-virtual base class and an inherited virtual base
   1803   //   class, the mem-initializer is ill-formed.
   1804   if (DirectBaseSpec && VirtualBaseSpec)
   1805     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
   1806       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   1807 
   1808   CXXBaseSpecifier *BaseSpec
   1809     = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
   1810   if (!BaseSpec)
   1811     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
   1812 
   1813   // Initialize the base.
   1814   InitializedEntity BaseEntity =
   1815     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
   1816   InitializationKind Kind =
   1817     InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
   1818 
   1819   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
   1820 
   1821   ExprResult BaseInit =
   1822     InitSeq.Perform(*this, BaseEntity, Kind,
   1823                     MultiExprArg(*this, Args, NumArgs), 0);
   1824   if (BaseInit.isInvalid())
   1825     return true;
   1826 
   1827   CheckImplicitConversions(BaseInit.get(), LParenLoc);
   1828 
   1829   // C++0x [class.base.init]p7:
   1830   //   The initialization of each base and member constitutes a
   1831   //   full-expression.
   1832   BaseInit = MaybeCreateExprWithCleanups(BaseInit);
   1833   if (BaseInit.isInvalid())
   1834     return true;
   1835 
   1836   // If we are in a dependent context, template instantiation will
   1837   // perform this type-checking again. Just save the arguments that we
   1838   // received in a ParenListExpr.
   1839   // FIXME: This isn't quite ideal, since our ASTs don't capture all
   1840   // of the information that we have about the base
   1841   // initializer. However, deconstructing the ASTs is a dicey process,
   1842   // and this approach is far more likely to get the corner cases right.
   1843   if (CurContext->isDependentContext()) {
   1844     ExprResult Init
   1845       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
   1846                                           RParenLoc, BaseType));
   1847     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   1848                                                     BaseSpec->isVirtual(),
   1849                                                     LParenLoc,
   1850                                                     Init.takeAs<Expr>(),
   1851                                                     RParenLoc,
   1852                                                     EllipsisLoc);
   1853   }
   1854 
   1855   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   1856                                                   BaseSpec->isVirtual(),
   1857                                                   LParenLoc,
   1858                                                   BaseInit.takeAs<Expr>(),
   1859                                                   RParenLoc,
   1860                                                   EllipsisLoc);
   1861 }
   1862 
   1863 /// ImplicitInitializerKind - How an implicit base or member initializer should
   1864 /// initialize its base or member.
   1865 enum ImplicitInitializerKind {
   1866   IIK_Default,
   1867   IIK_Copy,
   1868   IIK_Move
   1869 };
   1870 
   1871 static bool
   1872 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   1873                              ImplicitInitializerKind ImplicitInitKind,
   1874                              CXXBaseSpecifier *BaseSpec,
   1875                              bool IsInheritedVirtualBase,
   1876                              CXXCtorInitializer *&CXXBaseInit) {
   1877   InitializedEntity InitEntity
   1878     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
   1879                                         IsInheritedVirtualBase);
   1880 
   1881   ExprResult BaseInit;
   1882 
   1883   switch (ImplicitInitKind) {
   1884   case IIK_Default: {
   1885     InitializationKind InitKind
   1886       = InitializationKind::CreateDefault(Constructor->getLocation());
   1887     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
   1888     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
   1889                                MultiExprArg(SemaRef, 0, 0));
   1890     break;
   1891   }
   1892 
   1893   case IIK_Copy: {
   1894     ParmVarDecl *Param = Constructor->getParamDecl(0);
   1895     QualType ParamType = Param->getType().getNonReferenceType();
   1896 
   1897     Expr *CopyCtorArg =
   1898       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
   1899                           Constructor->getLocation(), ParamType,
   1900                           VK_LValue, 0);
   1901 
   1902     // Cast to the base class to avoid ambiguities.
   1903     QualType ArgTy =
   1904       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
   1905                                        ParamType.getQualifiers());
   1906 
   1907     CXXCastPath BasePath;
   1908     BasePath.push_back(BaseSpec);
   1909     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
   1910                                             CK_UncheckedDerivedToBase,
   1911                                             VK_LValue, &BasePath).take();
   1912 
   1913     InitializationKind InitKind
   1914       = InitializationKind::CreateDirect(Constructor->getLocation(),
   1915                                          SourceLocation(), SourceLocation());
   1916     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
   1917                                    &CopyCtorArg, 1);
   1918     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
   1919                                MultiExprArg(&CopyCtorArg, 1));
   1920     break;
   1921   }
   1922 
   1923   case IIK_Move:
   1924     assert(false && "Unhandled initializer kind!");
   1925   }
   1926 
   1927   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
   1928   if (BaseInit.isInvalid())
   1929     return true;
   1930 
   1931   CXXBaseInit =
   1932     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   1933                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
   1934                                                         SourceLocation()),
   1935                                              BaseSpec->isVirtual(),
   1936                                              SourceLocation(),
   1937                                              BaseInit.takeAs<Expr>(),
   1938                                              SourceLocation(),
   1939                                              SourceLocation());
   1940 
   1941   return false;
   1942 }
   1943 
   1944 static bool
   1945 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   1946                                ImplicitInitializerKind ImplicitInitKind,
   1947                                FieldDecl *Field,
   1948                                CXXCtorInitializer *&CXXMemberInit) {
   1949   if (Field->isInvalidDecl())
   1950     return true;
   1951 
   1952   SourceLocation Loc = Constructor->getLocation();
   1953 
   1954   if (ImplicitInitKind == IIK_Copy) {
   1955     ParmVarDecl *Param = Constructor->getParamDecl(0);
   1956     QualType ParamType = Param->getType().getNonReferenceType();
   1957 
   1958     // Suppress copying zero-width bitfields.
   1959     if (const Expr *Width = Field->getBitWidth())
   1960       if (Width->EvaluateAsInt(SemaRef.Context) == 0)
   1961         return false;
   1962 
   1963     Expr *MemberExprBase =
   1964       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
   1965                           Loc, ParamType, VK_LValue, 0);
   1966 
   1967     // Build a reference to this field within the parameter.
   1968     CXXScopeSpec SS;
   1969     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
   1970                               Sema::LookupMemberName);
   1971     MemberLookup.addDecl(Field, AS_public);
   1972     MemberLookup.resolveKind();
   1973     ExprResult CopyCtorArg
   1974       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
   1975                                          ParamType, Loc,
   1976                                          /*IsArrow=*/false,
   1977                                          SS,
   1978                                          /*FirstQualifierInScope=*/0,
   1979                                          MemberLookup,
   1980                                          /*TemplateArgs=*/0);
   1981     if (CopyCtorArg.isInvalid())
   1982       return true;
   1983 
   1984     // When the field we are copying is an array, create index variables for
   1985     // each dimension of the array. We use these index variables to subscript
   1986     // the source array, and other clients (e.g., CodeGen) will perform the
   1987     // necessary iteration with these index variables.
   1988     llvm::SmallVector<VarDecl *, 4> IndexVariables;
   1989     QualType BaseType = Field->getType();
   1990     QualType SizeType = SemaRef.Context.getSizeType();
   1991     while (const ConstantArrayType *Array
   1992                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
   1993       // Create the iteration variable for this array index.
   1994       IdentifierInfo *IterationVarName = 0;
   1995       {
   1996         llvm::SmallString<8> Str;
   1997         llvm::raw_svector_ostream OS(Str);
   1998         OS << "__i" << IndexVariables.size();
   1999         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
   2000       }
   2001       VarDecl *IterationVar
   2002         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
   2003                           IterationVarName, SizeType,
   2004                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   2005                           SC_None, SC_None);
   2006       IndexVariables.push_back(IterationVar);
   2007 
   2008       // Create a reference to the iteration variable.
   2009       ExprResult IterationVarRef
   2010         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
   2011       assert(!IterationVarRef.isInvalid() &&
   2012              "Reference to invented variable cannot fail!");
   2013 
   2014       // Subscript the array with this iteration variable.
   2015       CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
   2016                                                             Loc,
   2017                                                         IterationVarRef.take(),
   2018                                                             Loc);
   2019       if (CopyCtorArg.isInvalid())
   2020         return true;
   2021 
   2022       BaseType = Array->getElementType();
   2023     }
   2024 
   2025     // Construct the entity that we will be initializing. For an array, this
   2026     // will be first element in the array, which may require several levels
   2027     // of array-subscript entities.
   2028     llvm::SmallVector<InitializedEntity, 4> Entities;
   2029     Entities.reserve(1 + IndexVariables.size());
   2030     Entities.push_back(InitializedEntity::InitializeMember(Field));
   2031     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   2032       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
   2033                                                               0,
   2034                                                               Entities.back()));
   2035 
   2036     // Direct-initialize to use the copy constructor.
   2037     InitializationKind InitKind =
   2038       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
   2039 
   2040     Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
   2041     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
   2042                                    &CopyCtorArgE, 1);
   2043 
   2044     ExprResult MemberInit
   2045       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
   2046                         MultiExprArg(&CopyCtorArgE, 1));
   2047     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   2048     if (MemberInit.isInvalid())
   2049       return true;
   2050 
   2051     CXXMemberInit
   2052       = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
   2053                                            MemberInit.takeAs<Expr>(), Loc,
   2054                                            IndexVariables.data(),
   2055                                            IndexVariables.size());
   2056     return false;
   2057   }
   2058 
   2059   assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
   2060 
   2061   QualType FieldBaseElementType =
   2062     SemaRef.Context.getBaseElementType(Field->getType());
   2063 
   2064   if (FieldBaseElementType->isRecordType()) {
   2065     InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
   2066     InitializationKind InitKind =
   2067       InitializationKind::CreateDefault(Loc);
   2068 
   2069     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
   2070     ExprResult MemberInit =
   2071       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
   2072 
   2073     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   2074     if (MemberInit.isInvalid())
   2075       return true;
   2076 
   2077     CXXMemberInit =
   2078       new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   2079                                                        Field, Loc, Loc,
   2080                                                        MemberInit.get(),
   2081                                                        Loc);
   2082     return false;
   2083   }
   2084 
   2085   if (!Field->getParent()->isUnion()) {
   2086     if (FieldBaseElementType->isReferenceType()) {
   2087       SemaRef.Diag(Constructor->getLocation(),
   2088                    diag::err_uninitialized_member_in_ctor)
   2089       << (int)Constructor->isImplicit()
   2090       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   2091       << 0 << Field->getDeclName();
   2092       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   2093       return true;
   2094     }
   2095 
   2096     if (FieldBaseElementType.isConstQualified()) {
   2097       SemaRef.Diag(Constructor->getLocation(),
   2098                    diag::err_uninitialized_member_in_ctor)
   2099       << (int)Constructor->isImplicit()
   2100       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   2101       << 1 << Field->getDeclName();
   2102       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   2103       return true;
   2104     }
   2105   }
   2106 
   2107   if (SemaRef.getLangOptions().ObjCAutoRefCount &&
   2108       FieldBaseElementType->isObjCRetainableType() &&
   2109       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
   2110       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
   2111     // Instant objects:
   2112     //   Default-initialize Objective-C pointers to NULL.
   2113     CXXMemberInit
   2114       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
   2115                                                  Loc, Loc,
   2116                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
   2117                                                  Loc);
   2118     return false;
   2119   }
   2120 
   2121   // Nothing to initialize.
   2122   CXXMemberInit = 0;
   2123   return false;
   2124 }
   2125 
   2126 namespace {
   2127 struct BaseAndFieldInfo {
   2128   Sema &S;
   2129   CXXConstructorDecl *Ctor;
   2130   bool AnyErrorsInInits;
   2131   ImplicitInitializerKind IIK;
   2132   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
   2133   llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
   2134 
   2135   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
   2136     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
   2137     // FIXME: Handle implicit move constructors.
   2138     if (Ctor->isImplicit() && Ctor->isCopyConstructor())
   2139       IIK = IIK_Copy;
   2140     else
   2141       IIK = IIK_Default;
   2142   }
   2143 };
   2144 }
   2145 
   2146 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
   2147                                     FieldDecl *Top, FieldDecl *Field) {
   2148 
   2149   // Overwhelmingly common case: we have a direct initializer for this field.
   2150   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
   2151     Info.AllToInit.push_back(Init);
   2152     return false;
   2153   }
   2154 
   2155   // C++0x [class.base.init]p8: if the entity is a non-static data member that
   2156   // has a brace-or-equal-initializer, the entity is initialized as specified
   2157   // in [dcl.init].
   2158   if (Field->hasInClassInitializer()) {
   2159     Info.AllToInit.push_back(
   2160       new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
   2161                                                SourceLocation(),
   2162                                                SourceLocation(), 0,
   2163                                                SourceLocation()));
   2164     return false;
   2165   }
   2166 
   2167   if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
   2168     const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
   2169     assert(FieldClassType && "anonymous struct/union without record type");
   2170     CXXRecordDecl *FieldClassDecl
   2171       = cast<CXXRecordDecl>(FieldClassType->getDecl());
   2172 
   2173     // Even though union members never have non-trivial default
   2174     // constructions in C++03, we still build member initializers for aggregate
   2175     // record types which can be union members, and C++0x allows non-trivial
   2176     // default constructors for union members, so we ensure that only one
   2177     // member is initialized for these.
   2178     if (FieldClassDecl->isUnion()) {
   2179       // First check for an explicit initializer for one field.
   2180       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
   2181            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
   2182         if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
   2183           Info.AllToInit.push_back(Init);
   2184 
   2185           // Once we've initialized a field of an anonymous union, the union
   2186           // field in the class is also initialized, so exit immediately.
   2187           return false;
   2188         } else if ((*FA)->isAnonymousStructOrUnion()) {
   2189           if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
   2190             return true;
   2191         }
   2192       }
   2193 
   2194       // FIXME: C++0x unrestricted unions might call a default constructor here.
   2195       return false;
   2196     } else {
   2197       // For structs, we simply descend through to initialize all members where
   2198       // necessary.
   2199       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
   2200            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
   2201         if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
   2202           return true;
   2203       }
   2204     }
   2205   }
   2206 
   2207   // Don't try to build an implicit initializer if there were semantic
   2208   // errors in any of the initializers (and therefore we might be
   2209   // missing some that the user actually wrote).
   2210   if (Info.AnyErrorsInInits || Field->isInvalidDecl())
   2211     return false;
   2212 
   2213   CXXCtorInitializer *Init = 0;
   2214   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
   2215     return true;
   2216 
   2217   if (Init)
   2218     Info.AllToInit.push_back(Init);
   2219 
   2220   return false;
   2221 }
   2222 
   2223 bool
   2224 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
   2225                                CXXCtorInitializer *Initializer) {
   2226   assert(Initializer->isDelegatingInitializer());
   2227   Constructor->setNumCtorInitializers(1);
   2228   CXXCtorInitializer **initializer =
   2229     new (Context) CXXCtorInitializer*[1];
   2230   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
   2231   Constructor->setCtorInitializers(initializer);
   2232 
   2233   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
   2234     MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
   2235     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
   2236   }
   2237 
   2238   DelegatingCtorDecls.push_back(Constructor);
   2239 
   2240   return false;
   2241 }
   2242 
   2243 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
   2244                                CXXCtorInitializer **Initializers,
   2245                                unsigned NumInitializers,
   2246                                bool AnyErrors) {
   2247   if (Constructor->getDeclContext()->isDependentContext()) {
   2248     // Just store the initializers as written, they will be checked during
   2249     // instantiation.
   2250     if (NumInitializers > 0) {
   2251       Constructor->setNumCtorInitializers(NumInitializers);
   2252       CXXCtorInitializer **baseOrMemberInitializers =
   2253         new (Context) CXXCtorInitializer*[NumInitializers];
   2254       memcpy(baseOrMemberInitializers, Initializers,
   2255              NumInitializers * sizeof(CXXCtorInitializer*));
   2256       Constructor->setCtorInitializers(baseOrMemberInitializers);
   2257     }
   2258 
   2259     return false;
   2260   }
   2261 
   2262   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
   2263 
   2264   // We need to build the initializer AST according to order of construction
   2265   // and not what user specified in the Initializers list.
   2266   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
   2267   if (!ClassDecl)
   2268     return true;
   2269 
   2270   bool HadError = false;
   2271 
   2272   for (unsigned i = 0; i < NumInitializers; i++) {
   2273     CXXCtorInitializer *Member = Initializers[i];
   2274 
   2275     if (Member->isBaseInitializer())
   2276       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
   2277     else
   2278       Info.AllBaseFields[Member->getAnyMember()] = Member;
   2279   }
   2280 
   2281   // Keep track of the direct virtual bases.
   2282   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
   2283   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
   2284        E = ClassDecl->bases_end(); I != E; ++I) {
   2285     if (I->isVirtual())
   2286       DirectVBases.insert(I);
   2287   }
   2288 
   2289   // Push virtual bases before others.
   2290   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
   2291        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
   2292 
   2293     if (CXXCtorInitializer *Value
   2294         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
   2295       Info.AllToInit.push_back(Value);
   2296     } else if (!AnyErrors) {
   2297       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
   2298       CXXCtorInitializer *CXXBaseInit;
   2299       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   2300                                        VBase, IsInheritedVirtualBase,
   2301                                        CXXBaseInit)) {
   2302         HadError = true;
   2303         continue;
   2304       }
   2305 
   2306       Info.AllToInit.push_back(CXXBaseInit);
   2307     }
   2308   }
   2309 
   2310   // Non-virtual bases.
   2311   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   2312        E = ClassDecl->bases_end(); Base != E; ++Base) {
   2313     // Virtuals are in the virtual base list and already constructed.
   2314     if (Base->isVirtual())
   2315       continue;
   2316 
   2317     if (CXXCtorInitializer *Value
   2318           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
   2319       Info.AllToInit.push_back(Value);
   2320     } else if (!AnyErrors) {
   2321       CXXCtorInitializer *CXXBaseInit;
   2322       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   2323                                        Base, /*IsInheritedVirtualBase=*/false,
   2324                                        CXXBaseInit)) {
   2325         HadError = true;
   2326         continue;
   2327       }
   2328 
   2329       Info.AllToInit.push_back(CXXBaseInit);
   2330     }
   2331   }
   2332 
   2333   // Fields.
   2334   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   2335        E = ClassDecl->field_end(); Field != E; ++Field) {
   2336     if ((*Field)->getType()->isIncompleteArrayType()) {
   2337       assert(ClassDecl->hasFlexibleArrayMember() &&
   2338              "Incomplete array type is not valid");
   2339       continue;
   2340     }
   2341     if (CollectFieldInitializer(*this, Info, *Field, *Field))
   2342       HadError = true;
   2343   }
   2344 
   2345   NumInitializers = Info.AllToInit.size();
   2346   if (NumInitializers > 0) {
   2347     Constructor->setNumCtorInitializers(NumInitializers);
   2348     CXXCtorInitializer **baseOrMemberInitializers =
   2349       new (Context) CXXCtorInitializer*[NumInitializers];
   2350     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
   2351            NumInitializers * sizeof(CXXCtorInitializer*));
   2352     Constructor->setCtorInitializers(baseOrMemberInitializers);
   2353 
   2354     // Constructors implicitly reference the base and member
   2355     // destructors.
   2356     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
   2357                                            Constructor->getParent());
   2358   }
   2359 
   2360   return HadError;
   2361 }
   2362 
   2363 static void *GetKeyForTopLevelField(FieldDecl *Field) {
   2364   // For anonymous unions, use the class declaration as the key.
   2365   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
   2366     if (RT->getDecl()->isAnonymousStructOrUnion())
   2367       return static_cast<void *>(RT->getDecl());
   2368   }
   2369   return static_cast<void *>(Field);
   2370 }
   2371 
   2372 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
   2373   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
   2374 }
   2375 
   2376 static void *GetKeyForMember(ASTContext &Context,
   2377                              CXXCtorInitializer *Member) {
   2378   if (!Member->isAnyMemberInitializer())
   2379     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
   2380 
   2381   // For fields injected into the class via declaration of an anonymous union,
   2382   // use its anonymous union class declaration as the unique key.
   2383   FieldDecl *Field = Member->getAnyMember();
   2384 
   2385   // If the field is a member of an anonymous struct or union, our key
   2386   // is the anonymous record decl that's a direct child of the class.
   2387   RecordDecl *RD = Field->getParent();
   2388   if (RD->isAnonymousStructOrUnion()) {
   2389     while (true) {
   2390       RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
   2391       if (Parent->isAnonymousStructOrUnion())
   2392         RD = Parent;
   2393       else
   2394         break;
   2395     }
   2396 
   2397     return static_cast<void *>(RD);
   2398   }
   2399 
   2400   return static_cast<void *>(Field);
   2401 }
   2402 
   2403 static void
   2404 DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
   2405                                   const CXXConstructorDecl *Constructor,
   2406                                   CXXCtorInitializer **Inits,
   2407                                   unsigned NumInits) {
   2408   if (Constructor->getDeclContext()->isDependentContext())
   2409     return;
   2410 
   2411   // Don't check initializers order unless the warning is enabled at the
   2412   // location of at least one initializer.
   2413   bool ShouldCheckOrder = false;
   2414   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
   2415     CXXCtorInitializer *Init = Inits[InitIndex];
   2416     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
   2417                                          Init->getSourceLocation())
   2418           != Diagnostic::Ignored) {
   2419       ShouldCheckOrder = true;
   2420       break;
   2421     }
   2422   }
   2423   if (!ShouldCheckOrder)
   2424     return;
   2425 
   2426   // Build the list of bases and members in the order that they'll
   2427   // actually be initialized.  The explicit initializers should be in
   2428   // this same order but may be missing things.
   2429   llvm::SmallVector<const void*, 32> IdealInitKeys;
   2430 
   2431   const CXXRecordDecl *ClassDecl = Constructor->getParent();
   2432 
   2433   // 1. Virtual bases.
   2434   for (CXXRecordDecl::base_class_const_iterator VBase =
   2435        ClassDecl->vbases_begin(),
   2436        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
   2437     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
   2438 
   2439   // 2. Non-virtual bases.
   2440   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
   2441        E = ClassDecl->bases_end(); Base != E; ++Base) {
   2442     if (Base->isVirtual())
   2443       continue;
   2444     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
   2445   }
   2446 
   2447   // 3. Direct fields.
   2448   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   2449        E = ClassDecl->field_end(); Field != E; ++Field)
   2450     IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
   2451 
   2452   unsigned NumIdealInits = IdealInitKeys.size();
   2453   unsigned IdealIndex = 0;
   2454 
   2455   CXXCtorInitializer *PrevInit = 0;
   2456   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
   2457     CXXCtorInitializer *Init = Inits[InitIndex];
   2458     void *InitKey = GetKeyForMember(SemaRef.Context, Init);
   2459 
   2460     // Scan forward to try to find this initializer in the idealized
   2461     // initializers list.
   2462     for (; IdealIndex != NumIdealInits; ++IdealIndex)
   2463       if (InitKey == IdealInitKeys[IdealIndex])
   2464         break;
   2465 
   2466     // If we didn't find this initializer, it must be because we
   2467     // scanned past it on a previous iteration.  That can only
   2468     // happen if we're out of order;  emit a warning.
   2469     if (IdealIndex == NumIdealInits && PrevInit) {
   2470       Sema::SemaDiagnosticBuilder D =
   2471         SemaRef.Diag(PrevInit->getSourceLocation(),
   2472                      diag::warn_initializer_out_of_order);
   2473 
   2474       if (PrevInit->isAnyMemberInitializer())
   2475         D << 0 << PrevInit->getAnyMember()->getDeclName();
   2476       else
   2477         D << 1 << PrevInit->getBaseClassInfo()->getType();
   2478 
   2479       if (Init->isAnyMemberInitializer())
   2480         D << 0 << Init->getAnyMember()->getDeclName();
   2481       else
   2482         D << 1 << Init->getBaseClassInfo()->getType();
   2483 
   2484       // Move back to the initializer's location in the ideal list.
   2485       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
   2486         if (InitKey == IdealInitKeys[IdealIndex])
   2487           break;
   2488 
   2489       assert(IdealIndex != NumIdealInits &&
   2490              "initializer not found in initializer list");
   2491     }
   2492 
   2493     PrevInit = Init;
   2494   }
   2495 }
   2496 
   2497 namespace {
   2498 bool CheckRedundantInit(Sema &S,
   2499                         CXXCtorInitializer *Init,
   2500                         CXXCtorInitializer *&PrevInit) {
   2501   if (!PrevInit) {
   2502     PrevInit = Init;
   2503     return false;
   2504   }
   2505 
   2506   if (FieldDecl *Field = Init->getMember())
   2507     S.Diag(Init->getSourceLocation(),
   2508            diag::err_multiple_mem_initialization)
   2509       << Field->getDeclName()
   2510       << Init->getSourceRange();
   2511   else {
   2512     const Type *BaseClass = Init->getBaseClass();
   2513     assert(BaseClass && "neither field nor base");
   2514     S.Diag(Init->getSourceLocation(),
   2515            diag::err_multiple_base_initialization)
   2516       << QualType(BaseClass, 0)
   2517       << Init->getSourceRange();
   2518   }
   2519   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
   2520     << 0 << PrevInit->getSourceRange();
   2521 
   2522   return true;
   2523 }
   2524 
   2525 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
   2526 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
   2527 
   2528 bool CheckRedundantUnionInit(Sema &S,
   2529                              CXXCtorInitializer *Init,
   2530                              RedundantUnionMap &Unions) {
   2531   FieldDecl *Field = Init->getAnyMember();
   2532   RecordDecl *Parent = Field->getParent();
   2533   if (!Parent->isAnonymousStructOrUnion())
   2534     return false;
   2535 
   2536   NamedDecl *Child = Field;
   2537   do {
   2538     if (Parent->isUnion()) {
   2539       UnionEntry &En = Unions[Parent];
   2540       if (En.first && En.first != Child) {
   2541         S.Diag(Init->getSourceLocation(),
   2542                diag::err_multiple_mem_union_initialization)
   2543           << Field->getDeclName()
   2544           << Init->getSourceRange();
   2545         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
   2546           << 0 << En.second->getSourceRange();
   2547         return true;
   2548       } else if (!En.first) {
   2549         En.first = Child;
   2550         En.second = Init;
   2551       }
   2552     }
   2553 
   2554     Child = Parent;
   2555     Parent = cast<RecordDecl>(Parent->getDeclContext());
   2556   } while (Parent->isAnonymousStructOrUnion());
   2557 
   2558   return false;
   2559 }
   2560 }
   2561 
   2562 /// ActOnMemInitializers - Handle the member initializers for a constructor.
   2563 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
   2564                                 SourceLocation ColonLoc,
   2565                                 MemInitTy **meminits, unsigned NumMemInits,
   2566                                 bool AnyErrors) {
   2567   if (!ConstructorDecl)
   2568     return;
   2569 
   2570   AdjustDeclIfTemplate(ConstructorDecl);
   2571 
   2572   CXXConstructorDecl *Constructor
   2573     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
   2574 
   2575   if (!Constructor) {
   2576     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
   2577     return;
   2578   }
   2579 
   2580   CXXCtorInitializer **MemInits =
   2581     reinterpret_cast<CXXCtorInitializer **>(meminits);
   2582 
   2583   // Mapping for the duplicate initializers check.
   2584   // For member initializers, this is keyed with a FieldDecl*.
   2585   // For base initializers, this is keyed with a Type*.
   2586   llvm::DenseMap<void*, CXXCtorInitializer *> Members;
   2587 
   2588   // Mapping for the inconsistent anonymous-union initializers check.
   2589   RedundantUnionMap MemberUnions;
   2590 
   2591   bool HadError = false;
   2592   for (unsigned i = 0; i < NumMemInits; i++) {
   2593     CXXCtorInitializer *Init = MemInits[i];
   2594 
   2595     // Set the source order index.
   2596     Init->setSourceOrder(i);
   2597 
   2598     if (Init->isAnyMemberInitializer()) {
   2599       FieldDecl *Field = Init->getAnyMember();
   2600       if (CheckRedundantInit(*this, Init, Members[Field]) ||
   2601           CheckRedundantUnionInit(*this, Init, MemberUnions))
   2602         HadError = true;
   2603     } else if (Init->isBaseInitializer()) {
   2604       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
   2605       if (CheckRedundantInit(*this, Init, Members[Key]))
   2606         HadError = true;
   2607     } else {
   2608       assert(Init->isDelegatingInitializer());
   2609       // This must be the only initializer
   2610       if (i != 0 || NumMemInits > 1) {
   2611         Diag(MemInits[0]->getSourceLocation(),
   2612              diag::err_delegating_initializer_alone)
   2613           << MemInits[0]->getSourceRange();
   2614         HadError = true;
   2615         // We will treat this as being the only initializer.
   2616       }
   2617       SetDelegatingInitializer(Constructor, MemInits[i]);
   2618       // Return immediately as the initializer is set.
   2619       return;
   2620     }
   2621   }
   2622 
   2623   if (HadError)
   2624     return;
   2625 
   2626   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
   2627 
   2628   SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
   2629 }
   2630 
   2631 void
   2632 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
   2633                                              CXXRecordDecl *ClassDecl) {
   2634   // Ignore dependent contexts.
   2635   if (ClassDecl->isDependentContext())
   2636     return;
   2637 
   2638   // FIXME: all the access-control diagnostics are positioned on the
   2639   // field/base declaration.  That's probably good; that said, the
   2640   // user might reasonably want to know why the destructor is being
   2641   // emitted, and we currently don't say.
   2642 
   2643   // Non-static data members.
   2644   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   2645        E = ClassDecl->field_end(); I != E; ++I) {
   2646     FieldDecl *Field = *I;
   2647     if (Field->isInvalidDecl())
   2648       continue;
   2649     QualType FieldType = Context.getBaseElementType(Field->getType());
   2650 
   2651     const RecordType* RT = FieldType->getAs<RecordType>();
   2652     if (!RT)
   2653       continue;
   2654 
   2655     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   2656     if (FieldClassDecl->isInvalidDecl())
   2657       continue;
   2658     if (FieldClassDecl->hasTrivialDestructor())
   2659       continue;
   2660 
   2661     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
   2662     assert(Dtor && "No dtor found for FieldClassDecl!");
   2663     CheckDestructorAccess(Field->getLocation(), Dtor,
   2664                           PDiag(diag::err_access_dtor_field)
   2665                             << Field->getDeclName()
   2666                             << FieldType);
   2667 
   2668     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   2669   }
   2670 
   2671   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
   2672 
   2673   // Bases.
   2674   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   2675        E = ClassDecl->bases_end(); Base != E; ++Base) {
   2676     // Bases are always records in a well-formed non-dependent class.
   2677     const RecordType *RT = Base->getType()->getAs<RecordType>();
   2678 
   2679     // Remember direct virtual bases.
   2680     if (Base->isVirtual())
   2681       DirectVirtualBases.insert(RT);
   2682 
   2683     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   2684     // If our base class is invalid, we probably can't get its dtor anyway.
   2685     if (BaseClassDecl->isInvalidDecl())
   2686       continue;
   2687     // Ignore trivial destructors.
   2688     if (BaseClassDecl->hasTrivialDestructor())
   2689       continue;
   2690 
   2691     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   2692     assert(Dtor && "No dtor found for BaseClassDecl!");
   2693 
   2694     // FIXME: caret should be on the start of the class name
   2695     CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
   2696                           PDiag(diag::err_access_dtor_base)
   2697                             << Base->getType()
   2698                             << Base->getSourceRange());
   2699 
   2700     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   2701   }
   2702 
   2703   // Virtual bases.
   2704   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
   2705        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
   2706 
   2707     // Bases are always records in a well-formed non-dependent class.
   2708     const RecordType *RT = VBase->getType()->getAs<RecordType>();
   2709 
   2710     // Ignore direct virtual bases.
   2711     if (DirectVirtualBases.count(RT))
   2712       continue;
   2713 
   2714     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   2715     // If our base class is invalid, we probably can't get its dtor anyway.
   2716     if (BaseClassDecl->isInvalidDecl())
   2717       continue;
   2718     // Ignore trivial destructors.
   2719     if (BaseClassDecl->hasTrivialDestructor())
   2720       continue;
   2721 
   2722     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   2723     assert(Dtor && "No dtor found for BaseClassDecl!");
   2724     CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
   2725                           PDiag(diag::err_access_dtor_vbase)
   2726                             << VBase->getType());
   2727 
   2728     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   2729   }
   2730 }
   2731 
   2732 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
   2733   if (!CDtorDecl)
   2734     return;
   2735 
   2736   if (CXXConstructorDecl *Constructor
   2737       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
   2738     SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
   2739 }
   2740 
   2741 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   2742                                   unsigned DiagID, AbstractDiagSelID SelID) {
   2743   if (SelID == -1)
   2744     return RequireNonAbstractType(Loc, T, PDiag(DiagID));
   2745   else
   2746     return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
   2747 }
   2748 
   2749 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   2750                                   const PartialDiagnostic &PD) {
   2751   if (!getLangOptions().CPlusPlus)
   2752     return false;
   2753 
   2754   if (const ArrayType *AT = Context.getAsArrayType(T))
   2755     return RequireNonAbstractType(Loc, AT->getElementType(), PD);
   2756 
   2757   if (const PointerType *PT = T->getAs<PointerType>()) {
   2758     // Find the innermost pointer type.
   2759     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
   2760       PT = T;
   2761 
   2762     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
   2763       return RequireNonAbstractType(Loc, AT->getElementType(), PD);
   2764   }
   2765 
   2766   const RecordType *RT = T->getAs<RecordType>();
   2767   if (!RT)
   2768     return false;
   2769 
   2770   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   2771 
   2772   // We can't answer whether something is abstract until it has a
   2773   // definition.  If it's currently being defined, we'll walk back
   2774   // over all the declarations when we have a full definition.
   2775   const CXXRecordDecl *Def = RD->getDefinition();
   2776   if (!Def || Def->isBeingDefined())
   2777     return false;
   2778 
   2779   if (!RD->isAbstract())
   2780     return false;
   2781 
   2782   Diag(Loc, PD) << RD->getDeclName();
   2783   DiagnoseAbstractType(RD);
   2784 
   2785   return true;
   2786 }
   2787 
   2788 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
   2789   // Check if we've already emitted the list of pure virtual functions
   2790   // for this class.
   2791   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
   2792     return;
   2793 
   2794   CXXFinalOverriderMap FinalOverriders;
   2795   RD->getFinalOverriders(FinalOverriders);
   2796 
   2797   // Keep a set of seen pure methods so we won't diagnose the same method
   2798   // more than once.
   2799   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
   2800 
   2801   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   2802                                    MEnd = FinalOverriders.end();
   2803        M != MEnd;
   2804        ++M) {
   2805     for (OverridingMethods::iterator SO = M->second.begin(),
   2806                                   SOEnd = M->second.end();
   2807          SO != SOEnd; ++SO) {
   2808       // C++ [class.abstract]p4:
   2809       //   A class is abstract if it contains or inherits at least one
   2810       //   pure virtual function for which the final overrider is pure
   2811       //   virtual.
   2812 
   2813       //
   2814       if (SO->second.size() != 1)
   2815         continue;
   2816 
   2817       if (!SO->second.front().Method->isPure())
   2818         continue;
   2819 
   2820       if (!SeenPureMethods.insert(SO->second.front().Method))
   2821         continue;
   2822 
   2823       Diag(SO->second.front().Method->getLocation(),
   2824            diag::note_pure_virtual_function)
   2825         << SO->second.front().Method->getDeclName() << RD->getDeclName();
   2826     }
   2827   }
   2828 
   2829   if (!PureVirtualClassDiagSet)
   2830     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
   2831   PureVirtualClassDiagSet->insert(RD);
   2832 }
   2833 
   2834 namespace {
   2835 struct AbstractUsageInfo {
   2836   Sema &S;
   2837   CXXRecordDecl *Record;
   2838   CanQualType AbstractType;
   2839   bool Invalid;
   2840 
   2841   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
   2842     : S(S), Record(Record),
   2843       AbstractType(S.Context.getCanonicalType(
   2844                    S.Context.getTypeDeclType(Record))),
   2845       Invalid(false) {}
   2846 
   2847   void DiagnoseAbstractType() {
   2848     if (Invalid) return;
   2849     S.DiagnoseAbstractType(Record);
   2850     Invalid = true;
   2851   }
   2852 
   2853   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
   2854 };
   2855 
   2856 struct CheckAbstractUsage {
   2857   AbstractUsageInfo &Info;
   2858   const NamedDecl *Ctx;
   2859 
   2860   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
   2861     : Info(Info), Ctx(Ctx) {}
   2862 
   2863   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   2864     switch (TL.getTypeLocClass()) {
   2865 #define ABSTRACT_TYPELOC(CLASS, PARENT)
   2866 #define TYPELOC(CLASS, PARENT) \
   2867     case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
   2868 #include "clang/AST/TypeLocNodes.def"
   2869     }
   2870   }
   2871 
   2872   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   2873     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
   2874     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
   2875       if (!TL.getArg(I))
   2876         continue;
   2877 
   2878       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
   2879       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
   2880     }
   2881   }
   2882 
   2883   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   2884     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
   2885   }
   2886 
   2887   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   2888     // Visit the type parameters from a permissive context.
   2889     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
   2890       TemplateArgumentLoc TAL = TL.getArgLoc(I);
   2891       if (TAL.getArgument().getKind() == TemplateArgument::Type)
   2892         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
   2893           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
   2894       // TODO: other template argument types?
   2895     }
   2896   }
   2897 
   2898   // Visit pointee types from a permissive context.
   2899 #define CheckPolymorphic(Type) \
   2900   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
   2901     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
   2902   }
   2903   CheckPolymorphic(PointerTypeLoc)
   2904   CheckPolymorphic(ReferenceTypeLoc)
   2905   CheckPolymorphic(MemberPointerTypeLoc)
   2906   CheckPolymorphic(BlockPointerTypeLoc)
   2907 
   2908   /// Handle all the types we haven't given a more specific
   2909   /// implementation for above.
   2910   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   2911     // Every other kind of type that we haven't called out already
   2912     // that has an inner type is either (1) sugar or (2) contains that
   2913     // inner type in some way as a subobject.
   2914     if (TypeLoc Next = TL.getNextTypeLoc())
   2915       return Visit(Next, Sel);
   2916 
   2917     // If there's no inner type and we're in a permissive context,
   2918     // don't diagnose.
   2919     if (Sel == Sema::AbstractNone) return;
   2920 
   2921     // Check whether the type matches the abstract type.
   2922     QualType T = TL.getType();
   2923     if (T->isArrayType()) {
   2924       Sel = Sema::AbstractArrayType;
   2925       T = Info.S.Context.getBaseElementType(T);
   2926     }
   2927     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
   2928     if (CT != Info.AbstractType) return;
   2929 
   2930     // It matched; do some magic.
   2931     if (Sel == Sema::AbstractArrayType) {
   2932       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
   2933         << T << TL.getSourceRange();
   2934     } else {
   2935       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
   2936         << Sel << T << TL.getSourceRange();
   2937     }
   2938     Info.DiagnoseAbstractType();
   2939   }
   2940 };
   2941 
   2942 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
   2943                                   Sema::AbstractDiagSelID Sel) {
   2944   CheckAbstractUsage(*this, D).Visit(TL, Sel);
   2945 }
   2946 
   2947 }
   2948 
   2949 /// Check for invalid uses of an abstract type in a method declaration.
   2950 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   2951                                     CXXMethodDecl *MD) {
   2952   // No need to do the check on definitions, which require that
   2953   // the return/param types be complete.
   2954   if (MD->doesThisDeclarationHaveABody())
   2955     return;
   2956 
   2957   // For safety's sake, just ignore it if we don't have type source
   2958   // information.  This should never happen for non-implicit methods,
   2959   // but...
   2960   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
   2961     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
   2962 }
   2963 
   2964 /// Check for invalid uses of an abstract type within a class definition.
   2965 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   2966                                     CXXRecordDecl *RD) {
   2967   for (CXXRecordDecl::decl_iterator
   2968          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
   2969     Decl *D = *I;
   2970     if (D->isImplicit()) continue;
   2971 
   2972     // Methods and method templates.
   2973     if (isa<CXXMethodDecl>(D)) {
   2974       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
   2975     } else if (isa<FunctionTemplateDecl>(D)) {
   2976       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
   2977       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
   2978 
   2979     // Fields and static variables.
   2980     } else if (isa<FieldDecl>(D)) {
   2981       FieldDecl *FD = cast<FieldDecl>(D);
   2982       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
   2983         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
   2984     } else if (isa<VarDecl>(D)) {
   2985       VarDecl *VD = cast<VarDecl>(D);
   2986       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
   2987         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
   2988 
   2989     // Nested classes and class templates.
   2990     } else if (isa<CXXRecordDecl>(D)) {
   2991       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
   2992     } else if (isa<ClassTemplateDecl>(D)) {
   2993       CheckAbstractClassUsage(Info,
   2994                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
   2995     }
   2996   }
   2997 }
   2998 
   2999 /// \brief Perform semantic checks on a class definition that has been
   3000 /// completing, introducing implicitly-declared members, checking for
   3001 /// abstract types, etc.
   3002 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
   3003   if (!Record)
   3004     return;
   3005 
   3006   if (Record->isAbstract() && !Record->isInvalidDecl()) {
   3007     AbstractUsageInfo Info(*this, Record);
   3008     CheckAbstractClassUsage(Info, Record);
   3009   }
   3010 
   3011   // If this is not an aggregate type and has no user-declared constructor,
   3012   // complain about any non-static data members of reference or const scalar
   3013   // type, since they will never get initializers.
   3014   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
   3015       !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
   3016     bool Complained = false;
   3017     for (RecordDecl::field_iterator F = Record->field_begin(),
   3018                                  FEnd = Record->field_end();
   3019          F != FEnd; ++F) {
   3020       if (F->hasInClassInitializer())
   3021         continue;
   3022 
   3023       if (F->getType()->isReferenceType() ||
   3024           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
   3025         if (!Complained) {
   3026           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
   3027             << Record->getTagKind() << Record;
   3028           Complained = true;
   3029         }
   3030 
   3031         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
   3032           << F->getType()->isReferenceType()
   3033           << F->getDeclName();
   3034       }
   3035     }
   3036   }
   3037 
   3038   if (Record->isDynamicClass() && !Record->isDependentType())
   3039     DynamicClasses.push_back(Record);
   3040 
   3041   if (Record->getIdentifier()) {
   3042     // C++ [class.mem]p13:
   3043     //   If T is the name of a class, then each of the following shall have a
   3044     //   name different from T:
   3045     //     - every member of every anonymous union that is a member of class T.
   3046     //
   3047     // C++ [class.mem]p14:
   3048     //   In addition, if class T has a user-declared constructor (12.1), every
   3049     //   non-static data member of class T shall have a name different from T.
   3050     for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
   3051          R.first != R.second; ++R.first) {
   3052       NamedDecl *D = *R.first;
   3053       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
   3054           isa<IndirectFieldDecl>(D)) {
   3055         Diag(D->getLocation(), diag::err_member_name_of_class)
   3056           << D->getDeclName();
   3057         break;
   3058       }
   3059     }
   3060   }
   3061 
   3062   // Warn if the class has virtual methods but non-virtual public destructor.
   3063   if (Record->isPolymorphic() && !Record->isDependentType()) {
   3064     CXXDestructorDecl *dtor = Record->getDestructor();
   3065     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
   3066       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
   3067            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
   3068   }
   3069 
   3070   // See if a method overloads virtual methods in a base
   3071   /// class without overriding any.
   3072   if (!Record->isDependentType()) {
   3073     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
   3074                                      MEnd = Record->method_end();
   3075          M != MEnd; ++M) {
   3076       if (!(*M)->isStatic())
   3077         DiagnoseHiddenVirtualMethods(Record, *M);
   3078     }
   3079   }
   3080 
   3081   // Declare inherited constructors. We do this eagerly here because:
   3082   // - The standard requires an eager diagnostic for conflicting inherited
   3083   //   constructors from different classes.
   3084   // - The lazy declaration of the other implicit constructors is so as to not
   3085   //   waste space and performance on classes that are not meant to be
   3086   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
   3087   //   have inherited constructors.
   3088   DeclareInheritedConstructors(Record);
   3089 
   3090   if (!Record->isDependentType())
   3091     CheckExplicitlyDefaultedMethods(Record);
   3092 }
   3093 
   3094 void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
   3095   for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
   3096                                       ME = Record->method_end();
   3097        MI != ME; ++MI) {
   3098     if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
   3099       switch (getSpecialMember(*MI)) {
   3100       case CXXDefaultConstructor:
   3101         CheckExplicitlyDefaultedDefaultConstructor(
   3102                                                   cast<CXXConstructorDecl>(*MI));
   3103         break;
   3104 
   3105       case CXXDestructor:
   3106         CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
   3107         break;
   3108 
   3109       case CXXCopyConstructor:
   3110         CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
   3111         break;
   3112 
   3113       case CXXCopyAssignment:
   3114         CheckExplicitlyDefaultedCopyAssignment(*MI);
   3115         break;
   3116 
   3117       case CXXMoveConstructor:
   3118       case CXXMoveAssignment:
   3119         Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
   3120         break;
   3121 
   3122       default:
   3123         // FIXME: Do moves once they exist
   3124         llvm_unreachable("non-special member explicitly defaulted!");
   3125       }
   3126     }
   3127   }
   3128 
   3129 }
   3130 
   3131 void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
   3132   assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
   3133 
   3134   // Whether this was the first-declared instance of the constructor.
   3135   // This affects whether we implicitly add an exception spec (and, eventually,
   3136   // constexpr). It is also ill-formed to explicitly default a constructor such
   3137   // that it would be deleted. (C++0x [decl.fct.def.default])
   3138   bool First = CD == CD->getCanonicalDecl();
   3139 
   3140   bool HadError = false;
   3141   if (CD->getNumParams() != 0) {
   3142     Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
   3143       << CD->getSourceRange();
   3144     HadError = true;
   3145   }
   3146 
   3147   ImplicitExceptionSpecification Spec
   3148     = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
   3149   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   3150   if (EPI.ExceptionSpecType == EST_Delayed) {
   3151     // Exception specification depends on some deferred part of the class. We'll
   3152     // try again when the class's definition has been fully processed.
   3153     return;
   3154   }
   3155   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
   3156                           *ExceptionType = Context.getFunctionType(
   3157                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
   3158 
   3159   if (CtorType->hasExceptionSpec()) {
   3160     if (CheckEquivalentExceptionSpec(
   3161           PDiag(diag::err_incorrect_defaulted_exception_spec)
   3162             << CXXDefaultConstructor,
   3163           PDiag(),
   3164           ExceptionType, SourceLocation(),
   3165           CtorType, CD->getLocation())) {
   3166       HadError = true;
   3167     }
   3168   } else if (First) {
   3169     // We set the declaration to have the computed exception spec here.
   3170     // We know there are no parameters.
   3171     EPI.ExtInfo = CtorType->getExtInfo();
   3172     CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
   3173   }
   3174 
   3175   if (HadError) {
   3176     CD->setInvalidDecl();
   3177     return;
   3178   }
   3179 
   3180   if (ShouldDeleteDefaultConstructor(CD)) {
   3181     if (First) {
   3182       CD->setDeletedAsWritten();
   3183     } else {
   3184       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
   3185         << CXXDefaultConstructor;
   3186       CD->setInvalidDecl();
   3187     }
   3188   }
   3189 }
   3190 
   3191 void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
   3192   assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
   3193 
   3194   // Whether this was the first-declared instance of the constructor.
   3195   bool First = CD == CD->getCanonicalDecl();
   3196 
   3197   bool HadError = false;
   3198   if (CD->getNumParams() != 1) {
   3199     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
   3200       << CD->getSourceRange();
   3201     HadError = true;
   3202   }
   3203 
   3204   ImplicitExceptionSpecification Spec(Context);
   3205   bool Const;
   3206   llvm::tie(Spec, Const) =
   3207     ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
   3208 
   3209   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   3210   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
   3211                           *ExceptionType = Context.getFunctionType(
   3212                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
   3213 
   3214   // Check for parameter type matching.
   3215   // This is a copy ctor so we know it's a cv-qualified reference to T.
   3216   QualType ArgType = CtorType->getArgType(0);
   3217   if (ArgType->getPointeeType().isVolatileQualified()) {
   3218     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
   3219     HadError = true;
   3220   }
   3221   if (ArgType->getPointeeType().isConstQualified() && !Const) {
   3222     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
   3223     HadError = true;
   3224   }
   3225 
   3226   if (CtorType->hasExceptionSpec()) {
   3227     if (CheckEquivalentExceptionSpec(
   3228           PDiag(diag::err_incorrect_defaulted_exception_spec)
   3229             << CXXCopyConstructor,
   3230           PDiag(),
   3231           ExceptionType, SourceLocation(),
   3232           CtorType, CD->getLocation())) {
   3233       HadError = true;
   3234     }
   3235   } else if (First) {
   3236     // We set the declaration to have the computed exception spec here.
   3237     // We duplicate the one parameter type.
   3238     EPI.ExtInfo = CtorType->getExtInfo();
   3239     CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
   3240   }
   3241 
   3242   if (HadError) {
   3243     CD->setInvalidDecl();
   3244     return;
   3245   }
   3246 
   3247   if (ShouldDeleteCopyConstructor(CD)) {
   3248     if (First) {
   3249       CD->setDeletedAsWritten();
   3250     } else {
   3251       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
   3252         << CXXCopyConstructor;
   3253       CD->setInvalidDecl();
   3254     }
   3255   }
   3256 }
   3257 
   3258 void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
   3259   assert(MD->isExplicitlyDefaulted());
   3260 
   3261   // Whether this was the first-declared instance of the operator
   3262   bool First = MD == MD->getCanonicalDecl();
   3263 
   3264   bool HadError = false;
   3265   if (MD->getNumParams() != 1) {
   3266     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
   3267       << MD->getSourceRange();
   3268     HadError = true;
   3269   }
   3270 
   3271   QualType ReturnType =
   3272     MD->getType()->getAs<FunctionType>()->getResultType();
   3273   if (!ReturnType->isLValueReferenceType() ||
   3274       !Context.hasSameType(
   3275         Context.getCanonicalType(ReturnType->getPointeeType()),
   3276         Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
   3277     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
   3278     HadError = true;
   3279   }
   3280 
   3281   ImplicitExceptionSpecification Spec(Context);
   3282   bool Const;
   3283   llvm::tie(Spec, Const) =
   3284     ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
   3285 
   3286   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   3287   const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
   3288                           *ExceptionType = Context.getFunctionType(
   3289                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
   3290 
   3291   QualType ArgType = OperType->getArgType(0);
   3292   if (!ArgType->isReferenceType()) {
   3293     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
   3294     HadError = true;
   3295   } else {
   3296     if (ArgType->getPointeeType().isVolatileQualified()) {
   3297       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
   3298       HadError = true;
   3299     }
   3300     if (ArgType->getPointeeType().isConstQualified() && !Const) {
   3301       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
   3302       HadError = true;
   3303     }
   3304   }
   3305 
   3306   if (OperType->getTypeQuals()) {
   3307     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
   3308     HadError = true;
   3309   }
   3310 
   3311   if (OperType->hasExceptionSpec()) {
   3312     if (CheckEquivalentExceptionSpec(
   3313           PDiag(diag::err_incorrect_defaulted_exception_spec)
   3314             << CXXCopyAssignment,
   3315           PDiag(),
   3316           ExceptionType, SourceLocation(),
   3317           OperType, MD->getLocation())) {
   3318       HadError = true;
   3319     }
   3320   } else if (First) {
   3321     // We set the declaration to have the computed exception spec here.
   3322     // We duplicate the one parameter type.
   3323     EPI.RefQualifier = OperType->getRefQualifier();
   3324     EPI.ExtInfo = OperType->getExtInfo();
   3325     MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
   3326   }
   3327 
   3328   if (HadError) {
   3329     MD->setInvalidDecl();
   3330     return;
   3331   }
   3332 
   3333   if (ShouldDeleteCopyAssignmentOperator(MD)) {
   3334     if (First) {
   3335       MD->setDeletedAsWritten();
   3336     } else {
   3337       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
   3338         << CXXCopyAssignment;
   3339       MD->setInvalidDecl();
   3340     }
   3341   }
   3342 }
   3343 
   3344 void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
   3345   assert(DD->isExplicitlyDefaulted());
   3346 
   3347   // Whether this was the first-declared instance of the destructor.
   3348   bool First = DD == DD->getCanonicalDecl();
   3349 
   3350   ImplicitExceptionSpecification Spec
   3351     = ComputeDefaultedDtorExceptionSpec(DD->getParent());
   3352   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   3353   const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
   3354                           *ExceptionType = Context.getFunctionType(
   3355                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
   3356 
   3357   if (DtorType->hasExceptionSpec()) {
   3358     if (CheckEquivalentExceptionSpec(
   3359           PDiag(diag::err_incorrect_defaulted_exception_spec)
   3360             << CXXDestructor,
   3361           PDiag(),
   3362           ExceptionType, SourceLocation(),
   3363           DtorType, DD->getLocation())) {
   3364       DD->setInvalidDecl();
   3365       return;
   3366     }
   3367   } else if (First) {
   3368     // We set the declaration to have the computed exception spec here.
   3369     // There are no parameters.
   3370     EPI.ExtInfo = DtorType->getExtInfo();
   3371     DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
   3372   }
   3373 
   3374   if (ShouldDeleteDestructor(DD)) {
   3375     if (First) {
   3376       DD->setDeletedAsWritten();
   3377     } else {
   3378       Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
   3379         << CXXDestructor;
   3380       DD->setInvalidDecl();
   3381     }
   3382   }
   3383 }
   3384 
   3385 bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
   3386   CXXRecordDecl *RD = CD->getParent();
   3387   assert(!RD->isDependentType() && "do deletion after instantiation");
   3388   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
   3389     return false;
   3390 
   3391   SourceLocation Loc = CD->getLocation();
   3392 
   3393   // Do access control from the constructor
   3394   ContextRAII CtorContext(*this, CD);
   3395 
   3396   bool Union = RD->isUnion();
   3397   bool AllConst = true;
   3398 
   3399   // We do this because we should never actually use an anonymous
   3400   // union's constructor.
   3401   if (Union && RD->isAnonymousStructOrUnion())
   3402     return false;
   3403 
   3404   // FIXME: We should put some diagnostic logic right into this function.
   3405 
   3406   // C++0x [class.ctor]/5
   3407   //    A defaulted default constructor for class X is defined as deleted if:
   3408 
   3409   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   3410                                           BE = RD->bases_end();
   3411        BI != BE; ++BI) {
   3412     // We'll handle this one later
   3413     if (BI->isVirtual())
   3414       continue;
   3415 
   3416     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
   3417     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3418 
   3419     // -- any [direct base class] has a type with a destructor that is
   3420     //    deleted or inaccessible from the defaulted default constructor
   3421     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3422     if (BaseDtor->isDeleted())
   3423       return true;
   3424     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3425         AR_accessible)
   3426       return true;
   3427 
   3428     // -- any [direct base class either] has no default constructor or
   3429     //    overload resolution as applied to [its] default constructor
   3430     //    results in an ambiguity or in a function that is deleted or
   3431     //    inaccessible from the defaulted default constructor
   3432     CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
   3433     if (!BaseDefault || BaseDefault->isDeleted())
   3434       return true;
   3435 
   3436     if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
   3437                                PDiag()) != AR_accessible)
   3438       return true;
   3439   }
   3440 
   3441   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
   3442                                           BE = RD->vbases_end();
   3443        BI != BE; ++BI) {
   3444     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
   3445     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3446 
   3447     // -- any [virtual base class] has a type with a destructor that is
   3448     //    delete or inaccessible from the defaulted default constructor
   3449     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3450     if (BaseDtor->isDeleted())
   3451       return true;
   3452     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3453         AR_accessible)
   3454       return true;
   3455 
   3456     // -- any [virtual base class either] has no default constructor or
   3457     //    overload resolution as applied to [its] default constructor
   3458     //    results in an ambiguity or in a function that is deleted or
   3459     //    inaccessible from the defaulted default constructor
   3460     CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
   3461     if (!BaseDefault || BaseDefault->isDeleted())
   3462       return true;
   3463 
   3464     if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
   3465                                PDiag()) != AR_accessible)
   3466       return true;
   3467   }
   3468 
   3469   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   3470                                      FE = RD->field_end();
   3471        FI != FE; ++FI) {
   3472     if (FI->isInvalidDecl())
   3473       continue;
   3474 
   3475     QualType FieldType = Context.getBaseElementType(FI->getType());
   3476     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   3477 
   3478     // -- any non-static data member with no brace-or-equal-initializer is of
   3479     //    reference type
   3480     if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
   3481       return true;
   3482 
   3483     // -- X is a union and all its variant members are of const-qualified type
   3484     //    (or array thereof)
   3485     if (Union && !FieldType.isConstQualified())
   3486       AllConst = false;
   3487 
   3488     if (FieldRecord) {
   3489       // -- X is a union-like class that has a variant member with a non-trivial
   3490       //    default constructor
   3491       if (Union && !FieldRecord->hasTrivialDefaultConstructor())
   3492         return true;
   3493 
   3494       CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
   3495       if (FieldDtor->isDeleted())
   3496         return true;
   3497       if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
   3498           AR_accessible)
   3499         return true;
   3500 
   3501       // -- any non-variant non-static data member of const-qualified type (or
   3502       //    array thereof) with no brace-or-equal-initializer does not have a
   3503       //    user-provided default constructor
   3504       if (FieldType.isConstQualified() &&
   3505           !FI->hasInClassInitializer() &&
   3506           !FieldRecord->hasUserProvidedDefaultConstructor())
   3507         return true;
   3508 
   3509       if (!Union && FieldRecord->isUnion() &&
   3510           FieldRecord->isAnonymousStructOrUnion()) {
   3511         // We're okay to reuse AllConst here since we only care about the
   3512         // value otherwise if we're in a union.
   3513         AllConst = true;
   3514 
   3515         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
   3516                                            UE = FieldRecord->field_end();
   3517              UI != UE; ++UI) {
   3518           QualType UnionFieldType = Context.getBaseElementType(UI->getType());
   3519           CXXRecordDecl *UnionFieldRecord =
   3520             UnionFieldType->getAsCXXRecordDecl();
   3521 
   3522           if (!UnionFieldType.isConstQualified())
   3523             AllConst = false;
   3524 
   3525           if (UnionFieldRecord &&
   3526               !UnionFieldRecord->hasTrivialDefaultConstructor())
   3527             return true;
   3528         }
   3529 
   3530         if (AllConst)
   3531           return true;
   3532 
   3533         // Don't try to initialize the anonymous union
   3534         // This is technically non-conformant, but sanity demands it.
   3535         continue;
   3536       }
   3537 
   3538       // -- any non-static data member with no brace-or-equal-initializer has
   3539       //    class type M (or array thereof) and either M has no default
   3540       //    constructor or overload resolution as applied to M's default
   3541       //    constructor results in an ambiguity or in a function that is deleted
   3542       //    or inaccessible from the defaulted default constructor.
   3543       if (!FI->hasInClassInitializer()) {
   3544         CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
   3545         if (!FieldDefault || FieldDefault->isDeleted())
   3546           return true;
   3547         if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
   3548                                    PDiag()) != AR_accessible)
   3549           return true;
   3550       }
   3551     } else if (!Union && FieldType.isConstQualified() &&
   3552                !FI->hasInClassInitializer()) {
   3553       // -- any non-variant non-static data member of const-qualified type (or
   3554       //    array thereof) with no brace-or-equal-initializer does not have a
   3555       //    user-provided default constructor
   3556       return true;
   3557     }
   3558   }
   3559 
   3560   if (Union && AllConst)
   3561     return true;
   3562 
   3563   return false;
   3564 }
   3565 
   3566 bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
   3567   CXXRecordDecl *RD = CD->getParent();
   3568   assert(!RD->isDependentType() && "do deletion after instantiation");
   3569   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
   3570     return false;
   3571 
   3572   SourceLocation Loc = CD->getLocation();
   3573 
   3574   // Do access control from the constructor
   3575   ContextRAII CtorContext(*this, CD);
   3576 
   3577   bool Union = RD->isUnion();
   3578 
   3579   assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
   3580          "copy assignment arg has no pointee type");
   3581   unsigned ArgQuals =
   3582     CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
   3583       Qualifiers::Const : 0;
   3584 
   3585   // We do this because we should never actually use an anonymous
   3586   // union's constructor.
   3587   if (Union && RD->isAnonymousStructOrUnion())
   3588     return false;
   3589 
   3590   // FIXME: We should put some diagnostic logic right into this function.
   3591 
   3592   // C++0x [class.copy]/11
   3593   //    A defaulted [copy] constructor for class X is defined as delete if X has:
   3594 
   3595   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   3596                                           BE = RD->bases_end();
   3597        BI != BE; ++BI) {
   3598     // We'll handle this one later
   3599     if (BI->isVirtual())
   3600       continue;
   3601 
   3602     QualType BaseType = BI->getType();
   3603     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
   3604     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3605 
   3606     // -- any [direct base class] of a type with a destructor that is deleted or
   3607     //    inaccessible from the defaulted constructor
   3608     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3609     if (BaseDtor->isDeleted())
   3610       return true;
   3611     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3612         AR_accessible)
   3613       return true;
   3614 
   3615     // -- a [direct base class] B that cannot be [copied] because overload
   3616     //    resolution, as applied to B's [copy] constructor, results in an
   3617     //    ambiguity or a function that is deleted or inaccessible from the
   3618     //    defaulted constructor
   3619     CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
   3620     if (!BaseCtor || BaseCtor->isDeleted())
   3621       return true;
   3622     if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
   3623         AR_accessible)
   3624       return true;
   3625   }
   3626 
   3627   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
   3628                                           BE = RD->vbases_end();
   3629        BI != BE; ++BI) {
   3630     QualType BaseType = BI->getType();
   3631     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
   3632     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3633 
   3634     // -- any [virtual base class] of a type with a destructor that is deleted or
   3635     //    inaccessible from the defaulted constructor
   3636     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3637     if (BaseDtor->isDeleted())
   3638       return true;
   3639     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3640         AR_accessible)
   3641       return true;
   3642 
   3643     // -- a [virtual base class] B that cannot be [copied] because overload
   3644     //    resolution, as applied to B's [copy] constructor, results in an
   3645     //    ambiguity or a function that is deleted or inaccessible from the
   3646     //    defaulted constructor
   3647     CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
   3648     if (!BaseCtor || BaseCtor->isDeleted())
   3649       return true;
   3650     if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
   3651         AR_accessible)
   3652       return true;
   3653   }
   3654 
   3655   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   3656                                      FE = RD->field_end();
   3657        FI != FE; ++FI) {
   3658     QualType FieldType = Context.getBaseElementType(FI->getType());
   3659 
   3660     // -- for a copy constructor, a non-static data member of rvalue reference
   3661     //    type
   3662     if (FieldType->isRValueReferenceType())
   3663       return true;
   3664 
   3665     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   3666 
   3667     if (FieldRecord) {
   3668       // This is an anonymous union
   3669       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
   3670         // Anonymous unions inside unions do not variant members create
   3671         if (!Union) {
   3672           for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
   3673                                              UE = FieldRecord->field_end();
   3674                UI != UE; ++UI) {
   3675             QualType UnionFieldType = Context.getBaseElementType(UI->getType());
   3676             CXXRecordDecl *UnionFieldRecord =
   3677               UnionFieldType->getAsCXXRecordDecl();
   3678 
   3679             // -- a variant member with a non-trivial [copy] constructor and X
   3680             //    is a union-like class
   3681             if (UnionFieldRecord &&
   3682                 !UnionFieldRecord->hasTrivialCopyConstructor())
   3683               return true;
   3684           }
   3685         }
   3686 
   3687         // Don't try to initalize an anonymous union
   3688         continue;
   3689       } else {
   3690          // -- a variant member with a non-trivial [copy] constructor and X is a
   3691          //    union-like class
   3692         if (Union && !FieldRecord->hasTrivialCopyConstructor())
   3693           return true;
   3694 
   3695         // -- any [non-static data member] of a type with a destructor that is
   3696         //    deleted or inaccessible from the defaulted constructor
   3697         CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
   3698         if (FieldDtor->isDeleted())
   3699           return true;
   3700         if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
   3701             AR_accessible)
   3702           return true;
   3703       }
   3704 
   3705     // -- a [non-static data member of class type (or array thereof)] B that
   3706     //    cannot be [copied] because overload resolution, as applied to B's
   3707     //    [copy] constructor, results in an ambiguity or a function that is
   3708     //    deleted or inaccessible from the defaulted constructor
   3709       CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
   3710                                                                ArgQuals);
   3711       if (!FieldCtor || FieldCtor->isDeleted())
   3712         return true;
   3713       if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
   3714                                  PDiag()) != AR_accessible)
   3715         return true;
   3716     }
   3717   }
   3718 
   3719   return false;
   3720 }
   3721 
   3722 bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
   3723   CXXRecordDecl *RD = MD->getParent();
   3724   assert(!RD->isDependentType() && "do deletion after instantiation");
   3725   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
   3726     return false;
   3727 
   3728   SourceLocation Loc = MD->getLocation();
   3729 
   3730   // Do access control from the constructor
   3731   ContextRAII MethodContext(*this, MD);
   3732 
   3733   bool Union = RD->isUnion();
   3734 
   3735   unsigned ArgQuals =
   3736     MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
   3737       Qualifiers::Const : 0;
   3738 
   3739   // We do this because we should never actually use an anonymous
   3740   // union's constructor.
   3741   if (Union && RD->isAnonymousStructOrUnion())
   3742     return false;
   3743 
   3744   // FIXME: We should put some diagnostic logic right into this function.
   3745 
   3746   // C++0x [class.copy]/11
   3747   //    A defaulted [copy] assignment operator for class X is defined as deleted
   3748   //    if X has:
   3749 
   3750   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   3751                                           BE = RD->bases_end();
   3752        BI != BE; ++BI) {
   3753     // We'll handle this one later
   3754     if (BI->isVirtual())
   3755       continue;
   3756 
   3757     QualType BaseType = BI->getType();
   3758     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
   3759     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3760 
   3761     // -- a [direct base class] B that cannot be [copied] because overload
   3762     //    resolution, as applied to B's [copy] assignment operator, results in
   3763     //    an ambiguity or a function that is deleted or inaccessible from the
   3764     //    assignment operator
   3765     CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
   3766                                                       0);
   3767     if (!CopyOper || CopyOper->isDeleted())
   3768       return true;
   3769     if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
   3770       return true;
   3771   }
   3772 
   3773   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
   3774                                           BE = RD->vbases_end();
   3775        BI != BE; ++BI) {
   3776     QualType BaseType = BI->getType();
   3777     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
   3778     assert(BaseDecl && "base isn't a CXXRecordDecl");
   3779 
   3780     // -- a [virtual base class] B that cannot be [copied] because overload
   3781     //    resolution, as applied to B's [copy] assignment operator, results in
   3782     //    an ambiguity or a function that is deleted or inaccessible from the
   3783     //    assignment operator
   3784     CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
   3785                                                       0);
   3786     if (!CopyOper || CopyOper->isDeleted())
   3787       return true;
   3788     if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
   3789       return true;
   3790   }
   3791 
   3792   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   3793                                      FE = RD->field_end();
   3794        FI != FE; ++FI) {
   3795     QualType FieldType = Context.getBaseElementType(FI->getType());
   3796 
   3797     // -- a non-static data member of reference type
   3798     if (FieldType->isReferenceType())
   3799       return true;
   3800 
   3801     // -- a non-static data member of const non-class type (or array thereof)
   3802     if (FieldType.isConstQualified() && !FieldType->isRecordType())
   3803       return true;
   3804 
   3805     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   3806 
   3807     if (FieldRecord) {
   3808       // This is an anonymous union
   3809       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
   3810         // Anonymous unions inside unions do not variant members create
   3811         if (!Union) {
   3812           for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
   3813                                              UE = FieldRecord->field_end();
   3814                UI != UE; ++UI) {
   3815             QualType UnionFieldType = Context.getBaseElementType(UI->getType());
   3816             CXXRecordDecl *UnionFieldRecord =
   3817               UnionFieldType->getAsCXXRecordDecl();
   3818 
   3819             // -- a variant member with a non-trivial [copy] assignment operator
   3820             //    and X is a union-like class
   3821             if (UnionFieldRecord &&
   3822                 !UnionFieldRecord->hasTrivialCopyAssignment())
   3823               return true;
   3824           }
   3825         }
   3826 
   3827         // Don't try to initalize an anonymous union
   3828         continue;
   3829       // -- a variant member with a non-trivial [copy] assignment operator
   3830       //    and X is a union-like class
   3831       } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
   3832           return true;
   3833       }
   3834 
   3835       CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
   3836                                                         false, 0);
   3837       if (!CopyOper || CopyOper->isDeleted())
   3838         return false;
   3839       if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
   3840         return false;
   3841     }
   3842   }
   3843 
   3844   return false;
   3845 }
   3846 
   3847 bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
   3848   CXXRecordDecl *RD = DD->getParent();
   3849   assert(!RD->isDependentType() && "do deletion after instantiation");
   3850   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
   3851     return false;
   3852 
   3853   SourceLocation Loc = DD->getLocation();
   3854 
   3855   // Do access control from the destructor
   3856   ContextRAII CtorContext(*this, DD);
   3857 
   3858   bool Union = RD->isUnion();
   3859 
   3860   // We do this because we should never actually use an anonymous
   3861   // union's destructor.
   3862   if (Union && RD->isAnonymousStructOrUnion())
   3863     return false;
   3864 
   3865   // C++0x [class.dtor]p5
   3866   //    A defaulted destructor for a class X is defined as deleted if:
   3867   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   3868                                           BE = RD->bases_end();
   3869        BI != BE; ++BI) {
   3870     // We'll handle this one later
   3871     if (BI->isVirtual())
   3872       continue;
   3873 
   3874     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
   3875     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3876     assert(BaseDtor && "base has no destructor");
   3877 
   3878     // -- any direct or virtual base class has a deleted destructor or
   3879     //    a destructor that is inaccessible from the defaulted destructor
   3880     if (BaseDtor->isDeleted())
   3881       return true;
   3882     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3883         AR_accessible)
   3884       return true;
   3885   }
   3886 
   3887   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
   3888                                           BE = RD->vbases_end();
   3889        BI != BE; ++BI) {
   3890     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
   3891     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
   3892     assert(BaseDtor && "base has no destructor");
   3893 
   3894     // -- any direct or virtual base class has a deleted destructor or
   3895     //    a destructor that is inaccessible from the defaulted destructor
   3896     if (BaseDtor->isDeleted())
   3897       return true;
   3898     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
   3899         AR_accessible)
   3900       return true;
   3901   }
   3902 
   3903   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   3904                                      FE = RD->field_end();
   3905        FI != FE; ++FI) {
   3906     QualType FieldType = Context.getBaseElementType(FI->getType());
   3907     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   3908     if (FieldRecord) {
   3909       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
   3910          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
   3911                                             UE = FieldRecord->field_end();
   3912               UI != UE; ++UI) {
   3913            QualType UnionFieldType = Context.getBaseElementType(FI->getType());
   3914            CXXRecordDecl *UnionFieldRecord =
   3915              UnionFieldType->getAsCXXRecordDecl();
   3916 
   3917            // -- X is a union-like class that has a variant member with a non-
   3918            //    trivial destructor.
   3919            if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
   3920              return true;
   3921          }
   3922       // Technically we are supposed to do this next check unconditionally.
   3923       // But that makes absolutely no sense.
   3924       } else {
   3925         CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
   3926 
   3927         // -- any of the non-static data members has class type M (or array
   3928         //    thereof) and M has a deleted destructor or a destructor that is
   3929         //    inaccessible from the defaulted destructor
   3930         if (FieldDtor->isDeleted())
   3931           return true;
   3932         if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
   3933           AR_accessible)
   3934         return true;
   3935 
   3936         // -- X is a union-like class that has a variant member with a non-
   3937         //    trivial destructor.
   3938         if (Union && !FieldDtor->isTrivial())
   3939           return true;
   3940       }
   3941     }
   3942   }
   3943 
   3944   if (DD->isVirtual()) {
   3945     FunctionDecl *OperatorDelete = 0;
   3946     DeclarationName Name =
   3947       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   3948     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
   3949           false))
   3950       return true;
   3951   }
   3952 
   3953 
   3954   return false;
   3955 }
   3956 
   3957 /// \brief Data used with FindHiddenVirtualMethod
   3958 namespace {
   3959   struct FindHiddenVirtualMethodData {
   3960     Sema *S;
   3961     CXXMethodDecl *Method;
   3962     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
   3963     llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
   3964   };
   3965 }
   3966 
   3967 /// \brief Member lookup function that determines whether a given C++
   3968 /// method overloads virtual methods in a base class without overriding any,
   3969 /// to be used with CXXRecordDecl::lookupInBases().
   3970 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
   3971                                     CXXBasePath &Path,
   3972                                     void *UserData) {
   3973   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   3974 
   3975   FindHiddenVirtualMethodData &Data
   3976     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
   3977 
   3978   DeclarationName Name = Data.Method->getDeclName();
   3979   assert(Name.getNameKind() == DeclarationName::Identifier);
   3980 
   3981   bool foundSameNameMethod = false;
   3982   llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
   3983   for (Path.Decls = BaseRecord->lookup(Name);
   3984        Path.Decls.first != Path.Decls.second;
   3985        ++Path.Decls.first) {
   3986     NamedDecl *D = *Path.Decls.first;
   3987     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   3988       MD = MD->getCanonicalDecl();
   3989       foundSameNameMethod = true;
   3990       // Interested only in hidden virtual methods.
   3991       if (!MD->isVirtual())
   3992         continue;
   3993       // If the method we are checking overrides a method from its base
   3994       // don't warn about the other overloaded methods.
   3995       if (!Data.S->IsOverload(Data.Method, MD, false))
   3996         return true;
   3997       // Collect the overload only if its hidden.
   3998       if (!Data.OverridenAndUsingBaseMethods.count(MD))
   3999         overloadedMethods.push_back(MD);
   4000     }
   4001   }
   4002 
   4003   if (foundSameNameMethod)
   4004     Data.OverloadedMethods.append(overloadedMethods.begin(),
   4005                                    overloadedMethods.end());
   4006   return foundSameNameMethod;
   4007 }
   4008 
   4009 /// \brief See if a method overloads virtual methods in a base class without
   4010 /// overriding any.
   4011 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   4012   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
   4013                                MD->getLocation()) == Diagnostic::Ignored)
   4014     return;
   4015   if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
   4016     return;
   4017 
   4018   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
   4019                      /*bool RecordPaths=*/false,
   4020                      /*bool DetectVirtual=*/false);
   4021   FindHiddenVirtualMethodData Data;
   4022   Data.Method = MD;
   4023   Data.S = this;
   4024 
   4025   // Keep the base methods that were overriden or introduced in the subclass
   4026   // by 'using' in a set. A base method not in this set is hidden.
   4027   for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
   4028        res.first != res.second; ++res.first) {
   4029     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
   4030       for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   4031                                           E = MD->end_overridden_methods();
   4032            I != E; ++I)
   4033         Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
   4034     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
   4035       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
   4036         Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
   4037   }
   4038 
   4039   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
   4040       !Data.OverloadedMethods.empty()) {
   4041     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
   4042       << MD << (Data.OverloadedMethods.size() > 1);
   4043 
   4044     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
   4045       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
   4046       Diag(overloadedMD->getLocation(),
   4047            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
   4048     }
   4049   }
   4050 }
   4051 
   4052 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
   4053                                              Decl *TagDecl,
   4054                                              SourceLocation LBrac,
   4055                                              SourceLocation RBrac,
   4056                                              AttributeList *AttrList) {
   4057   if (!TagDecl)
   4058     return;
   4059 
   4060   AdjustDeclIfTemplate(TagDecl);
   4061 
   4062   ActOnFields(S, RLoc, TagDecl,
   4063               // strict aliasing violation!
   4064               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
   4065               FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
   4066 
   4067   CheckCompletedCXXClass(
   4068                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
   4069 }
   4070 
   4071 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
   4072 /// special functions, such as the default constructor, copy
   4073 /// constructor, or destructor, to the given C++ class (C++
   4074 /// [special]p1).  This routine can only be executed just before the
   4075 /// definition of the class is complete.
   4076 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
   4077   if (!ClassDecl->hasUserDeclaredConstructor())
   4078     ++ASTContext::NumImplicitDefaultConstructors;
   4079 
   4080   if (!ClassDecl->hasUserDeclaredCopyConstructor())
   4081     ++ASTContext::NumImplicitCopyConstructors;
   4082 
   4083   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
   4084     ++ASTContext::NumImplicitCopyAssignmentOperators;
   4085 
   4086     // If we have a dynamic class, then the copy assignment operator may be
   4087     // virtual, so we have to declare it immediately. This ensures that, e.g.,
   4088     // it shows up in the right place in the vtable and that we diagnose
   4089     // problems with the implicit exception specification.
   4090     if (ClassDecl->isDynamicClass())
   4091       DeclareImplicitCopyAssignment(ClassDecl);
   4092   }
   4093 
   4094   if (!ClassDecl->hasUserDeclaredDestructor()) {
   4095     ++ASTContext::NumImplicitDestructors;
   4096 
   4097     // If we have a dynamic class, then the destructor may be virtual, so we
   4098     // have to declare the destructor immediately. This ensures that, e.g., it
   4099     // shows up in the right place in the vtable and that we diagnose problems
   4100     // with the implicit exception specification.
   4101     if (ClassDecl->isDynamicClass())
   4102       DeclareImplicitDestructor(ClassDecl);
   4103   }
   4104 }
   4105 
   4106 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
   4107   if (!D)
   4108     return;
   4109 
   4110   int NumParamList = D->getNumTemplateParameterLists();
   4111   for (int i = 0; i < NumParamList; i++) {
   4112     TemplateParameterList* Params = D->getTemplateParameterList(i);
   4113     for (TemplateParameterList::iterator Param = Params->begin(),
   4114                                       ParamEnd = Params->end();
   4115           Param != ParamEnd; ++Param) {
   4116       NamedDecl *Named = cast<NamedDecl>(*Param);
   4117       if (Named->getDeclName()) {
   4118         S->AddDecl(Named);
   4119         IdResolver.AddDecl(Named);
   4120       }
   4121     }
   4122   }
   4123 }
   4124 
   4125 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
   4126   if (!D)
   4127     return;
   4128 
   4129   TemplateParameterList *Params = 0;
   4130   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
   4131     Params = Template->getTemplateParameters();
   4132   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
   4133            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
   4134     Params = PartialSpec->getTemplateParameters();
   4135   else
   4136     return;
   4137 
   4138   for (TemplateParameterList::iterator Param = Params->begin(),
   4139                                     ParamEnd = Params->end();
   4140        Param != ParamEnd; ++Param) {
   4141     NamedDecl *Named = cast<NamedDecl>(*Param);
   4142     if (Named->getDeclName()) {
   4143       S->AddDecl(Named);
   4144       IdResolver.AddDecl(Named);
   4145     }
   4146   }
   4147 }
   4148 
   4149 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   4150   if (!RecordD) return;
   4151   AdjustDeclIfTemplate(RecordD);
   4152   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
   4153   PushDeclContext(S, Record);
   4154 }
   4155 
   4156 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   4157   if (!RecordD) return;
   4158   PopDeclContext();
   4159 }
   4160 
   4161 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
   4162 /// parsing a top-level (non-nested) C++ class, and we are now
   4163 /// parsing those parts of the given Method declaration that could
   4164 /// not be parsed earlier (C++ [class.mem]p2), such as default
   4165 /// arguments. This action should enter the scope of the given
   4166 /// Method declaration as if we had just parsed the qualified method
   4167 /// name. However, it should not bring the parameters into scope;
   4168 /// that will be performed by ActOnDelayedCXXMethodParameter.
   4169 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   4170 }
   4171 
   4172 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
   4173 /// C++ method declaration. We're (re-)introducing the given
   4174 /// function parameter into scope for use in parsing later parts of
   4175 /// the method declaration. For example, we could see an
   4176 /// ActOnParamDefaultArgument event for this parameter.
   4177 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
   4178   if (!ParamD)
   4179     return;
   4180 
   4181   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
   4182 
   4183   // If this parameter has an unparsed default argument, clear it out
   4184   // to make way for the parsed default argument.
   4185   if (Param->hasUnparsedDefaultArg())
   4186     Param->setDefaultArg(0);
   4187 
   4188   S->AddDecl(Param);
   4189   if (Param->getDeclName())
   4190     IdResolver.AddDecl(Param);
   4191 }
   4192 
   4193 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
   4194 /// processing the delayed method declaration for Method. The method
   4195 /// declaration is now considered finished. There may be a separate
   4196 /// ActOnStartOfFunctionDef action later (not necessarily
   4197 /// immediately!) for this method, if it was also defined inside the
   4198 /// class body.
   4199 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   4200   if (!MethodD)
   4201     return;
   4202 
   4203   AdjustDeclIfTemplate(MethodD);
   4204 
   4205   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
   4206 
   4207   // Now that we have our default arguments, check the constructor
   4208   // again. It could produce additional diagnostics or affect whether
   4209   // the class has implicitly-declared destructors, among other
   4210   // things.
   4211   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
   4212     CheckConstructor(Constructor);
   4213 
   4214   // Check the default arguments, which we may have added.
   4215   if (!Method->isInvalidDecl())
   4216     CheckCXXDefaultArguments(Method);
   4217 }
   4218 
   4219 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
   4220 /// the well-formedness of the constructor declarator @p D with type @p
   4221 /// R. If there are any errors in the declarator, this routine will
   4222 /// emit diagnostics and set the invalid bit to true.  In any case, the type
   4223 /// will be updated to reflect a well-formed type for the constructor and
   4224 /// returned.
   4225 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
   4226                                           StorageClass &SC) {
   4227   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   4228 
   4229   // C++ [class.ctor]p3:
   4230   //   A constructor shall not be virtual (10.3) or static (9.4). A
   4231   //   constructor can be invoked for a const, volatile or const
   4232   //   volatile object. A constructor shall not be declared const,
   4233   //   volatile, or const volatile (9.3.2).
   4234   if (isVirtual) {
   4235     if (!D.isInvalidType())
   4236       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   4237         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
   4238         << SourceRange(D.getIdentifierLoc());
   4239     D.setInvalidType();
   4240   }
   4241   if (SC == SC_Static) {
   4242     if (!D.isInvalidType())
   4243       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   4244         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   4245         << SourceRange(D.getIdentifierLoc());
   4246     D.setInvalidType();
   4247     SC = SC_None;
   4248   }
   4249 
   4250   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   4251   if (FTI.TypeQuals != 0) {
   4252     if (FTI.TypeQuals & Qualifiers::Const)
   4253       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   4254         << "const" << SourceRange(D.getIdentifierLoc());
   4255     if (FTI.TypeQuals & Qualifiers::Volatile)
   4256       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   4257         << "volatile" << SourceRange(D.getIdentifierLoc());
   4258     if (FTI.TypeQuals & Qualifiers::Restrict)
   4259       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   4260         << "restrict" << SourceRange(D.getIdentifierLoc());
   4261     D.setInvalidType();
   4262   }
   4263 
   4264   // C++0x [class.ctor]p4:
   4265   //   A constructor shall not be declared with a ref-qualifier.
   4266   if (FTI.hasRefQualifier()) {
   4267     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
   4268       << FTI.RefQualifierIsLValueRef
   4269       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   4270     D.setInvalidType();
   4271   }
   4272 
   4273   // Rebuild the function type "R" without any type qualifiers (in
   4274   // case any of the errors above fired) and with "void" as the
   4275   // return type, since constructors don't have return types.
   4276   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   4277   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
   4278     return R;
   4279 
   4280   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   4281   EPI.TypeQuals = 0;
   4282   EPI.RefQualifier = RQ_None;
   4283 
   4284   return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
   4285                                  Proto->getNumArgs(), EPI);
   4286 }
   4287 
   4288 /// CheckConstructor - Checks a fully-formed constructor for
   4289 /// well-formedness, issuing any diagnostics required. Returns true if
   4290 /// the constructor declarator is invalid.
   4291 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
   4292   CXXRecordDecl *ClassDecl
   4293     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
   4294   if (!ClassDecl)
   4295     return Constructor->setInvalidDecl();
   4296 
   4297   // C++ [class.copy]p3:
   4298   //   A declaration of a constructor for a class X is ill-formed if
   4299   //   its first parameter is of type (optionally cv-qualified) X and
   4300   //   either there are no other parameters or else all other
   4301   //   parameters have default arguments.
   4302   if (!Constructor->isInvalidDecl() &&
   4303       ((Constructor->getNumParams() == 1) ||
   4304        (Constructor->getNumParams() > 1 &&
   4305         Constructor->getParamDecl(1)->hasDefaultArg())) &&
   4306       Constructor->getTemplateSpecializationKind()
   4307                                               != TSK_ImplicitInstantiation) {
   4308     QualType ParamType = Constructor->getParamDecl(0)->getType();
   4309     QualType ClassTy = Context.getTagDeclType(ClassDecl);
   4310     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
   4311       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
   4312       const char *ConstRef
   4313         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
   4314                                                         : " const &";
   4315       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
   4316         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
   4317 
   4318       // FIXME: Rather that making the constructor invalid, we should endeavor
   4319       // to fix the type.
   4320       Constructor->setInvalidDecl();
   4321     }
   4322   }
   4323 }
   4324 
   4325 /// CheckDestructor - Checks a fully-formed destructor definition for
   4326 /// well-formedness, issuing any diagnostics required.  Returns true
   4327 /// on error.
   4328 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
   4329   CXXRecordDecl *RD = Destructor->getParent();
   4330 
   4331   if (Destructor->isVirtual()) {
   4332     SourceLocation Loc;
   4333 
   4334     if (!Destructor->isImplicit())
   4335       Loc = Destructor->getLocation();
   4336     else
   4337       Loc = RD->getLocation();
   4338 
   4339     // If we have a virtual destructor, look up the deallocation function
   4340     FunctionDecl *OperatorDelete = 0;
   4341     DeclarationName Name =
   4342     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   4343     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
   4344       return true;
   4345 
   4346     MarkDeclarationReferenced(Loc, OperatorDelete);
   4347 
   4348     Destructor->setOperatorDelete(OperatorDelete);
   4349   }
   4350 
   4351   return false;
   4352 }
   4353 
   4354 static inline bool
   4355 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
   4356   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   4357           FTI.ArgInfo[0].Param &&
   4358           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
   4359 }
   4360 
   4361 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
   4362 /// the well-formednes of the destructor declarator @p D with type @p
   4363 /// R. If there are any errors in the declarator, this routine will
   4364 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
   4365 /// will be updated to reflect a well-formed type for the destructor and
   4366 /// returned.
   4367 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
   4368                                          StorageClass& SC) {
   4369   // C++ [class.dtor]p1:
   4370   //   [...] A typedef-name that names a class is a class-name
   4371   //   (7.1.3); however, a typedef-name that names a class shall not
   4372   //   be used as the identifier in the declarator for a destructor
   4373   //   declaration.
   4374   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
   4375   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
   4376     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   4377       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
   4378   else if (const TemplateSpecializationType *TST =
   4379              DeclaratorType->getAs<TemplateSpecializationType>())
   4380     if (TST->isTypeAlias())
   4381       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   4382         << DeclaratorType << 1;
   4383 
   4384   // C++ [class.dtor]p2:
   4385   //   A destructor is used to destroy objects of its class type. A
   4386   //   destructor takes no parameters, and no return type can be
   4387   //   specified for it (not even void). The address of a destructor
   4388   //   shall not be taken. A destructor shall not be static. A
   4389   //   destructor can be invoked for a const, volatile or const
   4390   //   volatile object. A destructor shall not be declared const,
   4391   //   volatile or const volatile (9.3.2).
   4392   if (SC == SC_Static) {
   4393     if (!D.isInvalidType())
   4394       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
   4395         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   4396         << SourceRange(D.getIdentifierLoc())
   4397         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4398 
   4399     SC = SC_None;
   4400   }
   4401   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
   4402     // Destructors don't have return types, but the parser will
   4403     // happily parse something like:
   4404     //
   4405     //   class X {
   4406     //     float ~X();
   4407     //   };
   4408     //
   4409     // The return type will be eliminated later.
   4410     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
   4411       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   4412       << SourceRange(D.getIdentifierLoc());
   4413   }
   4414 
   4415   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   4416   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
   4417     if (FTI.TypeQuals & Qualifiers::Const)
   4418       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   4419         << "const" << SourceRange(D.getIdentifierLoc());
   4420     if (FTI.TypeQuals & Qualifiers::Volatile)
   4421       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   4422         << "volatile" << SourceRange(D.getIdentifierLoc());
   4423     if (FTI.TypeQuals & Qualifiers::Restrict)
   4424       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   4425         << "restrict" << SourceRange(D.getIdentifierLoc());
   4426     D.setInvalidType();
   4427   }
   4428 
   4429   // C++0x [class.dtor]p2:
   4430   //   A destructor shall not be declared with a ref-qualifier.
   4431   if (FTI.hasRefQualifier()) {
   4432     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
   4433       << FTI.RefQualifierIsLValueRef
   4434       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   4435     D.setInvalidType();
   4436   }
   4437 
   4438   // Make sure we don't have any parameters.
   4439   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
   4440     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
   4441 
   4442     // Delete the parameters.
   4443     FTI.freeArgs();
   4444     D.setInvalidType();
   4445   }
   4446 
   4447   // Make sure the destructor isn't variadic.
   4448   if (FTI.isVariadic) {
   4449     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
   4450     D.setInvalidType();
   4451   }
   4452 
   4453   // Rebuild the function type "R" without any type qualifiers or
   4454   // parameters (in case any of the errors above fired) and with
   4455   // "void" as the return type, since destructors don't have return
   4456   // types.
   4457   if (!D.isInvalidType())
   4458     return R;
   4459 
   4460   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   4461   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   4462   EPI.Variadic = false;
   4463   EPI.TypeQuals = 0;
   4464   EPI.RefQualifier = RQ_None;
   4465   return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
   4466 }
   4467 
   4468 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
   4469 /// well-formednes of the conversion function declarator @p D with
   4470 /// type @p R. If there are any errors in the declarator, this routine
   4471 /// will emit diagnostics and return true. Otherwise, it will return
   4472 /// false. Either way, the type @p R will be updated to reflect a
   4473 /// well-formed type for the conversion operator.
   4474 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
   4475                                      StorageClass& SC) {
   4476   // C++ [class.conv.fct]p1:
   4477   //   Neither parameter types nor return type can be specified. The
   4478   //   type of a conversion function (8.3.5) is "function taking no
   4479   //   parameter returning conversion-type-id."
   4480   if (SC == SC_Static) {
   4481     if (!D.isInvalidType())
   4482       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
   4483         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   4484         << SourceRange(D.getIdentifierLoc());
   4485     D.setInvalidType();
   4486     SC = SC_None;
   4487   }
   4488 
   4489   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
   4490 
   4491   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
   4492     // Conversion functions don't have return types, but the parser will
   4493     // happily parse something like:
   4494     //
   4495     //   class X {
   4496     //     float operator bool();
   4497     //   };
   4498     //
   4499     // The return type will be changed later anyway.
   4500     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
   4501       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   4502       << SourceRange(D.getIdentifierLoc());
   4503     D.setInvalidType();
   4504   }
   4505 
   4506   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   4507 
   4508   // Make sure we don't have any parameters.
   4509   if (Proto->getNumArgs() > 0) {
   4510     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
   4511 
   4512     // Delete the parameters.
   4513     D.getFunctionTypeInfo().freeArgs();
   4514     D.setInvalidType();
   4515   } else if (Proto->isVariadic()) {
   4516     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
   4517     D.setInvalidType();
   4518   }
   4519 
   4520   // Diagnose "&operator bool()" and other such nonsense.  This
   4521   // is actually a gcc extension which we don't support.
   4522   if (Proto->getResultType() != ConvType) {
   4523     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
   4524       << Proto->getResultType();
   4525     D.setInvalidType();
   4526     ConvType = Proto->getResultType();
   4527   }
   4528 
   4529   // C++ [class.conv.fct]p4:
   4530   //   The conversion-type-id shall not represent a function type nor
   4531   //   an array type.
   4532   if (ConvType->isArrayType()) {
   4533     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
   4534     ConvType = Context.getPointerType(ConvType);
   4535     D.setInvalidType();
   4536   } else if (ConvType->isFunctionType()) {
   4537     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
   4538     ConvType = Context.getPointerType(ConvType);
   4539     D.setInvalidType();
   4540   }
   4541 
   4542   // Rebuild the function type "R" without any parameters (in case any
   4543   // of the errors above fired) and with the conversion type as the
   4544   // return type.
   4545   if (D.isInvalidType())
   4546     R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
   4547 
   4548   // C++0x explicit conversion operators.
   4549   if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
   4550     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   4551          diag::warn_explicit_conversion_functions)
   4552       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
   4553 }
   4554 
   4555 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
   4556 /// the declaration of the given C++ conversion function. This routine
   4557 /// is responsible for recording the conversion function in the C++
   4558 /// class, if possible.
   4559 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
   4560   assert(Conversion && "Expected to receive a conversion function declaration");
   4561 
   4562   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
   4563 
   4564   // Make sure we aren't redeclaring the conversion function.
   4565   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
   4566 
   4567   // C++ [class.conv.fct]p1:
   4568   //   [...] A conversion function is never used to convert a
   4569   //   (possibly cv-qualified) object to the (possibly cv-qualified)
   4570   //   same object type (or a reference to it), to a (possibly
   4571   //   cv-qualified) base class of that type (or a reference to it),
   4572   //   or to (possibly cv-qualified) void.
   4573   // FIXME: Suppress this warning if the conversion function ends up being a
   4574   // virtual function that overrides a virtual function in a base class.
   4575   QualType ClassType
   4576     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   4577   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
   4578     ConvType = ConvTypeRef->getPointeeType();
   4579   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
   4580       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   4581     /* Suppress diagnostics for instantiations. */;
   4582   else if (ConvType->isRecordType()) {
   4583     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
   4584     if (ConvType == ClassType)
   4585       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
   4586         << ClassType;
   4587     else if (IsDerivedFrom(ClassType, ConvType))
   4588       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
   4589         <<  ClassType << ConvType;
   4590   } else if (ConvType->isVoidType()) {
   4591     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
   4592       << ClassType << ConvType;
   4593   }
   4594 
   4595   if (FunctionTemplateDecl *ConversionTemplate
   4596                                 = Conversion->getDescribedFunctionTemplate())
   4597     return ConversionTemplate;
   4598 
   4599   return Conversion;
   4600 }
   4601 
   4602 //===----------------------------------------------------------------------===//
   4603 // Namespace Handling
   4604 //===----------------------------------------------------------------------===//
   4605 
   4606 
   4607 
   4608 /// ActOnStartNamespaceDef - This is called at the start of a namespace
   4609 /// definition.
   4610 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
   4611                                    SourceLocation InlineLoc,
   4612                                    SourceLocation NamespaceLoc,
   4613                                    SourceLocation IdentLoc,
   4614                                    IdentifierInfo *II,
   4615                                    SourceLocation LBrace,
   4616                                    AttributeList *AttrList) {
   4617   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
   4618   // For anonymous namespace, take the location of the left brace.
   4619   SourceLocation Loc = II ? IdentLoc : LBrace;
   4620   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
   4621                                                  StartLoc, Loc, II);
   4622   Namespc->setInline(InlineLoc.isValid());
   4623 
   4624   Scope *DeclRegionScope = NamespcScope->getParent();
   4625 
   4626   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
   4627 
   4628   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
   4629     PushNamespaceVisibilityAttr(Attr);
   4630 
   4631   if (II) {
   4632     // C++ [namespace.def]p2:
   4633     //   The identifier in an original-namespace-definition shall not
   4634     //   have been previously defined in the declarative region in
   4635     //   which the original-namespace-definition appears. The
   4636     //   identifier in an original-namespace-definition is the name of
   4637     //   the namespace. Subsequently in that declarative region, it is
   4638     //   treated as an original-namespace-name.
   4639     //
   4640     // Since namespace names are unique in their scope, and we don't
   4641     // look through using directives, just look for any ordinary names.
   4642 
   4643     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
   4644       Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
   4645       Decl::IDNS_Namespace;
   4646     NamedDecl *PrevDecl = 0;
   4647     for (DeclContext::lookup_result R
   4648             = CurContext->getRedeclContext()->lookup(II);
   4649          R.first != R.second; ++R.first) {
   4650       if ((*R.first)->getIdentifierNamespace() & IDNS) {
   4651         PrevDecl = *R.first;
   4652         break;
   4653       }
   4654     }
   4655 
   4656     if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
   4657       // This is an extended namespace definition.
   4658       if (Namespc->isInline() != OrigNS->isInline()) {
   4659         // inline-ness must match
   4660         if (OrigNS->isInline()) {
   4661           // The user probably just forgot the 'inline', so suggest that it
   4662           // be added back.
   4663           Diag(Namespc->getLocation(),
   4664                diag::warn_inline_namespace_reopened_noninline)
   4665             << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
   4666         } else {
   4667           Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
   4668             << Namespc->isInline();
   4669         }
   4670         Diag(OrigNS->getLocation(), diag::note_previous_definition);
   4671 
   4672         // Recover by ignoring the new namespace's inline status.
   4673         Namespc->setInline(OrigNS->isInline());
   4674       }
   4675 
   4676       // Attach this namespace decl to the chain of extended namespace
   4677       // definitions.
   4678       OrigNS->setNextNamespace(Namespc);
   4679       Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
   4680 
   4681       // Remove the previous declaration from the scope.
   4682       if (DeclRegionScope->isDeclScope(OrigNS)) {
   4683         IdResolver.RemoveDecl(OrigNS);
   4684         DeclRegionScope->RemoveDecl(OrigNS);
   4685       }
   4686     } else if (PrevDecl) {
   4687       // This is an invalid name redefinition.
   4688       Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
   4689        << Namespc->getDeclName();
   4690       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   4691       Namespc->setInvalidDecl();
   4692       // Continue on to push Namespc as current DeclContext and return it.
   4693     } else if (II->isStr("std") &&
   4694                CurContext->getRedeclContext()->isTranslationUnit()) {
   4695       // This is the first "real" definition of the namespace "std", so update
   4696       // our cache of the "std" namespace to point at this definition.
   4697       if (NamespaceDecl *StdNS = getStdNamespace()) {
   4698         // We had already defined a dummy namespace "std". Link this new
   4699         // namespace definition to the dummy namespace "std".
   4700         StdNS->setNextNamespace(Namespc);
   4701         StdNS->setLocation(IdentLoc);
   4702         Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
   4703       }
   4704 
   4705       // Make our StdNamespace cache point at the first real definition of the
   4706       // "std" namespace.
   4707       StdNamespace = Namespc;
   4708 
   4709       // Add this instance of "std" to the set of known namespaces
   4710       KnownNamespaces[Namespc] = false;
   4711     } else if (!Namespc->isInline()) {
   4712       // Since this is an "original" namespace, add it to the known set of
   4713       // namespaces if it is not an inline namespace.
   4714       KnownNamespaces[Namespc] = false;
   4715     }
   4716 
   4717     PushOnScopeChains(Namespc, DeclRegionScope);
   4718   } else {
   4719     // Anonymous namespaces.
   4720     assert(Namespc->isAnonymousNamespace());
   4721 
   4722     // Link the anonymous namespace into its parent.
   4723     NamespaceDecl *PrevDecl;
   4724     DeclContext *Parent = CurContext->getRedeclContext();
   4725     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
   4726       PrevDecl = TU->getAnonymousNamespace();
   4727       TU->setAnonymousNamespace(Namespc);
   4728     } else {
   4729       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
   4730       PrevDecl = ND->getAnonymousNamespace();
   4731       ND->setAnonymousNamespace(Namespc);
   4732     }
   4733 
   4734     // Link the anonymous namespace with its previous declaration.
   4735     if (PrevDecl) {
   4736       assert(PrevDecl->isAnonymousNamespace());
   4737       assert(!PrevDecl->getNextNamespace());
   4738       Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
   4739       PrevDecl->setNextNamespace(Namespc);
   4740 
   4741       if (Namespc->isInline() != PrevDecl->isInline()) {
   4742         // inline-ness must match
   4743         Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
   4744           << Namespc->isInline();
   4745         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   4746         Namespc->setInvalidDecl();
   4747         // Recover by ignoring the new namespace's inline status.
   4748         Namespc->setInline(PrevDecl->isInline());
   4749       }
   4750     }
   4751 
   4752     CurContext->addDecl(Namespc);
   4753 
   4754     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
   4755     //   behaves as if it were replaced by
   4756     //     namespace unique { /* empty body */ }
   4757     //     using namespace unique;
   4758     //     namespace unique { namespace-body }
   4759     //   where all occurrences of 'unique' in a translation unit are
   4760     //   replaced by the same identifier and this identifier differs
   4761     //   from all other identifiers in the entire program.
   4762 
   4763     // We just create the namespace with an empty name and then add an
   4764     // implicit using declaration, just like the standard suggests.
   4765     //
   4766     // CodeGen enforces the "universally unique" aspect by giving all
   4767     // declarations semantically contained within an anonymous
   4768     // namespace internal linkage.
   4769 
   4770     if (!PrevDecl) {
   4771       UsingDirectiveDecl* UD
   4772         = UsingDirectiveDecl::Create(Context, CurContext,
   4773                                      /* 'using' */ LBrace,
   4774                                      /* 'namespace' */ SourceLocation(),
   4775                                      /* qualifier */ NestedNameSpecifierLoc(),
   4776                                      /* identifier */ SourceLocation(),
   4777                                      Namespc,
   4778                                      /* Ancestor */ CurContext);
   4779       UD->setImplicit();
   4780       CurContext->addDecl(UD);
   4781     }
   4782   }
   4783 
   4784   // Although we could have an invalid decl (i.e. the namespace name is a
   4785   // redefinition), push it as current DeclContext and try to continue parsing.
   4786   // FIXME: We should be able to push Namespc here, so that the each DeclContext
   4787   // for the namespace has the declarations that showed up in that particular
   4788   // namespace definition.
   4789   PushDeclContext(NamespcScope, Namespc);
   4790   return Namespc;
   4791 }
   4792 
   4793 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
   4794 /// is a namespace alias, returns the namespace it points to.
   4795 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
   4796   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
   4797     return AD->getNamespace();
   4798   return dyn_cast_or_null<NamespaceDecl>(D);
   4799 }
   4800 
   4801 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
   4802 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
   4803 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
   4804   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
   4805   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
   4806   Namespc->setRBraceLoc(RBrace);
   4807   PopDeclContext();
   4808   if (Namespc->hasAttr<VisibilityAttr>())
   4809     PopPragmaVisibility();
   4810 }
   4811 
   4812 CXXRecordDecl *Sema::getStdBadAlloc() const {
   4813   return cast_or_null<CXXRecordDecl>(
   4814                                   StdBadAlloc.get(Context.getExternalSource()));
   4815 }
   4816 
   4817 NamespaceDecl *Sema::getStdNamespace() const {
   4818   return cast_or_null<NamespaceDecl>(
   4819                                  StdNamespace.get(Context.getExternalSource()));
   4820 }
   4821 
   4822 /// \brief Retrieve the special "std" namespace, which may require us to
   4823 /// implicitly define the namespace.
   4824 NamespaceDecl *Sema::getOrCreateStdNamespace() {
   4825   if (!StdNamespace) {
   4826     // The "std" namespace has not yet been defined, so build one implicitly.
   4827     StdNamespace = NamespaceDecl::Create(Context,
   4828                                          Context.getTranslationUnitDecl(),
   4829                                          SourceLocation(), SourceLocation(),
   4830                                          &PP.getIdentifierTable().get("std"));
   4831     getStdNamespace()->setImplicit(true);
   4832   }
   4833 
   4834   return getStdNamespace();
   4835 }
   4836 
   4837 /// \brief Determine whether a using statement is in a context where it will be
   4838 /// apply in all contexts.
   4839 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
   4840   switch (CurContext->getDeclKind()) {
   4841     case Decl::TranslationUnit:
   4842       return true;
   4843     case Decl::LinkageSpec:
   4844       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
   4845     default:
   4846       return false;
   4847   }
   4848 }
   4849 
   4850 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
   4851                                        CXXScopeSpec &SS,
   4852                                        SourceLocation IdentLoc,
   4853                                        IdentifierInfo *Ident) {
   4854   R.clear();
   4855   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
   4856                                                R.getLookupKind(), Sc, &SS, NULL,
   4857                                                false, S.CTC_NoKeywords, NULL)) {
   4858     if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
   4859         Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
   4860       std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
   4861       std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
   4862       if (DeclContext *DC = S.computeDeclContext(SS, false))
   4863         S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
   4864           << Ident << DC << CorrectedQuotedStr << SS.getRange()
   4865           << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
   4866       else
   4867         S.Diag(IdentLoc, diag::err_using_directive_suggest)
   4868           << Ident << CorrectedQuotedStr
   4869           << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
   4870 
   4871       S.Diag(Corrected.getCorrectionDecl()->getLocation(),
   4872            diag::note_namespace_defined_here) << CorrectedQuotedStr;
   4873 
   4874       Ident = Corrected.getCorrectionAsIdentifierInfo();
   4875       R.addDecl(Corrected.getCorrectionDecl());
   4876       return true;
   4877     }
   4878     R.setLookupName(Ident);
   4879   }
   4880   return false;
   4881 }
   4882 
   4883 Decl *Sema::ActOnUsingDirective(Scope *S,
   4884                                           SourceLocation UsingLoc,
   4885                                           SourceLocation NamespcLoc,
   4886                                           CXXScopeSpec &SS,
   4887                                           SourceLocation IdentLoc,
   4888                                           IdentifierInfo *NamespcName,
   4889                                           AttributeList *AttrList) {
   4890   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   4891   assert(NamespcName && "Invalid NamespcName.");
   4892   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
   4893 
   4894   // This can only happen along a recovery path.
   4895   while (S->getFlags() & Scope::TemplateParamScope)
   4896     S = S->getParent();
   4897   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   4898 
   4899   UsingDirectiveDecl *UDir = 0;
   4900   NestedNameSpecifier *Qualifier = 0;
   4901   if (SS.isSet())
   4902     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   4903 
   4904   // Lookup namespace name.
   4905   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
   4906   LookupParsedName(R, S, &SS);
   4907   if (R.isAmbiguous())
   4908     return 0;
   4909 
   4910   if (R.empty()) {
   4911     R.clear();
   4912     // Allow "using namespace std;" or "using namespace ::std;" even if
   4913     // "std" hasn't been defined yet, for GCC compatibility.
   4914     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
   4915         NamespcName->isStr("std")) {
   4916       Diag(IdentLoc, diag::ext_using_undefined_std);
   4917       R.addDecl(getOrCreateStdNamespace());
   4918       R.resolveKind();
   4919     }
   4920     // Otherwise, attempt typo correction.
   4921     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
   4922   }
   4923 
   4924   if (!R.empty()) {
   4925     NamedDecl *Named = R.getFoundDecl();
   4926     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
   4927         && "expected namespace decl");
   4928     // C++ [namespace.udir]p1:
   4929     //   A using-directive specifies that the names in the nominated
   4930     //   namespace can be used in the scope in which the
   4931     //   using-directive appears after the using-directive. During
   4932     //   unqualified name lookup (3.4.1), the names appear as if they
   4933     //   were declared in the nearest enclosing namespace which
   4934     //   contains both the using-directive and the nominated
   4935     //   namespace. [Note: in this context, "contains" means "contains
   4936     //   directly or indirectly". ]
   4937 
   4938     // Find enclosing context containing both using-directive and
   4939     // nominated namespace.
   4940     NamespaceDecl *NS = getNamespaceDecl(Named);
   4941     DeclContext *CommonAncestor = cast<DeclContext>(NS);
   4942     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
   4943       CommonAncestor = CommonAncestor->getParent();
   4944 
   4945     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
   4946                                       SS.getWithLocInContext(Context),
   4947                                       IdentLoc, Named, CommonAncestor);
   4948 
   4949     if (IsUsingDirectiveInToplevelContext(CurContext) &&
   4950         !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
   4951       Diag(IdentLoc, diag::warn_using_directive_in_header);
   4952     }
   4953 
   4954     PushUsingDirective(S, UDir);
   4955   } else {
   4956     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
   4957   }
   4958 
   4959   // FIXME: We ignore attributes for now.
   4960   return UDir;
   4961 }
   4962 
   4963 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
   4964   // If scope has associated entity, then using directive is at namespace
   4965   // or translation unit scope. We add UsingDirectiveDecls, into
   4966   // it's lookup structure.
   4967   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
   4968     Ctx->addDecl(UDir);
   4969   else
   4970     // Otherwise it is block-sope. using-directives will affect lookup
   4971     // only to the end of scope.
   4972     S->PushUsingDirective(UDir);
   4973 }
   4974 
   4975 
   4976 Decl *Sema::ActOnUsingDeclaration(Scope *S,
   4977                                   AccessSpecifier AS,
   4978                                   bool HasUsingKeyword,
   4979                                   SourceLocation UsingLoc,
   4980                                   CXXScopeSpec &SS,
   4981                                   UnqualifiedId &Name,
   4982                                   AttributeList *AttrList,
   4983                                   bool IsTypeName,
   4984                                   SourceLocation TypenameLoc) {
   4985   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   4986 
   4987   switch (Name.getKind()) {
   4988   case UnqualifiedId::IK_ImplicitSelfParam:
   4989   case UnqualifiedId::IK_Identifier:
   4990   case UnqualifiedId::IK_OperatorFunctionId:
   4991   case UnqualifiedId::IK_LiteralOperatorId:
   4992   case UnqualifiedId::IK_ConversionFunctionId:
   4993     break;
   4994 
   4995   case UnqualifiedId::IK_ConstructorName:
   4996   case UnqualifiedId::IK_ConstructorTemplateId:
   4997     // C++0x inherited constructors.
   4998     if (getLangOptions().CPlusPlus0x) break;
   4999 
   5000     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
   5001       << SS.getRange();
   5002     return 0;
   5003 
   5004   case UnqualifiedId::IK_DestructorName:
   5005     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
   5006       << SS.getRange();
   5007     return 0;
   5008 
   5009   case UnqualifiedId::IK_TemplateId:
   5010     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
   5011       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
   5012     return 0;
   5013   }
   5014 
   5015   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   5016   DeclarationName TargetName = TargetNameInfo.getName();
   5017   if (!TargetName)
   5018     return 0;
   5019 
   5020   // Warn about using declarations.
   5021   // TODO: store that the declaration was written without 'using' and
   5022   // talk about access decls instead of using decls in the
   5023   // diagnostics.
   5024   if (!HasUsingKeyword) {
   5025     UsingLoc = Name.getSourceRange().getBegin();
   5026 
   5027     Diag(UsingLoc, diag::warn_access_decl_deprecated)
   5028       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
   5029   }
   5030 
   5031   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
   5032       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
   5033     return 0;
   5034 
   5035   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
   5036                                         TargetNameInfo, AttrList,
   5037                                         /* IsInstantiation */ false,
   5038                                         IsTypeName, TypenameLoc);
   5039   if (UD)
   5040     PushOnScopeChains(UD, S, /*AddToContext*/ false);
   5041 
   5042   return UD;
   5043 }
   5044 
   5045 /// \brief Determine whether a using declaration considers the given
   5046 /// declarations as "equivalent", e.g., if they are redeclarations of
   5047 /// the same entity or are both typedefs of the same type.
   5048 static bool
   5049 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
   5050                          bool &SuppressRedeclaration) {
   5051   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
   5052     SuppressRedeclaration = false;
   5053     return true;
   5054   }
   5055 
   5056   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
   5057     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
   5058       SuppressRedeclaration = true;
   5059       return Context.hasSameType(TD1->getUnderlyingType(),
   5060                                  TD2->getUnderlyingType());
   5061     }
   5062 
   5063   return false;
   5064 }
   5065 
   5066 
   5067 /// Determines whether to create a using shadow decl for a particular
   5068 /// decl, given the set of decls existing prior to this using lookup.
   5069 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
   5070                                 const LookupResult &Previous) {
   5071   // Diagnose finding a decl which is not from a base class of the
   5072   // current class.  We do this now because there are cases where this
   5073   // function will silently decide not to build a shadow decl, which
   5074   // will pre-empt further diagnostics.
   5075   //
   5076   // We don't need to do this in C++0x because we do the check once on
   5077   // the qualifier.
   5078   //
   5079   // FIXME: diagnose the following if we care enough:
   5080   //   struct A { int foo; };
   5081   //   struct B : A { using A::foo; };
   5082   //   template <class T> struct C : A {};
   5083   //   template <class T> struct D : C<T> { using B::foo; } // <---
   5084   // This is invalid (during instantiation) in C++03 because B::foo
   5085   // resolves to the using decl in B, which is not a base class of D<T>.
   5086   // We can't diagnose it immediately because C<T> is an unknown
   5087   // specialization.  The UsingShadowDecl in D<T> then points directly
   5088   // to A::foo, which will look well-formed when we instantiate.
   5089   // The right solution is to not collapse the shadow-decl chain.
   5090   if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
   5091     DeclContext *OrigDC = Orig->getDeclContext();
   5092 
   5093     // Handle enums and anonymous structs.
   5094     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
   5095     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
   5096     while (OrigRec->isAnonymousStructOrUnion())
   5097       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
   5098 
   5099     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
   5100       if (OrigDC == CurContext) {
   5101         Diag(Using->getLocation(),
   5102              diag::err_using_decl_nested_name_specifier_is_current_class)
   5103           << Using->getQualifierLoc().getSourceRange();
   5104         Diag(Orig->getLocation(), diag::note_using_decl_target);
   5105         return true;
   5106       }
   5107 
   5108       Diag(Using->getQualifierLoc().getBeginLoc(),
   5109            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   5110         << Using->getQualifier()
   5111         << cast<CXXRecordDecl>(CurContext)
   5112         << Using->getQualifierLoc().getSourceRange();
   5113       Diag(Orig->getLocation(), diag::note_using_decl_target);
   5114       return true;
   5115     }
   5116   }
   5117 
   5118   if (Previous.empty()) return false;
   5119 
   5120   NamedDecl *Target = Orig;
   5121   if (isa<UsingShadowDecl>(Target))
   5122     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   5123 
   5124   // If the target happens to be one of the previous declarations, we
   5125   // don't have a conflict.
   5126   //
   5127   // FIXME: but we might be increasing its access, in which case we
   5128   // should redeclare it.
   5129   NamedDecl *NonTag = 0, *Tag = 0;
   5130   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5131          I != E; ++I) {
   5132     NamedDecl *D = (*I)->getUnderlyingDecl();
   5133     bool Result;
   5134     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
   5135       return Result;
   5136 
   5137     (isa<TagDecl>(D) ? Tag : NonTag) = D;
   5138   }
   5139 
   5140   if (Target->isFunctionOrFunctionTemplate()) {
   5141     FunctionDecl *FD;
   5142     if (isa<FunctionTemplateDecl>(Target))
   5143       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
   5144     else
   5145       FD = cast<FunctionDecl>(Target);
   5146 
   5147     NamedDecl *OldDecl = 0;
   5148     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
   5149     case Ovl_Overload:
   5150       return false;
   5151 
   5152     case Ovl_NonFunction:
   5153       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   5154       break;
   5155 
   5156     // We found a decl with the exact signature.
   5157     case Ovl_Match:
   5158       // If we're in a record, we want to hide the target, so we
   5159       // return true (without a diagnostic) to tell the caller not to
   5160       // build a shadow decl.
   5161       if (CurContext->isRecord())
   5162         return true;
   5163 
   5164       // If we're not in a record, this is an error.
   5165       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   5166       break;
   5167     }
   5168 
   5169     Diag(Target->getLocation(), diag::note_using_decl_target);
   5170     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
   5171     return true;
   5172   }
   5173 
   5174   // Target is not a function.
   5175 
   5176   if (isa<TagDecl>(Target)) {
   5177     // No conflict between a tag and a non-tag.
   5178     if (!Tag) return false;
   5179 
   5180     Diag(Using->getLocation(), diag::err_using_decl_conflict);
   5181     Diag(Target->getLocation(), diag::note_using_decl_target);
   5182     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
   5183     return true;
   5184   }
   5185 
   5186   // No conflict between a tag and a non-tag.
   5187   if (!NonTag) return false;
   5188 
   5189   Diag(Using->getLocation(), diag::err_using_decl_conflict);
   5190   Diag(Target->getLocation(), diag::note_using_decl_target);
   5191   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
   5192   return true;
   5193 }
   5194 
   5195 /// Builds a shadow declaration corresponding to a 'using' declaration.
   5196 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
   5197                                             UsingDecl *UD,
   5198                                             NamedDecl *Orig) {
   5199 
   5200   // If we resolved to another shadow declaration, just coalesce them.
   5201   NamedDecl *Target = Orig;
   5202   if (isa<UsingShadowDecl>(Target)) {
   5203     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   5204     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
   5205   }
   5206 
   5207   UsingShadowDecl *Shadow
   5208     = UsingShadowDecl::Create(Context, CurContext,
   5209                               UD->getLocation(), UD, Target);
   5210   UD->addShadowDecl(Shadow);
   5211 
   5212   Shadow->setAccess(UD->getAccess());
   5213   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
   5214     Shadow->setInvalidDecl();
   5215 
   5216   if (S)
   5217     PushOnScopeChains(Shadow, S);
   5218   else
   5219     CurContext->addDecl(Shadow);
   5220 
   5221 
   5222   return Shadow;
   5223 }
   5224 
   5225 /// Hides a using shadow declaration.  This is required by the current
   5226 /// using-decl implementation when a resolvable using declaration in a
   5227 /// class is followed by a declaration which would hide or override
   5228 /// one or more of the using decl's targets; for example:
   5229 ///
   5230 ///   struct Base { void foo(int); };
   5231 ///   struct Derived : Base {
   5232 ///     using Base::foo;
   5233 ///     void foo(int);
   5234 ///   };
   5235 ///
   5236 /// The governing language is C++03 [namespace.udecl]p12:
   5237 ///
   5238 ///   When a using-declaration brings names from a base class into a
   5239 ///   derived class scope, member functions in the derived class
   5240 ///   override and/or hide member functions with the same name and
   5241 ///   parameter types in a base class (rather than conflicting).
   5242 ///
   5243 /// There are two ways to implement this:
   5244 ///   (1) optimistically create shadow decls when they're not hidden
   5245 ///       by existing declarations, or
   5246 ///   (2) don't create any shadow decls (or at least don't make them
   5247 ///       visible) until we've fully parsed/instantiated the class.
   5248 /// The problem with (1) is that we might have to retroactively remove
   5249 /// a shadow decl, which requires several O(n) operations because the
   5250 /// decl structures are (very reasonably) not designed for removal.
   5251 /// (2) avoids this but is very fiddly and phase-dependent.
   5252 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
   5253   if (Shadow->getDeclName().getNameKind() ==
   5254         DeclarationName::CXXConversionFunctionName)
   5255     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
   5256 
   5257   // Remove it from the DeclContext...
   5258   Shadow->getDeclContext()->removeDecl(Shadow);
   5259 
   5260   // ...and the scope, if applicable...
   5261   if (S) {
   5262     S->RemoveDecl(Shadow);
   5263     IdResolver.RemoveDecl(Shadow);
   5264   }
   5265 
   5266   // ...and the using decl.
   5267   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
   5268 
   5269   // TODO: complain somehow if Shadow was used.  It shouldn't
   5270   // be possible for this to happen, because...?
   5271 }
   5272 
   5273 /// Builds a using declaration.
   5274 ///
   5275 /// \param IsInstantiation - Whether this call arises from an
   5276 ///   instantiation of an unresolved using declaration.  We treat
   5277 ///   the lookup differently for these declarations.
   5278 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
   5279                                        SourceLocation UsingLoc,
   5280                                        CXXScopeSpec &SS,
   5281                                        const DeclarationNameInfo &NameInfo,
   5282                                        AttributeList *AttrList,
   5283                                        bool IsInstantiation,
   5284                                        bool IsTypeName,
   5285                                        SourceLocation TypenameLoc) {
   5286   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   5287   SourceLocation IdentLoc = NameInfo.getLoc();
   5288   assert(IdentLoc.isValid() && "Invalid TargetName location.");
   5289 
   5290   // FIXME: We ignore attributes for now.
   5291 
   5292   if (SS.isEmpty()) {
   5293     Diag(IdentLoc, diag::err_using_requires_qualname);
   5294     return 0;
   5295   }
   5296 
   5297   // Do the redeclaration lookup in the current scope.
   5298   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
   5299                         ForRedeclaration);
   5300   Previous.setHideTags(false);
   5301   if (S) {
   5302     LookupName(Previous, S);
   5303 
   5304     // It is really dumb that we have to do this.
   5305     LookupResult::Filter F = Previous.makeFilter();
   5306     while (F.hasNext()) {
   5307       NamedDecl *D = F.next();
   5308       if (!isDeclInScope(D, CurContext, S))
   5309         F.erase();
   5310     }
   5311     F.done();
   5312   } else {
   5313     assert(IsInstantiation && "no scope in non-instantiation");
   5314     assert(CurContext->isRecord() && "scope not record in instantiation");
   5315     LookupQualifiedName(Previous, CurContext);
   5316   }
   5317 
   5318   // Check for invalid redeclarations.
   5319   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
   5320     return 0;
   5321 
   5322   // Check for bad qualifiers.
   5323   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
   5324     return 0;
   5325 
   5326   DeclContext *LookupContext = computeDeclContext(SS);
   5327   NamedDecl *D;
   5328   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   5329   if (!LookupContext) {
   5330     if (IsTypeName) {
   5331       // FIXME: not all declaration name kinds are legal here
   5332       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
   5333                                               UsingLoc, TypenameLoc,
   5334                                               QualifierLoc,
   5335                                               IdentLoc, NameInfo.getName());
   5336     } else {
   5337       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
   5338                                            QualifierLoc, NameInfo);
   5339     }
   5340   } else {
   5341     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
   5342                           NameInfo, IsTypeName);
   5343   }
   5344   D->setAccess(AS);
   5345   CurContext->addDecl(D);
   5346 
   5347   if (!LookupContext) return D;
   5348   UsingDecl *UD = cast<UsingDecl>(D);
   5349 
   5350   if (RequireCompleteDeclContext(SS, LookupContext)) {
   5351     UD->setInvalidDecl();
   5352     return UD;
   5353   }
   5354 
   5355   // Constructor inheriting using decls get special treatment.
   5356   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
   5357     if (CheckInheritedConstructorUsingDecl(UD))
   5358       UD->setInvalidDecl();
   5359     return UD;
   5360   }
   5361 
   5362   // Otherwise, look up the target name.
   5363 
   5364   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   5365   R.setUsingDeclaration(true);
   5366 
   5367   // Unlike most lookups, we don't always want to hide tag
   5368   // declarations: tag names are visible through the using declaration
   5369   // even if hidden by ordinary names, *except* in a dependent context
   5370   // where it's important for the sanity of two-phase lookup.
   5371   if (!IsInstantiation)
   5372     R.setHideTags(false);
   5373 
   5374   LookupQualifiedName(R, LookupContext);
   5375 
   5376   if (R.empty()) {
   5377     Diag(IdentLoc, diag::err_no_member)
   5378       << NameInfo.getName() << LookupContext << SS.getRange();
   5379     UD->setInvalidDecl();
   5380     return UD;
   5381   }
   5382 
   5383   if (R.isAmbiguous()) {
   5384     UD->setInvalidDecl();
   5385     return UD;
   5386   }
   5387 
   5388   if (IsTypeName) {
   5389     // If we asked for a typename and got a non-type decl, error out.
   5390     if (!R.getAsSingle<TypeDecl>()) {
   5391       Diag(IdentLoc, diag::err_using_typename_non_type);
   5392       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   5393         Diag((*I)->getUnderlyingDecl()->getLocation(),
   5394              diag::note_using_decl_target);
   5395       UD->setInvalidDecl();
   5396       return UD;
   5397     }
   5398   } else {
   5399     // If we asked for a non-typename and we got a type, error out,
   5400     // but only if this is an instantiation of an unresolved using
   5401     // decl.  Otherwise just silently find the type name.
   5402     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
   5403       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
   5404       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
   5405       UD->setInvalidDecl();
   5406       return UD;
   5407     }
   5408   }
   5409 
   5410   // C++0x N2914 [namespace.udecl]p6:
   5411   // A using-declaration shall not name a namespace.
   5412   if (R.getAsSingle<NamespaceDecl>()) {
   5413     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
   5414       << SS.getRange();
   5415     UD->setInvalidDecl();
   5416     return UD;
   5417   }
   5418 
   5419   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   5420     if (!CheckUsingShadowDecl(UD, *I, Previous))
   5421       BuildUsingShadowDecl(S, UD, *I);
   5422   }
   5423 
   5424   return UD;
   5425 }
   5426 
   5427 /// Additional checks for a using declaration referring to a constructor name.
   5428 bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
   5429   if (UD->isTypeName()) {
   5430     // FIXME: Cannot specify typename when specifying constructor
   5431     return true;
   5432   }
   5433 
   5434   const Type *SourceType = UD->getQualifier()->getAsType();
   5435   assert(SourceType &&
   5436          "Using decl naming constructor doesn't have type in scope spec.");
   5437   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
   5438 
   5439   // Check whether the named type is a direct base class.
   5440   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
   5441   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
   5442   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
   5443        BaseIt != BaseE; ++BaseIt) {
   5444     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
   5445     if (CanonicalSourceType == BaseType)
   5446       break;
   5447   }
   5448 
   5449   if (BaseIt == BaseE) {
   5450     // Did not find SourceType in the bases.
   5451     Diag(UD->getUsingLocation(),
   5452          diag::err_using_decl_constructor_not_in_direct_base)
   5453       << UD->getNameInfo().getSourceRange()
   5454       << QualType(SourceType, 0) << TargetClass;
   5455     return true;
   5456   }
   5457 
   5458   BaseIt->setInheritConstructors();
   5459 
   5460   return false;
   5461 }
   5462 
   5463 /// Checks that the given using declaration is not an invalid
   5464 /// redeclaration.  Note that this is checking only for the using decl
   5465 /// itself, not for any ill-formedness among the UsingShadowDecls.
   5466 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
   5467                                        bool isTypeName,
   5468                                        const CXXScopeSpec &SS,
   5469                                        SourceLocation NameLoc,
   5470                                        const LookupResult &Prev) {
   5471   // C++03 [namespace.udecl]p8:
   5472   // C++0x [namespace.udecl]p10:
   5473   //   A using-declaration is a declaration and can therefore be used
   5474   //   repeatedly where (and only where) multiple declarations are
   5475   //   allowed.
   5476   //
   5477   // That's in non-member contexts.
   5478   if (!CurContext->getRedeclContext()->isRecord())
   5479     return false;
   5480 
   5481   NestedNameSpecifier *Qual
   5482     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   5483 
   5484   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
   5485     NamedDecl *D = *I;
   5486 
   5487     bool DTypename;
   5488     NestedNameSpecifier *DQual;
   5489     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
   5490       DTypename = UD->isTypeName();
   5491       DQual = UD->getQualifier();
   5492     } else if (UnresolvedUsingValueDecl *UD
   5493                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
   5494       DTypename = false;
   5495       DQual = UD->getQualifier();
   5496     } else if (UnresolvedUsingTypenameDecl *UD
   5497                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
   5498       DTypename = true;
   5499       DQual = UD->getQualifier();
   5500     } else continue;
   5501 
   5502     // using decls differ if one says 'typename' and the other doesn't.
   5503     // FIXME: non-dependent using decls?
   5504     if (isTypeName != DTypename) continue;
   5505 
   5506     // using decls differ if they name different scopes (but note that
   5507     // template instantiation can cause this check to trigger when it
   5508     // didn't before instantiation).
   5509     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
   5510         Context.getCanonicalNestedNameSpecifier(DQual))
   5511       continue;
   5512 
   5513     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
   5514     Diag(D->getLocation(), diag::note_using_decl) << 1;
   5515     return true;
   5516   }
   5517 
   5518   return false;
   5519 }
   5520 
   5521 
   5522 /// Checks that the given nested-name qualifier used in a using decl
   5523 /// in the current context is appropriately related to the current
   5524 /// scope.  If an error is found, diagnoses it and returns true.
   5525 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
   5526                                    const CXXScopeSpec &SS,
   5527                                    SourceLocation NameLoc) {
   5528   DeclContext *NamedContext = computeDeclContext(SS);
   5529 
   5530   if (!CurContext->isRecord()) {
   5531     // C++03 [namespace.udecl]p3:
   5532     // C++0x [namespace.udecl]p8:
   5533     //   A using-declaration for a class member shall be a member-declaration.
   5534 
   5535     // If we weren't able to compute a valid scope, it must be a
   5536     // dependent class scope.
   5537     if (!NamedContext || NamedContext->isRecord()) {
   5538       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
   5539         << SS.getRange();
   5540       return true;
   5541     }
   5542 
   5543     // Otherwise, everything is known to be fine.
   5544     return false;
   5545   }
   5546 
   5547   // The current scope is a record.
   5548 
   5549   // If the named context is dependent, we can't decide much.
   5550   if (!NamedContext) {
   5551     // FIXME: in C++0x, we can diagnose if we can prove that the
   5552     // nested-name-specifier does not refer to a base class, which is
   5553     // still possible in some cases.
   5554 
   5555     // Otherwise we have to conservatively report that things might be
   5556     // okay.
   5557     return false;
   5558   }
   5559 
   5560   if (!NamedContext->isRecord()) {
   5561     // Ideally this would point at the last name in the specifier,
   5562     // but we don't have that level of source info.
   5563     Diag(SS.getRange().getBegin(),
   5564          diag::err_using_decl_nested_name_specifier_is_not_class)
   5565       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
   5566     return true;
   5567   }
   5568 
   5569   if (!NamedContext->isDependentContext() &&
   5570       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
   5571     return true;
   5572 
   5573   if (getLangOptions().CPlusPlus0x) {
   5574     // C++0x [namespace.udecl]p3:
   5575     //   In a using-declaration used as a member-declaration, the
   5576     //   nested-name-specifier shall name a base class of the class
   5577     //   being defined.
   5578 
   5579     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
   5580                                  cast<CXXRecordDecl>(NamedContext))) {
   5581       if (CurContext == NamedContext) {
   5582         Diag(NameLoc,
   5583              diag::err_using_decl_nested_name_specifier_is_current_class)
   5584           << SS.getRange();
   5585         return true;
   5586       }
   5587 
   5588       Diag(SS.getRange().getBegin(),
   5589            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   5590         << (NestedNameSpecifier*) SS.getScopeRep()
   5591         << cast<CXXRecordDecl>(CurContext)
   5592         << SS.getRange();
   5593       return true;
   5594     }
   5595 
   5596     return false;
   5597   }
   5598 
   5599   // C++03 [namespace.udecl]p4:
   5600   //   A using-declaration used as a member-declaration shall refer
   5601   //   to a member of a base class of the class being defined [etc.].
   5602 
   5603   // Salient point: SS doesn't have to name a base class as long as
   5604   // lookup only finds members from base classes.  Therefore we can
   5605   // diagnose here only if we can prove that that can't happen,
   5606   // i.e. if the class hierarchies provably don't intersect.
   5607 
   5608   // TODO: it would be nice if "definitely valid" results were cached
   5609   // in the UsingDecl and UsingShadowDecl so that these checks didn't
   5610   // need to be repeated.
   5611 
   5612   struct UserData {
   5613     llvm::DenseSet<const CXXRecordDecl*> Bases;
   5614 
   5615     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
   5616       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   5617       Data->Bases.insert(Base);
   5618       return true;
   5619     }
   5620 
   5621     bool hasDependentBases(const CXXRecordDecl *Class) {
   5622       return !Class->forallBases(collect, this);
   5623     }
   5624 
   5625     /// Returns true if the base is dependent or is one of the
   5626     /// accumulated base classes.
   5627     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
   5628       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   5629       return !Data->Bases.count(Base);
   5630     }
   5631 
   5632     bool mightShareBases(const CXXRecordDecl *Class) {
   5633       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
   5634     }
   5635   };
   5636 
   5637   UserData Data;
   5638 
   5639   // Returns false if we find a dependent base.
   5640   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
   5641     return false;
   5642 
   5643   // Returns false if the class has a dependent base or if it or one
   5644   // of its bases is present in the base set of the current context.
   5645   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
   5646     return false;
   5647 
   5648   Diag(SS.getRange().getBegin(),
   5649        diag::err_using_decl_nested_name_specifier_is_not_base_class)
   5650     << (NestedNameSpecifier*) SS.getScopeRep()
   5651     << cast<CXXRecordDecl>(CurContext)
   5652     << SS.getRange();
   5653 
   5654   return true;
   5655 }
   5656 
   5657 Decl *Sema::ActOnAliasDeclaration(Scope *S,
   5658                                   AccessSpecifier AS,
   5659                                   MultiTemplateParamsArg TemplateParamLists,
   5660                                   SourceLocation UsingLoc,
   5661                                   UnqualifiedId &Name,
   5662                                   TypeResult Type) {
   5663   // Skip up to the relevant declaration scope.
   5664   while (S->getFlags() & Scope::TemplateParamScope)
   5665     S = S->getParent();
   5666   assert((S->getFlags() & Scope::DeclScope) &&
   5667          "got alias-declaration outside of declaration scope");
   5668 
   5669   if (Type.isInvalid())
   5670     return 0;
   5671 
   5672   bool Invalid = false;
   5673   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
   5674   TypeSourceInfo *TInfo = 0;
   5675   GetTypeFromParser(Type.get(), &TInfo);
   5676 
   5677   if (DiagnoseClassNameShadow(CurContext, NameInfo))
   5678     return 0;
   5679 
   5680   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
   5681                                       UPPC_DeclarationType)) {
   5682     Invalid = true;
   5683     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   5684                                              TInfo->getTypeLoc().getBeginLoc());
   5685   }
   5686 
   5687   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
   5688   LookupName(Previous, S);
   5689 
   5690   // Warn about shadowing the name of a template parameter.
   5691   if (Previous.isSingleResult() &&
   5692       Previous.getFoundDecl()->isTemplateParameter()) {
   5693     if (DiagnoseTemplateParameterShadow(Name.StartLocation,
   5694                                         Previous.getFoundDecl()))
   5695       Invalid = true;
   5696     Previous.clear();
   5697   }
   5698 
   5699   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
   5700          "name in alias declaration must be an identifier");
   5701   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
   5702                                                Name.StartLocation,
   5703                                                Name.Identifier, TInfo);
   5704 
   5705   NewTD->setAccess(AS);
   5706 
   5707   if (Invalid)
   5708     NewTD->setInvalidDecl();
   5709 
   5710   CheckTypedefForVariablyModifiedType(S, NewTD);
   5711   Invalid |= NewTD->isInvalidDecl();
   5712 
   5713   bool Redeclaration = false;
   5714 
   5715   NamedDecl *NewND;
   5716   if (TemplateParamLists.size()) {
   5717     TypeAliasTemplateDecl *OldDecl = 0;
   5718     TemplateParameterList *OldTemplateParams = 0;
   5719 
   5720     if (TemplateParamLists.size() != 1) {
   5721       Diag(UsingLoc, diag::err_alias_template_extra_headers)
   5722         << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
   5723          TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
   5724     }
   5725     TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
   5726 
   5727     // Only consider previous declarations in the same scope.
   5728     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
   5729                          /*ExplicitInstantiationOrSpecialization*/false);
   5730     if (!Previous.empty()) {
   5731       Redeclaration = true;
   5732 
   5733       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
   5734       if (!OldDecl && !Invalid) {
   5735         Diag(UsingLoc, diag::err_redefinition_different_kind)
   5736           << Name.Identifier;
   5737 
   5738         NamedDecl *OldD = Previous.getRepresentativeDecl();
   5739         if (OldD->getLocation().isValid())
   5740           Diag(OldD->getLocation(), diag::note_previous_definition);
   5741 
   5742         Invalid = true;
   5743       }
   5744 
   5745       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
   5746         if (TemplateParameterListsAreEqual(TemplateParams,
   5747                                            OldDecl->getTemplateParameters(),
   5748                                            /*Complain=*/true,
   5749                                            TPL_TemplateMatch))
   5750           OldTemplateParams = OldDecl->getTemplateParameters();
   5751         else
   5752           Invalid = true;
   5753 
   5754         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
   5755         if (!Invalid &&
   5756             !Context.hasSameType(OldTD->getUnderlyingType(),
   5757                                  NewTD->getUnderlyingType())) {
   5758           // FIXME: The C++0x standard does not clearly say this is ill-formed,
   5759           // but we can't reasonably accept it.
   5760           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
   5761             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
   5762           if (OldTD->getLocation().isValid())
   5763             Diag(OldTD->getLocation(), diag::note_previous_definition);
   5764           Invalid = true;
   5765         }
   5766       }
   5767     }
   5768 
   5769     // Merge any previous default template arguments into our parameters,
   5770     // and check the parameter list.
   5771     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
   5772                                    TPC_TypeAliasTemplate))
   5773       return 0;
   5774 
   5775     TypeAliasTemplateDecl *NewDecl =
   5776       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
   5777                                     Name.Identifier, TemplateParams,
   5778                                     NewTD);
   5779 
   5780     NewDecl->setAccess(AS);
   5781 
   5782     if (Invalid)
   5783       NewDecl->setInvalidDecl();
   5784     else if (OldDecl)
   5785       NewDecl->setPreviousDeclaration(OldDecl);
   5786 
   5787     NewND = NewDecl;
   5788   } else {
   5789     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
   5790     NewND = NewTD;
   5791   }
   5792 
   5793   if (!Redeclaration)
   5794     PushOnScopeChains(NewND, S);
   5795 
   5796   return NewND;
   5797 }
   5798 
   5799 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
   5800                                              SourceLocation NamespaceLoc,
   5801                                              SourceLocation AliasLoc,
   5802                                              IdentifierInfo *Alias,
   5803                                              CXXScopeSpec &SS,
   5804                                              SourceLocation IdentLoc,
   5805                                              IdentifierInfo *Ident) {
   5806 
   5807   // Lookup the namespace name.
   5808   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
   5809   LookupParsedName(R, S, &SS);
   5810 
   5811   // Check if we have a previous declaration with the same name.
   5812   NamedDecl *PrevDecl
   5813     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
   5814                        ForRedeclaration);
   5815   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
   5816     PrevDecl = 0;
   5817 
   5818   if (PrevDecl) {
   5819     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
   5820       // We already have an alias with the same name that points to the same
   5821       // namespace, so don't create a new one.
   5822       // FIXME: At some point, we'll want to create the (redundant)
   5823       // declaration to maintain better source information.
   5824       if (!R.isAmbiguous() && !R.empty() &&
   5825           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
   5826         return 0;
   5827     }
   5828 
   5829     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
   5830       diag::err_redefinition_different_kind;
   5831     Diag(AliasLoc, DiagID) << Alias;
   5832     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   5833     return 0;
   5834   }
   5835 
   5836   if (R.isAmbiguous())
   5837     return 0;
   5838 
   5839   if (R.empty()) {
   5840     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
   5841       Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
   5842       return 0;
   5843     }
   5844   }
   5845 
   5846   NamespaceAliasDecl *AliasDecl =
   5847     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
   5848                                Alias, SS.getWithLocInContext(Context),
   5849                                IdentLoc, R.getFoundDecl());
   5850 
   5851   PushOnScopeChains(AliasDecl, S);
   5852   return AliasDecl;
   5853 }
   5854 
   5855 namespace {
   5856   /// \brief Scoped object used to handle the state changes required in Sema
   5857   /// to implicitly define the body of a C++ member function;
   5858   class ImplicitlyDefinedFunctionScope {
   5859     Sema &S;
   5860     Sema::ContextRAII SavedContext;
   5861 
   5862   public:
   5863     ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
   5864       : S(S), SavedContext(S, Method)
   5865     {
   5866       S.PushFunctionScope();
   5867       S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
   5868     }
   5869 
   5870     ~ImplicitlyDefinedFunctionScope() {
   5871       S.PopExpressionEvaluationContext();
   5872       S.PopFunctionOrBlockScope();
   5873     }
   5874   };
   5875 }
   5876 
   5877 Sema::ImplicitExceptionSpecification
   5878 Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
   5879   // C++ [except.spec]p14:
   5880   //   An implicitly declared special member function (Clause 12) shall have an
   5881   //   exception-specification. [...]
   5882   ImplicitExceptionSpecification ExceptSpec(Context);
   5883   if (ClassDecl->isInvalidDecl())
   5884     return ExceptSpec;
   5885 
   5886   // Direct base-class constructors.
   5887   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   5888                                        BEnd = ClassDecl->bases_end();
   5889        B != BEnd; ++B) {
   5890     if (B->isVirtual()) // Handled below.
   5891       continue;
   5892 
   5893     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   5894       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   5895       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   5896       // If this is a deleted function, add it anyway. This might be conformant
   5897       // with the standard. This might not. I'm not sure. It might not matter.
   5898       if (Constructor)
   5899         ExceptSpec.CalledDecl(Constructor);
   5900     }
   5901   }
   5902 
   5903   // Virtual base-class constructors.
   5904   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
   5905                                        BEnd = ClassDecl->vbases_end();
   5906        B != BEnd; ++B) {
   5907     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   5908       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   5909       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   5910       // If this is a deleted function, add it anyway. This might be conformant
   5911       // with the standard. This might not. I'm not sure. It might not matter.
   5912       if (Constructor)
   5913         ExceptSpec.CalledDecl(Constructor);
   5914     }
   5915   }
   5916 
   5917   // Field constructors.
   5918   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   5919                                FEnd = ClassDecl->field_end();
   5920        F != FEnd; ++F) {
   5921     if (F->hasInClassInitializer()) {
   5922       if (Expr *E = F->getInClassInitializer())
   5923         ExceptSpec.CalledExpr(E);
   5924       else if (!F->isInvalidDecl())
   5925         ExceptSpec.SetDelayed();
   5926     } else if (const RecordType *RecordTy
   5927               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
   5928       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   5929       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
   5930       // If this is a deleted function, add it anyway. This might be conformant
   5931       // with the standard. This might not. I'm not sure. It might not matter.
   5932       // In particular, the problem is that this function never gets called. It
   5933       // might just be ill-formed because this function attempts to refer to
   5934       // a deleted function here.
   5935       if (Constructor)
   5936         ExceptSpec.CalledDecl(Constructor);
   5937     }
   5938   }
   5939 
   5940   return ExceptSpec;
   5941 }
   5942 
   5943 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
   5944                                                      CXXRecordDecl *ClassDecl) {
   5945   // C++ [class.ctor]p5:
   5946   //   A default constructor for a class X is a constructor of class X
   5947   //   that can be called without an argument. If there is no
   5948   //   user-declared constructor for class X, a default constructor is
   5949   //   implicitly declared. An implicitly-declared default constructor
   5950   //   is an inline public member of its class.
   5951   assert(!ClassDecl->hasUserDeclaredConstructor() &&
   5952          "Should not build implicit default constructor!");
   5953 
   5954   ImplicitExceptionSpecification Spec =
   5955     ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
   5956   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   5957 
   5958   // Create the actual constructor declaration.
   5959   CanQualType ClassType
   5960     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   5961   SourceLocation ClassLoc = ClassDecl->getLocation();
   5962   DeclarationName Name
   5963     = Context.DeclarationNames.getCXXConstructorName(ClassType);
   5964   DeclarationNameInfo NameInfo(Name, ClassLoc);
   5965   CXXConstructorDecl *DefaultCon
   5966     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
   5967                                  Context.getFunctionType(Context.VoidTy,
   5968                                                          0, 0, EPI),
   5969                                  /*TInfo=*/0,
   5970                                  /*isExplicit=*/false,
   5971                                  /*isInline=*/true,
   5972                                  /*isImplicitlyDeclared=*/true);
   5973   DefaultCon->setAccess(AS_public);
   5974   DefaultCon->setDefaulted();
   5975   DefaultCon->setImplicit();
   5976   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
   5977 
   5978   // Note that we have declared this constructor.
   5979   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
   5980 
   5981   if (Scope *S = getScopeForContext(ClassDecl))
   5982     PushOnScopeChains(DefaultCon, S, false);
   5983   ClassDecl->addDecl(DefaultCon);
   5984 
   5985   if (ShouldDeleteDefaultConstructor(DefaultCon))
   5986     DefaultCon->setDeletedAsWritten();
   5987 
   5988   return DefaultCon;
   5989 }
   5990 
   5991 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
   5992                                             CXXConstructorDecl *Constructor) {
   5993   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
   5994           !Constructor->doesThisDeclarationHaveABody() &&
   5995           !Constructor->isDeleted()) &&
   5996     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
   5997 
   5998   CXXRecordDecl *ClassDecl = Constructor->getParent();
   5999   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
   6000 
   6001   ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
   6002   DiagnosticErrorTrap Trap(Diags);
   6003   if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
   6004       Trap.hasErrorOccurred()) {
   6005     Diag(CurrentLocation, diag::note_member_synthesized_at)
   6006       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
   6007     Constructor->setInvalidDecl();
   6008     return;
   6009   }
   6010 
   6011   SourceLocation Loc = Constructor->getLocation();
   6012   Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
   6013 
   6014   Constructor->setUsed();
   6015   MarkVTableUsed(CurrentLocation, ClassDecl);
   6016 
   6017   if (ASTMutationListener *L = getASTMutationListener()) {
   6018     L->CompletedImplicitDefinition(Constructor);
   6019   }
   6020 }
   6021 
   6022 /// Get any existing defaulted default constructor for the given class. Do not
   6023 /// implicitly define one if it does not exist.
   6024 static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
   6025                                                              CXXRecordDecl *D) {
   6026   ASTContext &Context = Self.Context;
   6027   QualType ClassType = Context.getTypeDeclType(D);
   6028   DeclarationName ConstructorName
   6029     = Context.DeclarationNames.getCXXConstructorName(
   6030                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
   6031 
   6032   DeclContext::lookup_const_iterator Con, ConEnd;
   6033   for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
   6034        Con != ConEnd; ++Con) {
   6035     // A function template cannot be defaulted.
   6036     if (isa<FunctionTemplateDecl>(*Con))
   6037       continue;
   6038 
   6039     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   6040     if (Constructor->isDefaultConstructor())
   6041       return Constructor->isDefaulted() ? Constructor : 0;
   6042   }
   6043   return 0;
   6044 }
   6045 
   6046 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
   6047   if (!D) return;
   6048   AdjustDeclIfTemplate(D);
   6049 
   6050   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
   6051   CXXConstructorDecl *CtorDecl
   6052     = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
   6053 
   6054   if (!CtorDecl) return;
   6055 
   6056   // Compute the exception specification for the default constructor.
   6057   const FunctionProtoType *CtorTy =
   6058     CtorDecl->getType()->castAs<FunctionProtoType>();
   6059   if (CtorTy->getExceptionSpecType() == EST_Delayed) {
   6060     ImplicitExceptionSpecification Spec =
   6061       ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
   6062     FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   6063     assert(EPI.ExceptionSpecType != EST_Delayed);
   6064 
   6065     CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
   6066   }
   6067 
   6068   // If the default constructor is explicitly defaulted, checking the exception
   6069   // specification is deferred until now.
   6070   if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
   6071       !ClassDecl->isDependentType())
   6072     CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
   6073 }
   6074 
   6075 void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
   6076   // We start with an initial pass over the base classes to collect those that
   6077   // inherit constructors from. If there are none, we can forgo all further
   6078   // processing.
   6079   typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
   6080   BasesVector BasesToInheritFrom;
   6081   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
   6082                                           BaseE = ClassDecl->bases_end();
   6083          BaseIt != BaseE; ++BaseIt) {
   6084     if (BaseIt->getInheritConstructors()) {
   6085       QualType Base = BaseIt->getType();
   6086       if (Base->isDependentType()) {
   6087         // If we inherit constructors from anything that is dependent, just
   6088         // abort processing altogether. We'll get another chance for the
   6089         // instantiations.
   6090         return;
   6091       }
   6092       BasesToInheritFrom.push_back(Base->castAs<RecordType>());
   6093     }
   6094   }
   6095   if (BasesToInheritFrom.empty())
   6096     return;
   6097 
   6098   // Now collect the constructors that we already have in the current class.
   6099   // Those take precedence over inherited constructors.
   6100   // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
   6101   //   unless there is a user-declared constructor with the same signature in
   6102   //   the class where the using-declaration appears.
   6103   llvm::SmallSet<const Type *, 8> ExistingConstructors;
   6104   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
   6105                                     CtorE = ClassDecl->ctor_end();
   6106        CtorIt != CtorE; ++CtorIt) {
   6107     ExistingConstructors.insert(
   6108         Context.getCanonicalType(CtorIt->getType()).getTypePtr());
   6109   }
   6110 
   6111   Scope *S = getScopeForContext(ClassDecl);
   6112   DeclarationName CreatedCtorName =
   6113       Context.DeclarationNames.getCXXConstructorName(
   6114           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
   6115 
   6116   // Now comes the true work.
   6117   // First, we keep a map from constructor types to the base that introduced
   6118   // them. Needed for finding conflicting constructors. We also keep the
   6119   // actually inserted declarations in there, for pretty diagnostics.
   6120   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
   6121   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
   6122   ConstructorToSourceMap InheritedConstructors;
   6123   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
   6124                              BaseE = BasesToInheritFrom.end();
   6125        BaseIt != BaseE; ++BaseIt) {
   6126     const RecordType *Base = *BaseIt;
   6127     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
   6128     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
   6129     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
   6130                                       CtorE = BaseDecl->ctor_end();
   6131          CtorIt != CtorE; ++CtorIt) {
   6132       // Find the using declaration for inheriting this base's constructors.
   6133       DeclarationName Name =
   6134           Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
   6135       UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
   6136           LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
   6137       SourceLocation UsingLoc = UD ? UD->getLocation() :
   6138                                      ClassDecl->getLocation();
   6139 
   6140       // C++0x [class.inhctor]p1: The candidate set of inherited constructors
   6141       //   from the class X named in the using-declaration consists of actual
   6142       //   constructors and notional constructors that result from the
   6143       //   transformation of defaulted parameters as follows:
   6144       //   - all non-template default constructors of X, and
   6145       //   - for each non-template constructor of X that has at least one
   6146       //     parameter with a default argument, the set of constructors that
   6147       //     results from omitting any ellipsis parameter specification and
   6148       //     successively omitting parameters with a default argument from the
   6149       //     end of the parameter-type-list.
   6150       CXXConstructorDecl *BaseCtor = *CtorIt;
   6151       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
   6152       const FunctionProtoType *BaseCtorType =
   6153           BaseCtor->getType()->getAs<FunctionProtoType>();
   6154 
   6155       for (unsigned params = BaseCtor->getMinRequiredArguments(),
   6156                     maxParams = BaseCtor->getNumParams();
   6157            params <= maxParams; ++params) {
   6158         // Skip default constructors. They're never inherited.
   6159         if (params == 0)
   6160           continue;
   6161         // Skip copy and move constructors for the same reason.
   6162         if (CanBeCopyOrMove && params == 1)
   6163           continue;
   6164 
   6165         // Build up a function type for this particular constructor.
   6166         // FIXME: The working paper does not consider that the exception spec
   6167         // for the inheriting constructor might be larger than that of the
   6168         // source. This code doesn't yet, either. When it does, this code will
   6169         // need to be delayed until after exception specifications and in-class
   6170         // member initializers are attached.
   6171         const Type *NewCtorType;
   6172         if (params == maxParams)
   6173           NewCtorType = BaseCtorType;
   6174         else {
   6175           llvm::SmallVector<QualType, 16> Args;
   6176           for (unsigned i = 0; i < params; ++i) {
   6177             Args.push_back(BaseCtorType->getArgType(i));
   6178           }
   6179           FunctionProtoType::ExtProtoInfo ExtInfo =
   6180               BaseCtorType->getExtProtoInfo();
   6181           ExtInfo.Variadic = false;
   6182           NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
   6183                                                 Args.data(), params, ExtInfo)
   6184                        .getTypePtr();
   6185         }
   6186         const Type *CanonicalNewCtorType =
   6187             Context.getCanonicalType(NewCtorType);
   6188 
   6189         // Now that we have the type, first check if the class already has a
   6190         // constructor with this signature.
   6191         if (ExistingConstructors.count(CanonicalNewCtorType))
   6192           continue;
   6193 
   6194         // Then we check if we have already declared an inherited constructor
   6195         // with this signature.
   6196         std::pair<ConstructorToSourceMap::iterator, bool> result =
   6197             InheritedConstructors.insert(std::make_pair(
   6198                 CanonicalNewCtorType,
   6199                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
   6200         if (!result.second) {
   6201           // Already in the map. If it came from a different class, that's an
   6202           // error. Not if it's from the same.
   6203           CanQualType PreviousBase = result.first->second.first;
   6204           if (CanonicalBase != PreviousBase) {
   6205             const CXXConstructorDecl *PrevCtor = result.first->second.second;
   6206             const CXXConstructorDecl *PrevBaseCtor =
   6207                 PrevCtor->getInheritedConstructor();
   6208             assert(PrevBaseCtor && "Conflicting constructor was not inherited");
   6209 
   6210             Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
   6211             Diag(BaseCtor->getLocation(),
   6212                  diag::note_using_decl_constructor_conflict_current_ctor);
   6213             Diag(PrevBaseCtor->getLocation(),
   6214                  diag::note_using_decl_constructor_conflict_previous_ctor);
   6215             Diag(PrevCtor->getLocation(),
   6216                  diag::note_using_decl_constructor_conflict_previous_using);
   6217           }
   6218           continue;
   6219         }
   6220 
   6221         // OK, we're there, now add the constructor.
   6222         // C++0x [class.inhctor]p8: [...] that would be performed by a
   6223         //   user-writtern inline constructor [...]
   6224         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
   6225         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
   6226             Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
   6227             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
   6228             /*ImplicitlyDeclared=*/true);
   6229         NewCtor->setAccess(BaseCtor->getAccess());
   6230 
   6231         // Build up the parameter decls and add them.
   6232         llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
   6233         for (unsigned i = 0; i < params; ++i) {
   6234           ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
   6235                                                    UsingLoc, UsingLoc,
   6236                                                    /*IdentifierInfo=*/0,
   6237                                                    BaseCtorType->getArgType(i),
   6238                                                    /*TInfo=*/0, SC_None,
   6239                                                    SC_None, /*DefaultArg=*/0));
   6240         }
   6241         NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
   6242         NewCtor->setInheritedConstructor(BaseCtor);
   6243 
   6244         PushOnScopeChains(NewCtor, S, false);
   6245         ClassDecl->addDecl(NewCtor);
   6246         result.first->second.second = NewCtor;
   6247       }
   6248     }
   6249   }
   6250 }
   6251 
   6252 Sema::ImplicitExceptionSpecification
   6253 Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
   6254   // C++ [except.spec]p14:
   6255   //   An implicitly declared special member function (Clause 12) shall have
   6256   //   an exception-specification.
   6257   ImplicitExceptionSpecification ExceptSpec(Context);
   6258   if (ClassDecl->isInvalidDecl())
   6259     return ExceptSpec;
   6260 
   6261   // Direct base-class destructors.
   6262   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   6263                                        BEnd = ClassDecl->bases_end();
   6264        B != BEnd; ++B) {
   6265     if (B->isVirtual()) // Handled below.
   6266       continue;
   6267 
   6268     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
   6269       ExceptSpec.CalledDecl(
   6270                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   6271   }
   6272 
   6273   // Virtual base-class destructors.
   6274   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
   6275                                        BEnd = ClassDecl->vbases_end();
   6276        B != BEnd; ++B) {
   6277     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
   6278       ExceptSpec.CalledDecl(
   6279                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   6280   }
   6281 
   6282   // Field destructors.
   6283   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   6284                                FEnd = ClassDecl->field_end();
   6285        F != FEnd; ++F) {
   6286     if (const RecordType *RecordTy
   6287         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
   6288       ExceptSpec.CalledDecl(
   6289                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
   6290   }
   6291 
   6292   return ExceptSpec;
   6293 }
   6294 
   6295 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
   6296   // C++ [class.dtor]p2:
   6297   //   If a class has no user-declared destructor, a destructor is
   6298   //   declared implicitly. An implicitly-declared destructor is an
   6299   //   inline public member of its class.
   6300 
   6301   ImplicitExceptionSpecification Spec =
   6302       ComputeDefaultedDtorExceptionSpec(ClassDecl);
   6303   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   6304 
   6305   // Create the actual destructor declaration.
   6306   QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
   6307 
   6308   CanQualType ClassType
   6309     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   6310   SourceLocation ClassLoc = ClassDecl->getLocation();
   6311   DeclarationName Name
   6312     = Context.DeclarationNames.getCXXDestructorName(ClassType);
   6313   DeclarationNameInfo NameInfo(Name, ClassLoc);
   6314   CXXDestructorDecl *Destructor
   6315       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
   6316                                   /*isInline=*/true,
   6317                                   /*isImplicitlyDeclared=*/true);
   6318   Destructor->setAccess(AS_public);
   6319   Destructor->setDefaulted();
   6320   Destructor->setImplicit();
   6321   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
   6322 
   6323   // Note that we have declared this destructor.
   6324   ++ASTContext::NumImplicitDestructorsDeclared;
   6325 
   6326   // Introduce this destructor into its scope.
   6327   if (Scope *S = getScopeForContext(ClassDecl))
   6328     PushOnScopeChains(Destructor, S, false);
   6329   ClassDecl->addDecl(Destructor);
   6330 
   6331   // This could be uniqued if it ever proves significant.
   6332   Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
   6333 
   6334   if (ShouldDeleteDestructor(Destructor))
   6335     Destructor->setDeletedAsWritten();
   6336 
   6337   AddOverriddenMethods(ClassDecl, Destructor);
   6338 
   6339   return Destructor;
   6340 }
   6341 
   6342 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
   6343                                     CXXDestructorDecl *Destructor) {
   6344   assert((Destructor->isDefaulted() &&
   6345           !Destructor->doesThisDeclarationHaveABody()) &&
   6346          "DefineImplicitDestructor - call it for implicit default dtor");
   6347   CXXRecordDecl *ClassDecl = Destructor->getParent();
   6348   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
   6349 
   6350   if (Destructor->isInvalidDecl())
   6351     return;
   6352 
   6353   ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
   6354 
   6355   DiagnosticErrorTrap Trap(Diags);
   6356   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   6357                                          Destructor->getParent());
   6358 
   6359   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
   6360     Diag(CurrentLocation, diag::note_member_synthesized_at)
   6361       << CXXDestructor << Context.getTagDeclType(ClassDecl);
   6362 
   6363     Destructor->setInvalidDecl();
   6364     return;
   6365   }
   6366 
   6367   SourceLocation Loc = Destructor->getLocation();
   6368   Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
   6369 
   6370   Destructor->setUsed();
   6371   MarkVTableUsed(CurrentLocation, ClassDecl);
   6372 
   6373   if (ASTMutationListener *L = getASTMutationListener()) {
   6374     L->CompletedImplicitDefinition(Destructor);
   6375   }
   6376 }
   6377 
   6378 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
   6379                                          CXXDestructorDecl *destructor) {
   6380   // C++11 [class.dtor]p3:
   6381   //   A declaration of a destructor that does not have an exception-
   6382   //   specification is implicitly considered to have the same exception-
   6383   //   specification as an implicit declaration.
   6384   const FunctionProtoType *dtorType = destructor->getType()->
   6385                                         getAs<FunctionProtoType>();
   6386   if (dtorType->hasExceptionSpec())
   6387     return;
   6388 
   6389   ImplicitExceptionSpecification exceptSpec =
   6390       ComputeDefaultedDtorExceptionSpec(classDecl);
   6391 
   6392   // Replace the destructor's type.
   6393   FunctionProtoType::ExtProtoInfo epi;
   6394   epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
   6395   epi.NumExceptions = exceptSpec.size();
   6396   epi.Exceptions = exceptSpec.data();
   6397   QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
   6398 
   6399   destructor->setType(ty);
   6400 
   6401   // FIXME: If the destructor has a body that could throw, and the newly created
   6402   // spec doesn't allow exceptions, we should emit a warning, because this
   6403   // change in behavior can break conforming C++03 programs at runtime.
   6404   // However, we don't have a body yet, so it needs to be done somewhere else.
   6405 }
   6406 
   6407 /// \brief Builds a statement that copies the given entity from \p From to
   6408 /// \c To.
   6409 ///
   6410 /// This routine is used to copy the members of a class with an
   6411 /// implicitly-declared copy assignment operator. When the entities being
   6412 /// copied are arrays, this routine builds for loops to copy them.
   6413 ///
   6414 /// \param S The Sema object used for type-checking.
   6415 ///
   6416 /// \param Loc The location where the implicit copy is being generated.
   6417 ///
   6418 /// \param T The type of the expressions being copied. Both expressions must
   6419 /// have this type.
   6420 ///
   6421 /// \param To The expression we are copying to.
   6422 ///
   6423 /// \param From The expression we are copying from.
   6424 ///
   6425 /// \param CopyingBaseSubobject Whether we're copying a base subobject.
   6426 /// Otherwise, it's a non-static member subobject.
   6427 ///
   6428 /// \param Depth Internal parameter recording the depth of the recursion.
   6429 ///
   6430 /// \returns A statement or a loop that copies the expressions.
   6431 static StmtResult
   6432 BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
   6433                       Expr *To, Expr *From,
   6434                       bool CopyingBaseSubobject, unsigned Depth = 0) {
   6435   // C++0x [class.copy]p30:
   6436   //   Each subobject is assigned in the manner appropriate to its type:
   6437   //
   6438   //     - if the subobject is of class type, the copy assignment operator
   6439   //       for the class is used (as if by explicit qualification; that is,
   6440   //       ignoring any possible virtual overriding functions in more derived
   6441   //       classes);
   6442   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
   6443     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   6444 
   6445     // Look for operator=.
   6446     DeclarationName Name
   6447       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   6448     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
   6449     S.LookupQualifiedName(OpLookup, ClassDecl, false);
   6450 
   6451     // Filter out any result that isn't a copy-assignment operator.
   6452     LookupResult::Filter F = OpLookup.makeFilter();
   6453     while (F.hasNext()) {
   6454       NamedDecl *D = F.next();
   6455       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   6456         if (Method->isCopyAssignmentOperator())
   6457           continue;
   6458 
   6459       F.erase();
   6460     }
   6461     F.done();
   6462 
   6463     // Suppress the protected check (C++ [class.protected]) for each of the
   6464     // assignment operators we found. This strange dance is required when
   6465     // we're assigning via a base classes's copy-assignment operator. To
   6466     // ensure that we're getting the right base class subobject (without
   6467     // ambiguities), we need to cast "this" to that subobject type; to
   6468     // ensure that we don't go through the virtual call mechanism, we need
   6469     // to qualify the operator= name with the base class (see below). However,
   6470     // this means that if the base class has a protected copy assignment
   6471     // operator, the protected member access check will fail. So, we
   6472     // rewrite "protected" access to "public" access in this case, since we
   6473     // know by construction that we're calling from a derived class.
   6474     if (CopyingBaseSubobject) {
   6475       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
   6476            L != LEnd; ++L) {
   6477         if (L.getAccess() == AS_protected)
   6478           L.setAccess(AS_public);
   6479       }
   6480     }
   6481 
   6482     // Create the nested-name-specifier that will be used to qualify the
   6483     // reference to operator=; this is required to suppress the virtual
   6484     // call mechanism.
   6485     CXXScopeSpec SS;
   6486     SS.MakeTrivial(S.Context,
   6487                    NestedNameSpecifier::Create(S.Context, 0, false,
   6488                                                T.getTypePtr()),
   6489                    Loc);
   6490 
   6491     // Create the reference to operator=.
   6492     ExprResult OpEqualRef
   6493       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
   6494                                    /*FirstQualifierInScope=*/0, OpLookup,
   6495                                    /*TemplateArgs=*/0,
   6496                                    /*SuppressQualifierCheck=*/true);
   6497     if (OpEqualRef.isInvalid())
   6498       return StmtError();
   6499 
   6500     // Build the call to the assignment operator.
   6501 
   6502     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
   6503                                                   OpEqualRef.takeAs<Expr>(),
   6504                                                   Loc, &From, 1, Loc);
   6505     if (Call.isInvalid())
   6506       return StmtError();
   6507 
   6508     return S.Owned(Call.takeAs<Stmt>());
   6509   }
   6510 
   6511   //     - if the subobject is of scalar type, the built-in assignment
   6512   //       operator is used.
   6513   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
   6514   if (!ArrayTy) {
   6515     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
   6516     if (Assignment.isInvalid())
   6517       return StmtError();
   6518 
   6519     return S.Owned(Assignment.takeAs<Stmt>());
   6520   }
   6521 
   6522   //     - if the subobject is an array, each element is assigned, in the
   6523   //       manner appropriate to the element type;
   6524 
   6525   // Construct a loop over the array bounds, e.g.,
   6526   //
   6527   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
   6528   //
   6529   // that will copy each of the array elements.
   6530   QualType SizeType = S.Context.getSizeType();
   6531 
   6532   // Create the iteration variable.
   6533   IdentifierInfo *IterationVarName = 0;
   6534   {
   6535     llvm::SmallString<8> Str;
   6536     llvm::raw_svector_ostream OS(Str);
   6537     OS << "__i" << Depth;
   6538     IterationVarName = &S.Context.Idents.get(OS.str());
   6539   }
   6540   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   6541                                           IterationVarName, SizeType,
   6542                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   6543                                           SC_None, SC_None);
   6544 
   6545   // Initialize the iteration variable to zero.
   6546   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
   6547   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
   6548 
   6549   // Create a reference to the iteration variable; we'll use this several
   6550   // times throughout.
   6551   Expr *IterationVarRef
   6552     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
   6553   assert(IterationVarRef && "Reference to invented variable cannot fail!");
   6554 
   6555   // Create the DeclStmt that holds the iteration variable.
   6556   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
   6557 
   6558   // Create the comparison against the array bound.
   6559   llvm::APInt Upper
   6560     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
   6561   Expr *Comparison
   6562     = new (S.Context) BinaryOperator(IterationVarRef,
   6563                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
   6564                                      BO_NE, S.Context.BoolTy,
   6565                                      VK_RValue, OK_Ordinary, Loc);
   6566 
   6567   // Create the pre-increment of the iteration variable.
   6568   Expr *Increment
   6569     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
   6570                                     VK_LValue, OK_Ordinary, Loc);
   6571 
   6572   // Subscript the "from" and "to" expressions with the iteration variable.
   6573   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
   6574                                                          IterationVarRef, Loc));
   6575   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
   6576                                                        IterationVarRef, Loc));
   6577 
   6578   // Build the copy for an individual element of the array.
   6579   StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
   6580                                           To, From, CopyingBaseSubobject,
   6581                                           Depth + 1);
   6582   if (Copy.isInvalid())
   6583     return StmtError();
   6584 
   6585   // Construct the loop that copies all elements of this array.
   6586   return S.ActOnForStmt(Loc, Loc, InitStmt,
   6587                         S.MakeFullExpr(Comparison),
   6588                         0, S.MakeFullExpr(Increment),
   6589                         Loc, Copy.take());
   6590 }
   6591 
   6592 std::pair<Sema::ImplicitExceptionSpecification, bool>
   6593 Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
   6594                                                    CXXRecordDecl *ClassDecl) {
   6595   if (ClassDecl->isInvalidDecl())
   6596     return std::make_pair(ImplicitExceptionSpecification(Context), false);
   6597 
   6598   // C++ [class.copy]p10:
   6599   //   If the class definition does not explicitly declare a copy
   6600   //   assignment operator, one is declared implicitly.
   6601   //   The implicitly-defined copy assignment operator for a class X
   6602   //   will have the form
   6603   //
   6604   //       X& X::operator=(const X&)
   6605   //
   6606   //   if
   6607   bool HasConstCopyAssignment = true;
   6608 
   6609   //       -- each direct base class B of X has a copy assignment operator
   6610   //          whose parameter is of type const B&, const volatile B& or B,
   6611   //          and
   6612   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   6613                                        BaseEnd = ClassDecl->bases_end();
   6614        HasConstCopyAssignment && Base != BaseEnd; ++Base) {
   6615     // We'll handle this below
   6616     if (LangOpts.CPlusPlus0x && Base->isVirtual())
   6617       continue;
   6618 
   6619     assert(!Base->getType()->isDependentType() &&
   6620            "Cannot generate implicit members for class with dependent bases.");
   6621     CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
   6622     LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
   6623                             &HasConstCopyAssignment);
   6624   }
   6625 
   6626   // In C++0x, the above citation has "or virtual added"
   6627   if (LangOpts.CPlusPlus0x) {
   6628     for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   6629                                          BaseEnd = ClassDecl->vbases_end();
   6630          HasConstCopyAssignment && Base != BaseEnd; ++Base) {
   6631       assert(!Base->getType()->isDependentType() &&
   6632              "Cannot generate implicit members for class with dependent bases.");
   6633       CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
   6634       LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
   6635                               &HasConstCopyAssignment);
   6636     }
   6637   }
   6638 
   6639   //       -- for all the nonstatic data members of X that are of a class
   6640   //          type M (or array thereof), each such class type has a copy
   6641   //          assignment operator whose parameter is of type const M&,
   6642   //          const volatile M& or M.
   6643   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   6644                                   FieldEnd = ClassDecl->field_end();
   6645        HasConstCopyAssignment && Field != FieldEnd;
   6646        ++Field) {
   6647     QualType FieldType = Context.getBaseElementType((*Field)->getType());
   6648     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   6649       LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
   6650                               &HasConstCopyAssignment);
   6651     }
   6652   }
   6653 
   6654   //   Otherwise, the implicitly declared copy assignment operator will
   6655   //   have the form
   6656   //
   6657   //       X& X::operator=(X&)
   6658 
   6659   // C++ [except.spec]p14:
   6660   //   An implicitly declared special member function (Clause 12) shall have an
   6661   //   exception-specification. [...]
   6662 
   6663   // It is unspecified whether or not an implicit copy assignment operator
   6664   // attempts to deduplicate calls to assignment operators of virtual bases are
   6665   // made. As such, this exception specification is effectively unspecified.
   6666   // Based on a similar decision made for constness in C++0x, we're erring on
   6667   // the side of assuming such calls to be made regardless of whether they
   6668   // actually happen.
   6669   ImplicitExceptionSpecification ExceptSpec(Context);
   6670   unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
   6671   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   6672                                        BaseEnd = ClassDecl->bases_end();
   6673        Base != BaseEnd; ++Base) {
   6674     if (Base->isVirtual())
   6675       continue;
   6676 
   6677     CXXRecordDecl *BaseClassDecl
   6678       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   6679     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   6680                                                             ArgQuals, false, 0))
   6681       ExceptSpec.CalledDecl(CopyAssign);
   6682   }
   6683 
   6684   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   6685                                        BaseEnd = ClassDecl->vbases_end();
   6686        Base != BaseEnd; ++Base) {
   6687     CXXRecordDecl *BaseClassDecl
   6688       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   6689     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   6690                                                             ArgQuals, false, 0))
   6691       ExceptSpec.CalledDecl(CopyAssign);
   6692   }
   6693 
   6694   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   6695                                   FieldEnd = ClassDecl->field_end();
   6696        Field != FieldEnd;
   6697        ++Field) {
   6698     QualType FieldType = Context.getBaseElementType((*Field)->getType());
   6699     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   6700       if (CXXMethodDecl *CopyAssign =
   6701           LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
   6702         ExceptSpec.CalledDecl(CopyAssign);
   6703     }
   6704   }
   6705 
   6706   return std::make_pair(ExceptSpec, HasConstCopyAssignment);
   6707 }
   6708 
   6709 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
   6710   // Note: The following rules are largely analoguous to the copy
   6711   // constructor rules. Note that virtual bases are not taken into account
   6712   // for determining the argument type of the operator. Note also that
   6713   // operators taking an object instead of a reference are allowed.
   6714 
   6715   ImplicitExceptionSpecification Spec(Context);
   6716   bool Const;
   6717   llvm::tie(Spec, Const) =
   6718     ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
   6719 
   6720   QualType ArgType = Context.getTypeDeclType(ClassDecl);
   6721   QualType RetType = Context.getLValueReferenceType(ArgType);
   6722   if (Const)
   6723     ArgType = ArgType.withConst();
   6724   ArgType = Context.getLValueReferenceType(ArgType);
   6725 
   6726   //   An implicitly-declared copy assignment operator is an inline public
   6727   //   member of its class.
   6728   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   6729   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   6730   SourceLocation ClassLoc = ClassDecl->getLocation();
   6731   DeclarationNameInfo NameInfo(Name, ClassLoc);
   6732   CXXMethodDecl *CopyAssignment
   6733     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
   6734                             Context.getFunctionType(RetType, &ArgType, 1, EPI),
   6735                             /*TInfo=*/0, /*isStatic=*/false,
   6736                             /*StorageClassAsWritten=*/SC_None,
   6737                             /*isInline=*/true,
   6738                             SourceLocation());
   6739   CopyAssignment->setAccess(AS_public);
   6740   CopyAssignment->setDefaulted();
   6741   CopyAssignment->setImplicit();
   6742   CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
   6743 
   6744   // Add the parameter to the operator.
   6745   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
   6746                                                ClassLoc, ClassLoc, /*Id=*/0,
   6747                                                ArgType, /*TInfo=*/0,
   6748                                                SC_None,
   6749                                                SC_None, 0);
   6750   CopyAssignment->setParams(&FromParam, 1);
   6751 
   6752   // Note that we have added this copy-assignment operator.
   6753   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
   6754 
   6755   if (Scope *S = getScopeForContext(ClassDecl))
   6756     PushOnScopeChains(CopyAssignment, S, false);
   6757   ClassDecl->addDecl(CopyAssignment);
   6758 
   6759   // C++0x [class.copy]p18:
   6760   //   ... If the class definition declares a move constructor or move
   6761   //   assignment operator, the implicitly declared copy assignment operator is
   6762   //   defined as deleted; ...
   6763   if (ClassDecl->hasUserDeclaredMoveConstructor() ||
   6764       ClassDecl->hasUserDeclaredMoveAssignment() ||
   6765       ShouldDeleteCopyAssignmentOperator(CopyAssignment))
   6766     CopyAssignment->setDeletedAsWritten();
   6767 
   6768   AddOverriddenMethods(ClassDecl, CopyAssignment);
   6769   return CopyAssignment;
   6770 }
   6771 
   6772 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
   6773                                         CXXMethodDecl *CopyAssignOperator) {
   6774   assert((CopyAssignOperator->isDefaulted() &&
   6775           CopyAssignOperator->isOverloadedOperator() &&
   6776           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
   6777           !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
   6778          "DefineImplicitCopyAssignment called for wrong function");
   6779 
   6780   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
   6781 
   6782   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
   6783     CopyAssignOperator->setInvalidDecl();
   6784     return;
   6785   }
   6786 
   6787   CopyAssignOperator->setUsed();
   6788 
   6789   ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
   6790   DiagnosticErrorTrap Trap(Diags);
   6791 
   6792   // C++0x [class.copy]p30:
   6793   //   The implicitly-defined or explicitly-defaulted copy assignment operator
   6794   //   for a non-union class X performs memberwise copy assignment of its
   6795   //   subobjects. The direct base classes of X are assigned first, in the
   6796   //   order of their declaration in the base-specifier-list, and then the
   6797   //   immediate non-static data members of X are assigned, in the order in
   6798   //   which they were declared in the class definition.
   6799 
   6800   // The statements that form the synthesized function body.
   6801   ASTOwningVector<Stmt*> Statements(*this);
   6802 
   6803   // The parameter for the "other" object, which we are copying from.
   6804   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
   6805   Qualifiers OtherQuals = Other->getType().getQualifiers();
   6806   QualType OtherRefType = Other->getType();
   6807   if (const LValueReferenceType *OtherRef
   6808                                 = OtherRefType->getAs<LValueReferenceType>()) {
   6809     OtherRefType = OtherRef->getPointeeType();
   6810     OtherQuals = OtherRefType.getQualifiers();
   6811   }
   6812 
   6813   // Our location for everything implicitly-generated.
   6814   SourceLocation Loc = CopyAssignOperator->getLocation();
   6815 
   6816   // Construct a reference to the "other" object. We'll be using this
   6817   // throughout the generated ASTs.
   6818   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
   6819   assert(OtherRef && "Reference to parameter cannot fail!");
   6820 
   6821   // Construct the "this" pointer. We'll be using this throughout the generated
   6822   // ASTs.
   6823   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
   6824   assert(This && "Reference to this cannot fail!");
   6825 
   6826   // Assign base classes.
   6827   bool Invalid = false;
   6828   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   6829        E = ClassDecl->bases_end(); Base != E; ++Base) {
   6830     // Form the assignment:
   6831     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
   6832     QualType BaseType = Base->getType().getUnqualifiedType();
   6833     if (!BaseType->isRecordType()) {
   6834       Invalid = true;
   6835       continue;
   6836     }
   6837 
   6838     CXXCastPath BasePath;
   6839     BasePath.push_back(Base);
   6840 
   6841     // Construct the "from" expression, which is an implicit cast to the
   6842     // appropriately-qualified base type.
   6843     Expr *From = OtherRef;
   6844     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
   6845                              CK_UncheckedDerivedToBase,
   6846                              VK_LValue, &BasePath).take();
   6847 
   6848     // Dereference "this".
   6849     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   6850 
   6851     // Implicitly cast "this" to the appropriately-qualified base type.
   6852     To = ImpCastExprToType(To.take(),
   6853                            Context.getCVRQualifiedType(BaseType,
   6854                                      CopyAssignOperator->getTypeQualifiers()),
   6855                            CK_UncheckedDerivedToBase,
   6856                            VK_LValue, &BasePath);
   6857 
   6858     // Build the copy.
   6859     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
   6860                                             To.get(), From,
   6861                                             /*CopyingBaseSubobject=*/true);
   6862     if (Copy.isInvalid()) {
   6863       Diag(CurrentLocation, diag::note_member_synthesized_at)
   6864         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   6865       CopyAssignOperator->setInvalidDecl();
   6866       return;
   6867     }
   6868 
   6869     // Success! Record the copy.
   6870     Statements.push_back(Copy.takeAs<Expr>());
   6871   }
   6872 
   6873   // \brief Reference to the __builtin_memcpy function.
   6874   Expr *BuiltinMemCpyRef = 0;
   6875   // \brief Reference to the __builtin_objc_memmove_collectable function.
   6876   Expr *CollectableMemCpyRef = 0;
   6877 
   6878   // Assign non-static members.
   6879   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   6880                                   FieldEnd = ClassDecl->field_end();
   6881        Field != FieldEnd; ++Field) {
   6882     // Check for members of reference type; we can't copy those.
   6883     if (Field->getType()->isReferenceType()) {
   6884       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   6885         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
   6886       Diag(Field->getLocation(), diag::note_declared_at);
   6887       Diag(CurrentLocation, diag::note_member_synthesized_at)
   6888         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   6889       Invalid = true;
   6890       continue;
   6891     }
   6892 
   6893     // Check for members of const-qualified, non-class type.
   6894     QualType BaseType = Context.getBaseElementType(Field->getType());
   6895     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
   6896       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   6897         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
   6898       Diag(Field->getLocation(), diag::note_declared_at);
   6899       Diag(CurrentLocation, diag::note_member_synthesized_at)
   6900         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   6901       Invalid = true;
   6902       continue;
   6903     }
   6904 
   6905     // Suppress assigning zero-width bitfields.
   6906     if (const Expr *Width = Field->getBitWidth())
   6907       if (Width->EvaluateAsInt(Context) == 0)
   6908         continue;
   6909 
   6910     QualType FieldType = Field->getType().getNonReferenceType();
   6911     if (FieldType->isIncompleteArrayType()) {
   6912       assert(ClassDecl->hasFlexibleArrayMember() &&
   6913              "Incomplete array type is not valid");
   6914       continue;
   6915     }
   6916 
   6917     // Build references to the field in the object we're copying from and to.
   6918     CXXScopeSpec SS; // Intentionally empty
   6919     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
   6920                               LookupMemberName);
   6921     MemberLookup.addDecl(*Field);
   6922     MemberLookup.resolveKind();
   6923     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
   6924                                                Loc, /*IsArrow=*/false,
   6925                                                SS, 0, MemberLookup, 0);
   6926     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
   6927                                              Loc, /*IsArrow=*/true,
   6928                                              SS, 0, MemberLookup, 0);
   6929     assert(!From.isInvalid() && "Implicit field reference cannot fail");
   6930     assert(!To.isInvalid() && "Implicit field reference cannot fail");
   6931 
   6932     // If the field should be copied with __builtin_memcpy rather than via
   6933     // explicit assignments, do so. This optimization only applies for arrays
   6934     // of scalars and arrays of class type with trivial copy-assignment
   6935     // operators.
   6936     if (FieldType->isArrayType() &&
   6937         BaseType.hasTrivialCopyAssignment(Context)) {
   6938       // Compute the size of the memory buffer to be copied.
   6939       QualType SizeType = Context.getSizeType();
   6940       llvm::APInt Size(Context.getTypeSize(SizeType),
   6941                        Context.getTypeSizeInChars(BaseType).getQuantity());
   6942       for (const ConstantArrayType *Array
   6943               = Context.getAsConstantArrayType(FieldType);
   6944            Array;
   6945            Array = Context.getAsConstantArrayType(Array->getElementType())) {
   6946         llvm::APInt ArraySize
   6947           = Array->getSize().zextOrTrunc(Size.getBitWidth());
   6948         Size *= ArraySize;
   6949       }
   6950 
   6951       // Take the address of the field references for "from" and "to".
   6952       From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
   6953       To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
   6954 
   6955       bool NeedsCollectableMemCpy =
   6956           (BaseType->isRecordType() &&
   6957            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
   6958 
   6959       if (NeedsCollectableMemCpy) {
   6960         if (!CollectableMemCpyRef) {
   6961           // Create a reference to the __builtin_objc_memmove_collectable function.
   6962           LookupResult R(*this,
   6963                          &Context.Idents.get("__builtin_objc_memmove_collectable"),
   6964                          Loc, LookupOrdinaryName);
   6965           LookupName(R, TUScope, true);
   6966 
   6967           FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
   6968           if (!CollectableMemCpy) {
   6969             // Something went horribly wrong earlier, and we will have
   6970             // complained about it.
   6971             Invalid = true;
   6972             continue;
   6973           }
   6974 
   6975           CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
   6976                                                   CollectableMemCpy->getType(),
   6977                                                   VK_LValue, Loc, 0).take();
   6978           assert(CollectableMemCpyRef && "Builtin reference cannot fail");
   6979         }
   6980       }
   6981       // Create a reference to the __builtin_memcpy builtin function.
   6982       else if (!BuiltinMemCpyRef) {
   6983         LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
   6984                        LookupOrdinaryName);
   6985         LookupName(R, TUScope, true);
   6986 
   6987         FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
   6988         if (!BuiltinMemCpy) {
   6989           // Something went horribly wrong earlier, and we will have complained
   6990           // about it.
   6991           Invalid = true;
   6992           continue;
   6993         }
   6994 
   6995         BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
   6996                                             BuiltinMemCpy->getType(),
   6997                                             VK_LValue, Loc, 0).take();
   6998         assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
   6999       }
   7000 
   7001       ASTOwningVector<Expr*> CallArgs(*this);
   7002       CallArgs.push_back(To.takeAs<Expr>());
   7003       CallArgs.push_back(From.takeAs<Expr>());
   7004       CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
   7005       ExprResult Call = ExprError();
   7006       if (NeedsCollectableMemCpy)
   7007         Call = ActOnCallExpr(/*Scope=*/0,
   7008                              CollectableMemCpyRef,
   7009                              Loc, move_arg(CallArgs),
   7010                              Loc);
   7011       else
   7012         Call = ActOnCallExpr(/*Scope=*/0,
   7013                              BuiltinMemCpyRef,
   7014                              Loc, move_arg(CallArgs),
   7015                              Loc);
   7016 
   7017       assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
   7018       Statements.push_back(Call.takeAs<Expr>());
   7019       continue;
   7020     }
   7021 
   7022     // Build the copy of this field.
   7023     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
   7024                                                   To.get(), From.get(),
   7025                                               /*CopyingBaseSubobject=*/false);
   7026     if (Copy.isInvalid()) {
   7027       Diag(CurrentLocation, diag::note_member_synthesized_at)
   7028         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   7029       CopyAssignOperator->setInvalidDecl();
   7030       return;
   7031     }
   7032 
   7033     // Success! Record the copy.
   7034     Statements.push_back(Copy.takeAs<Stmt>());
   7035   }
   7036 
   7037   if (!Invalid) {
   7038     // Add a "return *this;"
   7039     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   7040 
   7041     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
   7042     if (Return.isInvalid())
   7043       Invalid = true;
   7044     else {
   7045       Statements.push_back(Return.takeAs<Stmt>());
   7046 
   7047       if (Trap.hasErrorOccurred()) {
   7048         Diag(CurrentLocation, diag::note_member_synthesized_at)
   7049           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   7050         Invalid = true;
   7051       }
   7052     }
   7053   }
   7054 
   7055   if (Invalid) {
   7056     CopyAssignOperator->setInvalidDecl();
   7057     return;
   7058   }
   7059 
   7060   StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
   7061                                             /*isStmtExpr=*/false);
   7062   assert(!Body.isInvalid() && "Compound statement creation cannot fail");
   7063   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
   7064 
   7065   if (ASTMutationListener *L = getASTMutationListener()) {
   7066     L->CompletedImplicitDefinition(CopyAssignOperator);
   7067   }
   7068 }
   7069 
   7070 std::pair<Sema::ImplicitExceptionSpecification, bool>
   7071 Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
   7072   if (ClassDecl->isInvalidDecl())
   7073     return std::make_pair(ImplicitExceptionSpecification(Context), false);
   7074 
   7075   // C++ [class.copy]p5:
   7076   //   The implicitly-declared copy constructor for a class X will
   7077   //   have the form
   7078   //
   7079   //       X::X(const X&)
   7080   //
   7081   //   if
   7082   // FIXME: It ought to be possible to store this on the record.
   7083   bool HasConstCopyConstructor = true;
   7084 
   7085   //     -- each direct or virtual base class B of X has a copy
   7086   //        constructor whose first parameter is of type const B& or
   7087   //        const volatile B&, and
   7088   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   7089                                        BaseEnd = ClassDecl->bases_end();
   7090        HasConstCopyConstructor && Base != BaseEnd;
   7091        ++Base) {
   7092     // Virtual bases are handled below.
   7093     if (Base->isVirtual())
   7094       continue;
   7095 
   7096     CXXRecordDecl *BaseClassDecl
   7097       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   7098     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
   7099                              &HasConstCopyConstructor);
   7100   }
   7101 
   7102   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   7103                                        BaseEnd = ClassDecl->vbases_end();
   7104        HasConstCopyConstructor && Base != BaseEnd;
   7105        ++Base) {
   7106     CXXRecordDecl *BaseClassDecl
   7107       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   7108     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
   7109                              &HasConstCopyConstructor);
   7110   }
   7111 
   7112   //     -- for all the nonstatic data members of X that are of a
   7113   //        class type M (or array thereof), each such class type
   7114   //        has a copy constructor whose first parameter is of type
   7115   //        const M& or const volatile M&.
   7116   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   7117                                   FieldEnd = ClassDecl->field_end();
   7118        HasConstCopyConstructor && Field != FieldEnd;
   7119        ++Field) {
   7120     QualType FieldType = Context.getBaseElementType((*Field)->getType());
   7121     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   7122       LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
   7123                                &HasConstCopyConstructor);
   7124     }
   7125   }
   7126   //   Otherwise, the implicitly declared copy constructor will have
   7127   //   the form
   7128   //
   7129   //       X::X(X&)
   7130 
   7131   // C++ [except.spec]p14:
   7132   //   An implicitly declared special member function (Clause 12) shall have an
   7133   //   exception-specification. [...]
   7134   ImplicitExceptionSpecification ExceptSpec(Context);
   7135   unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
   7136   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   7137                                        BaseEnd = ClassDecl->bases_end();
   7138        Base != BaseEnd;
   7139        ++Base) {
   7140     // Virtual bases are handled below.
   7141     if (Base->isVirtual())
   7142       continue;
   7143 
   7144     CXXRecordDecl *BaseClassDecl
   7145       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   7146     if (CXXConstructorDecl *CopyConstructor =
   7147           LookupCopyingConstructor(BaseClassDecl, Quals))
   7148       ExceptSpec.CalledDecl(CopyConstructor);
   7149   }
   7150   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   7151                                        BaseEnd = ClassDecl->vbases_end();
   7152        Base != BaseEnd;
   7153        ++Base) {
   7154     CXXRecordDecl *BaseClassDecl
   7155       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   7156     if (CXXConstructorDecl *CopyConstructor =
   7157           LookupCopyingConstructor(BaseClassDecl, Quals))
   7158       ExceptSpec.CalledDecl(CopyConstructor);
   7159   }
   7160   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   7161                                   FieldEnd = ClassDecl->field_end();
   7162        Field != FieldEnd;
   7163        ++Field) {
   7164     QualType FieldType = Context.getBaseElementType((*Field)->getType());
   7165     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   7166       if (CXXConstructorDecl *CopyConstructor =
   7167         LookupCopyingConstructor(FieldClassDecl, Quals))
   7168       ExceptSpec.CalledDecl(CopyConstructor);
   7169     }
   7170   }
   7171 
   7172   return std::make_pair(ExceptSpec, HasConstCopyConstructor);
   7173 }
   7174 
   7175 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
   7176                                                     CXXRecordDecl *ClassDecl) {
   7177   // C++ [class.copy]p4:
   7178   //   If the class definition does not explicitly declare a copy
   7179   //   constructor, one is declared implicitly.
   7180 
   7181   ImplicitExceptionSpecification Spec(Context);
   7182   bool Const;
   7183   llvm::tie(Spec, Const) =
   7184     ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
   7185 
   7186   QualType ClassType = Context.getTypeDeclType(ClassDecl);
   7187   QualType ArgType = ClassType;
   7188   if (Const)
   7189     ArgType = ArgType.withConst();
   7190   ArgType = Context.getLValueReferenceType(ArgType);
   7191 
   7192   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
   7193 
   7194   DeclarationName Name
   7195     = Context.DeclarationNames.getCXXConstructorName(
   7196                                            Context.getCanonicalType(ClassType));
   7197   SourceLocation ClassLoc = ClassDecl->getLocation();
   7198   DeclarationNameInfo NameInfo(Name, ClassLoc);
   7199 
   7200   //   An implicitly-declared copy constructor is an inline public
   7201   //   member of its class.
   7202   CXXConstructorDecl *CopyConstructor
   7203     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
   7204                                  Context.getFunctionType(Context.VoidTy,
   7205                                                          &ArgType, 1, EPI),
   7206                                  /*TInfo=*/0,
   7207                                  /*isExplicit=*/false,
   7208                                  /*isInline=*/true,
   7209                                  /*isImplicitlyDeclared=*/true);
   7210   CopyConstructor->setAccess(AS_public);
   7211   CopyConstructor->setDefaulted();
   7212   CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
   7213 
   7214   // Note that we have declared this constructor.
   7215   ++ASTContext::NumImplicitCopyConstructorsDeclared;
   7216 
   7217   // Add the parameter to the constructor.
   7218   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
   7219                                                ClassLoc, ClassLoc,
   7220                                                /*IdentifierInfo=*/0,
   7221                                                ArgType, /*TInfo=*/0,
   7222                                                SC_None,
   7223                                                SC_None, 0);
   7224   CopyConstructor->setParams(&FromParam, 1);
   7225 
   7226   if (Scope *S = getScopeForContext(ClassDecl))
   7227     PushOnScopeChains(CopyConstructor, S, false);
   7228   ClassDecl->addDecl(CopyConstructor);
   7229 
   7230   // C++0x [class.copy]p7:
   7231   //   ... If the class definition declares a move constructor or move
   7232   //   assignment operator, the implicitly declared constructor is defined as
   7233   //   deleted; ...
   7234   if (ClassDecl->hasUserDeclaredMoveConstructor() ||
   7235       ClassDecl->hasUserDeclaredMoveAssignment() ||
   7236       ShouldDeleteCopyConstructor(CopyConstructor))
   7237     CopyConstructor->setDeletedAsWritten();
   7238 
   7239   return CopyConstructor;
   7240 }
   7241 
   7242 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
   7243                                    CXXConstructorDecl *CopyConstructor) {
   7244   assert((CopyConstructor->isDefaulted() &&
   7245           CopyConstructor->isCopyConstructor() &&
   7246           !CopyConstructor->doesThisDeclarationHaveABody()) &&
   7247          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
   7248 
   7249   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
   7250   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
   7251 
   7252   ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
   7253   DiagnosticErrorTrap Trap(Diags);
   7254 
   7255   if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
   7256       Trap.hasErrorOccurred()) {
   7257     Diag(CurrentLocation, diag::note_member_synthesized_at)
   7258       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
   7259     CopyConstructor->setInvalidDecl();
   7260   }  else {
   7261     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
   7262                                                CopyConstructor->getLocation(),
   7263                                                MultiStmtArg(*this, 0, 0),
   7264                                                /*isStmtExpr=*/false)
   7265                                                               .takeAs<Stmt>());
   7266   }
   7267 
   7268   CopyConstructor->setUsed();
   7269 
   7270   if (ASTMutationListener *L = getASTMutationListener()) {
   7271     L->CompletedImplicitDefinition(CopyConstructor);
   7272   }
   7273 }
   7274 
   7275 ExprResult
   7276 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   7277                             CXXConstructorDecl *Constructor,
   7278                             MultiExprArg ExprArgs,
   7279                             bool RequiresZeroInit,
   7280                             unsigned ConstructKind,
   7281                             SourceRange ParenRange) {
   7282   bool Elidable = false;
   7283 
   7284   // C++0x [class.copy]p34:
   7285   //   When certain criteria are met, an implementation is allowed to
   7286   //   omit the copy/move construction of a class object, even if the
   7287   //   copy/move constructor and/or destructor for the object have
   7288   //   side effects. [...]
   7289   //     - when a temporary class object that has not been bound to a
   7290   //       reference (12.2) would be copied/moved to a class object
   7291   //       with the same cv-unqualified type, the copy/move operation
   7292   //       can be omitted by constructing the temporary object
   7293   //       directly into the target of the omitted copy/move
   7294   if (ConstructKind == CXXConstructExpr::CK_Complete &&
   7295       Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
   7296     Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
   7297     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
   7298   }
   7299 
   7300   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
   7301                                Elidable, move(ExprArgs), RequiresZeroInit,
   7302                                ConstructKind, ParenRange);
   7303 }
   7304 
   7305 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
   7306 /// including handling of its default argument expressions.
   7307 ExprResult
   7308 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   7309                             CXXConstructorDecl *Constructor, bool Elidable,
   7310                             MultiExprArg ExprArgs,
   7311                             bool RequiresZeroInit,
   7312                             unsigned ConstructKind,
   7313                             SourceRange ParenRange) {
   7314   unsigned NumExprs = ExprArgs.size();
   7315   Expr **Exprs = (Expr **)ExprArgs.release();
   7316 
   7317   for (specific_attr_iterator<NonNullAttr>
   7318            i = Constructor->specific_attr_begin<NonNullAttr>(),
   7319            e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
   7320     const NonNullAttr *NonNull = *i;
   7321     CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
   7322   }
   7323 
   7324   MarkDeclarationReferenced(ConstructLoc, Constructor);
   7325   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
   7326                                         Constructor, Elidable, Exprs, NumExprs,
   7327                                         RequiresZeroInit,
   7328               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
   7329                                         ParenRange));
   7330 }
   7331 
   7332 bool Sema::InitializeVarWithConstructor(VarDecl *VD,
   7333                                         CXXConstructorDecl *Constructor,
   7334                                         MultiExprArg Exprs) {
   7335   // FIXME: Provide the correct paren SourceRange when available.
   7336   ExprResult TempResult =
   7337     BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
   7338                           move(Exprs), false, CXXConstructExpr::CK_Complete,
   7339                           SourceRange());
   7340   if (TempResult.isInvalid())
   7341     return true;
   7342 
   7343   Expr *Temp = TempResult.takeAs<Expr>();
   7344   CheckImplicitConversions(Temp, VD->getLocation());
   7345   MarkDeclarationReferenced(VD->getLocation(), Constructor);
   7346   Temp = MaybeCreateExprWithCleanups(Temp);
   7347   VD->setInit(Temp);
   7348 
   7349   return false;
   7350 }
   7351 
   7352 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
   7353   if (VD->isInvalidDecl()) return;
   7354 
   7355   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
   7356   if (ClassDecl->isInvalidDecl()) return;
   7357   if (ClassDecl->hasTrivialDestructor()) return;
   7358   if (ClassDecl->isDependentContext()) return;
   7359 
   7360   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
   7361   MarkDeclarationReferenced(VD->getLocation(), Destructor);
   7362   CheckDestructorAccess(VD->getLocation(), Destructor,
   7363                         PDiag(diag::err_access_dtor_var)
   7364                         << VD->getDeclName()
   7365                         << VD->getType());
   7366 
   7367   if (!VD->hasGlobalStorage()) return;
   7368 
   7369   // Emit warning for non-trivial dtor in global scope (a real global,
   7370   // class-static, function-static).
   7371   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
   7372 
   7373   // TODO: this should be re-enabled for static locals by !CXAAtExit
   7374   if (!VD->isStaticLocal())
   7375     Diag(VD->getLocation(), diag::warn_global_destructor);
   7376 }
   7377 
   7378 /// AddCXXDirectInitializerToDecl - This action is called immediately after
   7379 /// ActOnDeclarator, when a C++ direct initializer is present.
   7380 /// e.g: "int x(1);"
   7381 void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
   7382                                          SourceLocation LParenLoc,
   7383                                          MultiExprArg Exprs,
   7384                                          SourceLocation RParenLoc,
   7385                                          bool TypeMayContainAuto) {
   7386   assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
   7387 
   7388   // If there is no declaration, there was an error parsing it.  Just ignore
   7389   // the initializer.
   7390   if (RealDecl == 0)
   7391     return;
   7392 
   7393   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   7394   if (!VDecl) {
   7395     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   7396     RealDecl->setInvalidDecl();
   7397     return;
   7398   }
   7399 
   7400   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   7401   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
   7402     // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
   7403     if (Exprs.size() > 1) {
   7404       Diag(Exprs.get()[1]->getSourceRange().getBegin(),
   7405            diag::err_auto_var_init_multiple_expressions)
   7406         << VDecl->getDeclName() << VDecl->getType()
   7407         << VDecl->getSourceRange();
   7408       RealDecl->setInvalidDecl();
   7409       return;
   7410     }
   7411 
   7412     Expr *Init = Exprs.get()[0];
   7413     TypeSourceInfo *DeducedType = 0;
   7414     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
   7415       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   7416         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   7417         << Init->getSourceRange();
   7418     if (!DeducedType) {
   7419       RealDecl->setInvalidDecl();
   7420       return;
   7421     }
   7422     VDecl->setTypeSourceInfo(DeducedType);
   7423     VDecl->setType(DeducedType->getType());
   7424 
   7425     // In ARC, infer lifetime.
   7426     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   7427       VDecl->setInvalidDecl();
   7428 
   7429     // If this is a redeclaration, check that the type we just deduced matches
   7430     // the previously declared type.
   7431     if (VarDecl *Old = VDecl->getPreviousDeclaration())
   7432       MergeVarDeclTypes(VDecl, Old);
   7433   }
   7434 
   7435   // We will represent direct-initialization similarly to copy-initialization:
   7436   //    int x(1);  -as-> int x = 1;
   7437   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   7438   //
   7439   // Clients that want to distinguish between the two forms, can check for
   7440   // direct initializer using VarDecl::hasCXXDirectInitializer().
   7441   // A major benefit is that clients that don't particularly care about which
   7442   // exactly form was it (like the CodeGen) can handle both cases without
   7443   // special case code.
   7444 
   7445   // C++ 8.5p11:
   7446   // The form of initialization (using parentheses or '=') is generally
   7447   // insignificant, but does matter when the entity being initialized has a
   7448   // class type.
   7449 
   7450   if (!VDecl->getType()->isDependentType() &&
   7451       RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
   7452                           diag::err_typecheck_decl_incomplete_type)) {
   7453     VDecl->setInvalidDecl();
   7454     return;
   7455   }
   7456 
   7457   // The variable can not have an abstract class type.
   7458   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   7459                              diag::err_abstract_type_in_decl,
   7460                              AbstractVariableType))
   7461     VDecl->setInvalidDecl();
   7462 
   7463   const VarDecl *Def;
   7464   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   7465     Diag(VDecl->getLocation(), diag::err_redefinition)
   7466     << VDecl->getDeclName();
   7467     Diag(Def->getLocation(), diag::note_previous_definition);
   7468     VDecl->setInvalidDecl();
   7469     return;
   7470   }
   7471 
   7472   // C++ [class.static.data]p4
   7473   //   If a static data member is of const integral or const
   7474   //   enumeration type, its declaration in the class definition can
   7475   //   specify a constant-initializer which shall be an integral
   7476   //   constant expression (5.19). In that case, the member can appear
   7477   //   in integral constant expressions. The member shall still be
   7478   //   defined in a namespace scope if it is used in the program and the
   7479   //   namespace scope definition shall not contain an initializer.
   7480   //
   7481   // We already performed a redefinition check above, but for static
   7482   // data members we also need to check whether there was an in-class
   7483   // declaration with an initializer.
   7484   const VarDecl* PrevInit = 0;
   7485   if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   7486     Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
   7487     Diag(PrevInit->getLocation(), diag::note_previous_definition);
   7488     return;
   7489   }
   7490 
   7491   bool IsDependent = false;
   7492   for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
   7493     if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
   7494       VDecl->setInvalidDecl();
   7495       return;
   7496     }
   7497 
   7498     if (Exprs.get()[I]->isTypeDependent())
   7499       IsDependent = true;
   7500   }
   7501 
   7502   // If either the declaration has a dependent type or if any of the
   7503   // expressions is type-dependent, we represent the initialization
   7504   // via a ParenListExpr for later use during template instantiation.
   7505   if (VDecl->getType()->isDependentType() || IsDependent) {
   7506     // Let clients know that initialization was done with a direct initializer.
   7507     VDecl->setCXXDirectInitializer(true);
   7508 
   7509     // Store the initialization expressions as a ParenListExpr.
   7510     unsigned NumExprs = Exprs.size();
   7511     VDecl->setInit(new (Context) ParenListExpr(
   7512         Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
   7513         VDecl->getType().getNonReferenceType()));
   7514     return;
   7515   }
   7516 
   7517   // Capture the variable that is being initialized and the style of
   7518   // initialization.
   7519   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   7520 
   7521   // FIXME: Poor source location information.
   7522   InitializationKind Kind
   7523     = InitializationKind::CreateDirect(VDecl->getLocation(),
   7524                                        LParenLoc, RParenLoc);
   7525 
   7526   InitializationSequence InitSeq(*this, Entity, Kind,
   7527                                  Exprs.get(), Exprs.size());
   7528   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
   7529   if (Result.isInvalid()) {
   7530     VDecl->setInvalidDecl();
   7531     return;
   7532   }
   7533 
   7534   CheckImplicitConversions(Result.get(), LParenLoc);
   7535 
   7536   Result = MaybeCreateExprWithCleanups(Result);
   7537   VDecl->setInit(Result.takeAs<Expr>());
   7538   VDecl->setCXXDirectInitializer(true);
   7539 
   7540   CheckCompleteVariableDeclaration(VDecl);
   7541 }
   7542 
   7543 /// \brief Given a constructor and the set of arguments provided for the
   7544 /// constructor, convert the arguments and add any required default arguments
   7545 /// to form a proper call to this constructor.
   7546 ///
   7547 /// \returns true if an error occurred, false otherwise.
   7548 bool
   7549 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
   7550                               MultiExprArg ArgsPtr,
   7551                               SourceLocation Loc,
   7552                               ASTOwningVector<Expr*> &ConvertedArgs) {
   7553   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
   7554   unsigned NumArgs = ArgsPtr.size();
   7555   Expr **Args = (Expr **)ArgsPtr.get();
   7556 
   7557   const FunctionProtoType *Proto
   7558     = Constructor->getType()->getAs<FunctionProtoType>();
   7559   assert(Proto && "Constructor without a prototype?");
   7560   unsigned NumArgsInProto = Proto->getNumArgs();
   7561 
   7562   // If too few arguments are available, we'll fill in the rest with defaults.
   7563   if (NumArgs < NumArgsInProto)
   7564     ConvertedArgs.reserve(NumArgsInProto);
   7565   else
   7566     ConvertedArgs.reserve(NumArgs);
   7567 
   7568   VariadicCallType CallType =
   7569     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
   7570   llvm::SmallVector<Expr *, 8> AllArgs;
   7571   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
   7572                                         Proto, 0, Args, NumArgs, AllArgs,
   7573                                         CallType);
   7574   for (unsigned i =0, size = AllArgs.size(); i < size; i++)
   7575     ConvertedArgs.push_back(AllArgs[i]);
   7576   return Invalid;
   7577 }
   7578 
   7579 static inline bool
   7580 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
   7581                                        const FunctionDecl *FnDecl) {
   7582   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
   7583   if (isa<NamespaceDecl>(DC)) {
   7584     return SemaRef.Diag(FnDecl->getLocation(),
   7585                         diag::err_operator_new_delete_declared_in_namespace)
   7586       << FnDecl->getDeclName();
   7587   }
   7588 
   7589   if (isa<TranslationUnitDecl>(DC) &&
   7590       FnDecl->getStorageClass() == SC_Static) {
   7591     return SemaRef.Diag(FnDecl->getLocation(),
   7592                         diag::err_operator_new_delete_declared_static)
   7593       << FnDecl->getDeclName();
   7594   }
   7595 
   7596   return false;
   7597 }
   7598 
   7599 static inline bool
   7600 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
   7601                             CanQualType ExpectedResultType,
   7602                             CanQualType ExpectedFirstParamType,
   7603                             unsigned DependentParamTypeDiag,
   7604                             unsigned InvalidParamTypeDiag) {
   7605   QualType ResultType =
   7606     FnDecl->getType()->getAs<FunctionType>()->getResultType();
   7607 
   7608   // Check that the result type is not dependent.
   7609   if (ResultType->isDependentType())
   7610     return SemaRef.Diag(FnDecl->getLocation(),
   7611                         diag::err_operator_new_delete_dependent_result_type)
   7612     << FnDecl->getDeclName() << ExpectedResultType;
   7613 
   7614   // Check that the result type is what we expect.
   7615   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
   7616     return SemaRef.Diag(FnDecl->getLocation(),
   7617                         diag::err_operator_new_delete_invalid_result_type)
   7618     << FnDecl->getDeclName() << ExpectedResultType;
   7619 
   7620   // A function template must have at least 2 parameters.
   7621   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
   7622     return SemaRef.Diag(FnDecl->getLocation(),
   7623                       diag::err_operator_new_delete_template_too_few_parameters)
   7624         << FnDecl->getDeclName();
   7625 
   7626   // The function decl must have at least 1 parameter.
   7627   if (FnDecl->getNumParams() == 0)
   7628     return SemaRef.Diag(FnDecl->getLocation(),
   7629                         diag::err_operator_new_delete_too_few_parameters)
   7630       << FnDecl->getDeclName();
   7631 
   7632   // Check the the first parameter type is not dependent.
   7633   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
   7634   if (FirstParamType->isDependentType())
   7635     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
   7636       << FnDecl->getDeclName() << ExpectedFirstParamType;
   7637 
   7638   // Check that the first parameter type is what we expect.
   7639   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
   7640       ExpectedFirstParamType)
   7641     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
   7642     << FnDecl->getDeclName() << ExpectedFirstParamType;
   7643 
   7644   return false;
   7645 }
   7646 
   7647 static bool
   7648 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
   7649   // C++ [basic.stc.dynamic.allocation]p1:
   7650   //   A program is ill-formed if an allocation function is declared in a
   7651   //   namespace scope other than global scope or declared static in global
   7652   //   scope.
   7653   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   7654     return true;
   7655 
   7656   CanQualType SizeTy =
   7657     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
   7658 
   7659   // C++ [basic.stc.dynamic.allocation]p1:
   7660   //  The return type shall be void*. The first parameter shall have type
   7661   //  std::size_t.
   7662   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
   7663                                   SizeTy,
   7664                                   diag::err_operator_new_dependent_param_type,
   7665                                   diag::err_operator_new_param_type))
   7666     return true;
   7667 
   7668   // C++ [basic.stc.dynamic.allocation]p1:
   7669   //  The first parameter shall not have an associated default argument.
   7670   if (FnDecl->getParamDecl(0)->hasDefaultArg())
   7671     return SemaRef.Diag(FnDecl->getLocation(),
   7672                         diag::err_operator_new_default_arg)
   7673       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
   7674 
   7675   return false;
   7676 }
   7677 
   7678 static bool
   7679 CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
   7680   // C++ [basic.stc.dynamic.deallocation]p1:
   7681   //   A program is ill-formed if deallocation functions are declared in a
   7682   //   namespace scope other than global scope or declared static in global
   7683   //   scope.
   7684   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   7685     return true;
   7686 
   7687   // C++ [basic.stc.dynamic.deallocation]p2:
   7688   //   Each deallocation function shall return void and its first parameter
   7689   //   shall be void*.
   7690   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
   7691                                   SemaRef.Context.VoidPtrTy,
   7692                                  diag::err_operator_delete_dependent_param_type,
   7693                                  diag::err_operator_delete_param_type))
   7694     return true;
   7695 
   7696   return false;
   7697 }
   7698 
   7699 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
   7700 /// of this overloaded operator is well-formed. If so, returns false;
   7701 /// otherwise, emits appropriate diagnostics and returns true.
   7702 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
   7703   assert(FnDecl && FnDecl->isOverloadedOperator() &&
   7704          "Expected an overloaded operator declaration");
   7705 
   7706   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
   7707 
   7708   // C++ [over.oper]p5:
   7709   //   The allocation and deallocation functions, operator new,
   7710   //   operator new[], operator delete and operator delete[], are
   7711   //   described completely in 3.7.3. The attributes and restrictions
   7712   //   found in the rest of this subclause do not apply to them unless
   7713   //   explicitly stated in 3.7.3.
   7714   if (Op == OO_Delete || Op == OO_Array_Delete)
   7715     return CheckOperatorDeleteDeclaration(*this, FnDecl);
   7716 
   7717   if (Op == OO_New || Op == OO_Array_New)
   7718     return CheckOperatorNewDeclaration(*this, FnDecl);
   7719 
   7720   // C++ [over.oper]p6:
   7721   //   An operator function shall either be a non-static member
   7722   //   function or be a non-member function and have at least one
   7723   //   parameter whose type is a class, a reference to a class, an
   7724   //   enumeration, or a reference to an enumeration.
   7725   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
   7726     if (MethodDecl->isStatic())
   7727       return Diag(FnDecl->getLocation(),
   7728                   diag::err_operator_overload_static) << FnDecl->getDeclName();
   7729   } else {
   7730     bool ClassOrEnumParam = false;
   7731     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
   7732                                    ParamEnd = FnDecl->param_end();
   7733          Param != ParamEnd; ++Param) {
   7734       QualType ParamType = (*Param)->getType().getNonReferenceType();
   7735       if (ParamType->isDependentType() || ParamType->isRecordType() ||
   7736           ParamType->isEnumeralType()) {
   7737         ClassOrEnumParam = true;
   7738         break;
   7739       }
   7740     }
   7741 
   7742     if (!ClassOrEnumParam)
   7743       return Diag(FnDecl->getLocation(),
   7744                   diag::err_operator_overload_needs_class_or_enum)
   7745         << FnDecl->getDeclName();
   7746   }
   7747 
   7748   // C++ [over.oper]p8:
   7749   //   An operator function cannot have default arguments (8.3.6),
   7750   //   except where explicitly stated below.
   7751   //
   7752   // Only the function-call operator allows default arguments
   7753   // (C++ [over.call]p1).
   7754   if (Op != OO_Call) {
   7755     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
   7756          Param != FnDecl->param_end(); ++Param) {
   7757       if ((*Param)->hasDefaultArg())
   7758         return Diag((*Param)->getLocation(),
   7759                     diag::err_operator_overload_default_arg)
   7760           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
   7761     }
   7762   }
   7763 
   7764   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
   7765     { false, false, false }
   7766 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
   7767     , { Unary, Binary, MemberOnly }
   7768 #include "clang/Basic/OperatorKinds.def"
   7769   };
   7770 
   7771   bool CanBeUnaryOperator = OperatorUses[Op][0];
   7772   bool CanBeBinaryOperator = OperatorUses[Op][1];
   7773   bool MustBeMemberOperator = OperatorUses[Op][2];
   7774 
   7775   // C++ [over.oper]p8:
   7776   //   [...] Operator functions cannot have more or fewer parameters
   7777   //   than the number required for the corresponding operator, as
   7778   //   described in the rest of this subclause.
   7779   unsigned NumParams = FnDecl->getNumParams()
   7780                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
   7781   if (Op != OO_Call &&
   7782       ((NumParams == 1 && !CanBeUnaryOperator) ||
   7783        (NumParams == 2 && !CanBeBinaryOperator) ||
   7784        (NumParams < 1) || (NumParams > 2))) {
   7785     // We have the wrong number of parameters.
   7786     unsigned ErrorKind;
   7787     if (CanBeUnaryOperator && CanBeBinaryOperator) {
   7788       ErrorKind = 2;  // 2 -> unary or binary.
   7789     } else if (CanBeUnaryOperator) {
   7790       ErrorKind = 0;  // 0 -> unary
   7791     } else {
   7792       assert(CanBeBinaryOperator &&
   7793              "All non-call overloaded operators are unary or binary!");
   7794       ErrorKind = 1;  // 1 -> binary
   7795     }
   7796 
   7797     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
   7798       << FnDecl->getDeclName() << NumParams << ErrorKind;
   7799   }
   7800 
   7801   // Overloaded operators other than operator() cannot be variadic.
   7802   if (Op != OO_Call &&
   7803       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
   7804     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
   7805       << FnDecl->getDeclName();
   7806   }
   7807 
   7808   // Some operators must be non-static member functions.
   7809   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
   7810     return Diag(FnDecl->getLocation(),
   7811                 diag::err_operator_overload_must_be_member)
   7812       << FnDecl->getDeclName();
   7813   }
   7814 
   7815   // C++ [over.inc]p1:
   7816   //   The user-defined function called operator++ implements the
   7817   //   prefix and postfix ++ operator. If this function is a member
   7818   //   function with no parameters, or a non-member function with one
   7819   //   parameter of class or enumeration type, it defines the prefix
   7820   //   increment operator ++ for objects of that type. If the function
   7821   //   is a member function with one parameter (which shall be of type
   7822   //   int) or a non-member function with two parameters (the second
   7823   //   of which shall be of type int), it defines the postfix
   7824   //   increment operator ++ for objects of that type.
   7825   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
   7826     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
   7827     bool ParamIsInt = false;
   7828     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
   7829       ParamIsInt = BT->getKind() == BuiltinType::Int;
   7830 
   7831     if (!ParamIsInt)
   7832       return Diag(LastParam->getLocation(),
   7833                   diag::err_operator_overload_post_incdec_must_be_int)
   7834         << LastParam->getType() << (Op == OO_MinusMinus);
   7835   }
   7836 
   7837   return false;
   7838 }
   7839 
   7840 /// CheckLiteralOperatorDeclaration - Check whether the declaration
   7841 /// of this literal operator function is well-formed. If so, returns
   7842 /// false; otherwise, emits appropriate diagnostics and returns true.
   7843 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
   7844   DeclContext *DC = FnDecl->getDeclContext();
   7845   Decl::Kind Kind = DC->getDeclKind();
   7846   if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
   7847       Kind != Decl::LinkageSpec) {
   7848     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
   7849       << FnDecl->getDeclName();
   7850     return true;
   7851   }
   7852 
   7853   bool Valid = false;
   7854 
   7855   // template <char...> type operator "" name() is the only valid template
   7856   // signature, and the only valid signature with no parameters.
   7857   if (FnDecl->param_size() == 0) {
   7858     if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
   7859       // Must have only one template parameter
   7860       TemplateParameterList *Params = TpDecl->getTemplateParameters();
   7861       if (Params->size() == 1) {
   7862         NonTypeTemplateParmDecl *PmDecl =
   7863           cast<NonTypeTemplateParmDecl>(Params->getParam(0));
   7864 
   7865         // The template parameter must be a char parameter pack.
   7866         if (PmDecl && PmDecl->isTemplateParameterPack() &&
   7867             Context.hasSameType(PmDecl->getType(), Context.CharTy))
   7868           Valid = true;
   7869       }
   7870     }
   7871   } else {
   7872     // Check the first parameter
   7873     FunctionDecl::param_iterator Param = FnDecl->param_begin();
   7874 
   7875     QualType T = (*Param)->getType();
   7876 
   7877     // unsigned long long int, long double, and any character type are allowed
   7878     // as the only parameters.
   7879     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
   7880         Context.hasSameType(T, Context.LongDoubleTy) ||
   7881         Context.hasSameType(T, Context.CharTy) ||
   7882         Context.hasSameType(T, Context.WCharTy) ||
   7883         Context.hasSameType(T, Context.Char16Ty) ||
   7884         Context.hasSameType(T, Context.Char32Ty)) {
   7885       if (++Param == FnDecl->param_end())
   7886         Valid = true;
   7887       goto FinishedParams;
   7888     }
   7889 
   7890     // Otherwise it must be a pointer to const; let's strip those qualifiers.
   7891     const PointerType *PT = T->getAs<PointerType>();
   7892     if (!PT)
   7893       goto FinishedParams;
   7894     T = PT->getPointeeType();
   7895     if (!T.isConstQualified())
   7896       goto FinishedParams;
   7897     T = T.getUnqualifiedType();
   7898 
   7899     // Move on to the second parameter;
   7900     ++Param;
   7901 
   7902     // If there is no second parameter, the first must be a const char *
   7903     if (Param == FnDecl->param_end()) {
   7904       if (Context.hasSameType(T, Context.CharTy))
   7905         Valid = true;
   7906       goto FinishedParams;
   7907     }
   7908 
   7909     // const char *, const wchar_t*, const char16_t*, and const char32_t*
   7910     // are allowed as the first parameter to a two-parameter function
   7911     if (!(Context.hasSameType(T, Context.CharTy) ||
   7912           Context.hasSameType(T, Context.WCharTy) ||
   7913           Context.hasSameType(T, Context.Char16Ty) ||
   7914           Context.hasSameType(T, Context.Char32Ty)))
   7915       goto FinishedParams;
   7916 
   7917     // The second and final parameter must be an std::size_t
   7918     T = (*Param)->getType().getUnqualifiedType();
   7919     if (Context.hasSameType(T, Context.getSizeType()) &&
   7920         ++Param == FnDecl->param_end())
   7921       Valid = true;
   7922   }
   7923 
   7924   // FIXME: This diagnostic is absolutely terrible.
   7925 FinishedParams:
   7926   if (!Valid) {
   7927     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
   7928       << FnDecl->getDeclName();
   7929     return true;
   7930   }
   7931 
   7932   return false;
   7933 }
   7934 
   7935 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
   7936 /// linkage specification, including the language and (if present)
   7937 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
   7938 /// the location of the language string literal, which is provided
   7939 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
   7940 /// the '{' brace. Otherwise, this linkage specification does not
   7941 /// have any braces.
   7942 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
   7943                                            SourceLocation LangLoc,
   7944                                            llvm::StringRef Lang,
   7945                                            SourceLocation LBraceLoc) {
   7946   LinkageSpecDecl::LanguageIDs Language;
   7947   if (Lang == "\"C\"")
   7948     Language = LinkageSpecDecl::lang_c;
   7949   else if (Lang == "\"C++\"")
   7950     Language = LinkageSpecDecl::lang_cxx;
   7951   else {
   7952     Diag(LangLoc, diag::err_bad_language);
   7953     return 0;
   7954   }
   7955 
   7956   // FIXME: Add all the various semantics of linkage specifications
   7957 
   7958   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
   7959                                                ExternLoc, LangLoc, Language);
   7960   CurContext->addDecl(D);
   7961   PushDeclContext(S, D);
   7962   return D;
   7963 }
   7964 
   7965 /// ActOnFinishLinkageSpecification - Complete the definition of
   7966 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
   7967 /// valid, it's the position of the closing '}' brace in a linkage
   7968 /// specification that uses braces.
   7969 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
   7970                                             Decl *LinkageSpec,
   7971                                             SourceLocation RBraceLoc) {
   7972   if (LinkageSpec) {
   7973     if (RBraceLoc.isValid()) {
   7974       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
   7975       LSDecl->setRBraceLoc(RBraceLoc);
   7976     }
   7977     PopDeclContext();
   7978   }
   7979   return LinkageSpec;
   7980 }
   7981 
   7982 /// \brief Perform semantic analysis for the variable declaration that
   7983 /// occurs within a C++ catch clause, returning the newly-created
   7984 /// variable.
   7985 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
   7986                                          TypeSourceInfo *TInfo,
   7987                                          SourceLocation StartLoc,
   7988                                          SourceLocation Loc,
   7989                                          IdentifierInfo *Name) {
   7990   bool Invalid = false;
   7991   QualType ExDeclType = TInfo->getType();
   7992 
   7993   // Arrays and functions decay.
   7994   if (ExDeclType->isArrayType())
   7995     ExDeclType = Context.getArrayDecayedType(ExDeclType);
   7996   else if (ExDeclType->isFunctionType())
   7997     ExDeclType = Context.getPointerType(ExDeclType);
   7998 
   7999   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
   8000   // The exception-declaration shall not denote a pointer or reference to an
   8001   // incomplete type, other than [cv] void*.
   8002   // N2844 forbids rvalue references.
   8003   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
   8004     Diag(Loc, diag::err_catch_rvalue_ref);
   8005     Invalid = true;
   8006   }
   8007 
   8008   // GCC allows catching pointers and references to incomplete types
   8009   // as an extension; so do we, but we warn by default.
   8010 
   8011   QualType BaseType = ExDeclType;
   8012   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
   8013   unsigned DK = diag::err_catch_incomplete;
   8014   bool IncompleteCatchIsInvalid = true;
   8015   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   8016     BaseType = Ptr->getPointeeType();
   8017     Mode = 1;
   8018     DK = diag::ext_catch_incomplete_ptr;
   8019     IncompleteCatchIsInvalid = false;
   8020   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
   8021     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
   8022     BaseType = Ref->getPointeeType();
   8023     Mode = 2;
   8024     DK = diag::ext_catch_incomplete_ref;
   8025     IncompleteCatchIsInvalid = false;
   8026   }
   8027   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
   8028       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
   8029       IncompleteCatchIsInvalid)
   8030     Invalid = true;
   8031 
   8032   if (!Invalid && !ExDeclType->isDependentType() &&
   8033       RequireNonAbstractType(Loc, ExDeclType,
   8034                              diag::err_abstract_type_in_decl,
   8035                              AbstractVariableType))
   8036     Invalid = true;
   8037 
   8038   // Only the non-fragile NeXT runtime currently supports C++ catches
   8039   // of ObjC types, and no runtime supports catching ObjC types by value.
   8040   if (!Invalid && getLangOptions().ObjC1) {
   8041     QualType T = ExDeclType;
   8042     if (const ReferenceType *RT = T->getAs<ReferenceType>())
   8043       T = RT->getPointeeType();
   8044 
   8045     if (T->isObjCObjectType()) {
   8046       Diag(Loc, diag::err_objc_object_catch);
   8047       Invalid = true;
   8048     } else if (T->isObjCObjectPointerType()) {
   8049       if (!getLangOptions().ObjCNonFragileABI)
   8050         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
   8051     }
   8052   }
   8053 
   8054   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
   8055                                     ExDeclType, TInfo, SC_None, SC_None);
   8056   ExDecl->setExceptionVariable(true);
   8057 
   8058   if (!Invalid && !ExDeclType->isDependentType()) {
   8059     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
   8060       // C++ [except.handle]p16:
   8061       //   The object declared in an exception-declaration or, if the
   8062       //   exception-declaration does not specify a name, a temporary (12.2) is
   8063       //   copy-initialized (8.5) from the exception object. [...]
   8064       //   The object is destroyed when the handler exits, after the destruction
   8065       //   of any automatic objects initialized within the handler.
   8066       //
   8067       // We just pretend to initialize the object with itself, then make sure
   8068       // it can be destroyed later.
   8069       QualType initType = ExDeclType;
   8070 
   8071       InitializedEntity entity =
   8072         InitializedEntity::InitializeVariable(ExDecl);
   8073       InitializationKind initKind =
   8074         InitializationKind::CreateCopy(Loc, SourceLocation());
   8075 
   8076       Expr *opaqueValue =
   8077         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
   8078       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
   8079       ExprResult result = sequence.Perform(*this, entity, initKind,
   8080                                            MultiExprArg(&opaqueValue, 1));
   8081       if (result.isInvalid())
   8082         Invalid = true;
   8083       else {
   8084         // If the constructor used was non-trivial, set this as the
   8085         // "initializer".
   8086         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
   8087         if (!construct->getConstructor()->isTrivial()) {
   8088           Expr *init = MaybeCreateExprWithCleanups(construct);
   8089           ExDecl->setInit(init);
   8090         }
   8091 
   8092         // And make sure it's destructable.
   8093         FinalizeVarWithDestructor(ExDecl, recordType);
   8094       }
   8095     }
   8096   }
   8097 
   8098   if (Invalid)
   8099     ExDecl->setInvalidDecl();
   8100 
   8101   return ExDecl;
   8102 }
   8103 
   8104 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
   8105 /// handler.
   8106 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
   8107   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8108   bool Invalid = D.isInvalidType();
   8109 
   8110   // Check for unexpanded parameter packs.
   8111   if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   8112                                                UPPC_ExceptionType)) {
   8113     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   8114                                              D.getIdentifierLoc());
   8115     Invalid = true;
   8116   }
   8117 
   8118   IdentifierInfo *II = D.getIdentifier();
   8119   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
   8120                                              LookupOrdinaryName,
   8121                                              ForRedeclaration)) {
   8122     // The scope should be freshly made just for us. There is just no way
   8123     // it contains any previous declaration.
   8124     assert(!S->isDeclScope(PrevDecl));
   8125     if (PrevDecl->isTemplateParameter()) {
   8126       // Maybe we will complain about the shadowed template parameter.
   8127       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   8128     }
   8129   }
   8130 
   8131   if (D.getCXXScopeSpec().isSet() && !Invalid) {
   8132     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
   8133       << D.getCXXScopeSpec().getRange();
   8134     Invalid = true;
   8135   }
   8136 
   8137   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
   8138                                               D.getSourceRange().getBegin(),
   8139                                               D.getIdentifierLoc(),
   8140                                               D.getIdentifier());
   8141   if (Invalid)
   8142     ExDecl->setInvalidDecl();
   8143 
   8144   // Add the exception declaration into this scope.
   8145   if (II)
   8146     PushOnScopeChains(ExDecl, S);
   8147   else
   8148     CurContext->addDecl(ExDecl);
   8149 
   8150   ProcessDeclAttributes(S, ExDecl, D);
   8151   return ExDecl;
   8152 }
   8153 
   8154 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
   8155                                          Expr *AssertExpr,
   8156                                          Expr *AssertMessageExpr_,
   8157                                          SourceLocation RParenLoc) {
   8158   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
   8159 
   8160   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
   8161     llvm::APSInt Value(32);
   8162     if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
   8163       Diag(StaticAssertLoc,
   8164            diag::err_static_assert_expression_is_not_constant) <<
   8165         AssertExpr->getSourceRange();
   8166       return 0;
   8167     }
   8168 
   8169     if (Value == 0) {
   8170       Diag(StaticAssertLoc, diag::err_static_assert_failed)
   8171         << AssertMessage->getString() << AssertExpr->getSourceRange();
   8172     }
   8173   }
   8174 
   8175   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
   8176     return 0;
   8177 
   8178   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
   8179                                         AssertExpr, AssertMessage, RParenLoc);
   8180 
   8181   CurContext->addDecl(Decl);
   8182   return Decl;
   8183 }
   8184 
   8185 /// \brief Perform semantic analysis of the given friend type declaration.
   8186 ///
   8187 /// \returns A friend declaration that.
   8188 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
   8189                                       TypeSourceInfo *TSInfo) {
   8190   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
   8191 
   8192   QualType T = TSInfo->getType();
   8193   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
   8194 
   8195   if (!getLangOptions().CPlusPlus0x) {
   8196     // C++03 [class.friend]p2:
   8197     //   An elaborated-type-specifier shall be used in a friend declaration
   8198     //   for a class.*
   8199     //
   8200     //   * The class-key of the elaborated-type-specifier is required.
   8201     if (!ActiveTemplateInstantiations.empty()) {
   8202       // Do not complain about the form of friend template types during
   8203       // template instantiation; we will already have complained when the
   8204       // template was declared.
   8205     } else if (!T->isElaboratedTypeSpecifier()) {
   8206       // If we evaluated the type to a record type, suggest putting
   8207       // a tag in front.
   8208       if (const RecordType *RT = T->getAs<RecordType>()) {
   8209         RecordDecl *RD = RT->getDecl();
   8210 
   8211         std::string InsertionText = std::string(" ") + RD->getKindName();
   8212 
   8213         Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
   8214           << (unsigned) RD->getTagKind()
   8215           << T
   8216           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
   8217                                         InsertionText);
   8218       } else {
   8219         Diag(FriendLoc, diag::ext_nonclass_type_friend)
   8220           << T
   8221           << SourceRange(FriendLoc, TypeRange.getEnd());
   8222       }
   8223     } else if (T->getAs<EnumType>()) {
   8224       Diag(FriendLoc, diag::ext_enum_friend)
   8225         << T
   8226         << SourceRange(FriendLoc, TypeRange.getEnd());
   8227     }
   8228   }
   8229 
   8230   // C++0x [class.friend]p3:
   8231   //   If the type specifier in a friend declaration designates a (possibly
   8232   //   cv-qualified) class type, that class is declared as a friend; otherwise,
   8233   //   the friend declaration is ignored.
   8234 
   8235   // FIXME: C++0x has some syntactic restrictions on friend type declarations
   8236   // in [class.friend]p3 that we do not implement.
   8237 
   8238   return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
   8239 }
   8240 
   8241 /// Handle a friend tag declaration where the scope specifier was
   8242 /// templated.
   8243 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
   8244                                     unsigned TagSpec, SourceLocation TagLoc,
   8245                                     CXXScopeSpec &SS,
   8246                                     IdentifierInfo *Name, SourceLocation NameLoc,
   8247                                     AttributeList *Attr,
   8248                                     MultiTemplateParamsArg TempParamLists) {
   8249   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   8250 
   8251   bool isExplicitSpecialization = false;
   8252   bool Invalid = false;
   8253 
   8254   if (TemplateParameterList *TemplateParams
   8255         = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
   8256                                                   TempParamLists.get(),
   8257                                                   TempParamLists.size(),
   8258                                                   /*friend*/ true,
   8259                                                   isExplicitSpecialization,
   8260                                                   Invalid)) {
   8261     if (TemplateParams->size() > 0) {
   8262       // This is a declaration of a class template.
   8263       if (Invalid)
   8264         return 0;
   8265 
   8266       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
   8267                                 SS, Name, NameLoc, Attr,
   8268                                 TemplateParams, AS_public,
   8269                                 TempParamLists.size() - 1,
   8270                    (TemplateParameterList**) TempParamLists.release()).take();
   8271     } else {
   8272       // The "template<>" header is extraneous.
   8273       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   8274         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   8275       isExplicitSpecialization = true;
   8276     }
   8277   }
   8278 
   8279   if (Invalid) return 0;
   8280 
   8281   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
   8282 
   8283   bool isAllExplicitSpecializations = true;
   8284   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
   8285     if (TempParamLists.get()[I]->size()) {
   8286       isAllExplicitSpecializations = false;
   8287       break;
   8288     }
   8289   }
   8290 
   8291   // FIXME: don't ignore attributes.
   8292 
   8293   // If it's explicit specializations all the way down, just forget
   8294   // about the template header and build an appropriate non-templated
   8295   // friend.  TODO: for source fidelity, remember the headers.
   8296   if (isAllExplicitSpecializations) {
   8297     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   8298     ElaboratedTypeKeyword Keyword
   8299       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   8300     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
   8301                                    *Name, NameLoc);
   8302     if (T.isNull())
   8303       return 0;
   8304 
   8305     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   8306     if (isa<DependentNameType>(T)) {
   8307       DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
   8308       TL.setKeywordLoc(TagLoc);
   8309       TL.setQualifierLoc(QualifierLoc);
   8310       TL.setNameLoc(NameLoc);
   8311     } else {
   8312       ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
   8313       TL.setKeywordLoc(TagLoc);
   8314       TL.setQualifierLoc(QualifierLoc);
   8315       cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
   8316     }
   8317 
   8318     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   8319                                             TSI, FriendLoc);
   8320     Friend->setAccess(AS_public);
   8321     CurContext->addDecl(Friend);
   8322     return Friend;
   8323   }
   8324 
   8325   // Handle the case of a templated-scope friend class.  e.g.
   8326   //   template <class T> class A<T>::B;
   8327   // FIXME: we don't support these right now.
   8328   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   8329   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
   8330   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   8331   DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
   8332   TL.setKeywordLoc(TagLoc);
   8333   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   8334   TL.setNameLoc(NameLoc);
   8335 
   8336   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   8337                                           TSI, FriendLoc);
   8338   Friend->setAccess(AS_public);
   8339   Friend->setUnsupportedFriend(true);
   8340   CurContext->addDecl(Friend);
   8341   return Friend;
   8342 }
   8343 
   8344 
   8345 /// Handle a friend type declaration.  This works in tandem with
   8346 /// ActOnTag.
   8347 ///
   8348 /// Notes on friend class templates:
   8349 ///
   8350 /// We generally treat friend class declarations as if they were
   8351 /// declaring a class.  So, for example, the elaborated type specifier
   8352 /// in a friend declaration is required to obey the restrictions of a
   8353 /// class-head (i.e. no typedefs in the scope chain), template
   8354 /// parameters are required to match up with simple template-ids, &c.
   8355 /// However, unlike when declaring a template specialization, it's
   8356 /// okay to refer to a template specialization without an empty
   8357 /// template parameter declaration, e.g.
   8358 ///   friend class A<T>::B<unsigned>;
   8359 /// We permit this as a special case; if there are any template
   8360 /// parameters present at all, require proper matching, i.e.
   8361 ///   template <> template <class T> friend class A<int>::B;
   8362 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
   8363                                 MultiTemplateParamsArg TempParams) {
   8364   SourceLocation Loc = DS.getSourceRange().getBegin();
   8365 
   8366   assert(DS.isFriendSpecified());
   8367   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   8368 
   8369   // Try to convert the decl specifier to a type.  This works for
   8370   // friend templates because ActOnTag never produces a ClassTemplateDecl
   8371   // for a TUK_Friend.
   8372   Declarator TheDeclarator(DS, Declarator::MemberContext);
   8373   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
   8374   QualType T = TSI->getType();
   8375   if (TheDeclarator.isInvalidType())
   8376     return 0;
   8377 
   8378   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
   8379     return 0;
   8380 
   8381   // This is definitely an error in C++98.  It's probably meant to
   8382   // be forbidden in C++0x, too, but the specification is just
   8383   // poorly written.
   8384   //
   8385   // The problem is with declarations like the following:
   8386   //   template <T> friend A<T>::foo;
   8387   // where deciding whether a class C is a friend or not now hinges
   8388   // on whether there exists an instantiation of A that causes
   8389   // 'foo' to equal C.  There are restrictions on class-heads
   8390   // (which we declare (by fiat) elaborated friend declarations to
   8391   // be) that makes this tractable.
   8392   //
   8393   // FIXME: handle "template <> friend class A<T>;", which
   8394   // is possibly well-formed?  Who even knows?
   8395   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
   8396     Diag(Loc, diag::err_tagless_friend_type_template)
   8397       << DS.getSourceRange();
   8398     return 0;
   8399   }
   8400 
   8401   // C++98 [class.friend]p1: A friend of a class is a function
   8402   //   or class that is not a member of the class . . .
   8403   // This is fixed in DR77, which just barely didn't make the C++03
   8404   // deadline.  It's also a very silly restriction that seriously
   8405   // affects inner classes and which nobody else seems to implement;
   8406   // thus we never diagnose it, not even in -pedantic.
   8407   //
   8408   // But note that we could warn about it: it's always useless to
   8409   // friend one of your own members (it's not, however, worthless to
   8410   // friend a member of an arbitrary specialization of your template).
   8411 
   8412   Decl *D;
   8413   if (unsigned NumTempParamLists = TempParams.size())
   8414     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
   8415                                    NumTempParamLists,
   8416                                    TempParams.release(),
   8417                                    TSI,
   8418                                    DS.getFriendSpecLoc());
   8419   else
   8420     D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
   8421 
   8422   if (!D)
   8423     return 0;
   8424 
   8425   D->setAccess(AS_public);
   8426   CurContext->addDecl(D);
   8427 
   8428   return D;
   8429 }
   8430 
   8431 Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
   8432                                     MultiTemplateParamsArg TemplateParams) {
   8433   const DeclSpec &DS = D.getDeclSpec();
   8434 
   8435   assert(DS.isFriendSpecified());
   8436   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   8437 
   8438   SourceLocation Loc = D.getIdentifierLoc();
   8439   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8440   QualType T = TInfo->getType();
   8441 
   8442   // C++ [class.friend]p1
   8443   //   A friend of a class is a function or class....
   8444   // Note that this sees through typedefs, which is intended.
   8445   // It *doesn't* see through dependent types, which is correct
   8446   // according to [temp.arg.type]p3:
   8447   //   If a declaration acquires a function type through a
   8448   //   type dependent on a template-parameter and this causes
   8449   //   a declaration that does not use the syntactic form of a
   8450   //   function declarator to have a function type, the program
   8451   //   is ill-formed.
   8452   if (!T->isFunctionType()) {
   8453     Diag(Loc, diag::err_unexpected_friend);
   8454 
   8455     // It might be worthwhile to try to recover by creating an
   8456     // appropriate declaration.
   8457     return 0;
   8458   }
   8459 
   8460   // C++ [namespace.memdef]p3
   8461   //  - If a friend declaration in a non-local class first declares a
   8462   //    class or function, the friend class or function is a member
   8463   //    of the innermost enclosing namespace.
   8464   //  - The name of the friend is not found by simple name lookup
   8465   //    until a matching declaration is provided in that namespace
   8466   //    scope (either before or after the class declaration granting
   8467   //    friendship).
   8468   //  - If a friend function is called, its name may be found by the
   8469   //    name lookup that considers functions from namespaces and
   8470   //    classes associated with the types of the function arguments.
   8471   //  - When looking for a prior declaration of a class or a function
   8472   //    declared as a friend, scopes outside the innermost enclosing
   8473   //    namespace scope are not considered.
   8474 
   8475   CXXScopeSpec &SS = D.getCXXScopeSpec();
   8476   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   8477   DeclarationName Name = NameInfo.getName();
   8478   assert(Name);
   8479 
   8480   // Check for unexpanded parameter packs.
   8481   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
   8482       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
   8483       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
   8484     return 0;
   8485 
   8486   // The context we found the declaration in, or in which we should
   8487   // create the declaration.
   8488   DeclContext *DC;
   8489   Scope *DCScope = S;
   8490   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   8491                         ForRedeclaration);
   8492 
   8493   // FIXME: there are different rules in local classes
   8494 
   8495   // There are four cases here.
   8496   //   - There's no scope specifier, in which case we just go to the
   8497   //     appropriate scope and look for a function or function template
   8498   //     there as appropriate.
   8499   // Recover from invalid scope qualifiers as if they just weren't there.
   8500   if (SS.isInvalid() || !SS.isSet()) {
   8501     // C++0x [namespace.memdef]p3:
   8502     //   If the name in a friend declaration is neither qualified nor
   8503     //   a template-id and the declaration is a function or an
   8504     //   elaborated-type-specifier, the lookup to determine whether
   8505     //   the entity has been previously declared shall not consider
   8506     //   any scopes outside the innermost enclosing namespace.
   8507     // C++0x [class.friend]p11:
   8508     //   If a friend declaration appears in a local class and the name
   8509     //   specified is an unqualified name, a prior declaration is
   8510     //   looked up without considering scopes that are outside the
   8511     //   innermost enclosing non-class scope. For a friend function
   8512     //   declaration, if there is no prior declaration, the program is
   8513     //   ill-formed.
   8514     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
   8515     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
   8516 
   8517     // Find the appropriate context according to the above.
   8518     DC = CurContext;
   8519     while (true) {
   8520       // Skip class contexts.  If someone can cite chapter and verse
   8521       // for this behavior, that would be nice --- it's what GCC and
   8522       // EDG do, and it seems like a reasonable intent, but the spec
   8523       // really only says that checks for unqualified existing
   8524       // declarations should stop at the nearest enclosing namespace,
   8525       // not that they should only consider the nearest enclosing
   8526       // namespace.
   8527       while (DC->isRecord())
   8528         DC = DC->getParent();
   8529 
   8530       LookupQualifiedName(Previous, DC);
   8531 
   8532       // TODO: decide what we think about using declarations.
   8533       if (isLocal || !Previous.empty())
   8534         break;
   8535 
   8536       if (isTemplateId) {
   8537         if (isa<TranslationUnitDecl>(DC)) break;
   8538       } else {
   8539         if (DC->isFileContext()) break;
   8540       }
   8541       DC = DC->getParent();
   8542     }
   8543 
   8544     // C++ [class.friend]p1: A friend of a class is a function or
   8545     //   class that is not a member of the class . . .
   8546     // C++0x changes this for both friend types and functions.
   8547     // Most C++ 98 compilers do seem to give an error here, so
   8548     // we do, too.
   8549     if (!Previous.empty() && DC->Equals(CurContext)
   8550         && !getLangOptions().CPlusPlus0x)
   8551       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
   8552 
   8553     DCScope = getScopeForDeclContext(S, DC);
   8554 
   8555   //   - There's a non-dependent scope specifier, in which case we
   8556   //     compute it and do a previous lookup there for a function
   8557   //     or function template.
   8558   } else if (!SS.getScopeRep()->isDependent()) {
   8559     DC = computeDeclContext(SS);
   8560     if (!DC) return 0;
   8561 
   8562     if (RequireCompleteDeclContext(SS, DC)) return 0;
   8563 
   8564     LookupQualifiedName(Previous, DC);
   8565 
   8566     // Ignore things found implicitly in the wrong scope.
   8567     // TODO: better diagnostics for this case.  Suggesting the right
   8568     // qualified scope would be nice...
   8569     LookupResult::Filter F = Previous.makeFilter();
   8570     while (F.hasNext()) {
   8571       NamedDecl *D = F.next();
   8572       if (!DC->InEnclosingNamespaceSetOf(
   8573               D->getDeclContext()->getRedeclContext()))
   8574         F.erase();
   8575     }
   8576     F.done();
   8577 
   8578     if (Previous.empty()) {
   8579       D.setInvalidType();
   8580       Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
   8581       return 0;
   8582     }
   8583 
   8584     // C++ [class.friend]p1: A friend of a class is a function or
   8585     //   class that is not a member of the class . . .
   8586     if (DC->Equals(CurContext))
   8587       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
   8588 
   8589   //   - There's a scope specifier that does not match any template
   8590   //     parameter lists, in which case we use some arbitrary context,
   8591   //     create a method or method template, and wait for instantiation.
   8592   //   - There's a scope specifier that does match some template
   8593   //     parameter lists, which we don't handle right now.
   8594   } else {
   8595     DC = CurContext;
   8596     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
   8597   }
   8598 
   8599   if (!DC->isRecord()) {
   8600     // This implies that it has to be an operator or function.
   8601     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
   8602         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
   8603         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
   8604       Diag(Loc, diag::err_introducing_special_friend) <<
   8605         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
   8606          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
   8607       return 0;
   8608     }
   8609   }
   8610 
   8611   bool Redeclaration = false;
   8612   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
   8613                                           move(TemplateParams),
   8614                                           IsDefinition,
   8615                                           Redeclaration);
   8616   if (!ND) return 0;
   8617 
   8618   assert(ND->getDeclContext() == DC);
   8619   assert(ND->getLexicalDeclContext() == CurContext);
   8620 
   8621   // Add the function declaration to the appropriate lookup tables,
   8622   // adjusting the redeclarations list as necessary.  We don't
   8623   // want to do this yet if the friending class is dependent.
   8624   //
   8625   // Also update the scope-based lookup if the target context's
   8626   // lookup context is in lexical scope.
   8627   if (!CurContext->isDependentContext()) {
   8628     DC = DC->getRedeclContext();
   8629     DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
   8630     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   8631       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
   8632   }
   8633 
   8634   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
   8635                                        D.getIdentifierLoc(), ND,
   8636                                        DS.getFriendSpecLoc());
   8637   FrD->setAccess(AS_public);
   8638   CurContext->addDecl(FrD);
   8639 
   8640   if (ND->isInvalidDecl())
   8641     FrD->setInvalidDecl();
   8642   else {
   8643     FunctionDecl *FD;
   8644     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   8645       FD = FTD->getTemplatedDecl();
   8646     else
   8647       FD = cast<FunctionDecl>(ND);
   8648 
   8649     // Mark templated-scope function declarations as unsupported.
   8650     if (FD->getNumTemplateParameterLists())
   8651       FrD->setUnsupportedFriend(true);
   8652   }
   8653 
   8654   return ND;
   8655 }
   8656 
   8657 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
   8658   AdjustDeclIfTemplate(Dcl);
   8659 
   8660   FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
   8661   if (!Fn) {
   8662     Diag(DelLoc, diag::err_deleted_non_function);
   8663     return;
   8664   }
   8665   if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
   8666     Diag(DelLoc, diag::err_deleted_decl_not_first);
   8667     Diag(Prev->getLocation(), diag::note_previous_declaration);
   8668     // If the declaration wasn't the first, we delete the function anyway for
   8669     // recovery.
   8670   }
   8671   Fn->setDeletedAsWritten();
   8672 }
   8673 
   8674 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
   8675   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
   8676 
   8677   if (MD) {
   8678     if (MD->getParent()->isDependentType()) {
   8679       MD->setDefaulted();
   8680       MD->setExplicitlyDefaulted();
   8681       return;
   8682     }
   8683 
   8684     CXXSpecialMember Member = getSpecialMember(MD);
   8685     if (Member == CXXInvalid) {
   8686       Diag(DefaultLoc, diag::err_default_special_members);
   8687       return;
   8688     }
   8689 
   8690     MD->setDefaulted();
   8691     MD->setExplicitlyDefaulted();
   8692 
   8693     // If this definition appears within the record, do the checking when
   8694     // the record is complete.
   8695     const FunctionDecl *Primary = MD;
   8696     if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
   8697       // Find the uninstantiated declaration that actually had the '= default'
   8698       // on it.
   8699       MD->getTemplateInstantiationPattern()->isDefined(Primary);
   8700 
   8701     if (Primary == Primary->getCanonicalDecl())
   8702       return;
   8703 
   8704     switch (Member) {
   8705     case CXXDefaultConstructor: {
   8706       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
   8707       CheckExplicitlyDefaultedDefaultConstructor(CD);
   8708       if (!CD->isInvalidDecl())
   8709         DefineImplicitDefaultConstructor(DefaultLoc, CD);
   8710       break;
   8711     }
   8712 
   8713     case CXXCopyConstructor: {
   8714       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
   8715       CheckExplicitlyDefaultedCopyConstructor(CD);
   8716       if (!CD->isInvalidDecl())
   8717         DefineImplicitCopyConstructor(DefaultLoc, CD);
   8718       break;
   8719     }
   8720 
   8721     case CXXCopyAssignment: {
   8722       CheckExplicitlyDefaultedCopyAssignment(MD);
   8723       if (!MD->isInvalidDecl())
   8724         DefineImplicitCopyAssignment(DefaultLoc, MD);
   8725       break;
   8726     }
   8727 
   8728     case CXXDestructor: {
   8729       CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
   8730       CheckExplicitlyDefaultedDestructor(DD);
   8731       if (!DD->isInvalidDecl())
   8732         DefineImplicitDestructor(DefaultLoc, DD);
   8733       break;
   8734     }
   8735 
   8736     case CXXMoveConstructor:
   8737     case CXXMoveAssignment:
   8738       Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
   8739       break;
   8740 
   8741     default:
   8742       // FIXME: Do the rest once we have move functions
   8743       break;
   8744     }
   8745   } else {
   8746     Diag(DefaultLoc, diag::err_default_special_members);
   8747   }
   8748 }
   8749 
   8750 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
   8751   for (Stmt::child_range CI = S->children(); CI; ++CI) {
   8752     Stmt *SubStmt = *CI;
   8753     if (!SubStmt)
   8754       continue;
   8755     if (isa<ReturnStmt>(SubStmt))
   8756       Self.Diag(SubStmt->getSourceRange().getBegin(),
   8757            diag::err_return_in_constructor_handler);
   8758     if (!isa<Expr>(SubStmt))
   8759       SearchForReturnInStmt(Self, SubStmt);
   8760   }
   8761 }
   8762 
   8763 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
   8764   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
   8765     CXXCatchStmt *Handler = TryBlock->getHandler(I);
   8766     SearchForReturnInStmt(*this, Handler);
   8767   }
   8768 }
   8769 
   8770 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
   8771                                              const CXXMethodDecl *Old) {
   8772   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
   8773   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
   8774 
   8775   if (Context.hasSameType(NewTy, OldTy) ||
   8776       NewTy->isDependentType() || OldTy->isDependentType())
   8777     return false;
   8778 
   8779   // Check if the return types are covariant
   8780   QualType NewClassTy, OldClassTy;
   8781 
   8782   /// Both types must be pointers or references to classes.
   8783   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
   8784     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
   8785       NewClassTy = NewPT->getPointeeType();
   8786       OldClassTy = OldPT->getPointeeType();
   8787     }
   8788   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
   8789     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
   8790       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
   8791         NewClassTy = NewRT->getPointeeType();
   8792         OldClassTy = OldRT->getPointeeType();
   8793       }
   8794     }
   8795   }
   8796 
   8797   // The return types aren't either both pointers or references to a class type.
   8798   if (NewClassTy.isNull()) {
   8799     Diag(New->getLocation(),
   8800          diag::err_different_return_type_for_overriding_virtual_function)
   8801       << New->getDeclName() << NewTy << OldTy;
   8802     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   8803 
   8804     return true;
   8805   }
   8806 
   8807   // C++ [class.virtual]p6:
   8808   //   If the return type of D::f differs from the return type of B::f, the
   8809   //   class type in the return type of D::f shall be complete at the point of
   8810   //   declaration of D::f or shall be the class type D.
   8811   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
   8812     if (!RT->isBeingDefined() &&
   8813         RequireCompleteType(New->getLocation(), NewClassTy,
   8814                             PDiag(diag::err_covariant_return_incomplete)
   8815                               << New->getDeclName()))
   8816     return true;
   8817   }
   8818 
   8819   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
   8820     // Check if the new class derives from the old class.
   8821     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
   8822       Diag(New->getLocation(),
   8823            diag::err_covariant_return_not_derived)
   8824       << New->getDeclName() << NewTy << OldTy;
   8825       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   8826       return true;
   8827     }
   8828 
   8829     // Check if we the conversion from derived to base is valid.
   8830     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
   8831                     diag::err_covariant_return_inaccessible_base,
   8832                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
   8833                     // FIXME: Should this point to the return type?
   8834                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
   8835       // FIXME: this note won't trigger for delayed access control
   8836       // diagnostics, and it's impossible to get an undelayed error
   8837       // here from access control during the original parse because
   8838       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
   8839       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   8840       return true;
   8841     }
   8842   }
   8843 
   8844   // The qualifiers of the return types must be the same.
   8845   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
   8846     Diag(New->getLocation(),
   8847          diag::err_covariant_return_type_different_qualifications)
   8848     << New->getDeclName() << NewTy << OldTy;
   8849     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   8850     return true;
   8851   };
   8852 
   8853 
   8854   // The new class type must have the same or less qualifiers as the old type.
   8855   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
   8856     Diag(New->getLocation(),
   8857          diag::err_covariant_return_type_class_type_more_qualified)
   8858     << New->getDeclName() << NewTy << OldTy;
   8859     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   8860     return true;
   8861   };
   8862 
   8863   return false;
   8864 }
   8865 
   8866 /// \brief Mark the given method pure.
   8867 ///
   8868 /// \param Method the method to be marked pure.
   8869 ///
   8870 /// \param InitRange the source range that covers the "0" initializer.
   8871 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
   8872   SourceLocation EndLoc = InitRange.getEnd();
   8873   if (EndLoc.isValid())
   8874     Method->setRangeEnd(EndLoc);
   8875 
   8876   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
   8877     Method->setPure();
   8878     return false;
   8879   }
   8880 
   8881   if (!Method->isInvalidDecl())
   8882     Diag(Method->getLocation(), diag::err_non_virtual_pure)
   8883       << Method->getDeclName() << InitRange;
   8884   return true;
   8885 }
   8886 
   8887 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
   8888 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
   8889 /// is a fresh scope pushed for just this purpose.
   8890 ///
   8891 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
   8892 /// static data member of class X, names should be looked up in the scope of
   8893 /// class X.
   8894 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
   8895   // If there is no declaration, there was an error parsing it.
   8896   if (D == 0 || D->isInvalidDecl()) return;
   8897 
   8898   // We should only get called for declarations with scope specifiers, like:
   8899   //   int foo::bar;
   8900   assert(D->isOutOfLine());
   8901   EnterDeclaratorContext(S, D->getDeclContext());
   8902 }
   8903 
   8904 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
   8905 /// initializer for the out-of-line declaration 'D'.
   8906 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
   8907   // If there is no declaration, there was an error parsing it.
   8908   if (D == 0 || D->isInvalidDecl()) return;
   8909 
   8910   assert(D->isOutOfLine());
   8911   ExitDeclaratorContext(S);
   8912 }
   8913 
   8914 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
   8915 /// C++ if/switch/while/for statement.
   8916 /// e.g: "if (int x = f()) {...}"
   8917 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
   8918   // C++ 6.4p2:
   8919   // The declarator shall not specify a function or an array.
   8920   // The type-specifier-seq shall not contain typedef and shall not declare a
   8921   // new class or enumeration.
   8922   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   8923          "Parser allowed 'typedef' as storage class of condition decl.");
   8924 
   8925   Decl *Dcl = ActOnDeclarator(S, D);
   8926   if (!Dcl)
   8927     return true;
   8928 
   8929   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
   8930     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
   8931       << D.getSourceRange();
   8932     return true;
   8933   }
   8934 
   8935   return Dcl;
   8936 }
   8937 
   8938 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
   8939                           bool DefinitionRequired) {
   8940   // Ignore any vtable uses in unevaluated operands or for classes that do
   8941   // not have a vtable.
   8942   if (!Class->isDynamicClass() || Class->isDependentContext() ||
   8943       CurContext->isDependentContext() ||
   8944       ExprEvalContexts.back().Context == Unevaluated)
   8945     return;
   8946 
   8947   // Try to insert this class into the map.
   8948   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   8949   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
   8950     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
   8951   if (!Pos.second) {
   8952     // If we already had an entry, check to see if we are promoting this vtable
   8953     // to required a definition. If so, we need to reappend to the VTableUses
   8954     // list, since we may have already processed the first entry.
   8955     if (DefinitionRequired && !Pos.first->second) {
   8956       Pos.first->second = true;
   8957     } else {
   8958       // Otherwise, we can early exit.
   8959       return;
   8960     }
   8961   }
   8962 
   8963   // Local classes need to have their virtual members marked
   8964   // immediately. For all other classes, we mark their virtual members
   8965   // at the end of the translation unit.
   8966   if (Class->isLocalClass())
   8967     MarkVirtualMembersReferenced(Loc, Class);
   8968   else
   8969     VTableUses.push_back(std::make_pair(Class, Loc));
   8970 }
   8971 
   8972 bool Sema::DefineUsedVTables() {
   8973   if (VTableUses.empty())
   8974     return false;
   8975 
   8976   // Note: The VTableUses vector could grow as a result of marking
   8977   // the members of a class as "used", so we check the size each
   8978   // time through the loop and prefer indices (with are stable) to
   8979   // iterators (which are not).
   8980   bool DefinedAnything = false;
   8981   for (unsigned I = 0; I != VTableUses.size(); ++I) {
   8982     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
   8983     if (!Class)
   8984       continue;
   8985 
   8986     SourceLocation Loc = VTableUses[I].second;
   8987 
   8988     // If this class has a key function, but that key function is
   8989     // defined in another translation unit, we don't need to emit the
   8990     // vtable even though we're using it.
   8991     const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
   8992     if (KeyFunction && !KeyFunction->hasBody()) {
   8993       switch (KeyFunction->getTemplateSpecializationKind()) {
   8994       case TSK_Undeclared:
   8995       case TSK_ExplicitSpecialization:
   8996       case TSK_ExplicitInstantiationDeclaration:
   8997         // The key function is in another translation unit.
   8998         continue;
   8999 
   9000       case TSK_ExplicitInstantiationDefinition:
   9001       case TSK_ImplicitInstantiation:
   9002         // We will be instantiating the key function.
   9003         break;
   9004       }
   9005     } else if (!KeyFunction) {
   9006       // If we have a class with no key function that is the subject
   9007       // of an explicit instantiation declaration, suppress the
   9008       // vtable; it will live with the explicit instantiation
   9009       // definition.
   9010       bool IsExplicitInstantiationDeclaration
   9011         = Class->getTemplateSpecializationKind()
   9012                                       == TSK_ExplicitInstantiationDeclaration;
   9013       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
   9014                                  REnd = Class->redecls_end();
   9015            R != REnd; ++R) {
   9016         TemplateSpecializationKind TSK
   9017           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
   9018         if (TSK == TSK_ExplicitInstantiationDeclaration)
   9019           IsExplicitInstantiationDeclaration = true;
   9020         else if (TSK == TSK_ExplicitInstantiationDefinition) {
   9021           IsExplicitInstantiationDeclaration = false;
   9022           break;
   9023         }
   9024       }
   9025 
   9026       if (IsExplicitInstantiationDeclaration)
   9027         continue;
   9028     }
   9029 
   9030     // Mark all of the virtual members of this class as referenced, so
   9031     // that we can build a vtable. Then, tell the AST consumer that a
   9032     // vtable for this class is required.
   9033     DefinedAnything = true;
   9034     MarkVirtualMembersReferenced(Loc, Class);
   9035     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   9036     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
   9037 
   9038     // Optionally warn if we're emitting a weak vtable.
   9039     if (Class->getLinkage() == ExternalLinkage &&
   9040         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
   9041       if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
   9042         Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
   9043     }
   9044   }
   9045   VTableUses.clear();
   9046 
   9047   return DefinedAnything;
   9048 }
   9049 
   9050 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
   9051                                         const CXXRecordDecl *RD) {
   9052   for (CXXRecordDecl::method_iterator i = RD->method_begin(),
   9053        e = RD->method_end(); i != e; ++i) {
   9054     CXXMethodDecl *MD = *i;
   9055 
   9056     // C++ [basic.def.odr]p2:
   9057     //   [...] A virtual member function is used if it is not pure. [...]
   9058     if (MD->isVirtual() && !MD->isPure())
   9059       MarkDeclarationReferenced(Loc, MD);
   9060   }
   9061 
   9062   // Only classes that have virtual bases need a VTT.
   9063   if (RD->getNumVBases() == 0)
   9064     return;
   9065 
   9066   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
   9067            e = RD->bases_end(); i != e; ++i) {
   9068     const CXXRecordDecl *Base =
   9069         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   9070     if (Base->getNumVBases() == 0)
   9071       continue;
   9072     MarkVirtualMembersReferenced(Loc, Base);
   9073   }
   9074 }
   9075 
   9076 /// SetIvarInitializers - This routine builds initialization ASTs for the
   9077 /// Objective-C implementation whose ivars need be initialized.
   9078 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
   9079   if (!getLangOptions().CPlusPlus)
   9080     return;
   9081   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
   9082     llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
   9083     CollectIvarsToConstructOrDestruct(OID, ivars);
   9084     if (ivars.empty())
   9085       return;
   9086     llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
   9087     for (unsigned i = 0; i < ivars.size(); i++) {
   9088       FieldDecl *Field = ivars[i];
   9089       if (Field->isInvalidDecl())
   9090         continue;
   9091 
   9092       CXXCtorInitializer *Member;
   9093       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
   9094       InitializationKind InitKind =
   9095         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
   9096 
   9097       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
   9098       ExprResult MemberInit =
   9099         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
   9100       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
   9101       // Note, MemberInit could actually come back empty if no initialization
   9102       // is required (e.g., because it would call a trivial default constructor)
   9103       if (!MemberInit.get() || MemberInit.isInvalid())
   9104         continue;
   9105 
   9106       Member =
   9107         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
   9108                                          SourceLocation(),
   9109                                          MemberInit.takeAs<Expr>(),
   9110                                          SourceLocation());
   9111       AllToInit.push_back(Member);
   9112 
   9113       // Be sure that the destructor is accessible and is marked as referenced.
   9114       if (const RecordType *RecordTy
   9115                   = Context.getBaseElementType(Field->getType())
   9116                                                         ->getAs<RecordType>()) {
   9117                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
   9118         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
   9119           MarkDeclarationReferenced(Field->getLocation(), Destructor);
   9120           CheckDestructorAccess(Field->getLocation(), Destructor,
   9121                             PDiag(diag::err_access_dtor_ivar)
   9122                               << Context.getBaseElementType(Field->getType()));
   9123         }
   9124       }
   9125     }
   9126     ObjCImplementation->setIvarInitializers(Context,
   9127                                             AllToInit.data(), AllToInit.size());
   9128   }
   9129 }
   9130 
   9131 static
   9132 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
   9133                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
   9134                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
   9135                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
   9136                            Sema &S) {
   9137   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
   9138                                                    CE = Current.end();
   9139   if (Ctor->isInvalidDecl())
   9140     return;
   9141 
   9142   const FunctionDecl *FNTarget = 0;
   9143   CXXConstructorDecl *Target;
   9144 
   9145   // We ignore the result here since if we don't have a body, Target will be
   9146   // null below.
   9147   (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
   9148   Target
   9149 = const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
   9150 
   9151   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
   9152                      // Avoid dereferencing a null pointer here.
   9153                      *TCanonical = Target ? Target->getCanonicalDecl() : 0;
   9154 
   9155   if (!Current.insert(Canonical))
   9156     return;
   9157 
   9158   // We know that beyond here, we aren't chaining into a cycle.
   9159   if (!Target || !Target->isDelegatingConstructor() ||
   9160       Target->isInvalidDecl() || Valid.count(TCanonical)) {
   9161     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
   9162       Valid.insert(*CI);
   9163     Current.clear();
   9164   // We've hit a cycle.
   9165   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
   9166              Current.count(TCanonical)) {
   9167     // If we haven't diagnosed this cycle yet, do so now.
   9168     if (!Invalid.count(TCanonical)) {
   9169       S.Diag((*Ctor->init_begin())->getSourceLocation(),
   9170              diag::warn_delegating_ctor_cycle)
   9171         << Ctor;
   9172 
   9173       // Don't add a note for a function delegating directo to itself.
   9174       if (TCanonical != Canonical)
   9175         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
   9176 
   9177       CXXConstructorDecl *C = Target;
   9178       while (C->getCanonicalDecl() != Canonical) {
   9179         (void)C->getTargetConstructor()->hasBody(FNTarget);
   9180         assert(FNTarget && "Ctor cycle through bodiless function");
   9181 
   9182         C
   9183        = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
   9184         S.Diag(C->getLocation(), diag::note_which_delegates_to);
   9185       }
   9186     }
   9187 
   9188     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
   9189       Invalid.insert(*CI);
   9190     Current.clear();
   9191   } else {
   9192     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
   9193   }
   9194 }
   9195 
   9196 
   9197 void Sema::CheckDelegatingCtorCycles() {
   9198   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
   9199 
   9200   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
   9201                                                    CE = Current.end();
   9202 
   9203   for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
   9204          I = DelegatingCtorDecls.begin(),
   9205          E = DelegatingCtorDecls.end();
   9206        I != E; ++I) {
   9207    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
   9208   }
   9209 
   9210   for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
   9211     (*CI)->setInvalidDecl();
   9212 }
   9213