1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for C++ declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/CXXFieldCollector.h" 16 #include "clang/Sema/Scope.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/AST/ASTConsumer.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/ASTMutationListener.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/DeclVisitor.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/AST/TypeLoc.h" 29 #include "clang/AST/TypeOrdering.h" 30 #include "clang/Sema/DeclSpec.h" 31 #include "clang/Sema/ParsedTemplate.h" 32 #include "clang/Basic/PartialDiagnostic.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include <map> 37 #include <set> 38 39 using namespace clang; 40 41 //===----------------------------------------------------------------------===// 42 // CheckDefaultArgumentVisitor 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 47 /// the default argument of a parameter to determine whether it 48 /// contains any ill-formed subexpressions. For example, this will 49 /// diagnose the use of local variables or parameters within the 50 /// default argument expression. 51 class CheckDefaultArgumentVisitor 52 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { 53 Expr *DefaultArg; 54 Sema *S; 55 56 public: 57 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) 58 : DefaultArg(defarg), S(s) {} 59 60 bool VisitExpr(Expr *Node); 61 bool VisitDeclRefExpr(DeclRefExpr *DRE); 62 bool VisitCXXThisExpr(CXXThisExpr *ThisE); 63 }; 64 65 /// VisitExpr - Visit all of the children of this expression. 66 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { 67 bool IsInvalid = false; 68 for (Stmt::child_range I = Node->children(); I; ++I) 69 IsInvalid |= Visit(*I); 70 return IsInvalid; 71 } 72 73 /// VisitDeclRefExpr - Visit a reference to a declaration, to 74 /// determine whether this declaration can be used in the default 75 /// argument expression. 76 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { 77 NamedDecl *Decl = DRE->getDecl(); 78 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { 79 // C++ [dcl.fct.default]p9 80 // Default arguments are evaluated each time the function is 81 // called. The order of evaluation of function arguments is 82 // unspecified. Consequently, parameters of a function shall not 83 // be used in default argument expressions, even if they are not 84 // evaluated. Parameters of a function declared before a default 85 // argument expression are in scope and can hide namespace and 86 // class member names. 87 return S->Diag(DRE->getSourceRange().getBegin(), 88 diag::err_param_default_argument_references_param) 89 << Param->getDeclName() << DefaultArg->getSourceRange(); 90 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { 91 // C++ [dcl.fct.default]p7 92 // Local variables shall not be used in default argument 93 // expressions. 94 if (VDecl->isLocalVarDecl()) 95 return S->Diag(DRE->getSourceRange().getBegin(), 96 diag::err_param_default_argument_references_local) 97 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 98 } 99 100 return false; 101 } 102 103 /// VisitCXXThisExpr - Visit a C++ "this" expression. 104 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { 105 // C++ [dcl.fct.default]p8: 106 // The keyword this shall not be used in a default argument of a 107 // member function. 108 return S->Diag(ThisE->getSourceRange().getBegin(), 109 diag::err_param_default_argument_references_this) 110 << ThisE->getSourceRange(); 111 } 112 } 113 114 void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) { 115 assert(Context && "ImplicitExceptionSpecification without an ASTContext"); 116 // If we have an MSAny or unknown spec already, don't bother. 117 if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed) 118 return; 119 120 const FunctionProtoType *Proto 121 = Method->getType()->getAs<FunctionProtoType>(); 122 123 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 124 125 // If this function can throw any exceptions, make a note of that. 126 if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) { 127 ClearExceptions(); 128 ComputedEST = EST; 129 return; 130 } 131 132 // FIXME: If the call to this decl is using any of its default arguments, we 133 // need to search them for potentially-throwing calls. 134 135 // If this function has a basic noexcept, it doesn't affect the outcome. 136 if (EST == EST_BasicNoexcept) 137 return; 138 139 // If we have a throw-all spec at this point, ignore the function. 140 if (ComputedEST == EST_None) 141 return; 142 143 // If we're still at noexcept(true) and there's a nothrow() callee, 144 // change to that specification. 145 if (EST == EST_DynamicNone) { 146 if (ComputedEST == EST_BasicNoexcept) 147 ComputedEST = EST_DynamicNone; 148 return; 149 } 150 151 // Check out noexcept specs. 152 if (EST == EST_ComputedNoexcept) { 153 FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context); 154 assert(NR != FunctionProtoType::NR_NoNoexcept && 155 "Must have noexcept result for EST_ComputedNoexcept."); 156 assert(NR != FunctionProtoType::NR_Dependent && 157 "Should not generate implicit declarations for dependent cases, " 158 "and don't know how to handle them anyway."); 159 160 // noexcept(false) -> no spec on the new function 161 if (NR == FunctionProtoType::NR_Throw) { 162 ClearExceptions(); 163 ComputedEST = EST_None; 164 } 165 // noexcept(true) won't change anything either. 166 return; 167 } 168 169 assert(EST == EST_Dynamic && "EST case not considered earlier."); 170 assert(ComputedEST != EST_None && 171 "Shouldn't collect exceptions when throw-all is guaranteed."); 172 ComputedEST = EST_Dynamic; 173 // Record the exceptions in this function's exception specification. 174 for (FunctionProtoType::exception_iterator E = Proto->exception_begin(), 175 EEnd = Proto->exception_end(); 176 E != EEnd; ++E) 177 if (ExceptionsSeen.insert(Context->getCanonicalType(*E))) 178 Exceptions.push_back(*E); 179 } 180 181 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { 182 if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed) 183 return; 184 185 // FIXME: 186 // 187 // C++0x [except.spec]p14: 188 // [An] implicit exception-specification specifies the type-id T if and 189 // only if T is allowed by the exception-specification of a function directly 190 // invoked by f's implicit definition; f shall allow all exceptions if any 191 // function it directly invokes allows all exceptions, and f shall allow no 192 // exceptions if every function it directly invokes allows no exceptions. 193 // 194 // Note in particular that if an implicit exception-specification is generated 195 // for a function containing a throw-expression, that specification can still 196 // be noexcept(true). 197 // 198 // Note also that 'directly invoked' is not defined in the standard, and there 199 // is no indication that we should only consider potentially-evaluated calls. 200 // 201 // Ultimately we should implement the intent of the standard: the exception 202 // specification should be the set of exceptions which can be thrown by the 203 // implicit definition. For now, we assume that any non-nothrow expression can 204 // throw any exception. 205 206 if (E->CanThrow(*Context)) 207 ComputedEST = EST_None; 208 } 209 210 bool 211 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 212 SourceLocation EqualLoc) { 213 if (RequireCompleteType(Param->getLocation(), Param->getType(), 214 diag::err_typecheck_decl_incomplete_type)) { 215 Param->setInvalidDecl(); 216 return true; 217 } 218 219 // C++ [dcl.fct.default]p5 220 // A default argument expression is implicitly converted (clause 221 // 4) to the parameter type. The default argument expression has 222 // the same semantic constraints as the initializer expression in 223 // a declaration of a variable of the parameter type, using the 224 // copy-initialization semantics (8.5). 225 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 226 Param); 227 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 228 EqualLoc); 229 InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); 230 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, 231 MultiExprArg(*this, &Arg, 1)); 232 if (Result.isInvalid()) 233 return true; 234 Arg = Result.takeAs<Expr>(); 235 236 CheckImplicitConversions(Arg, EqualLoc); 237 Arg = MaybeCreateExprWithCleanups(Arg); 238 239 // Okay: add the default argument to the parameter 240 Param->setDefaultArg(Arg); 241 242 // We have already instantiated this parameter; provide each of the 243 // instantiations with the uninstantiated default argument. 244 UnparsedDefaultArgInstantiationsMap::iterator InstPos 245 = UnparsedDefaultArgInstantiations.find(Param); 246 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 247 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 248 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 249 250 // We're done tracking this parameter's instantiations. 251 UnparsedDefaultArgInstantiations.erase(InstPos); 252 } 253 254 return false; 255 } 256 257 /// ActOnParamDefaultArgument - Check whether the default argument 258 /// provided for a function parameter is well-formed. If so, attach it 259 /// to the parameter declaration. 260 void 261 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 262 Expr *DefaultArg) { 263 if (!param || !DefaultArg) 264 return; 265 266 ParmVarDecl *Param = cast<ParmVarDecl>(param); 267 UnparsedDefaultArgLocs.erase(Param); 268 269 // Default arguments are only permitted in C++ 270 if (!getLangOptions().CPlusPlus) { 271 Diag(EqualLoc, diag::err_param_default_argument) 272 << DefaultArg->getSourceRange(); 273 Param->setInvalidDecl(); 274 return; 275 } 276 277 // Check for unexpanded parameter packs. 278 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 279 Param->setInvalidDecl(); 280 return; 281 } 282 283 // Check that the default argument is well-formed 284 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); 285 if (DefaultArgChecker.Visit(DefaultArg)) { 286 Param->setInvalidDecl(); 287 return; 288 } 289 290 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 291 } 292 293 /// ActOnParamUnparsedDefaultArgument - We've seen a default 294 /// argument for a function parameter, but we can't parse it yet 295 /// because we're inside a class definition. Note that this default 296 /// argument will be parsed later. 297 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 298 SourceLocation EqualLoc, 299 SourceLocation ArgLoc) { 300 if (!param) 301 return; 302 303 ParmVarDecl *Param = cast<ParmVarDecl>(param); 304 if (Param) 305 Param->setUnparsedDefaultArg(); 306 307 UnparsedDefaultArgLocs[Param] = ArgLoc; 308 } 309 310 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 311 /// the default argument for the parameter param failed. 312 void Sema::ActOnParamDefaultArgumentError(Decl *param) { 313 if (!param) 314 return; 315 316 ParmVarDecl *Param = cast<ParmVarDecl>(param); 317 318 Param->setInvalidDecl(); 319 320 UnparsedDefaultArgLocs.erase(Param); 321 } 322 323 /// CheckExtraCXXDefaultArguments - Check for any extra default 324 /// arguments in the declarator, which is not a function declaration 325 /// or definition and therefore is not permitted to have default 326 /// arguments. This routine should be invoked for every declarator 327 /// that is not a function declaration or definition. 328 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 329 // C++ [dcl.fct.default]p3 330 // A default argument expression shall be specified only in the 331 // parameter-declaration-clause of a function declaration or in a 332 // template-parameter (14.1). It shall not be specified for a 333 // parameter pack. If it is specified in a 334 // parameter-declaration-clause, it shall not occur within a 335 // declarator or abstract-declarator of a parameter-declaration. 336 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 337 DeclaratorChunk &chunk = D.getTypeObject(i); 338 if (chunk.Kind == DeclaratorChunk::Function) { 339 for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { 340 ParmVarDecl *Param = 341 cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param); 342 if (Param->hasUnparsedDefaultArg()) { 343 CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; 344 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 345 << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); 346 delete Toks; 347 chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; 348 } else if (Param->getDefaultArg()) { 349 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 350 << Param->getDefaultArg()->getSourceRange(); 351 Param->setDefaultArg(0); 352 } 353 } 354 } 355 } 356 } 357 358 // MergeCXXFunctionDecl - Merge two declarations of the same C++ 359 // function, once we already know that they have the same 360 // type. Subroutine of MergeFunctionDecl. Returns true if there was an 361 // error, false otherwise. 362 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { 363 bool Invalid = false; 364 365 // C++ [dcl.fct.default]p4: 366 // For non-template functions, default arguments can be added in 367 // later declarations of a function in the same 368 // scope. Declarations in different scopes have completely 369 // distinct sets of default arguments. That is, declarations in 370 // inner scopes do not acquire default arguments from 371 // declarations in outer scopes, and vice versa. In a given 372 // function declaration, all parameters subsequent to a 373 // parameter with a default argument shall have default 374 // arguments supplied in this or previous declarations. A 375 // default argument shall not be redefined by a later 376 // declaration (not even to the same value). 377 // 378 // C++ [dcl.fct.default]p6: 379 // Except for member functions of class templates, the default arguments 380 // in a member function definition that appears outside of the class 381 // definition are added to the set of default arguments provided by the 382 // member function declaration in the class definition. 383 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { 384 ParmVarDecl *OldParam = Old->getParamDecl(p); 385 ParmVarDecl *NewParam = New->getParamDecl(p); 386 387 if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { 388 389 unsigned DiagDefaultParamID = 390 diag::err_param_default_argument_redefinition; 391 392 // MSVC accepts that default parameters be redefined for member functions 393 // of template class. The new default parameter's value is ignored. 394 Invalid = true; 395 if (getLangOptions().Microsoft) { 396 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New); 397 if (MD && MD->getParent()->getDescribedClassTemplate()) { 398 // Merge the old default argument into the new parameter. 399 NewParam->setHasInheritedDefaultArg(); 400 if (OldParam->hasUninstantiatedDefaultArg()) 401 NewParam->setUninstantiatedDefaultArg( 402 OldParam->getUninstantiatedDefaultArg()); 403 else 404 NewParam->setDefaultArg(OldParam->getInit()); 405 DiagDefaultParamID = diag::warn_param_default_argument_redefinition; 406 Invalid = false; 407 } 408 } 409 410 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 411 // hint here. Alternatively, we could walk the type-source information 412 // for NewParam to find the last source location in the type... but it 413 // isn't worth the effort right now. This is the kind of test case that 414 // is hard to get right: 415 // int f(int); 416 // void g(int (*fp)(int) = f); 417 // void g(int (*fp)(int) = &f); 418 Diag(NewParam->getLocation(), DiagDefaultParamID) 419 << NewParam->getDefaultArgRange(); 420 421 // Look for the function declaration where the default argument was 422 // actually written, which may be a declaration prior to Old. 423 for (FunctionDecl *Older = Old->getPreviousDeclaration(); 424 Older; Older = Older->getPreviousDeclaration()) { 425 if (!Older->getParamDecl(p)->hasDefaultArg()) 426 break; 427 428 OldParam = Older->getParamDecl(p); 429 } 430 431 Diag(OldParam->getLocation(), diag::note_previous_definition) 432 << OldParam->getDefaultArgRange(); 433 } else if (OldParam->hasDefaultArg()) { 434 // Merge the old default argument into the new parameter. 435 // It's important to use getInit() here; getDefaultArg() 436 // strips off any top-level ExprWithCleanups. 437 NewParam->setHasInheritedDefaultArg(); 438 if (OldParam->hasUninstantiatedDefaultArg()) 439 NewParam->setUninstantiatedDefaultArg( 440 OldParam->getUninstantiatedDefaultArg()); 441 else 442 NewParam->setDefaultArg(OldParam->getInit()); 443 } else if (NewParam->hasDefaultArg()) { 444 if (New->getDescribedFunctionTemplate()) { 445 // Paragraph 4, quoted above, only applies to non-template functions. 446 Diag(NewParam->getLocation(), 447 diag::err_param_default_argument_template_redecl) 448 << NewParam->getDefaultArgRange(); 449 Diag(Old->getLocation(), diag::note_template_prev_declaration) 450 << false; 451 } else if (New->getTemplateSpecializationKind() 452 != TSK_ImplicitInstantiation && 453 New->getTemplateSpecializationKind() != TSK_Undeclared) { 454 // C++ [temp.expr.spec]p21: 455 // Default function arguments shall not be specified in a declaration 456 // or a definition for one of the following explicit specializations: 457 // - the explicit specialization of a function template; 458 // - the explicit specialization of a member function template; 459 // - the explicit specialization of a member function of a class 460 // template where the class template specialization to which the 461 // member function specialization belongs is implicitly 462 // instantiated. 463 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 464 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 465 << New->getDeclName() 466 << NewParam->getDefaultArgRange(); 467 } else if (New->getDeclContext()->isDependentContext()) { 468 // C++ [dcl.fct.default]p6 (DR217): 469 // Default arguments for a member function of a class template shall 470 // be specified on the initial declaration of the member function 471 // within the class template. 472 // 473 // Reading the tea leaves a bit in DR217 and its reference to DR205 474 // leads me to the conclusion that one cannot add default function 475 // arguments for an out-of-line definition of a member function of a 476 // dependent type. 477 int WhichKind = 2; 478 if (CXXRecordDecl *Record 479 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 480 if (Record->getDescribedClassTemplate()) 481 WhichKind = 0; 482 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 483 WhichKind = 1; 484 else 485 WhichKind = 2; 486 } 487 488 Diag(NewParam->getLocation(), 489 diag::err_param_default_argument_member_template_redecl) 490 << WhichKind 491 << NewParam->getDefaultArgRange(); 492 } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) { 493 CXXSpecialMember NewSM = getSpecialMember(Ctor), 494 OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old)); 495 if (NewSM != OldSM) { 496 Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special) 497 << NewParam->getDefaultArgRange() << NewSM; 498 Diag(Old->getLocation(), diag::note_previous_declaration_special) 499 << OldSM; 500 } 501 } 502 } 503 } 504 505 if (CheckEquivalentExceptionSpec(Old, New)) 506 Invalid = true; 507 508 return Invalid; 509 } 510 511 /// \brief Merge the exception specifications of two variable declarations. 512 /// 513 /// This is called when there's a redeclaration of a VarDecl. The function 514 /// checks if the redeclaration might have an exception specification and 515 /// validates compatibility and merges the specs if necessary. 516 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 517 // Shortcut if exceptions are disabled. 518 if (!getLangOptions().CXXExceptions) 519 return; 520 521 assert(Context.hasSameType(New->getType(), Old->getType()) && 522 "Should only be called if types are otherwise the same."); 523 524 QualType NewType = New->getType(); 525 QualType OldType = Old->getType(); 526 527 // We're only interested in pointers and references to functions, as well 528 // as pointers to member functions. 529 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 530 NewType = R->getPointeeType(); 531 OldType = OldType->getAs<ReferenceType>()->getPointeeType(); 532 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 533 NewType = P->getPointeeType(); 534 OldType = OldType->getAs<PointerType>()->getPointeeType(); 535 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 536 NewType = M->getPointeeType(); 537 OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); 538 } 539 540 if (!NewType->isFunctionProtoType()) 541 return; 542 543 // There's lots of special cases for functions. For function pointers, system 544 // libraries are hopefully not as broken so that we don't need these 545 // workarounds. 546 if (CheckEquivalentExceptionSpec( 547 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 548 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 549 New->setInvalidDecl(); 550 } 551 } 552 553 /// CheckCXXDefaultArguments - Verify that the default arguments for a 554 /// function declaration are well-formed according to C++ 555 /// [dcl.fct.default]. 556 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 557 unsigned NumParams = FD->getNumParams(); 558 unsigned p; 559 560 // Find first parameter with a default argument 561 for (p = 0; p < NumParams; ++p) { 562 ParmVarDecl *Param = FD->getParamDecl(p); 563 if (Param->hasDefaultArg()) 564 break; 565 } 566 567 // C++ [dcl.fct.default]p4: 568 // In a given function declaration, all parameters 569 // subsequent to a parameter with a default argument shall 570 // have default arguments supplied in this or previous 571 // declarations. A default argument shall not be redefined 572 // by a later declaration (not even to the same value). 573 unsigned LastMissingDefaultArg = 0; 574 for (; p < NumParams; ++p) { 575 ParmVarDecl *Param = FD->getParamDecl(p); 576 if (!Param->hasDefaultArg()) { 577 if (Param->isInvalidDecl()) 578 /* We already complained about this parameter. */; 579 else if (Param->getIdentifier()) 580 Diag(Param->getLocation(), 581 diag::err_param_default_argument_missing_name) 582 << Param->getIdentifier(); 583 else 584 Diag(Param->getLocation(), 585 diag::err_param_default_argument_missing); 586 587 LastMissingDefaultArg = p; 588 } 589 } 590 591 if (LastMissingDefaultArg > 0) { 592 // Some default arguments were missing. Clear out all of the 593 // default arguments up to (and including) the last missing 594 // default argument, so that we leave the function parameters 595 // in a semantically valid state. 596 for (p = 0; p <= LastMissingDefaultArg; ++p) { 597 ParmVarDecl *Param = FD->getParamDecl(p); 598 if (Param->hasDefaultArg()) { 599 Param->setDefaultArg(0); 600 } 601 } 602 } 603 } 604 605 /// isCurrentClassName - Determine whether the identifier II is the 606 /// name of the class type currently being defined. In the case of 607 /// nested classes, this will only return true if II is the name of 608 /// the innermost class. 609 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, 610 const CXXScopeSpec *SS) { 611 assert(getLangOptions().CPlusPlus && "No class names in C!"); 612 613 CXXRecordDecl *CurDecl; 614 if (SS && SS->isSet() && !SS->isInvalid()) { 615 DeclContext *DC = computeDeclContext(*SS, true); 616 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 617 } else 618 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 619 620 if (CurDecl && CurDecl->getIdentifier()) 621 return &II == CurDecl->getIdentifier(); 622 else 623 return false; 624 } 625 626 /// \brief Check the validity of a C++ base class specifier. 627 /// 628 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 629 /// and returns NULL otherwise. 630 CXXBaseSpecifier * 631 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 632 SourceRange SpecifierRange, 633 bool Virtual, AccessSpecifier Access, 634 TypeSourceInfo *TInfo, 635 SourceLocation EllipsisLoc) { 636 QualType BaseType = TInfo->getType(); 637 638 // C++ [class.union]p1: 639 // A union shall not have base classes. 640 if (Class->isUnion()) { 641 Diag(Class->getLocation(), diag::err_base_clause_on_union) 642 << SpecifierRange; 643 return 0; 644 } 645 646 if (EllipsisLoc.isValid() && 647 !TInfo->getType()->containsUnexpandedParameterPack()) { 648 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 649 << TInfo->getTypeLoc().getSourceRange(); 650 EllipsisLoc = SourceLocation(); 651 } 652 653 if (BaseType->isDependentType()) 654 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 655 Class->getTagKind() == TTK_Class, 656 Access, TInfo, EllipsisLoc); 657 658 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 659 660 // Base specifiers must be record types. 661 if (!BaseType->isRecordType()) { 662 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 663 return 0; 664 } 665 666 // C++ [class.union]p1: 667 // A union shall not be used as a base class. 668 if (BaseType->isUnionType()) { 669 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 670 return 0; 671 } 672 673 // C++ [class.derived]p2: 674 // The class-name in a base-specifier shall not be an incompletely 675 // defined class. 676 if (RequireCompleteType(BaseLoc, BaseType, 677 PDiag(diag::err_incomplete_base_class) 678 << SpecifierRange)) { 679 Class->setInvalidDecl(); 680 return 0; 681 } 682 683 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 684 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); 685 assert(BaseDecl && "Record type has no declaration"); 686 BaseDecl = BaseDecl->getDefinition(); 687 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 688 CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 689 assert(CXXBaseDecl && "Base type is not a C++ type"); 690 691 // C++ [class]p3: 692 // If a class is marked final and it appears as a base-type-specifier in 693 // base-clause, the program is ill-formed. 694 if (CXXBaseDecl->hasAttr<FinalAttr>()) { 695 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 696 << CXXBaseDecl->getDeclName(); 697 Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) 698 << CXXBaseDecl->getDeclName(); 699 return 0; 700 } 701 702 if (BaseDecl->isInvalidDecl()) 703 Class->setInvalidDecl(); 704 705 // Create the base specifier. 706 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 707 Class->getTagKind() == TTK_Class, 708 Access, TInfo, EllipsisLoc); 709 } 710 711 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 712 /// one entry in the base class list of a class specifier, for 713 /// example: 714 /// class foo : public bar, virtual private baz { 715 /// 'public bar' and 'virtual private baz' are each base-specifiers. 716 BaseResult 717 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 718 bool Virtual, AccessSpecifier Access, 719 ParsedType basetype, SourceLocation BaseLoc, 720 SourceLocation EllipsisLoc) { 721 if (!classdecl) 722 return true; 723 724 AdjustDeclIfTemplate(classdecl); 725 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 726 if (!Class) 727 return true; 728 729 TypeSourceInfo *TInfo = 0; 730 GetTypeFromParser(basetype, &TInfo); 731 732 if (EllipsisLoc.isInvalid() && 733 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 734 UPPC_BaseType)) 735 return true; 736 737 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 738 Virtual, Access, TInfo, 739 EllipsisLoc)) 740 return BaseSpec; 741 742 return true; 743 } 744 745 /// \brief Performs the actual work of attaching the given base class 746 /// specifiers to a C++ class. 747 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, 748 unsigned NumBases) { 749 if (NumBases == 0) 750 return false; 751 752 // Used to keep track of which base types we have already seen, so 753 // that we can properly diagnose redundant direct base types. Note 754 // that the key is always the unqualified canonical type of the base 755 // class. 756 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 757 758 // Copy non-redundant base specifiers into permanent storage. 759 unsigned NumGoodBases = 0; 760 bool Invalid = false; 761 for (unsigned idx = 0; idx < NumBases; ++idx) { 762 QualType NewBaseType 763 = Context.getCanonicalType(Bases[idx]->getType()); 764 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 765 if (KnownBaseTypes[NewBaseType]) { 766 // C++ [class.mi]p3: 767 // A class shall not be specified as a direct base class of a 768 // derived class more than once. 769 Diag(Bases[idx]->getSourceRange().getBegin(), 770 diag::err_duplicate_base_class) 771 << KnownBaseTypes[NewBaseType]->getType() 772 << Bases[idx]->getSourceRange(); 773 774 // Delete the duplicate base class specifier; we're going to 775 // overwrite its pointer later. 776 Context.Deallocate(Bases[idx]); 777 778 Invalid = true; 779 } else { 780 // Okay, add this new base class. 781 KnownBaseTypes[NewBaseType] = Bases[idx]; 782 Bases[NumGoodBases++] = Bases[idx]; 783 } 784 } 785 786 // Attach the remaining base class specifiers to the derived class. 787 Class->setBases(Bases, NumGoodBases); 788 789 // Delete the remaining (good) base class specifiers, since their 790 // data has been copied into the CXXRecordDecl. 791 for (unsigned idx = 0; idx < NumGoodBases; ++idx) 792 Context.Deallocate(Bases[idx]); 793 794 return Invalid; 795 } 796 797 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 798 /// class, after checking whether there are any duplicate base 799 /// classes. 800 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases, 801 unsigned NumBases) { 802 if (!ClassDecl || !Bases || !NumBases) 803 return; 804 805 AdjustDeclIfTemplate(ClassDecl); 806 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), 807 (CXXBaseSpecifier**)(Bases), NumBases); 808 } 809 810 static CXXRecordDecl *GetClassForType(QualType T) { 811 if (const RecordType *RT = T->getAs<RecordType>()) 812 return cast<CXXRecordDecl>(RT->getDecl()); 813 else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>()) 814 return ICT->getDecl(); 815 else 816 return 0; 817 } 818 819 /// \brief Determine whether the type \p Derived is a C++ class that is 820 /// derived from the type \p Base. 821 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { 822 if (!getLangOptions().CPlusPlus) 823 return false; 824 825 CXXRecordDecl *DerivedRD = GetClassForType(Derived); 826 if (!DerivedRD) 827 return false; 828 829 CXXRecordDecl *BaseRD = GetClassForType(Base); 830 if (!BaseRD) 831 return false; 832 833 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this. 834 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); 835 } 836 837 /// \brief Determine whether the type \p Derived is a C++ class that is 838 /// derived from the type \p Base. 839 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { 840 if (!getLangOptions().CPlusPlus) 841 return false; 842 843 CXXRecordDecl *DerivedRD = GetClassForType(Derived); 844 if (!DerivedRD) 845 return false; 846 847 CXXRecordDecl *BaseRD = GetClassForType(Base); 848 if (!BaseRD) 849 return false; 850 851 return DerivedRD->isDerivedFrom(BaseRD, Paths); 852 } 853 854 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 855 CXXCastPath &BasePathArray) { 856 assert(BasePathArray.empty() && "Base path array must be empty!"); 857 assert(Paths.isRecordingPaths() && "Must record paths!"); 858 859 const CXXBasePath &Path = Paths.front(); 860 861 // We first go backward and check if we have a virtual base. 862 // FIXME: It would be better if CXXBasePath had the base specifier for 863 // the nearest virtual base. 864 unsigned Start = 0; 865 for (unsigned I = Path.size(); I != 0; --I) { 866 if (Path[I - 1].Base->isVirtual()) { 867 Start = I - 1; 868 break; 869 } 870 } 871 872 // Now add all bases. 873 for (unsigned I = Start, E = Path.size(); I != E; ++I) 874 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 875 } 876 877 /// \brief Determine whether the given base path includes a virtual 878 /// base class. 879 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { 880 for (CXXCastPath::const_iterator B = BasePath.begin(), 881 BEnd = BasePath.end(); 882 B != BEnd; ++B) 883 if ((*B)->isVirtual()) 884 return true; 885 886 return false; 887 } 888 889 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 890 /// conversion (where Derived and Base are class types) is 891 /// well-formed, meaning that the conversion is unambiguous (and 892 /// that all of the base classes are accessible). Returns true 893 /// and emits a diagnostic if the code is ill-formed, returns false 894 /// otherwise. Loc is the location where this routine should point to 895 /// if there is an error, and Range is the source range to highlight 896 /// if there is an error. 897 bool 898 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 899 unsigned InaccessibleBaseID, 900 unsigned AmbigiousBaseConvID, 901 SourceLocation Loc, SourceRange Range, 902 DeclarationName Name, 903 CXXCastPath *BasePath) { 904 // First, determine whether the path from Derived to Base is 905 // ambiguous. This is slightly more expensive than checking whether 906 // the Derived to Base conversion exists, because here we need to 907 // explore multiple paths to determine if there is an ambiguity. 908 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 909 /*DetectVirtual=*/false); 910 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); 911 assert(DerivationOkay && 912 "Can only be used with a derived-to-base conversion"); 913 (void)DerivationOkay; 914 915 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { 916 if (InaccessibleBaseID) { 917 // Check that the base class can be accessed. 918 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), 919 InaccessibleBaseID)) { 920 case AR_inaccessible: 921 return true; 922 case AR_accessible: 923 case AR_dependent: 924 case AR_delayed: 925 break; 926 } 927 } 928 929 // Build a base path if necessary. 930 if (BasePath) 931 BuildBasePathArray(Paths, *BasePath); 932 return false; 933 } 934 935 // We know that the derived-to-base conversion is ambiguous, and 936 // we're going to produce a diagnostic. Perform the derived-to-base 937 // search just one more time to compute all of the possible paths so 938 // that we can print them out. This is more expensive than any of 939 // the previous derived-to-base checks we've done, but at this point 940 // performance isn't as much of an issue. 941 Paths.clear(); 942 Paths.setRecordingPaths(true); 943 bool StillOkay = IsDerivedFrom(Derived, Base, Paths); 944 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 945 (void)StillOkay; 946 947 // Build up a textual representation of the ambiguous paths, e.g., 948 // D -> B -> A, that will be used to illustrate the ambiguous 949 // conversions in the diagnostic. We only print one of the paths 950 // to each base class subobject. 951 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 952 953 Diag(Loc, AmbigiousBaseConvID) 954 << Derived << Base << PathDisplayStr << Range << Name; 955 return true; 956 } 957 958 bool 959 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 960 SourceLocation Loc, SourceRange Range, 961 CXXCastPath *BasePath, 962 bool IgnoreAccess) { 963 return CheckDerivedToBaseConversion(Derived, Base, 964 IgnoreAccess ? 0 965 : diag::err_upcast_to_inaccessible_base, 966 diag::err_ambiguous_derived_to_base_conv, 967 Loc, Range, DeclarationName(), 968 BasePath); 969 } 970 971 972 /// @brief Builds a string representing ambiguous paths from a 973 /// specific derived class to different subobjects of the same base 974 /// class. 975 /// 976 /// This function builds a string that can be used in error messages 977 /// to show the different paths that one can take through the 978 /// inheritance hierarchy to go from the derived class to different 979 /// subobjects of a base class. The result looks something like this: 980 /// @code 981 /// struct D -> struct B -> struct A 982 /// struct D -> struct C -> struct A 983 /// @endcode 984 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 985 std::string PathDisplayStr; 986 std::set<unsigned> DisplayedPaths; 987 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 988 Path != Paths.end(); ++Path) { 989 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 990 // We haven't displayed a path to this particular base 991 // class subobject yet. 992 PathDisplayStr += "\n "; 993 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 994 for (CXXBasePath::const_iterator Element = Path->begin(); 995 Element != Path->end(); ++Element) 996 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 997 } 998 } 999 1000 return PathDisplayStr; 1001 } 1002 1003 //===----------------------------------------------------------------------===// 1004 // C++ class member Handling 1005 //===----------------------------------------------------------------------===// 1006 1007 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 1008 Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access, 1009 SourceLocation ASLoc, 1010 SourceLocation ColonLoc) { 1011 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 1012 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 1013 ASLoc, ColonLoc); 1014 CurContext->addHiddenDecl(ASDecl); 1015 return ASDecl; 1016 } 1017 1018 /// CheckOverrideControl - Check C++0x override control semantics. 1019 void Sema::CheckOverrideControl(const Decl *D) { 1020 const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D); 1021 if (!MD || !MD->isVirtual()) 1022 return; 1023 1024 if (MD->isDependentContext()) 1025 return; 1026 1027 // C++0x [class.virtual]p3: 1028 // If a virtual function is marked with the virt-specifier override and does 1029 // not override a member function of a base class, 1030 // the program is ill-formed. 1031 bool HasOverriddenMethods = 1032 MD->begin_overridden_methods() != MD->end_overridden_methods(); 1033 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) { 1034 Diag(MD->getLocation(), 1035 diag::err_function_marked_override_not_overriding) 1036 << MD->getDeclName(); 1037 return; 1038 } 1039 } 1040 1041 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 1042 /// function overrides a virtual member function marked 'final', according to 1043 /// C++0x [class.virtual]p3. 1044 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 1045 const CXXMethodDecl *Old) { 1046 if (!Old->hasAttr<FinalAttr>()) 1047 return false; 1048 1049 Diag(New->getLocation(), diag::err_final_function_overridden) 1050 << New->getDeclName(); 1051 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 1052 return true; 1053 } 1054 1055 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 1056 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 1057 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 1058 /// one has been parsed, and 'HasDeferredInit' is true if an initializer is 1059 /// present but parsing it has been deferred. 1060 Decl * 1061 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 1062 MultiTemplateParamsArg TemplateParameterLists, 1063 ExprTy *BW, const VirtSpecifiers &VS, 1064 ExprTy *InitExpr, bool HasDeferredInit, 1065 bool IsDefinition) { 1066 const DeclSpec &DS = D.getDeclSpec(); 1067 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 1068 DeclarationName Name = NameInfo.getName(); 1069 SourceLocation Loc = NameInfo.getLoc(); 1070 1071 // For anonymous bitfields, the location should point to the type. 1072 if (Loc.isInvalid()) 1073 Loc = D.getSourceRange().getBegin(); 1074 1075 Expr *BitWidth = static_cast<Expr*>(BW); 1076 Expr *Init = static_cast<Expr*>(InitExpr); 1077 1078 assert(isa<CXXRecordDecl>(CurContext)); 1079 assert(!DS.isFriendSpecified()); 1080 assert(!Init || !HasDeferredInit); 1081 1082 bool isFunc = D.isDeclarationOfFunction(); 1083 1084 // C++ 9.2p6: A member shall not be declared to have automatic storage 1085 // duration (auto, register) or with the extern storage-class-specifier. 1086 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 1087 // data members and cannot be applied to names declared const or static, 1088 // and cannot be applied to reference members. 1089 switch (DS.getStorageClassSpec()) { 1090 case DeclSpec::SCS_unspecified: 1091 case DeclSpec::SCS_typedef: 1092 case DeclSpec::SCS_static: 1093 // FALL THROUGH. 1094 break; 1095 case DeclSpec::SCS_mutable: 1096 if (isFunc) { 1097 if (DS.getStorageClassSpecLoc().isValid()) 1098 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 1099 else 1100 Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); 1101 1102 // FIXME: It would be nicer if the keyword was ignored only for this 1103 // declarator. Otherwise we could get follow-up errors. 1104 D.getMutableDeclSpec().ClearStorageClassSpecs(); 1105 } 1106 break; 1107 default: 1108 if (DS.getStorageClassSpecLoc().isValid()) 1109 Diag(DS.getStorageClassSpecLoc(), 1110 diag::err_storageclass_invalid_for_member); 1111 else 1112 Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); 1113 D.getMutableDeclSpec().ClearStorageClassSpecs(); 1114 } 1115 1116 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 1117 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 1118 !isFunc); 1119 1120 Decl *Member; 1121 if (isInstField) { 1122 CXXScopeSpec &SS = D.getCXXScopeSpec(); 1123 1124 if (SS.isSet() && !SS.isInvalid()) { 1125 // The user provided a superfluous scope specifier inside a class 1126 // definition: 1127 // 1128 // class X { 1129 // int X::member; 1130 // }; 1131 DeclContext *DC = 0; 1132 if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext)) 1133 Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) 1134 << Name << FixItHint::CreateRemoval(SS.getRange()); 1135 else 1136 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 1137 << Name << SS.getRange(); 1138 1139 SS.clear(); 1140 } 1141 1142 // FIXME: Check for template parameters! 1143 // FIXME: Check that the name is an identifier! 1144 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, 1145 HasDeferredInit, AS); 1146 assert(Member && "HandleField never returns null"); 1147 } else { 1148 assert(!HasDeferredInit); 1149 1150 Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition); 1151 if (!Member) { 1152 return 0; 1153 } 1154 1155 // Non-instance-fields can't have a bitfield. 1156 if (BitWidth) { 1157 if (Member->isInvalidDecl()) { 1158 // don't emit another diagnostic. 1159 } else if (isa<VarDecl>(Member)) { 1160 // C++ 9.6p3: A bit-field shall not be a static member. 1161 // "static member 'A' cannot be a bit-field" 1162 Diag(Loc, diag::err_static_not_bitfield) 1163 << Name << BitWidth->getSourceRange(); 1164 } else if (isa<TypedefDecl>(Member)) { 1165 // "typedef member 'x' cannot be a bit-field" 1166 Diag(Loc, diag::err_typedef_not_bitfield) 1167 << Name << BitWidth->getSourceRange(); 1168 } else { 1169 // A function typedef ("typedef int f(); f a;"). 1170 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 1171 Diag(Loc, diag::err_not_integral_type_bitfield) 1172 << Name << cast<ValueDecl>(Member)->getType() 1173 << BitWidth->getSourceRange(); 1174 } 1175 1176 BitWidth = 0; 1177 Member->setInvalidDecl(); 1178 } 1179 1180 Member->setAccess(AS); 1181 1182 // If we have declared a member function template, set the access of the 1183 // templated declaration as well. 1184 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 1185 FunTmpl->getTemplatedDecl()->setAccess(AS); 1186 } 1187 1188 if (VS.isOverrideSpecified()) { 1189 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 1190 if (!MD || !MD->isVirtual()) { 1191 Diag(Member->getLocStart(), 1192 diag::override_keyword_only_allowed_on_virtual_member_functions) 1193 << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc()); 1194 } else 1195 MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context)); 1196 } 1197 if (VS.isFinalSpecified()) { 1198 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 1199 if (!MD || !MD->isVirtual()) { 1200 Diag(Member->getLocStart(), 1201 diag::override_keyword_only_allowed_on_virtual_member_functions) 1202 << "final" << FixItHint::CreateRemoval(VS.getFinalLoc()); 1203 } else 1204 MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context)); 1205 } 1206 1207 if (VS.getLastLocation().isValid()) { 1208 // Update the end location of a method that has a virt-specifiers. 1209 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 1210 MD->setRangeEnd(VS.getLastLocation()); 1211 } 1212 1213 CheckOverrideControl(Member); 1214 1215 assert((Name || isInstField) && "No identifier for non-field ?"); 1216 1217 if (Init) 1218 AddInitializerToDecl(Member, Init, false, 1219 DS.getTypeSpecType() == DeclSpec::TST_auto); 1220 else if (DS.getTypeSpecType() == DeclSpec::TST_auto && 1221 DS.getStorageClassSpec() == DeclSpec::SCS_static) { 1222 // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static 1223 // data member if a brace-or-equal-initializer is provided. 1224 Diag(Loc, diag::err_auto_var_requires_init) 1225 << Name << cast<ValueDecl>(Member)->getType(); 1226 Member->setInvalidDecl(); 1227 } 1228 1229 FinalizeDeclaration(Member); 1230 1231 if (isInstField) 1232 FieldCollector->Add(cast<FieldDecl>(Member)); 1233 return Member; 1234 } 1235 1236 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an 1237 /// in-class initializer for a non-static C++ class member, and after 1238 /// instantiating an in-class initializer in a class template. Such actions 1239 /// are deferred until the class is complete. 1240 void 1241 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc, 1242 Expr *InitExpr) { 1243 FieldDecl *FD = cast<FieldDecl>(D); 1244 1245 if (!InitExpr) { 1246 FD->setInvalidDecl(); 1247 FD->removeInClassInitializer(); 1248 return; 1249 } 1250 1251 ExprResult Init = InitExpr; 1252 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 1253 // FIXME: if there is no EqualLoc, this is list-initialization. 1254 Init = PerformCopyInitialization( 1255 InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr); 1256 if (Init.isInvalid()) { 1257 FD->setInvalidDecl(); 1258 return; 1259 } 1260 1261 CheckImplicitConversions(Init.get(), EqualLoc); 1262 } 1263 1264 // C++0x [class.base.init]p7: 1265 // The initialization of each base and member constitutes a 1266 // full-expression. 1267 Init = MaybeCreateExprWithCleanups(Init); 1268 if (Init.isInvalid()) { 1269 FD->setInvalidDecl(); 1270 return; 1271 } 1272 1273 InitExpr = Init.release(); 1274 1275 FD->setInClassInitializer(InitExpr); 1276 } 1277 1278 /// \brief Find the direct and/or virtual base specifiers that 1279 /// correspond to the given base type, for use in base initialization 1280 /// within a constructor. 1281 static bool FindBaseInitializer(Sema &SemaRef, 1282 CXXRecordDecl *ClassDecl, 1283 QualType BaseType, 1284 const CXXBaseSpecifier *&DirectBaseSpec, 1285 const CXXBaseSpecifier *&VirtualBaseSpec) { 1286 // First, check for a direct base class. 1287 DirectBaseSpec = 0; 1288 for (CXXRecordDecl::base_class_const_iterator Base 1289 = ClassDecl->bases_begin(); 1290 Base != ClassDecl->bases_end(); ++Base) { 1291 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { 1292 // We found a direct base of this type. That's what we're 1293 // initializing. 1294 DirectBaseSpec = &*Base; 1295 break; 1296 } 1297 } 1298 1299 // Check for a virtual base class. 1300 // FIXME: We might be able to short-circuit this if we know in advance that 1301 // there are no virtual bases. 1302 VirtualBaseSpec = 0; 1303 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 1304 // We haven't found a base yet; search the class hierarchy for a 1305 // virtual base class. 1306 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1307 /*DetectVirtual=*/false); 1308 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), 1309 BaseType, Paths)) { 1310 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 1311 Path != Paths.end(); ++Path) { 1312 if (Path->back().Base->isVirtual()) { 1313 VirtualBaseSpec = Path->back().Base; 1314 break; 1315 } 1316 } 1317 } 1318 } 1319 1320 return DirectBaseSpec || VirtualBaseSpec; 1321 } 1322 1323 /// ActOnMemInitializer - Handle a C++ member initializer. 1324 MemInitResult 1325 Sema::ActOnMemInitializer(Decl *ConstructorD, 1326 Scope *S, 1327 CXXScopeSpec &SS, 1328 IdentifierInfo *MemberOrBase, 1329 ParsedType TemplateTypeTy, 1330 SourceLocation IdLoc, 1331 SourceLocation LParenLoc, 1332 ExprTy **Args, unsigned NumArgs, 1333 SourceLocation RParenLoc, 1334 SourceLocation EllipsisLoc) { 1335 if (!ConstructorD) 1336 return true; 1337 1338 AdjustDeclIfTemplate(ConstructorD); 1339 1340 CXXConstructorDecl *Constructor 1341 = dyn_cast<CXXConstructorDecl>(ConstructorD); 1342 if (!Constructor) { 1343 // The user wrote a constructor initializer on a function that is 1344 // not a C++ constructor. Ignore the error for now, because we may 1345 // have more member initializers coming; we'll diagnose it just 1346 // once in ActOnMemInitializers. 1347 return true; 1348 } 1349 1350 CXXRecordDecl *ClassDecl = Constructor->getParent(); 1351 1352 // C++ [class.base.init]p2: 1353 // Names in a mem-initializer-id are looked up in the scope of the 1354 // constructor's class and, if not found in that scope, are looked 1355 // up in the scope containing the constructor's definition. 1356 // [Note: if the constructor's class contains a member with the 1357 // same name as a direct or virtual base class of the class, a 1358 // mem-initializer-id naming the member or base class and composed 1359 // of a single identifier refers to the class member. A 1360 // mem-initializer-id for the hidden base class may be specified 1361 // using a qualified name. ] 1362 if (!SS.getScopeRep() && !TemplateTypeTy) { 1363 // Look for a member, first. 1364 FieldDecl *Member = 0; 1365 DeclContext::lookup_result Result 1366 = ClassDecl->lookup(MemberOrBase); 1367 if (Result.first != Result.second) { 1368 Member = dyn_cast<FieldDecl>(*Result.first); 1369 1370 if (Member) { 1371 if (EllipsisLoc.isValid()) 1372 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 1373 << MemberOrBase << SourceRange(IdLoc, RParenLoc); 1374 1375 return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, 1376 LParenLoc, RParenLoc); 1377 } 1378 1379 // Handle anonymous union case. 1380 if (IndirectFieldDecl* IndirectField 1381 = dyn_cast<IndirectFieldDecl>(*Result.first)) { 1382 if (EllipsisLoc.isValid()) 1383 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 1384 << MemberOrBase << SourceRange(IdLoc, RParenLoc); 1385 1386 return BuildMemberInitializer(IndirectField, (Expr**)Args, 1387 NumArgs, IdLoc, 1388 LParenLoc, RParenLoc); 1389 } 1390 } 1391 } 1392 // It didn't name a member, so see if it names a class. 1393 QualType BaseType; 1394 TypeSourceInfo *TInfo = 0; 1395 1396 if (TemplateTypeTy) { 1397 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 1398 } else { 1399 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 1400 LookupParsedName(R, S, &SS); 1401 1402 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 1403 if (!TyD) { 1404 if (R.isAmbiguous()) return true; 1405 1406 // We don't want access-control diagnostics here. 1407 R.suppressDiagnostics(); 1408 1409 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 1410 bool NotUnknownSpecialization = false; 1411 DeclContext *DC = computeDeclContext(SS, false); 1412 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 1413 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 1414 1415 if (!NotUnknownSpecialization) { 1416 // When the scope specifier can refer to a member of an unknown 1417 // specialization, we take it as a type name. 1418 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 1419 SS.getWithLocInContext(Context), 1420 *MemberOrBase, IdLoc); 1421 if (BaseType.isNull()) 1422 return true; 1423 1424 R.clear(); 1425 R.setLookupName(MemberOrBase); 1426 } 1427 } 1428 1429 // If no results were found, try to correct typos. 1430 TypoCorrection Corr; 1431 if (R.empty() && BaseType.isNull() && 1432 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 1433 ClassDecl, false, CTC_NoKeywords))) { 1434 std::string CorrectedStr(Corr.getAsString(getLangOptions())); 1435 std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions())); 1436 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 1437 if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) { 1438 // We have found a non-static data member with a similar 1439 // name to what was typed; complain and initialize that 1440 // member. 1441 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) 1442 << MemberOrBase << true << CorrectedQuotedStr 1443 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); 1444 Diag(Member->getLocation(), diag::note_previous_decl) 1445 << CorrectedQuotedStr; 1446 1447 return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, 1448 LParenLoc, RParenLoc); 1449 } 1450 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 1451 const CXXBaseSpecifier *DirectBaseSpec; 1452 const CXXBaseSpecifier *VirtualBaseSpec; 1453 if (FindBaseInitializer(*this, ClassDecl, 1454 Context.getTypeDeclType(Type), 1455 DirectBaseSpec, VirtualBaseSpec)) { 1456 // We have found a direct or virtual base class with a 1457 // similar name to what was typed; complain and initialize 1458 // that base class. 1459 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) 1460 << MemberOrBase << false << CorrectedQuotedStr 1461 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); 1462 1463 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec 1464 : VirtualBaseSpec; 1465 Diag(BaseSpec->getSourceRange().getBegin(), 1466 diag::note_base_class_specified_here) 1467 << BaseSpec->getType() 1468 << BaseSpec->getSourceRange(); 1469 1470 TyD = Type; 1471 } 1472 } 1473 } 1474 1475 if (!TyD && BaseType.isNull()) { 1476 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 1477 << MemberOrBase << SourceRange(IdLoc, RParenLoc); 1478 return true; 1479 } 1480 } 1481 1482 if (BaseType.isNull()) { 1483 BaseType = Context.getTypeDeclType(TyD); 1484 if (SS.isSet()) { 1485 NestedNameSpecifier *Qualifier = 1486 static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1487 1488 // FIXME: preserve source range information 1489 BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); 1490 } 1491 } 1492 } 1493 1494 if (!TInfo) 1495 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 1496 1497 return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, 1498 LParenLoc, RParenLoc, ClassDecl, EllipsisLoc); 1499 } 1500 1501 /// Checks an initializer expression for use of uninitialized fields, such as 1502 /// containing the field that is being initialized. Returns true if there is an 1503 /// uninitialized field was used an updates the SourceLocation parameter; false 1504 /// otherwise. 1505 static bool InitExprContainsUninitializedFields(const Stmt *S, 1506 const ValueDecl *LhsField, 1507 SourceLocation *L) { 1508 assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField)); 1509 1510 if (isa<CallExpr>(S)) { 1511 // Do not descend into function calls or constructors, as the use 1512 // of an uninitialized field may be valid. One would have to inspect 1513 // the contents of the function/ctor to determine if it is safe or not. 1514 // i.e. Pass-by-value is never safe, but pass-by-reference and pointers 1515 // may be safe, depending on what the function/ctor does. 1516 return false; 1517 } 1518 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) { 1519 const NamedDecl *RhsField = ME->getMemberDecl(); 1520 1521 if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) { 1522 // The member expression points to a static data member. 1523 assert(VD->isStaticDataMember() && 1524 "Member points to non-static data member!"); 1525 (void)VD; 1526 return false; 1527 } 1528 1529 if (isa<EnumConstantDecl>(RhsField)) { 1530 // The member expression points to an enum. 1531 return false; 1532 } 1533 1534 if (RhsField == LhsField) { 1535 // Initializing a field with itself. Throw a warning. 1536 // But wait; there are exceptions! 1537 // Exception #1: The field may not belong to this record. 1538 // e.g. Foo(const Foo& rhs) : A(rhs.A) {} 1539 const Expr *base = ME->getBase(); 1540 if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { 1541 // Even though the field matches, it does not belong to this record. 1542 return false; 1543 } 1544 // None of the exceptions triggered; return true to indicate an 1545 // uninitialized field was used. 1546 *L = ME->getMemberLoc(); 1547 return true; 1548 } 1549 } else if (isa<UnaryExprOrTypeTraitExpr>(S)) { 1550 // sizeof/alignof doesn't reference contents, do not warn. 1551 return false; 1552 } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) { 1553 // address-of doesn't reference contents (the pointer may be dereferenced 1554 // in the same expression but it would be rare; and weird). 1555 if (UOE->getOpcode() == UO_AddrOf) 1556 return false; 1557 } 1558 for (Stmt::const_child_range it = S->children(); it; ++it) { 1559 if (!*it) { 1560 // An expression such as 'member(arg ?: "")' may trigger this. 1561 continue; 1562 } 1563 if (InitExprContainsUninitializedFields(*it, LhsField, L)) 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 MemInitResult 1570 Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args, 1571 unsigned NumArgs, SourceLocation IdLoc, 1572 SourceLocation LParenLoc, 1573 SourceLocation RParenLoc) { 1574 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 1575 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 1576 assert((DirectMember || IndirectMember) && 1577 "Member must be a FieldDecl or IndirectFieldDecl"); 1578 1579 if (Member->isInvalidDecl()) 1580 return true; 1581 1582 // Diagnose value-uses of fields to initialize themselves, e.g. 1583 // foo(foo) 1584 // where foo is not also a parameter to the constructor. 1585 // TODO: implement -Wuninitialized and fold this into that framework. 1586 for (unsigned i = 0; i < NumArgs; ++i) { 1587 SourceLocation L; 1588 if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { 1589 // FIXME: Return true in the case when other fields are used before being 1590 // uninitialized. For example, let this field be the i'th field. When 1591 // initializing the i'th field, throw a warning if any of the >= i'th 1592 // fields are used, as they are not yet initialized. 1593 // Right now we are only handling the case where the i'th field uses 1594 // itself in its initializer. 1595 Diag(L, diag::warn_field_is_uninit); 1596 } 1597 } 1598 1599 bool HasDependentArg = false; 1600 for (unsigned i = 0; i < NumArgs; i++) 1601 HasDependentArg |= Args[i]->isTypeDependent(); 1602 1603 Expr *Init; 1604 if (Member->getType()->isDependentType() || HasDependentArg) { 1605 // Can't check initialization for a member of dependent type or when 1606 // any of the arguments are type-dependent expressions. 1607 Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, 1608 RParenLoc, 1609 Member->getType().getNonReferenceType()); 1610 1611 DiscardCleanupsInEvaluationContext(); 1612 } else { 1613 // Initialize the member. 1614 InitializedEntity MemberEntity = 1615 DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0) 1616 : InitializedEntity::InitializeMember(IndirectMember, 0); 1617 InitializationKind Kind = 1618 InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc); 1619 1620 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); 1621 1622 ExprResult MemberInit = 1623 InitSeq.Perform(*this, MemberEntity, Kind, 1624 MultiExprArg(*this, Args, NumArgs), 0); 1625 if (MemberInit.isInvalid()) 1626 return true; 1627 1628 CheckImplicitConversions(MemberInit.get(), LParenLoc); 1629 1630 // C++0x [class.base.init]p7: 1631 // The initialization of each base and member constitutes a 1632 // full-expression. 1633 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 1634 if (MemberInit.isInvalid()) 1635 return true; 1636 1637 // If we are in a dependent context, template instantiation will 1638 // perform this type-checking again. Just save the arguments that we 1639 // received in a ParenListExpr. 1640 // FIXME: This isn't quite ideal, since our ASTs don't capture all 1641 // of the information that we have about the member 1642 // initializer. However, deconstructing the ASTs is a dicey process, 1643 // and this approach is far more likely to get the corner cases right. 1644 if (CurContext->isDependentContext()) 1645 Init = new (Context) ParenListExpr( 1646 Context, LParenLoc, Args, NumArgs, RParenLoc, 1647 Member->getType().getNonReferenceType()); 1648 else 1649 Init = MemberInit.get(); 1650 } 1651 1652 if (DirectMember) { 1653 return new (Context) CXXCtorInitializer(Context, DirectMember, 1654 IdLoc, LParenLoc, Init, 1655 RParenLoc); 1656 } else { 1657 return new (Context) CXXCtorInitializer(Context, IndirectMember, 1658 IdLoc, LParenLoc, Init, 1659 RParenLoc); 1660 } 1661 } 1662 1663 MemInitResult 1664 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, 1665 Expr **Args, unsigned NumArgs, 1666 SourceLocation NameLoc, 1667 SourceLocation LParenLoc, 1668 SourceLocation RParenLoc, 1669 CXXRecordDecl *ClassDecl) { 1670 SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 1671 if (!LangOpts.CPlusPlus0x) 1672 return Diag(Loc, diag::err_delegation_0x_only) 1673 << TInfo->getTypeLoc().getLocalSourceRange(); 1674 1675 // Initialize the object. 1676 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 1677 QualType(ClassDecl->getTypeForDecl(), 0)); 1678 InitializationKind Kind = 1679 InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc); 1680 1681 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs); 1682 1683 ExprResult DelegationInit = 1684 InitSeq.Perform(*this, DelegationEntity, Kind, 1685 MultiExprArg(*this, Args, NumArgs), 0); 1686 if (DelegationInit.isInvalid()) 1687 return true; 1688 1689 CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get()); 1690 CXXConstructorDecl *Constructor 1691 = ConExpr->getConstructor(); 1692 assert(Constructor && "Delegating constructor with no target?"); 1693 1694 CheckImplicitConversions(DelegationInit.get(), LParenLoc); 1695 1696 // C++0x [class.base.init]p7: 1697 // The initialization of each base and member constitutes a 1698 // full-expression. 1699 DelegationInit = MaybeCreateExprWithCleanups(DelegationInit); 1700 if (DelegationInit.isInvalid()) 1701 return true; 1702 1703 assert(!CurContext->isDependentContext()); 1704 return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor, 1705 DelegationInit.takeAs<Expr>(), 1706 RParenLoc); 1707 } 1708 1709 MemInitResult 1710 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 1711 Expr **Args, unsigned NumArgs, 1712 SourceLocation LParenLoc, SourceLocation RParenLoc, 1713 CXXRecordDecl *ClassDecl, 1714 SourceLocation EllipsisLoc) { 1715 bool HasDependentArg = false; 1716 for (unsigned i = 0; i < NumArgs; i++) 1717 HasDependentArg |= Args[i]->isTypeDependent(); 1718 1719 SourceLocation BaseLoc 1720 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 1721 1722 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 1723 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 1724 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 1725 1726 // C++ [class.base.init]p2: 1727 // [...] Unless the mem-initializer-id names a nonstatic data 1728 // member of the constructor's class or a direct or virtual base 1729 // of that class, the mem-initializer is ill-formed. A 1730 // mem-initializer-list can initialize a base class using any 1731 // name that denotes that base class type. 1732 bool Dependent = BaseType->isDependentType() || HasDependentArg; 1733 1734 if (EllipsisLoc.isValid()) { 1735 // This is a pack expansion. 1736 if (!BaseType->containsUnexpandedParameterPack()) { 1737 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1738 << SourceRange(BaseLoc, RParenLoc); 1739 1740 EllipsisLoc = SourceLocation(); 1741 } 1742 } else { 1743 // Check for any unexpanded parameter packs. 1744 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 1745 return true; 1746 1747 for (unsigned I = 0; I != NumArgs; ++I) 1748 if (DiagnoseUnexpandedParameterPack(Args[I])) 1749 return true; 1750 } 1751 1752 // Check for direct and virtual base classes. 1753 const CXXBaseSpecifier *DirectBaseSpec = 0; 1754 const CXXBaseSpecifier *VirtualBaseSpec = 0; 1755 if (!Dependent) { 1756 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 1757 BaseType)) 1758 return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc, 1759 LParenLoc, RParenLoc, ClassDecl); 1760 1761 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 1762 VirtualBaseSpec); 1763 1764 // C++ [base.class.init]p2: 1765 // Unless the mem-initializer-id names a nonstatic data member of the 1766 // constructor's class or a direct or virtual base of that class, the 1767 // mem-initializer is ill-formed. 1768 if (!DirectBaseSpec && !VirtualBaseSpec) { 1769 // If the class has any dependent bases, then it's possible that 1770 // one of those types will resolve to the same type as 1771 // BaseType. Therefore, just treat this as a dependent base 1772 // class initialization. FIXME: Should we try to check the 1773 // initialization anyway? It seems odd. 1774 if (ClassDecl->hasAnyDependentBases()) 1775 Dependent = true; 1776 else 1777 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 1778 << BaseType << Context.getTypeDeclType(ClassDecl) 1779 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 1780 } 1781 } 1782 1783 if (Dependent) { 1784 // Can't check initialization for a base of dependent type or when 1785 // any of the arguments are type-dependent expressions. 1786 ExprResult BaseInit 1787 = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, 1788 RParenLoc, BaseType)); 1789 1790 DiscardCleanupsInEvaluationContext(); 1791 1792 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 1793 /*IsVirtual=*/false, 1794 LParenLoc, 1795 BaseInit.takeAs<Expr>(), 1796 RParenLoc, 1797 EllipsisLoc); 1798 } 1799 1800 // C++ [base.class.init]p2: 1801 // If a mem-initializer-id is ambiguous because it designates both 1802 // a direct non-virtual base class and an inherited virtual base 1803 // class, the mem-initializer is ill-formed. 1804 if (DirectBaseSpec && VirtualBaseSpec) 1805 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 1806 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 1807 1808 CXXBaseSpecifier *BaseSpec 1809 = const_cast<CXXBaseSpecifier *>(DirectBaseSpec); 1810 if (!BaseSpec) 1811 BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec); 1812 1813 // Initialize the base. 1814 InitializedEntity BaseEntity = 1815 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 1816 InitializationKind Kind = 1817 InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc); 1818 1819 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); 1820 1821 ExprResult BaseInit = 1822 InitSeq.Perform(*this, BaseEntity, Kind, 1823 MultiExprArg(*this, Args, NumArgs), 0); 1824 if (BaseInit.isInvalid()) 1825 return true; 1826 1827 CheckImplicitConversions(BaseInit.get(), LParenLoc); 1828 1829 // C++0x [class.base.init]p7: 1830 // The initialization of each base and member constitutes a 1831 // full-expression. 1832 BaseInit = MaybeCreateExprWithCleanups(BaseInit); 1833 if (BaseInit.isInvalid()) 1834 return true; 1835 1836 // If we are in a dependent context, template instantiation will 1837 // perform this type-checking again. Just save the arguments that we 1838 // received in a ParenListExpr. 1839 // FIXME: This isn't quite ideal, since our ASTs don't capture all 1840 // of the information that we have about the base 1841 // initializer. However, deconstructing the ASTs is a dicey process, 1842 // and this approach is far more likely to get the corner cases right. 1843 if (CurContext->isDependentContext()) { 1844 ExprResult Init 1845 = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, 1846 RParenLoc, BaseType)); 1847 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 1848 BaseSpec->isVirtual(), 1849 LParenLoc, 1850 Init.takeAs<Expr>(), 1851 RParenLoc, 1852 EllipsisLoc); 1853 } 1854 1855 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 1856 BaseSpec->isVirtual(), 1857 LParenLoc, 1858 BaseInit.takeAs<Expr>(), 1859 RParenLoc, 1860 EllipsisLoc); 1861 } 1862 1863 /// ImplicitInitializerKind - How an implicit base or member initializer should 1864 /// initialize its base or member. 1865 enum ImplicitInitializerKind { 1866 IIK_Default, 1867 IIK_Copy, 1868 IIK_Move 1869 }; 1870 1871 static bool 1872 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 1873 ImplicitInitializerKind ImplicitInitKind, 1874 CXXBaseSpecifier *BaseSpec, 1875 bool IsInheritedVirtualBase, 1876 CXXCtorInitializer *&CXXBaseInit) { 1877 InitializedEntity InitEntity 1878 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 1879 IsInheritedVirtualBase); 1880 1881 ExprResult BaseInit; 1882 1883 switch (ImplicitInitKind) { 1884 case IIK_Default: { 1885 InitializationKind InitKind 1886 = InitializationKind::CreateDefault(Constructor->getLocation()); 1887 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); 1888 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, 1889 MultiExprArg(SemaRef, 0, 0)); 1890 break; 1891 } 1892 1893 case IIK_Copy: { 1894 ParmVarDecl *Param = Constructor->getParamDecl(0); 1895 QualType ParamType = Param->getType().getNonReferenceType(); 1896 1897 Expr *CopyCtorArg = 1898 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param, 1899 Constructor->getLocation(), ParamType, 1900 VK_LValue, 0); 1901 1902 // Cast to the base class to avoid ambiguities. 1903 QualType ArgTy = 1904 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 1905 ParamType.getQualifiers()); 1906 1907 CXXCastPath BasePath; 1908 BasePath.push_back(BaseSpec); 1909 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 1910 CK_UncheckedDerivedToBase, 1911 VK_LValue, &BasePath).take(); 1912 1913 InitializationKind InitKind 1914 = InitializationKind::CreateDirect(Constructor->getLocation(), 1915 SourceLocation(), SourceLocation()); 1916 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 1917 &CopyCtorArg, 1); 1918 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, 1919 MultiExprArg(&CopyCtorArg, 1)); 1920 break; 1921 } 1922 1923 case IIK_Move: 1924 assert(false && "Unhandled initializer kind!"); 1925 } 1926 1927 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 1928 if (BaseInit.isInvalid()) 1929 return true; 1930 1931 CXXBaseInit = 1932 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 1933 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 1934 SourceLocation()), 1935 BaseSpec->isVirtual(), 1936 SourceLocation(), 1937 BaseInit.takeAs<Expr>(), 1938 SourceLocation(), 1939 SourceLocation()); 1940 1941 return false; 1942 } 1943 1944 static bool 1945 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 1946 ImplicitInitializerKind ImplicitInitKind, 1947 FieldDecl *Field, 1948 CXXCtorInitializer *&CXXMemberInit) { 1949 if (Field->isInvalidDecl()) 1950 return true; 1951 1952 SourceLocation Loc = Constructor->getLocation(); 1953 1954 if (ImplicitInitKind == IIK_Copy) { 1955 ParmVarDecl *Param = Constructor->getParamDecl(0); 1956 QualType ParamType = Param->getType().getNonReferenceType(); 1957 1958 // Suppress copying zero-width bitfields. 1959 if (const Expr *Width = Field->getBitWidth()) 1960 if (Width->EvaluateAsInt(SemaRef.Context) == 0) 1961 return false; 1962 1963 Expr *MemberExprBase = 1964 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param, 1965 Loc, ParamType, VK_LValue, 0); 1966 1967 // Build a reference to this field within the parameter. 1968 CXXScopeSpec SS; 1969 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 1970 Sema::LookupMemberName); 1971 MemberLookup.addDecl(Field, AS_public); 1972 MemberLookup.resolveKind(); 1973 ExprResult CopyCtorArg 1974 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 1975 ParamType, Loc, 1976 /*IsArrow=*/false, 1977 SS, 1978 /*FirstQualifierInScope=*/0, 1979 MemberLookup, 1980 /*TemplateArgs=*/0); 1981 if (CopyCtorArg.isInvalid()) 1982 return true; 1983 1984 // When the field we are copying is an array, create index variables for 1985 // each dimension of the array. We use these index variables to subscript 1986 // the source array, and other clients (e.g., CodeGen) will perform the 1987 // necessary iteration with these index variables. 1988 llvm::SmallVector<VarDecl *, 4> IndexVariables; 1989 QualType BaseType = Field->getType(); 1990 QualType SizeType = SemaRef.Context.getSizeType(); 1991 while (const ConstantArrayType *Array 1992 = SemaRef.Context.getAsConstantArrayType(BaseType)) { 1993 // Create the iteration variable for this array index. 1994 IdentifierInfo *IterationVarName = 0; 1995 { 1996 llvm::SmallString<8> Str; 1997 llvm::raw_svector_ostream OS(Str); 1998 OS << "__i" << IndexVariables.size(); 1999 IterationVarName = &SemaRef.Context.Idents.get(OS.str()); 2000 } 2001 VarDecl *IterationVar 2002 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc, 2003 IterationVarName, SizeType, 2004 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), 2005 SC_None, SC_None); 2006 IndexVariables.push_back(IterationVar); 2007 2008 // Create a reference to the iteration variable. 2009 ExprResult IterationVarRef 2010 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc); 2011 assert(!IterationVarRef.isInvalid() && 2012 "Reference to invented variable cannot fail!"); 2013 2014 // Subscript the array with this iteration variable. 2015 CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(), 2016 Loc, 2017 IterationVarRef.take(), 2018 Loc); 2019 if (CopyCtorArg.isInvalid()) 2020 return true; 2021 2022 BaseType = Array->getElementType(); 2023 } 2024 2025 // Construct the entity that we will be initializing. For an array, this 2026 // will be first element in the array, which may require several levels 2027 // of array-subscript entities. 2028 llvm::SmallVector<InitializedEntity, 4> Entities; 2029 Entities.reserve(1 + IndexVariables.size()); 2030 Entities.push_back(InitializedEntity::InitializeMember(Field)); 2031 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) 2032 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, 2033 0, 2034 Entities.back())); 2035 2036 // Direct-initialize to use the copy constructor. 2037 InitializationKind InitKind = 2038 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 2039 2040 Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>(); 2041 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, 2042 &CopyCtorArgE, 1); 2043 2044 ExprResult MemberInit 2045 = InitSeq.Perform(SemaRef, Entities.back(), InitKind, 2046 MultiExprArg(&CopyCtorArgE, 1)); 2047 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 2048 if (MemberInit.isInvalid()) 2049 return true; 2050 2051 CXXMemberInit 2052 = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc, 2053 MemberInit.takeAs<Expr>(), Loc, 2054 IndexVariables.data(), 2055 IndexVariables.size()); 2056 return false; 2057 } 2058 2059 assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); 2060 2061 QualType FieldBaseElementType = 2062 SemaRef.Context.getBaseElementType(Field->getType()); 2063 2064 if (FieldBaseElementType->isRecordType()) { 2065 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 2066 InitializationKind InitKind = 2067 InitializationKind::CreateDefault(Loc); 2068 2069 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); 2070 ExprResult MemberInit = 2071 InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg()); 2072 2073 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 2074 if (MemberInit.isInvalid()) 2075 return true; 2076 2077 CXXMemberInit = 2078 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 2079 Field, Loc, Loc, 2080 MemberInit.get(), 2081 Loc); 2082 return false; 2083 } 2084 2085 if (!Field->getParent()->isUnion()) { 2086 if (FieldBaseElementType->isReferenceType()) { 2087 SemaRef.Diag(Constructor->getLocation(), 2088 diag::err_uninitialized_member_in_ctor) 2089 << (int)Constructor->isImplicit() 2090 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 2091 << 0 << Field->getDeclName(); 2092 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 2093 return true; 2094 } 2095 2096 if (FieldBaseElementType.isConstQualified()) { 2097 SemaRef.Diag(Constructor->getLocation(), 2098 diag::err_uninitialized_member_in_ctor) 2099 << (int)Constructor->isImplicit() 2100 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 2101 << 1 << Field->getDeclName(); 2102 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 2103 return true; 2104 } 2105 } 2106 2107 if (SemaRef.getLangOptions().ObjCAutoRefCount && 2108 FieldBaseElementType->isObjCRetainableType() && 2109 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None && 2110 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 2111 // Instant objects: 2112 // Default-initialize Objective-C pointers to NULL. 2113 CXXMemberInit 2114 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 2115 Loc, Loc, 2116 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 2117 Loc); 2118 return false; 2119 } 2120 2121 // Nothing to initialize. 2122 CXXMemberInit = 0; 2123 return false; 2124 } 2125 2126 namespace { 2127 struct BaseAndFieldInfo { 2128 Sema &S; 2129 CXXConstructorDecl *Ctor; 2130 bool AnyErrorsInInits; 2131 ImplicitInitializerKind IIK; 2132 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 2133 llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit; 2134 2135 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 2136 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 2137 // FIXME: Handle implicit move constructors. 2138 if (Ctor->isImplicit() && Ctor->isCopyConstructor()) 2139 IIK = IIK_Copy; 2140 else 2141 IIK = IIK_Default; 2142 } 2143 }; 2144 } 2145 2146 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 2147 FieldDecl *Top, FieldDecl *Field) { 2148 2149 // Overwhelmingly common case: we have a direct initializer for this field. 2150 if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) { 2151 Info.AllToInit.push_back(Init); 2152 return false; 2153 } 2154 2155 // C++0x [class.base.init]p8: if the entity is a non-static data member that 2156 // has a brace-or-equal-initializer, the entity is initialized as specified 2157 // in [dcl.init]. 2158 if (Field->hasInClassInitializer()) { 2159 Info.AllToInit.push_back( 2160 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 2161 SourceLocation(), 2162 SourceLocation(), 0, 2163 SourceLocation())); 2164 return false; 2165 } 2166 2167 if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) { 2168 const RecordType *FieldClassType = Field->getType()->getAs<RecordType>(); 2169 assert(FieldClassType && "anonymous struct/union without record type"); 2170 CXXRecordDecl *FieldClassDecl 2171 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 2172 2173 // Even though union members never have non-trivial default 2174 // constructions in C++03, we still build member initializers for aggregate 2175 // record types which can be union members, and C++0x allows non-trivial 2176 // default constructors for union members, so we ensure that only one 2177 // member is initialized for these. 2178 if (FieldClassDecl->isUnion()) { 2179 // First check for an explicit initializer for one field. 2180 for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), 2181 EA = FieldClassDecl->field_end(); FA != EA; FA++) { 2182 if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) { 2183 Info.AllToInit.push_back(Init); 2184 2185 // Once we've initialized a field of an anonymous union, the union 2186 // field in the class is also initialized, so exit immediately. 2187 return false; 2188 } else if ((*FA)->isAnonymousStructOrUnion()) { 2189 if (CollectFieldInitializer(SemaRef, Info, Top, *FA)) 2190 return true; 2191 } 2192 } 2193 2194 // FIXME: C++0x unrestricted unions might call a default constructor here. 2195 return false; 2196 } else { 2197 // For structs, we simply descend through to initialize all members where 2198 // necessary. 2199 for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), 2200 EA = FieldClassDecl->field_end(); FA != EA; FA++) { 2201 if (CollectFieldInitializer(SemaRef, Info, Top, *FA)) 2202 return true; 2203 } 2204 } 2205 } 2206 2207 // Don't try to build an implicit initializer if there were semantic 2208 // errors in any of the initializers (and therefore we might be 2209 // missing some that the user actually wrote). 2210 if (Info.AnyErrorsInInits || Field->isInvalidDecl()) 2211 return false; 2212 2213 CXXCtorInitializer *Init = 0; 2214 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init)) 2215 return true; 2216 2217 if (Init) 2218 Info.AllToInit.push_back(Init); 2219 2220 return false; 2221 } 2222 2223 bool 2224 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 2225 CXXCtorInitializer *Initializer) { 2226 assert(Initializer->isDelegatingInitializer()); 2227 Constructor->setNumCtorInitializers(1); 2228 CXXCtorInitializer **initializer = 2229 new (Context) CXXCtorInitializer*[1]; 2230 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 2231 Constructor->setCtorInitializers(initializer); 2232 2233 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 2234 MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor); 2235 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 2236 } 2237 2238 DelegatingCtorDecls.push_back(Constructor); 2239 2240 return false; 2241 } 2242 2243 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, 2244 CXXCtorInitializer **Initializers, 2245 unsigned NumInitializers, 2246 bool AnyErrors) { 2247 if (Constructor->getDeclContext()->isDependentContext()) { 2248 // Just store the initializers as written, they will be checked during 2249 // instantiation. 2250 if (NumInitializers > 0) { 2251 Constructor->setNumCtorInitializers(NumInitializers); 2252 CXXCtorInitializer **baseOrMemberInitializers = 2253 new (Context) CXXCtorInitializer*[NumInitializers]; 2254 memcpy(baseOrMemberInitializers, Initializers, 2255 NumInitializers * sizeof(CXXCtorInitializer*)); 2256 Constructor->setCtorInitializers(baseOrMemberInitializers); 2257 } 2258 2259 return false; 2260 } 2261 2262 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 2263 2264 // We need to build the initializer AST according to order of construction 2265 // and not what user specified in the Initializers list. 2266 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 2267 if (!ClassDecl) 2268 return true; 2269 2270 bool HadError = false; 2271 2272 for (unsigned i = 0; i < NumInitializers; i++) { 2273 CXXCtorInitializer *Member = Initializers[i]; 2274 2275 if (Member->isBaseInitializer()) 2276 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 2277 else 2278 Info.AllBaseFields[Member->getAnyMember()] = Member; 2279 } 2280 2281 // Keep track of the direct virtual bases. 2282 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 2283 for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), 2284 E = ClassDecl->bases_end(); I != E; ++I) { 2285 if (I->isVirtual()) 2286 DirectVBases.insert(I); 2287 } 2288 2289 // Push virtual bases before others. 2290 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), 2291 E = ClassDecl->vbases_end(); VBase != E; ++VBase) { 2292 2293 if (CXXCtorInitializer *Value 2294 = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { 2295 Info.AllToInit.push_back(Value); 2296 } else if (!AnyErrors) { 2297 bool IsInheritedVirtualBase = !DirectVBases.count(VBase); 2298 CXXCtorInitializer *CXXBaseInit; 2299 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 2300 VBase, IsInheritedVirtualBase, 2301 CXXBaseInit)) { 2302 HadError = true; 2303 continue; 2304 } 2305 2306 Info.AllToInit.push_back(CXXBaseInit); 2307 } 2308 } 2309 2310 // Non-virtual bases. 2311 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 2312 E = ClassDecl->bases_end(); Base != E; ++Base) { 2313 // Virtuals are in the virtual base list and already constructed. 2314 if (Base->isVirtual()) 2315 continue; 2316 2317 if (CXXCtorInitializer *Value 2318 = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { 2319 Info.AllToInit.push_back(Value); 2320 } else if (!AnyErrors) { 2321 CXXCtorInitializer *CXXBaseInit; 2322 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 2323 Base, /*IsInheritedVirtualBase=*/false, 2324 CXXBaseInit)) { 2325 HadError = true; 2326 continue; 2327 } 2328 2329 Info.AllToInit.push_back(CXXBaseInit); 2330 } 2331 } 2332 2333 // Fields. 2334 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 2335 E = ClassDecl->field_end(); Field != E; ++Field) { 2336 if ((*Field)->getType()->isIncompleteArrayType()) { 2337 assert(ClassDecl->hasFlexibleArrayMember() && 2338 "Incomplete array type is not valid"); 2339 continue; 2340 } 2341 if (CollectFieldInitializer(*this, Info, *Field, *Field)) 2342 HadError = true; 2343 } 2344 2345 NumInitializers = Info.AllToInit.size(); 2346 if (NumInitializers > 0) { 2347 Constructor->setNumCtorInitializers(NumInitializers); 2348 CXXCtorInitializer **baseOrMemberInitializers = 2349 new (Context) CXXCtorInitializer*[NumInitializers]; 2350 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 2351 NumInitializers * sizeof(CXXCtorInitializer*)); 2352 Constructor->setCtorInitializers(baseOrMemberInitializers); 2353 2354 // Constructors implicitly reference the base and member 2355 // destructors. 2356 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 2357 Constructor->getParent()); 2358 } 2359 2360 return HadError; 2361 } 2362 2363 static void *GetKeyForTopLevelField(FieldDecl *Field) { 2364 // For anonymous unions, use the class declaration as the key. 2365 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 2366 if (RT->getDecl()->isAnonymousStructOrUnion()) 2367 return static_cast<void *>(RT->getDecl()); 2368 } 2369 return static_cast<void *>(Field); 2370 } 2371 2372 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 2373 return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr()); 2374 } 2375 2376 static void *GetKeyForMember(ASTContext &Context, 2377 CXXCtorInitializer *Member) { 2378 if (!Member->isAnyMemberInitializer()) 2379 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 2380 2381 // For fields injected into the class via declaration of an anonymous union, 2382 // use its anonymous union class declaration as the unique key. 2383 FieldDecl *Field = Member->getAnyMember(); 2384 2385 // If the field is a member of an anonymous struct or union, our key 2386 // is the anonymous record decl that's a direct child of the class. 2387 RecordDecl *RD = Field->getParent(); 2388 if (RD->isAnonymousStructOrUnion()) { 2389 while (true) { 2390 RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext()); 2391 if (Parent->isAnonymousStructOrUnion()) 2392 RD = Parent; 2393 else 2394 break; 2395 } 2396 2397 return static_cast<void *>(RD); 2398 } 2399 2400 return static_cast<void *>(Field); 2401 } 2402 2403 static void 2404 DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, 2405 const CXXConstructorDecl *Constructor, 2406 CXXCtorInitializer **Inits, 2407 unsigned NumInits) { 2408 if (Constructor->getDeclContext()->isDependentContext()) 2409 return; 2410 2411 // Don't check initializers order unless the warning is enabled at the 2412 // location of at least one initializer. 2413 bool ShouldCheckOrder = false; 2414 for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { 2415 CXXCtorInitializer *Init = Inits[InitIndex]; 2416 if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order, 2417 Init->getSourceLocation()) 2418 != Diagnostic::Ignored) { 2419 ShouldCheckOrder = true; 2420 break; 2421 } 2422 } 2423 if (!ShouldCheckOrder) 2424 return; 2425 2426 // Build the list of bases and members in the order that they'll 2427 // actually be initialized. The explicit initializers should be in 2428 // this same order but may be missing things. 2429 llvm::SmallVector<const void*, 32> IdealInitKeys; 2430 2431 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 2432 2433 // 1. Virtual bases. 2434 for (CXXRecordDecl::base_class_const_iterator VBase = 2435 ClassDecl->vbases_begin(), 2436 E = ClassDecl->vbases_end(); VBase != E; ++VBase) 2437 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); 2438 2439 // 2. Non-virtual bases. 2440 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), 2441 E = ClassDecl->bases_end(); Base != E; ++Base) { 2442 if (Base->isVirtual()) 2443 continue; 2444 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); 2445 } 2446 2447 // 3. Direct fields. 2448 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 2449 E = ClassDecl->field_end(); Field != E; ++Field) 2450 IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); 2451 2452 unsigned NumIdealInits = IdealInitKeys.size(); 2453 unsigned IdealIndex = 0; 2454 2455 CXXCtorInitializer *PrevInit = 0; 2456 for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { 2457 CXXCtorInitializer *Init = Inits[InitIndex]; 2458 void *InitKey = GetKeyForMember(SemaRef.Context, Init); 2459 2460 // Scan forward to try to find this initializer in the idealized 2461 // initializers list. 2462 for (; IdealIndex != NumIdealInits; ++IdealIndex) 2463 if (InitKey == IdealInitKeys[IdealIndex]) 2464 break; 2465 2466 // If we didn't find this initializer, it must be because we 2467 // scanned past it on a previous iteration. That can only 2468 // happen if we're out of order; emit a warning. 2469 if (IdealIndex == NumIdealInits && PrevInit) { 2470 Sema::SemaDiagnosticBuilder D = 2471 SemaRef.Diag(PrevInit->getSourceLocation(), 2472 diag::warn_initializer_out_of_order); 2473 2474 if (PrevInit->isAnyMemberInitializer()) 2475 D << 0 << PrevInit->getAnyMember()->getDeclName(); 2476 else 2477 D << 1 << PrevInit->getBaseClassInfo()->getType(); 2478 2479 if (Init->isAnyMemberInitializer()) 2480 D << 0 << Init->getAnyMember()->getDeclName(); 2481 else 2482 D << 1 << Init->getBaseClassInfo()->getType(); 2483 2484 // Move back to the initializer's location in the ideal list. 2485 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 2486 if (InitKey == IdealInitKeys[IdealIndex]) 2487 break; 2488 2489 assert(IdealIndex != NumIdealInits && 2490 "initializer not found in initializer list"); 2491 } 2492 2493 PrevInit = Init; 2494 } 2495 } 2496 2497 namespace { 2498 bool CheckRedundantInit(Sema &S, 2499 CXXCtorInitializer *Init, 2500 CXXCtorInitializer *&PrevInit) { 2501 if (!PrevInit) { 2502 PrevInit = Init; 2503 return false; 2504 } 2505 2506 if (FieldDecl *Field = Init->getMember()) 2507 S.Diag(Init->getSourceLocation(), 2508 diag::err_multiple_mem_initialization) 2509 << Field->getDeclName() 2510 << Init->getSourceRange(); 2511 else { 2512 const Type *BaseClass = Init->getBaseClass(); 2513 assert(BaseClass && "neither field nor base"); 2514 S.Diag(Init->getSourceLocation(), 2515 diag::err_multiple_base_initialization) 2516 << QualType(BaseClass, 0) 2517 << Init->getSourceRange(); 2518 } 2519 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 2520 << 0 << PrevInit->getSourceRange(); 2521 2522 return true; 2523 } 2524 2525 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 2526 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 2527 2528 bool CheckRedundantUnionInit(Sema &S, 2529 CXXCtorInitializer *Init, 2530 RedundantUnionMap &Unions) { 2531 FieldDecl *Field = Init->getAnyMember(); 2532 RecordDecl *Parent = Field->getParent(); 2533 if (!Parent->isAnonymousStructOrUnion()) 2534 return false; 2535 2536 NamedDecl *Child = Field; 2537 do { 2538 if (Parent->isUnion()) { 2539 UnionEntry &En = Unions[Parent]; 2540 if (En.first && En.first != Child) { 2541 S.Diag(Init->getSourceLocation(), 2542 diag::err_multiple_mem_union_initialization) 2543 << Field->getDeclName() 2544 << Init->getSourceRange(); 2545 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 2546 << 0 << En.second->getSourceRange(); 2547 return true; 2548 } else if (!En.first) { 2549 En.first = Child; 2550 En.second = Init; 2551 } 2552 } 2553 2554 Child = Parent; 2555 Parent = cast<RecordDecl>(Parent->getDeclContext()); 2556 } while (Parent->isAnonymousStructOrUnion()); 2557 2558 return false; 2559 } 2560 } 2561 2562 /// ActOnMemInitializers - Handle the member initializers for a constructor. 2563 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 2564 SourceLocation ColonLoc, 2565 MemInitTy **meminits, unsigned NumMemInits, 2566 bool AnyErrors) { 2567 if (!ConstructorDecl) 2568 return; 2569 2570 AdjustDeclIfTemplate(ConstructorDecl); 2571 2572 CXXConstructorDecl *Constructor 2573 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 2574 2575 if (!Constructor) { 2576 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 2577 return; 2578 } 2579 2580 CXXCtorInitializer **MemInits = 2581 reinterpret_cast<CXXCtorInitializer **>(meminits); 2582 2583 // Mapping for the duplicate initializers check. 2584 // For member initializers, this is keyed with a FieldDecl*. 2585 // For base initializers, this is keyed with a Type*. 2586 llvm::DenseMap<void*, CXXCtorInitializer *> Members; 2587 2588 // Mapping for the inconsistent anonymous-union initializers check. 2589 RedundantUnionMap MemberUnions; 2590 2591 bool HadError = false; 2592 for (unsigned i = 0; i < NumMemInits; i++) { 2593 CXXCtorInitializer *Init = MemInits[i]; 2594 2595 // Set the source order index. 2596 Init->setSourceOrder(i); 2597 2598 if (Init->isAnyMemberInitializer()) { 2599 FieldDecl *Field = Init->getAnyMember(); 2600 if (CheckRedundantInit(*this, Init, Members[Field]) || 2601 CheckRedundantUnionInit(*this, Init, MemberUnions)) 2602 HadError = true; 2603 } else if (Init->isBaseInitializer()) { 2604 void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); 2605 if (CheckRedundantInit(*this, Init, Members[Key])) 2606 HadError = true; 2607 } else { 2608 assert(Init->isDelegatingInitializer()); 2609 // This must be the only initializer 2610 if (i != 0 || NumMemInits > 1) { 2611 Diag(MemInits[0]->getSourceLocation(), 2612 diag::err_delegating_initializer_alone) 2613 << MemInits[0]->getSourceRange(); 2614 HadError = true; 2615 // We will treat this as being the only initializer. 2616 } 2617 SetDelegatingInitializer(Constructor, MemInits[i]); 2618 // Return immediately as the initializer is set. 2619 return; 2620 } 2621 } 2622 2623 if (HadError) 2624 return; 2625 2626 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); 2627 2628 SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors); 2629 } 2630 2631 void 2632 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 2633 CXXRecordDecl *ClassDecl) { 2634 // Ignore dependent contexts. 2635 if (ClassDecl->isDependentContext()) 2636 return; 2637 2638 // FIXME: all the access-control diagnostics are positioned on the 2639 // field/base declaration. That's probably good; that said, the 2640 // user might reasonably want to know why the destructor is being 2641 // emitted, and we currently don't say. 2642 2643 // Non-static data members. 2644 for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), 2645 E = ClassDecl->field_end(); I != E; ++I) { 2646 FieldDecl *Field = *I; 2647 if (Field->isInvalidDecl()) 2648 continue; 2649 QualType FieldType = Context.getBaseElementType(Field->getType()); 2650 2651 const RecordType* RT = FieldType->getAs<RecordType>(); 2652 if (!RT) 2653 continue; 2654 2655 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 2656 if (FieldClassDecl->isInvalidDecl()) 2657 continue; 2658 if (FieldClassDecl->hasTrivialDestructor()) 2659 continue; 2660 2661 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 2662 assert(Dtor && "No dtor found for FieldClassDecl!"); 2663 CheckDestructorAccess(Field->getLocation(), Dtor, 2664 PDiag(diag::err_access_dtor_field) 2665 << Field->getDeclName() 2666 << FieldType); 2667 2668 MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); 2669 } 2670 2671 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 2672 2673 // Bases. 2674 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 2675 E = ClassDecl->bases_end(); Base != E; ++Base) { 2676 // Bases are always records in a well-formed non-dependent class. 2677 const RecordType *RT = Base->getType()->getAs<RecordType>(); 2678 2679 // Remember direct virtual bases. 2680 if (Base->isVirtual()) 2681 DirectVirtualBases.insert(RT); 2682 2683 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 2684 // If our base class is invalid, we probably can't get its dtor anyway. 2685 if (BaseClassDecl->isInvalidDecl()) 2686 continue; 2687 // Ignore trivial destructors. 2688 if (BaseClassDecl->hasTrivialDestructor()) 2689 continue; 2690 2691 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 2692 assert(Dtor && "No dtor found for BaseClassDecl!"); 2693 2694 // FIXME: caret should be on the start of the class name 2695 CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, 2696 PDiag(diag::err_access_dtor_base) 2697 << Base->getType() 2698 << Base->getSourceRange()); 2699 2700 MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); 2701 } 2702 2703 // Virtual bases. 2704 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), 2705 E = ClassDecl->vbases_end(); VBase != E; ++VBase) { 2706 2707 // Bases are always records in a well-formed non-dependent class. 2708 const RecordType *RT = VBase->getType()->getAs<RecordType>(); 2709 2710 // Ignore direct virtual bases. 2711 if (DirectVirtualBases.count(RT)) 2712 continue; 2713 2714 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 2715 // If our base class is invalid, we probably can't get its dtor anyway. 2716 if (BaseClassDecl->isInvalidDecl()) 2717 continue; 2718 // Ignore trivial destructors. 2719 if (BaseClassDecl->hasTrivialDestructor()) 2720 continue; 2721 2722 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 2723 assert(Dtor && "No dtor found for BaseClassDecl!"); 2724 CheckDestructorAccess(ClassDecl->getLocation(), Dtor, 2725 PDiag(diag::err_access_dtor_vbase) 2726 << VBase->getType()); 2727 2728 MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); 2729 } 2730 } 2731 2732 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 2733 if (!CDtorDecl) 2734 return; 2735 2736 if (CXXConstructorDecl *Constructor 2737 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) 2738 SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false); 2739 } 2740 2741 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 2742 unsigned DiagID, AbstractDiagSelID SelID) { 2743 if (SelID == -1) 2744 return RequireNonAbstractType(Loc, T, PDiag(DiagID)); 2745 else 2746 return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID); 2747 } 2748 2749 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 2750 const PartialDiagnostic &PD) { 2751 if (!getLangOptions().CPlusPlus) 2752 return false; 2753 2754 if (const ArrayType *AT = Context.getAsArrayType(T)) 2755 return RequireNonAbstractType(Loc, AT->getElementType(), PD); 2756 2757 if (const PointerType *PT = T->getAs<PointerType>()) { 2758 // Find the innermost pointer type. 2759 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) 2760 PT = T; 2761 2762 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) 2763 return RequireNonAbstractType(Loc, AT->getElementType(), PD); 2764 } 2765 2766 const RecordType *RT = T->getAs<RecordType>(); 2767 if (!RT) 2768 return false; 2769 2770 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 2771 2772 // We can't answer whether something is abstract until it has a 2773 // definition. If it's currently being defined, we'll walk back 2774 // over all the declarations when we have a full definition. 2775 const CXXRecordDecl *Def = RD->getDefinition(); 2776 if (!Def || Def->isBeingDefined()) 2777 return false; 2778 2779 if (!RD->isAbstract()) 2780 return false; 2781 2782 Diag(Loc, PD) << RD->getDeclName(); 2783 DiagnoseAbstractType(RD); 2784 2785 return true; 2786 } 2787 2788 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 2789 // Check if we've already emitted the list of pure virtual functions 2790 // for this class. 2791 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 2792 return; 2793 2794 CXXFinalOverriderMap FinalOverriders; 2795 RD->getFinalOverriders(FinalOverriders); 2796 2797 // Keep a set of seen pure methods so we won't diagnose the same method 2798 // more than once. 2799 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 2800 2801 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 2802 MEnd = FinalOverriders.end(); 2803 M != MEnd; 2804 ++M) { 2805 for (OverridingMethods::iterator SO = M->second.begin(), 2806 SOEnd = M->second.end(); 2807 SO != SOEnd; ++SO) { 2808 // C++ [class.abstract]p4: 2809 // A class is abstract if it contains or inherits at least one 2810 // pure virtual function for which the final overrider is pure 2811 // virtual. 2812 2813 // 2814 if (SO->second.size() != 1) 2815 continue; 2816 2817 if (!SO->second.front().Method->isPure()) 2818 continue; 2819 2820 if (!SeenPureMethods.insert(SO->second.front().Method)) 2821 continue; 2822 2823 Diag(SO->second.front().Method->getLocation(), 2824 diag::note_pure_virtual_function) 2825 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 2826 } 2827 } 2828 2829 if (!PureVirtualClassDiagSet) 2830 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 2831 PureVirtualClassDiagSet->insert(RD); 2832 } 2833 2834 namespace { 2835 struct AbstractUsageInfo { 2836 Sema &S; 2837 CXXRecordDecl *Record; 2838 CanQualType AbstractType; 2839 bool Invalid; 2840 2841 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 2842 : S(S), Record(Record), 2843 AbstractType(S.Context.getCanonicalType( 2844 S.Context.getTypeDeclType(Record))), 2845 Invalid(false) {} 2846 2847 void DiagnoseAbstractType() { 2848 if (Invalid) return; 2849 S.DiagnoseAbstractType(Record); 2850 Invalid = true; 2851 } 2852 2853 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 2854 }; 2855 2856 struct CheckAbstractUsage { 2857 AbstractUsageInfo &Info; 2858 const NamedDecl *Ctx; 2859 2860 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 2861 : Info(Info), Ctx(Ctx) {} 2862 2863 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 2864 switch (TL.getTypeLocClass()) { 2865 #define ABSTRACT_TYPELOC(CLASS, PARENT) 2866 #define TYPELOC(CLASS, PARENT) \ 2867 case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break; 2868 #include "clang/AST/TypeLocNodes.def" 2869 } 2870 } 2871 2872 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 2873 Visit(TL.getResultLoc(), Sema::AbstractReturnType); 2874 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 2875 if (!TL.getArg(I)) 2876 continue; 2877 2878 TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo(); 2879 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 2880 } 2881 } 2882 2883 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 2884 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 2885 } 2886 2887 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 2888 // Visit the type parameters from a permissive context. 2889 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 2890 TemplateArgumentLoc TAL = TL.getArgLoc(I); 2891 if (TAL.getArgument().getKind() == TemplateArgument::Type) 2892 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 2893 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 2894 // TODO: other template argument types? 2895 } 2896 } 2897 2898 // Visit pointee types from a permissive context. 2899 #define CheckPolymorphic(Type) \ 2900 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 2901 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 2902 } 2903 CheckPolymorphic(PointerTypeLoc) 2904 CheckPolymorphic(ReferenceTypeLoc) 2905 CheckPolymorphic(MemberPointerTypeLoc) 2906 CheckPolymorphic(BlockPointerTypeLoc) 2907 2908 /// Handle all the types we haven't given a more specific 2909 /// implementation for above. 2910 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 2911 // Every other kind of type that we haven't called out already 2912 // that has an inner type is either (1) sugar or (2) contains that 2913 // inner type in some way as a subobject. 2914 if (TypeLoc Next = TL.getNextTypeLoc()) 2915 return Visit(Next, Sel); 2916 2917 // If there's no inner type and we're in a permissive context, 2918 // don't diagnose. 2919 if (Sel == Sema::AbstractNone) return; 2920 2921 // Check whether the type matches the abstract type. 2922 QualType T = TL.getType(); 2923 if (T->isArrayType()) { 2924 Sel = Sema::AbstractArrayType; 2925 T = Info.S.Context.getBaseElementType(T); 2926 } 2927 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 2928 if (CT != Info.AbstractType) return; 2929 2930 // It matched; do some magic. 2931 if (Sel == Sema::AbstractArrayType) { 2932 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 2933 << T << TL.getSourceRange(); 2934 } else { 2935 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 2936 << Sel << T << TL.getSourceRange(); 2937 } 2938 Info.DiagnoseAbstractType(); 2939 } 2940 }; 2941 2942 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 2943 Sema::AbstractDiagSelID Sel) { 2944 CheckAbstractUsage(*this, D).Visit(TL, Sel); 2945 } 2946 2947 } 2948 2949 /// Check for invalid uses of an abstract type in a method declaration. 2950 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 2951 CXXMethodDecl *MD) { 2952 // No need to do the check on definitions, which require that 2953 // the return/param types be complete. 2954 if (MD->doesThisDeclarationHaveABody()) 2955 return; 2956 2957 // For safety's sake, just ignore it if we don't have type source 2958 // information. This should never happen for non-implicit methods, 2959 // but... 2960 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 2961 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 2962 } 2963 2964 /// Check for invalid uses of an abstract type within a class definition. 2965 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 2966 CXXRecordDecl *RD) { 2967 for (CXXRecordDecl::decl_iterator 2968 I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) { 2969 Decl *D = *I; 2970 if (D->isImplicit()) continue; 2971 2972 // Methods and method templates. 2973 if (isa<CXXMethodDecl>(D)) { 2974 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 2975 } else if (isa<FunctionTemplateDecl>(D)) { 2976 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 2977 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 2978 2979 // Fields and static variables. 2980 } else if (isa<FieldDecl>(D)) { 2981 FieldDecl *FD = cast<FieldDecl>(D); 2982 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 2983 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 2984 } else if (isa<VarDecl>(D)) { 2985 VarDecl *VD = cast<VarDecl>(D); 2986 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 2987 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 2988 2989 // Nested classes and class templates. 2990 } else if (isa<CXXRecordDecl>(D)) { 2991 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 2992 } else if (isa<ClassTemplateDecl>(D)) { 2993 CheckAbstractClassUsage(Info, 2994 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 2995 } 2996 } 2997 } 2998 2999 /// \brief Perform semantic checks on a class definition that has been 3000 /// completing, introducing implicitly-declared members, checking for 3001 /// abstract types, etc. 3002 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { 3003 if (!Record) 3004 return; 3005 3006 if (Record->isAbstract() && !Record->isInvalidDecl()) { 3007 AbstractUsageInfo Info(*this, Record); 3008 CheckAbstractClassUsage(Info, Record); 3009 } 3010 3011 // If this is not an aggregate type and has no user-declared constructor, 3012 // complain about any non-static data members of reference or const scalar 3013 // type, since they will never get initializers. 3014 if (!Record->isInvalidDecl() && !Record->isDependentType() && 3015 !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) { 3016 bool Complained = false; 3017 for (RecordDecl::field_iterator F = Record->field_begin(), 3018 FEnd = Record->field_end(); 3019 F != FEnd; ++F) { 3020 if (F->hasInClassInitializer()) 3021 continue; 3022 3023 if (F->getType()->isReferenceType() || 3024 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 3025 if (!Complained) { 3026 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 3027 << Record->getTagKind() << Record; 3028 Complained = true; 3029 } 3030 3031 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 3032 << F->getType()->isReferenceType() 3033 << F->getDeclName(); 3034 } 3035 } 3036 } 3037 3038 if (Record->isDynamicClass() && !Record->isDependentType()) 3039 DynamicClasses.push_back(Record); 3040 3041 if (Record->getIdentifier()) { 3042 // C++ [class.mem]p13: 3043 // If T is the name of a class, then each of the following shall have a 3044 // name different from T: 3045 // - every member of every anonymous union that is a member of class T. 3046 // 3047 // C++ [class.mem]p14: 3048 // In addition, if class T has a user-declared constructor (12.1), every 3049 // non-static data member of class T shall have a name different from T. 3050 for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 3051 R.first != R.second; ++R.first) { 3052 NamedDecl *D = *R.first; 3053 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) || 3054 isa<IndirectFieldDecl>(D)) { 3055 Diag(D->getLocation(), diag::err_member_name_of_class) 3056 << D->getDeclName(); 3057 break; 3058 } 3059 } 3060 } 3061 3062 // Warn if the class has virtual methods but non-virtual public destructor. 3063 if (Record->isPolymorphic() && !Record->isDependentType()) { 3064 CXXDestructorDecl *dtor = Record->getDestructor(); 3065 if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) 3066 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 3067 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 3068 } 3069 3070 // See if a method overloads virtual methods in a base 3071 /// class without overriding any. 3072 if (!Record->isDependentType()) { 3073 for (CXXRecordDecl::method_iterator M = Record->method_begin(), 3074 MEnd = Record->method_end(); 3075 M != MEnd; ++M) { 3076 if (!(*M)->isStatic()) 3077 DiagnoseHiddenVirtualMethods(Record, *M); 3078 } 3079 } 3080 3081 // Declare inherited constructors. We do this eagerly here because: 3082 // - The standard requires an eager diagnostic for conflicting inherited 3083 // constructors from different classes. 3084 // - The lazy declaration of the other implicit constructors is so as to not 3085 // waste space and performance on classes that are not meant to be 3086 // instantiated (e.g. meta-functions). This doesn't apply to classes that 3087 // have inherited constructors. 3088 DeclareInheritedConstructors(Record); 3089 3090 if (!Record->isDependentType()) 3091 CheckExplicitlyDefaultedMethods(Record); 3092 } 3093 3094 void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) { 3095 for (CXXRecordDecl::method_iterator MI = Record->method_begin(), 3096 ME = Record->method_end(); 3097 MI != ME; ++MI) { 3098 if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) { 3099 switch (getSpecialMember(*MI)) { 3100 case CXXDefaultConstructor: 3101 CheckExplicitlyDefaultedDefaultConstructor( 3102 cast<CXXConstructorDecl>(*MI)); 3103 break; 3104 3105 case CXXDestructor: 3106 CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI)); 3107 break; 3108 3109 case CXXCopyConstructor: 3110 CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI)); 3111 break; 3112 3113 case CXXCopyAssignment: 3114 CheckExplicitlyDefaultedCopyAssignment(*MI); 3115 break; 3116 3117 case CXXMoveConstructor: 3118 case CXXMoveAssignment: 3119 Diag(MI->getLocation(), diag::err_defaulted_move_unsupported); 3120 break; 3121 3122 default: 3123 // FIXME: Do moves once they exist 3124 llvm_unreachable("non-special member explicitly defaulted!"); 3125 } 3126 } 3127 } 3128 3129 } 3130 3131 void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) { 3132 assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor()); 3133 3134 // Whether this was the first-declared instance of the constructor. 3135 // This affects whether we implicitly add an exception spec (and, eventually, 3136 // constexpr). It is also ill-formed to explicitly default a constructor such 3137 // that it would be deleted. (C++0x [decl.fct.def.default]) 3138 bool First = CD == CD->getCanonicalDecl(); 3139 3140 bool HadError = false; 3141 if (CD->getNumParams() != 0) { 3142 Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params) 3143 << CD->getSourceRange(); 3144 HadError = true; 3145 } 3146 3147 ImplicitExceptionSpecification Spec 3148 = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent()); 3149 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 3150 if (EPI.ExceptionSpecType == EST_Delayed) { 3151 // Exception specification depends on some deferred part of the class. We'll 3152 // try again when the class's definition has been fully processed. 3153 return; 3154 } 3155 const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(), 3156 *ExceptionType = Context.getFunctionType( 3157 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); 3158 3159 if (CtorType->hasExceptionSpec()) { 3160 if (CheckEquivalentExceptionSpec( 3161 PDiag(diag::err_incorrect_defaulted_exception_spec) 3162 << CXXDefaultConstructor, 3163 PDiag(), 3164 ExceptionType, SourceLocation(), 3165 CtorType, CD->getLocation())) { 3166 HadError = true; 3167 } 3168 } else if (First) { 3169 // We set the declaration to have the computed exception spec here. 3170 // We know there are no parameters. 3171 EPI.ExtInfo = CtorType->getExtInfo(); 3172 CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI)); 3173 } 3174 3175 if (HadError) { 3176 CD->setInvalidDecl(); 3177 return; 3178 } 3179 3180 if (ShouldDeleteDefaultConstructor(CD)) { 3181 if (First) { 3182 CD->setDeletedAsWritten(); 3183 } else { 3184 Diag(CD->getLocation(), diag::err_out_of_line_default_deletes) 3185 << CXXDefaultConstructor; 3186 CD->setInvalidDecl(); 3187 } 3188 } 3189 } 3190 3191 void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) { 3192 assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor()); 3193 3194 // Whether this was the first-declared instance of the constructor. 3195 bool First = CD == CD->getCanonicalDecl(); 3196 3197 bool HadError = false; 3198 if (CD->getNumParams() != 1) { 3199 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params) 3200 << CD->getSourceRange(); 3201 HadError = true; 3202 } 3203 3204 ImplicitExceptionSpecification Spec(Context); 3205 bool Const; 3206 llvm::tie(Spec, Const) = 3207 ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent()); 3208 3209 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 3210 const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(), 3211 *ExceptionType = Context.getFunctionType( 3212 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); 3213 3214 // Check for parameter type matching. 3215 // This is a copy ctor so we know it's a cv-qualified reference to T. 3216 QualType ArgType = CtorType->getArgType(0); 3217 if (ArgType->getPointeeType().isVolatileQualified()) { 3218 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param); 3219 HadError = true; 3220 } 3221 if (ArgType->getPointeeType().isConstQualified() && !Const) { 3222 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param); 3223 HadError = true; 3224 } 3225 3226 if (CtorType->hasExceptionSpec()) { 3227 if (CheckEquivalentExceptionSpec( 3228 PDiag(diag::err_incorrect_defaulted_exception_spec) 3229 << CXXCopyConstructor, 3230 PDiag(), 3231 ExceptionType, SourceLocation(), 3232 CtorType, CD->getLocation())) { 3233 HadError = true; 3234 } 3235 } else if (First) { 3236 // We set the declaration to have the computed exception spec here. 3237 // We duplicate the one parameter type. 3238 EPI.ExtInfo = CtorType->getExtInfo(); 3239 CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI)); 3240 } 3241 3242 if (HadError) { 3243 CD->setInvalidDecl(); 3244 return; 3245 } 3246 3247 if (ShouldDeleteCopyConstructor(CD)) { 3248 if (First) { 3249 CD->setDeletedAsWritten(); 3250 } else { 3251 Diag(CD->getLocation(), diag::err_out_of_line_default_deletes) 3252 << CXXCopyConstructor; 3253 CD->setInvalidDecl(); 3254 } 3255 } 3256 } 3257 3258 void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) { 3259 assert(MD->isExplicitlyDefaulted()); 3260 3261 // Whether this was the first-declared instance of the operator 3262 bool First = MD == MD->getCanonicalDecl(); 3263 3264 bool HadError = false; 3265 if (MD->getNumParams() != 1) { 3266 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params) 3267 << MD->getSourceRange(); 3268 HadError = true; 3269 } 3270 3271 QualType ReturnType = 3272 MD->getType()->getAs<FunctionType>()->getResultType(); 3273 if (!ReturnType->isLValueReferenceType() || 3274 !Context.hasSameType( 3275 Context.getCanonicalType(ReturnType->getPointeeType()), 3276 Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) { 3277 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type); 3278 HadError = true; 3279 } 3280 3281 ImplicitExceptionSpecification Spec(Context); 3282 bool Const; 3283 llvm::tie(Spec, Const) = 3284 ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent()); 3285 3286 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 3287 const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(), 3288 *ExceptionType = Context.getFunctionType( 3289 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); 3290 3291 QualType ArgType = OperType->getArgType(0); 3292 if (!ArgType->isReferenceType()) { 3293 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 3294 HadError = true; 3295 } else { 3296 if (ArgType->getPointeeType().isVolatileQualified()) { 3297 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param); 3298 HadError = true; 3299 } 3300 if (ArgType->getPointeeType().isConstQualified() && !Const) { 3301 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param); 3302 HadError = true; 3303 } 3304 } 3305 3306 if (OperType->getTypeQuals()) { 3307 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals); 3308 HadError = true; 3309 } 3310 3311 if (OperType->hasExceptionSpec()) { 3312 if (CheckEquivalentExceptionSpec( 3313 PDiag(diag::err_incorrect_defaulted_exception_spec) 3314 << CXXCopyAssignment, 3315 PDiag(), 3316 ExceptionType, SourceLocation(), 3317 OperType, MD->getLocation())) { 3318 HadError = true; 3319 } 3320 } else if (First) { 3321 // We set the declaration to have the computed exception spec here. 3322 // We duplicate the one parameter type. 3323 EPI.RefQualifier = OperType->getRefQualifier(); 3324 EPI.ExtInfo = OperType->getExtInfo(); 3325 MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI)); 3326 } 3327 3328 if (HadError) { 3329 MD->setInvalidDecl(); 3330 return; 3331 } 3332 3333 if (ShouldDeleteCopyAssignmentOperator(MD)) { 3334 if (First) { 3335 MD->setDeletedAsWritten(); 3336 } else { 3337 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) 3338 << CXXCopyAssignment; 3339 MD->setInvalidDecl(); 3340 } 3341 } 3342 } 3343 3344 void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) { 3345 assert(DD->isExplicitlyDefaulted()); 3346 3347 // Whether this was the first-declared instance of the destructor. 3348 bool First = DD == DD->getCanonicalDecl(); 3349 3350 ImplicitExceptionSpecification Spec 3351 = ComputeDefaultedDtorExceptionSpec(DD->getParent()); 3352 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 3353 const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(), 3354 *ExceptionType = Context.getFunctionType( 3355 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); 3356 3357 if (DtorType->hasExceptionSpec()) { 3358 if (CheckEquivalentExceptionSpec( 3359 PDiag(diag::err_incorrect_defaulted_exception_spec) 3360 << CXXDestructor, 3361 PDiag(), 3362 ExceptionType, SourceLocation(), 3363 DtorType, DD->getLocation())) { 3364 DD->setInvalidDecl(); 3365 return; 3366 } 3367 } else if (First) { 3368 // We set the declaration to have the computed exception spec here. 3369 // There are no parameters. 3370 EPI.ExtInfo = DtorType->getExtInfo(); 3371 DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI)); 3372 } 3373 3374 if (ShouldDeleteDestructor(DD)) { 3375 if (First) { 3376 DD->setDeletedAsWritten(); 3377 } else { 3378 Diag(DD->getLocation(), diag::err_out_of_line_default_deletes) 3379 << CXXDestructor; 3380 DD->setInvalidDecl(); 3381 } 3382 } 3383 } 3384 3385 bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) { 3386 CXXRecordDecl *RD = CD->getParent(); 3387 assert(!RD->isDependentType() && "do deletion after instantiation"); 3388 if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl()) 3389 return false; 3390 3391 SourceLocation Loc = CD->getLocation(); 3392 3393 // Do access control from the constructor 3394 ContextRAII CtorContext(*this, CD); 3395 3396 bool Union = RD->isUnion(); 3397 bool AllConst = true; 3398 3399 // We do this because we should never actually use an anonymous 3400 // union's constructor. 3401 if (Union && RD->isAnonymousStructOrUnion()) 3402 return false; 3403 3404 // FIXME: We should put some diagnostic logic right into this function. 3405 3406 // C++0x [class.ctor]/5 3407 // A defaulted default constructor for class X is defined as deleted if: 3408 3409 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), 3410 BE = RD->bases_end(); 3411 BI != BE; ++BI) { 3412 // We'll handle this one later 3413 if (BI->isVirtual()) 3414 continue; 3415 3416 CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl(); 3417 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3418 3419 // -- any [direct base class] has a type with a destructor that is 3420 // deleted or inaccessible from the defaulted default constructor 3421 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3422 if (BaseDtor->isDeleted()) 3423 return true; 3424 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3425 AR_accessible) 3426 return true; 3427 3428 // -- any [direct base class either] has no default constructor or 3429 // overload resolution as applied to [its] default constructor 3430 // results in an ambiguity or in a function that is deleted or 3431 // inaccessible from the defaulted default constructor 3432 CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl); 3433 if (!BaseDefault || BaseDefault->isDeleted()) 3434 return true; 3435 3436 if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(), 3437 PDiag()) != AR_accessible) 3438 return true; 3439 } 3440 3441 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(), 3442 BE = RD->vbases_end(); 3443 BI != BE; ++BI) { 3444 CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl(); 3445 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3446 3447 // -- any [virtual base class] has a type with a destructor that is 3448 // delete or inaccessible from the defaulted default constructor 3449 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3450 if (BaseDtor->isDeleted()) 3451 return true; 3452 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3453 AR_accessible) 3454 return true; 3455 3456 // -- any [virtual base class either] has no default constructor or 3457 // overload resolution as applied to [its] default constructor 3458 // results in an ambiguity or in a function that is deleted or 3459 // inaccessible from the defaulted default constructor 3460 CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl); 3461 if (!BaseDefault || BaseDefault->isDeleted()) 3462 return true; 3463 3464 if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(), 3465 PDiag()) != AR_accessible) 3466 return true; 3467 } 3468 3469 for (CXXRecordDecl::field_iterator FI = RD->field_begin(), 3470 FE = RD->field_end(); 3471 FI != FE; ++FI) { 3472 if (FI->isInvalidDecl()) 3473 continue; 3474 3475 QualType FieldType = Context.getBaseElementType(FI->getType()); 3476 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 3477 3478 // -- any non-static data member with no brace-or-equal-initializer is of 3479 // reference type 3480 if (FieldType->isReferenceType() && !FI->hasInClassInitializer()) 3481 return true; 3482 3483 // -- X is a union and all its variant members are of const-qualified type 3484 // (or array thereof) 3485 if (Union && !FieldType.isConstQualified()) 3486 AllConst = false; 3487 3488 if (FieldRecord) { 3489 // -- X is a union-like class that has a variant member with a non-trivial 3490 // default constructor 3491 if (Union && !FieldRecord->hasTrivialDefaultConstructor()) 3492 return true; 3493 3494 CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord); 3495 if (FieldDtor->isDeleted()) 3496 return true; 3497 if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) != 3498 AR_accessible) 3499 return true; 3500 3501 // -- any non-variant non-static data member of const-qualified type (or 3502 // array thereof) with no brace-or-equal-initializer does not have a 3503 // user-provided default constructor 3504 if (FieldType.isConstQualified() && 3505 !FI->hasInClassInitializer() && 3506 !FieldRecord->hasUserProvidedDefaultConstructor()) 3507 return true; 3508 3509 if (!Union && FieldRecord->isUnion() && 3510 FieldRecord->isAnonymousStructOrUnion()) { 3511 // We're okay to reuse AllConst here since we only care about the 3512 // value otherwise if we're in a union. 3513 AllConst = true; 3514 3515 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(), 3516 UE = FieldRecord->field_end(); 3517 UI != UE; ++UI) { 3518 QualType UnionFieldType = Context.getBaseElementType(UI->getType()); 3519 CXXRecordDecl *UnionFieldRecord = 3520 UnionFieldType->getAsCXXRecordDecl(); 3521 3522 if (!UnionFieldType.isConstQualified()) 3523 AllConst = false; 3524 3525 if (UnionFieldRecord && 3526 !UnionFieldRecord->hasTrivialDefaultConstructor()) 3527 return true; 3528 } 3529 3530 if (AllConst) 3531 return true; 3532 3533 // Don't try to initialize the anonymous union 3534 // This is technically non-conformant, but sanity demands it. 3535 continue; 3536 } 3537 3538 // -- any non-static data member with no brace-or-equal-initializer has 3539 // class type M (or array thereof) and either M has no default 3540 // constructor or overload resolution as applied to M's default 3541 // constructor results in an ambiguity or in a function that is deleted 3542 // or inaccessible from the defaulted default constructor. 3543 if (!FI->hasInClassInitializer()) { 3544 CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord); 3545 if (!FieldDefault || FieldDefault->isDeleted()) 3546 return true; 3547 if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(), 3548 PDiag()) != AR_accessible) 3549 return true; 3550 } 3551 } else if (!Union && FieldType.isConstQualified() && 3552 !FI->hasInClassInitializer()) { 3553 // -- any non-variant non-static data member of const-qualified type (or 3554 // array thereof) with no brace-or-equal-initializer does not have a 3555 // user-provided default constructor 3556 return true; 3557 } 3558 } 3559 3560 if (Union && AllConst) 3561 return true; 3562 3563 return false; 3564 } 3565 3566 bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) { 3567 CXXRecordDecl *RD = CD->getParent(); 3568 assert(!RD->isDependentType() && "do deletion after instantiation"); 3569 if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl()) 3570 return false; 3571 3572 SourceLocation Loc = CD->getLocation(); 3573 3574 // Do access control from the constructor 3575 ContextRAII CtorContext(*this, CD); 3576 3577 bool Union = RD->isUnion(); 3578 3579 assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() && 3580 "copy assignment arg has no pointee type"); 3581 unsigned ArgQuals = 3582 CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ? 3583 Qualifiers::Const : 0; 3584 3585 // We do this because we should never actually use an anonymous 3586 // union's constructor. 3587 if (Union && RD->isAnonymousStructOrUnion()) 3588 return false; 3589 3590 // FIXME: We should put some diagnostic logic right into this function. 3591 3592 // C++0x [class.copy]/11 3593 // A defaulted [copy] constructor for class X is defined as delete if X has: 3594 3595 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), 3596 BE = RD->bases_end(); 3597 BI != BE; ++BI) { 3598 // We'll handle this one later 3599 if (BI->isVirtual()) 3600 continue; 3601 3602 QualType BaseType = BI->getType(); 3603 CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl(); 3604 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3605 3606 // -- any [direct base class] of a type with a destructor that is deleted or 3607 // inaccessible from the defaulted constructor 3608 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3609 if (BaseDtor->isDeleted()) 3610 return true; 3611 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3612 AR_accessible) 3613 return true; 3614 3615 // -- a [direct base class] B that cannot be [copied] because overload 3616 // resolution, as applied to B's [copy] constructor, results in an 3617 // ambiguity or a function that is deleted or inaccessible from the 3618 // defaulted constructor 3619 CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals); 3620 if (!BaseCtor || BaseCtor->isDeleted()) 3621 return true; 3622 if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) != 3623 AR_accessible) 3624 return true; 3625 } 3626 3627 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(), 3628 BE = RD->vbases_end(); 3629 BI != BE; ++BI) { 3630 QualType BaseType = BI->getType(); 3631 CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl(); 3632 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3633 3634 // -- any [virtual base class] of a type with a destructor that is deleted or 3635 // inaccessible from the defaulted constructor 3636 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3637 if (BaseDtor->isDeleted()) 3638 return true; 3639 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3640 AR_accessible) 3641 return true; 3642 3643 // -- a [virtual base class] B that cannot be [copied] because overload 3644 // resolution, as applied to B's [copy] constructor, results in an 3645 // ambiguity or a function that is deleted or inaccessible from the 3646 // defaulted constructor 3647 CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals); 3648 if (!BaseCtor || BaseCtor->isDeleted()) 3649 return true; 3650 if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) != 3651 AR_accessible) 3652 return true; 3653 } 3654 3655 for (CXXRecordDecl::field_iterator FI = RD->field_begin(), 3656 FE = RD->field_end(); 3657 FI != FE; ++FI) { 3658 QualType FieldType = Context.getBaseElementType(FI->getType()); 3659 3660 // -- for a copy constructor, a non-static data member of rvalue reference 3661 // type 3662 if (FieldType->isRValueReferenceType()) 3663 return true; 3664 3665 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 3666 3667 if (FieldRecord) { 3668 // This is an anonymous union 3669 if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) { 3670 // Anonymous unions inside unions do not variant members create 3671 if (!Union) { 3672 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(), 3673 UE = FieldRecord->field_end(); 3674 UI != UE; ++UI) { 3675 QualType UnionFieldType = Context.getBaseElementType(UI->getType()); 3676 CXXRecordDecl *UnionFieldRecord = 3677 UnionFieldType->getAsCXXRecordDecl(); 3678 3679 // -- a variant member with a non-trivial [copy] constructor and X 3680 // is a union-like class 3681 if (UnionFieldRecord && 3682 !UnionFieldRecord->hasTrivialCopyConstructor()) 3683 return true; 3684 } 3685 } 3686 3687 // Don't try to initalize an anonymous union 3688 continue; 3689 } else { 3690 // -- a variant member with a non-trivial [copy] constructor and X is a 3691 // union-like class 3692 if (Union && !FieldRecord->hasTrivialCopyConstructor()) 3693 return true; 3694 3695 // -- any [non-static data member] of a type with a destructor that is 3696 // deleted or inaccessible from the defaulted constructor 3697 CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord); 3698 if (FieldDtor->isDeleted()) 3699 return true; 3700 if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) != 3701 AR_accessible) 3702 return true; 3703 } 3704 3705 // -- a [non-static data member of class type (or array thereof)] B that 3706 // cannot be [copied] because overload resolution, as applied to B's 3707 // [copy] constructor, results in an ambiguity or a function that is 3708 // deleted or inaccessible from the defaulted constructor 3709 CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord, 3710 ArgQuals); 3711 if (!FieldCtor || FieldCtor->isDeleted()) 3712 return true; 3713 if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(), 3714 PDiag()) != AR_accessible) 3715 return true; 3716 } 3717 } 3718 3719 return false; 3720 } 3721 3722 bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) { 3723 CXXRecordDecl *RD = MD->getParent(); 3724 assert(!RD->isDependentType() && "do deletion after instantiation"); 3725 if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl()) 3726 return false; 3727 3728 SourceLocation Loc = MD->getLocation(); 3729 3730 // Do access control from the constructor 3731 ContextRAII MethodContext(*this, MD); 3732 3733 bool Union = RD->isUnion(); 3734 3735 unsigned ArgQuals = 3736 MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ? 3737 Qualifiers::Const : 0; 3738 3739 // We do this because we should never actually use an anonymous 3740 // union's constructor. 3741 if (Union && RD->isAnonymousStructOrUnion()) 3742 return false; 3743 3744 // FIXME: We should put some diagnostic logic right into this function. 3745 3746 // C++0x [class.copy]/11 3747 // A defaulted [copy] assignment operator for class X is defined as deleted 3748 // if X has: 3749 3750 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), 3751 BE = RD->bases_end(); 3752 BI != BE; ++BI) { 3753 // We'll handle this one later 3754 if (BI->isVirtual()) 3755 continue; 3756 3757 QualType BaseType = BI->getType(); 3758 CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl(); 3759 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3760 3761 // -- a [direct base class] B that cannot be [copied] because overload 3762 // resolution, as applied to B's [copy] assignment operator, results in 3763 // an ambiguity or a function that is deleted or inaccessible from the 3764 // assignment operator 3765 CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false, 3766 0); 3767 if (!CopyOper || CopyOper->isDeleted()) 3768 return true; 3769 if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible) 3770 return true; 3771 } 3772 3773 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(), 3774 BE = RD->vbases_end(); 3775 BI != BE; ++BI) { 3776 QualType BaseType = BI->getType(); 3777 CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl(); 3778 assert(BaseDecl && "base isn't a CXXRecordDecl"); 3779 3780 // -- a [virtual base class] B that cannot be [copied] because overload 3781 // resolution, as applied to B's [copy] assignment operator, results in 3782 // an ambiguity or a function that is deleted or inaccessible from the 3783 // assignment operator 3784 CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false, 3785 0); 3786 if (!CopyOper || CopyOper->isDeleted()) 3787 return true; 3788 if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible) 3789 return true; 3790 } 3791 3792 for (CXXRecordDecl::field_iterator FI = RD->field_begin(), 3793 FE = RD->field_end(); 3794 FI != FE; ++FI) { 3795 QualType FieldType = Context.getBaseElementType(FI->getType()); 3796 3797 // -- a non-static data member of reference type 3798 if (FieldType->isReferenceType()) 3799 return true; 3800 3801 // -- a non-static data member of const non-class type (or array thereof) 3802 if (FieldType.isConstQualified() && !FieldType->isRecordType()) 3803 return true; 3804 3805 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 3806 3807 if (FieldRecord) { 3808 // This is an anonymous union 3809 if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) { 3810 // Anonymous unions inside unions do not variant members create 3811 if (!Union) { 3812 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(), 3813 UE = FieldRecord->field_end(); 3814 UI != UE; ++UI) { 3815 QualType UnionFieldType = Context.getBaseElementType(UI->getType()); 3816 CXXRecordDecl *UnionFieldRecord = 3817 UnionFieldType->getAsCXXRecordDecl(); 3818 3819 // -- a variant member with a non-trivial [copy] assignment operator 3820 // and X is a union-like class 3821 if (UnionFieldRecord && 3822 !UnionFieldRecord->hasTrivialCopyAssignment()) 3823 return true; 3824 } 3825 } 3826 3827 // Don't try to initalize an anonymous union 3828 continue; 3829 // -- a variant member with a non-trivial [copy] assignment operator 3830 // and X is a union-like class 3831 } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) { 3832 return true; 3833 } 3834 3835 CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals, 3836 false, 0); 3837 if (!CopyOper || CopyOper->isDeleted()) 3838 return false; 3839 if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible) 3840 return false; 3841 } 3842 } 3843 3844 return false; 3845 } 3846 3847 bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) { 3848 CXXRecordDecl *RD = DD->getParent(); 3849 assert(!RD->isDependentType() && "do deletion after instantiation"); 3850 if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl()) 3851 return false; 3852 3853 SourceLocation Loc = DD->getLocation(); 3854 3855 // Do access control from the destructor 3856 ContextRAII CtorContext(*this, DD); 3857 3858 bool Union = RD->isUnion(); 3859 3860 // We do this because we should never actually use an anonymous 3861 // union's destructor. 3862 if (Union && RD->isAnonymousStructOrUnion()) 3863 return false; 3864 3865 // C++0x [class.dtor]p5 3866 // A defaulted destructor for a class X is defined as deleted if: 3867 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), 3868 BE = RD->bases_end(); 3869 BI != BE; ++BI) { 3870 // We'll handle this one later 3871 if (BI->isVirtual()) 3872 continue; 3873 3874 CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl(); 3875 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3876 assert(BaseDtor && "base has no destructor"); 3877 3878 // -- any direct or virtual base class has a deleted destructor or 3879 // a destructor that is inaccessible from the defaulted destructor 3880 if (BaseDtor->isDeleted()) 3881 return true; 3882 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3883 AR_accessible) 3884 return true; 3885 } 3886 3887 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(), 3888 BE = RD->vbases_end(); 3889 BI != BE; ++BI) { 3890 CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl(); 3891 CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl); 3892 assert(BaseDtor && "base has no destructor"); 3893 3894 // -- any direct or virtual base class has a deleted destructor or 3895 // a destructor that is inaccessible from the defaulted destructor 3896 if (BaseDtor->isDeleted()) 3897 return true; 3898 if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) != 3899 AR_accessible) 3900 return true; 3901 } 3902 3903 for (CXXRecordDecl::field_iterator FI = RD->field_begin(), 3904 FE = RD->field_end(); 3905 FI != FE; ++FI) { 3906 QualType FieldType = Context.getBaseElementType(FI->getType()); 3907 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 3908 if (FieldRecord) { 3909 if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) { 3910 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(), 3911 UE = FieldRecord->field_end(); 3912 UI != UE; ++UI) { 3913 QualType UnionFieldType = Context.getBaseElementType(FI->getType()); 3914 CXXRecordDecl *UnionFieldRecord = 3915 UnionFieldType->getAsCXXRecordDecl(); 3916 3917 // -- X is a union-like class that has a variant member with a non- 3918 // trivial destructor. 3919 if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor()) 3920 return true; 3921 } 3922 // Technically we are supposed to do this next check unconditionally. 3923 // But that makes absolutely no sense. 3924 } else { 3925 CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord); 3926 3927 // -- any of the non-static data members has class type M (or array 3928 // thereof) and M has a deleted destructor or a destructor that is 3929 // inaccessible from the defaulted destructor 3930 if (FieldDtor->isDeleted()) 3931 return true; 3932 if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) != 3933 AR_accessible) 3934 return true; 3935 3936 // -- X is a union-like class that has a variant member with a non- 3937 // trivial destructor. 3938 if (Union && !FieldDtor->isTrivial()) 3939 return true; 3940 } 3941 } 3942 } 3943 3944 if (DD->isVirtual()) { 3945 FunctionDecl *OperatorDelete = 0; 3946 DeclarationName Name = 3947 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3948 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete, 3949 false)) 3950 return true; 3951 } 3952 3953 3954 return false; 3955 } 3956 3957 /// \brief Data used with FindHiddenVirtualMethod 3958 namespace { 3959 struct FindHiddenVirtualMethodData { 3960 Sema *S; 3961 CXXMethodDecl *Method; 3962 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 3963 llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3964 }; 3965 } 3966 3967 /// \brief Member lookup function that determines whether a given C++ 3968 /// method overloads virtual methods in a base class without overriding any, 3969 /// to be used with CXXRecordDecl::lookupInBases(). 3970 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier, 3971 CXXBasePath &Path, 3972 void *UserData) { 3973 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 3974 3975 FindHiddenVirtualMethodData &Data 3976 = *static_cast<FindHiddenVirtualMethodData*>(UserData); 3977 3978 DeclarationName Name = Data.Method->getDeclName(); 3979 assert(Name.getNameKind() == DeclarationName::Identifier); 3980 3981 bool foundSameNameMethod = false; 3982 llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods; 3983 for (Path.Decls = BaseRecord->lookup(Name); 3984 Path.Decls.first != Path.Decls.second; 3985 ++Path.Decls.first) { 3986 NamedDecl *D = *Path.Decls.first; 3987 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 3988 MD = MD->getCanonicalDecl(); 3989 foundSameNameMethod = true; 3990 // Interested only in hidden virtual methods. 3991 if (!MD->isVirtual()) 3992 continue; 3993 // If the method we are checking overrides a method from its base 3994 // don't warn about the other overloaded methods. 3995 if (!Data.S->IsOverload(Data.Method, MD, false)) 3996 return true; 3997 // Collect the overload only if its hidden. 3998 if (!Data.OverridenAndUsingBaseMethods.count(MD)) 3999 overloadedMethods.push_back(MD); 4000 } 4001 } 4002 4003 if (foundSameNameMethod) 4004 Data.OverloadedMethods.append(overloadedMethods.begin(), 4005 overloadedMethods.end()); 4006 return foundSameNameMethod; 4007 } 4008 4009 /// \brief See if a method overloads virtual methods in a base class without 4010 /// overriding any. 4011 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 4012 if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual, 4013 MD->getLocation()) == Diagnostic::Ignored) 4014 return; 4015 if (MD->getDeclName().getNameKind() != DeclarationName::Identifier) 4016 return; 4017 4018 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 4019 /*bool RecordPaths=*/false, 4020 /*bool DetectVirtual=*/false); 4021 FindHiddenVirtualMethodData Data; 4022 Data.Method = MD; 4023 Data.S = this; 4024 4025 // Keep the base methods that were overriden or introduced in the subclass 4026 // by 'using' in a set. A base method not in this set is hidden. 4027 for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName()); 4028 res.first != res.second; ++res.first) { 4029 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first)) 4030 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 4031 E = MD->end_overridden_methods(); 4032 I != E; ++I) 4033 Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl()); 4034 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first)) 4035 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl())) 4036 Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl()); 4037 } 4038 4039 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) && 4040 !Data.OverloadedMethods.empty()) { 4041 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 4042 << MD << (Data.OverloadedMethods.size() > 1); 4043 4044 for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) { 4045 CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i]; 4046 Diag(overloadedMD->getLocation(), 4047 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 4048 } 4049 } 4050 } 4051 4052 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, 4053 Decl *TagDecl, 4054 SourceLocation LBrac, 4055 SourceLocation RBrac, 4056 AttributeList *AttrList) { 4057 if (!TagDecl) 4058 return; 4059 4060 AdjustDeclIfTemplate(TagDecl); 4061 4062 ActOnFields(S, RLoc, TagDecl, 4063 // strict aliasing violation! 4064 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 4065 FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList); 4066 4067 CheckCompletedCXXClass( 4068 dyn_cast_or_null<CXXRecordDecl>(TagDecl)); 4069 } 4070 4071 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 4072 /// special functions, such as the default constructor, copy 4073 /// constructor, or destructor, to the given C++ class (C++ 4074 /// [special]p1). This routine can only be executed just before the 4075 /// definition of the class is complete. 4076 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 4077 if (!ClassDecl->hasUserDeclaredConstructor()) 4078 ++ASTContext::NumImplicitDefaultConstructors; 4079 4080 if (!ClassDecl->hasUserDeclaredCopyConstructor()) 4081 ++ASTContext::NumImplicitCopyConstructors; 4082 4083 if (!ClassDecl->hasUserDeclaredCopyAssignment()) { 4084 ++ASTContext::NumImplicitCopyAssignmentOperators; 4085 4086 // If we have a dynamic class, then the copy assignment operator may be 4087 // virtual, so we have to declare it immediately. This ensures that, e.g., 4088 // it shows up in the right place in the vtable and that we diagnose 4089 // problems with the implicit exception specification. 4090 if (ClassDecl->isDynamicClass()) 4091 DeclareImplicitCopyAssignment(ClassDecl); 4092 } 4093 4094 if (!ClassDecl->hasUserDeclaredDestructor()) { 4095 ++ASTContext::NumImplicitDestructors; 4096 4097 // If we have a dynamic class, then the destructor may be virtual, so we 4098 // have to declare the destructor immediately. This ensures that, e.g., it 4099 // shows up in the right place in the vtable and that we diagnose problems 4100 // with the implicit exception specification. 4101 if (ClassDecl->isDynamicClass()) 4102 DeclareImplicitDestructor(ClassDecl); 4103 } 4104 } 4105 4106 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) { 4107 if (!D) 4108 return; 4109 4110 int NumParamList = D->getNumTemplateParameterLists(); 4111 for (int i = 0; i < NumParamList; i++) { 4112 TemplateParameterList* Params = D->getTemplateParameterList(i); 4113 for (TemplateParameterList::iterator Param = Params->begin(), 4114 ParamEnd = Params->end(); 4115 Param != ParamEnd; ++Param) { 4116 NamedDecl *Named = cast<NamedDecl>(*Param); 4117 if (Named->getDeclName()) { 4118 S->AddDecl(Named); 4119 IdResolver.AddDecl(Named); 4120 } 4121 } 4122 } 4123 } 4124 4125 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { 4126 if (!D) 4127 return; 4128 4129 TemplateParameterList *Params = 0; 4130 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) 4131 Params = Template->getTemplateParameters(); 4132 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 4133 = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 4134 Params = PartialSpec->getTemplateParameters(); 4135 else 4136 return; 4137 4138 for (TemplateParameterList::iterator Param = Params->begin(), 4139 ParamEnd = Params->end(); 4140 Param != ParamEnd; ++Param) { 4141 NamedDecl *Named = cast<NamedDecl>(*Param); 4142 if (Named->getDeclName()) { 4143 S->AddDecl(Named); 4144 IdResolver.AddDecl(Named); 4145 } 4146 } 4147 } 4148 4149 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 4150 if (!RecordD) return; 4151 AdjustDeclIfTemplate(RecordD); 4152 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 4153 PushDeclContext(S, Record); 4154 } 4155 4156 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 4157 if (!RecordD) return; 4158 PopDeclContext(); 4159 } 4160 4161 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 4162 /// parsing a top-level (non-nested) C++ class, and we are now 4163 /// parsing those parts of the given Method declaration that could 4164 /// not be parsed earlier (C++ [class.mem]p2), such as default 4165 /// arguments. This action should enter the scope of the given 4166 /// Method declaration as if we had just parsed the qualified method 4167 /// name. However, it should not bring the parameters into scope; 4168 /// that will be performed by ActOnDelayedCXXMethodParameter. 4169 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 4170 } 4171 4172 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 4173 /// C++ method declaration. We're (re-)introducing the given 4174 /// function parameter into scope for use in parsing later parts of 4175 /// the method declaration. For example, we could see an 4176 /// ActOnParamDefaultArgument event for this parameter. 4177 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 4178 if (!ParamD) 4179 return; 4180 4181 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 4182 4183 // If this parameter has an unparsed default argument, clear it out 4184 // to make way for the parsed default argument. 4185 if (Param->hasUnparsedDefaultArg()) 4186 Param->setDefaultArg(0); 4187 4188 S->AddDecl(Param); 4189 if (Param->getDeclName()) 4190 IdResolver.AddDecl(Param); 4191 } 4192 4193 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 4194 /// processing the delayed method declaration for Method. The method 4195 /// declaration is now considered finished. There may be a separate 4196 /// ActOnStartOfFunctionDef action later (not necessarily 4197 /// immediately!) for this method, if it was also defined inside the 4198 /// class body. 4199 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 4200 if (!MethodD) 4201 return; 4202 4203 AdjustDeclIfTemplate(MethodD); 4204 4205 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 4206 4207 // Now that we have our default arguments, check the constructor 4208 // again. It could produce additional diagnostics or affect whether 4209 // the class has implicitly-declared destructors, among other 4210 // things. 4211 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 4212 CheckConstructor(Constructor); 4213 4214 // Check the default arguments, which we may have added. 4215 if (!Method->isInvalidDecl()) 4216 CheckCXXDefaultArguments(Method); 4217 } 4218 4219 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 4220 /// the well-formedness of the constructor declarator @p D with type @p 4221 /// R. If there are any errors in the declarator, this routine will 4222 /// emit diagnostics and set the invalid bit to true. In any case, the type 4223 /// will be updated to reflect a well-formed type for the constructor and 4224 /// returned. 4225 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 4226 StorageClass &SC) { 4227 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 4228 4229 // C++ [class.ctor]p3: 4230 // A constructor shall not be virtual (10.3) or static (9.4). A 4231 // constructor can be invoked for a const, volatile or const 4232 // volatile object. A constructor shall not be declared const, 4233 // volatile, or const volatile (9.3.2). 4234 if (isVirtual) { 4235 if (!D.isInvalidType()) 4236 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 4237 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 4238 << SourceRange(D.getIdentifierLoc()); 4239 D.setInvalidType(); 4240 } 4241 if (SC == SC_Static) { 4242 if (!D.isInvalidType()) 4243 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 4244 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 4245 << SourceRange(D.getIdentifierLoc()); 4246 D.setInvalidType(); 4247 SC = SC_None; 4248 } 4249 4250 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4251 if (FTI.TypeQuals != 0) { 4252 if (FTI.TypeQuals & Qualifiers::Const) 4253 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 4254 << "const" << SourceRange(D.getIdentifierLoc()); 4255 if (FTI.TypeQuals & Qualifiers::Volatile) 4256 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 4257 << "volatile" << SourceRange(D.getIdentifierLoc()); 4258 if (FTI.TypeQuals & Qualifiers::Restrict) 4259 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 4260 << "restrict" << SourceRange(D.getIdentifierLoc()); 4261 D.setInvalidType(); 4262 } 4263 4264 // C++0x [class.ctor]p4: 4265 // A constructor shall not be declared with a ref-qualifier. 4266 if (FTI.hasRefQualifier()) { 4267 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 4268 << FTI.RefQualifierIsLValueRef 4269 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 4270 D.setInvalidType(); 4271 } 4272 4273 // Rebuild the function type "R" without any type qualifiers (in 4274 // case any of the errors above fired) and with "void" as the 4275 // return type, since constructors don't have return types. 4276 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 4277 if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType()) 4278 return R; 4279 4280 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4281 EPI.TypeQuals = 0; 4282 EPI.RefQualifier = RQ_None; 4283 4284 return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), 4285 Proto->getNumArgs(), EPI); 4286 } 4287 4288 /// CheckConstructor - Checks a fully-formed constructor for 4289 /// well-formedness, issuing any diagnostics required. Returns true if 4290 /// the constructor declarator is invalid. 4291 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 4292 CXXRecordDecl *ClassDecl 4293 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 4294 if (!ClassDecl) 4295 return Constructor->setInvalidDecl(); 4296 4297 // C++ [class.copy]p3: 4298 // A declaration of a constructor for a class X is ill-formed if 4299 // its first parameter is of type (optionally cv-qualified) X and 4300 // either there are no other parameters or else all other 4301 // parameters have default arguments. 4302 if (!Constructor->isInvalidDecl() && 4303 ((Constructor->getNumParams() == 1) || 4304 (Constructor->getNumParams() > 1 && 4305 Constructor->getParamDecl(1)->hasDefaultArg())) && 4306 Constructor->getTemplateSpecializationKind() 4307 != TSK_ImplicitInstantiation) { 4308 QualType ParamType = Constructor->getParamDecl(0)->getType(); 4309 QualType ClassTy = Context.getTagDeclType(ClassDecl); 4310 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 4311 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 4312 const char *ConstRef 4313 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 4314 : " const &"; 4315 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 4316 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 4317 4318 // FIXME: Rather that making the constructor invalid, we should endeavor 4319 // to fix the type. 4320 Constructor->setInvalidDecl(); 4321 } 4322 } 4323 } 4324 4325 /// CheckDestructor - Checks a fully-formed destructor definition for 4326 /// well-formedness, issuing any diagnostics required. Returns true 4327 /// on error. 4328 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 4329 CXXRecordDecl *RD = Destructor->getParent(); 4330 4331 if (Destructor->isVirtual()) { 4332 SourceLocation Loc; 4333 4334 if (!Destructor->isImplicit()) 4335 Loc = Destructor->getLocation(); 4336 else 4337 Loc = RD->getLocation(); 4338 4339 // If we have a virtual destructor, look up the deallocation function 4340 FunctionDecl *OperatorDelete = 0; 4341 DeclarationName Name = 4342 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 4343 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 4344 return true; 4345 4346 MarkDeclarationReferenced(Loc, OperatorDelete); 4347 4348 Destructor->setOperatorDelete(OperatorDelete); 4349 } 4350 4351 return false; 4352 } 4353 4354 static inline bool 4355 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { 4356 return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && 4357 FTI.ArgInfo[0].Param && 4358 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()); 4359 } 4360 4361 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 4362 /// the well-formednes of the destructor declarator @p D with type @p 4363 /// R. If there are any errors in the declarator, this routine will 4364 /// emit diagnostics and set the declarator to invalid. Even if this happens, 4365 /// will be updated to reflect a well-formed type for the destructor and 4366 /// returned. 4367 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 4368 StorageClass& SC) { 4369 // C++ [class.dtor]p1: 4370 // [...] A typedef-name that names a class is a class-name 4371 // (7.1.3); however, a typedef-name that names a class shall not 4372 // be used as the identifier in the declarator for a destructor 4373 // declaration. 4374 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 4375 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 4376 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 4377 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 4378 else if (const TemplateSpecializationType *TST = 4379 DeclaratorType->getAs<TemplateSpecializationType>()) 4380 if (TST->isTypeAlias()) 4381 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 4382 << DeclaratorType << 1; 4383 4384 // C++ [class.dtor]p2: 4385 // A destructor is used to destroy objects of its class type. A 4386 // destructor takes no parameters, and no return type can be 4387 // specified for it (not even void). The address of a destructor 4388 // shall not be taken. A destructor shall not be static. A 4389 // destructor can be invoked for a const, volatile or const 4390 // volatile object. A destructor shall not be declared const, 4391 // volatile or const volatile (9.3.2). 4392 if (SC == SC_Static) { 4393 if (!D.isInvalidType()) 4394 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 4395 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 4396 << SourceRange(D.getIdentifierLoc()) 4397 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 4398 4399 SC = SC_None; 4400 } 4401 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { 4402 // Destructors don't have return types, but the parser will 4403 // happily parse something like: 4404 // 4405 // class X { 4406 // float ~X(); 4407 // }; 4408 // 4409 // The return type will be eliminated later. 4410 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 4411 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 4412 << SourceRange(D.getIdentifierLoc()); 4413 } 4414 4415 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4416 if (FTI.TypeQuals != 0 && !D.isInvalidType()) { 4417 if (FTI.TypeQuals & Qualifiers::Const) 4418 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 4419 << "const" << SourceRange(D.getIdentifierLoc()); 4420 if (FTI.TypeQuals & Qualifiers::Volatile) 4421 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 4422 << "volatile" << SourceRange(D.getIdentifierLoc()); 4423 if (FTI.TypeQuals & Qualifiers::Restrict) 4424 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 4425 << "restrict" << SourceRange(D.getIdentifierLoc()); 4426 D.setInvalidType(); 4427 } 4428 4429 // C++0x [class.dtor]p2: 4430 // A destructor shall not be declared with a ref-qualifier. 4431 if (FTI.hasRefQualifier()) { 4432 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 4433 << FTI.RefQualifierIsLValueRef 4434 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 4435 D.setInvalidType(); 4436 } 4437 4438 // Make sure we don't have any parameters. 4439 if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { 4440 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 4441 4442 // Delete the parameters. 4443 FTI.freeArgs(); 4444 D.setInvalidType(); 4445 } 4446 4447 // Make sure the destructor isn't variadic. 4448 if (FTI.isVariadic) { 4449 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 4450 D.setInvalidType(); 4451 } 4452 4453 // Rebuild the function type "R" without any type qualifiers or 4454 // parameters (in case any of the errors above fired) and with 4455 // "void" as the return type, since destructors don't have return 4456 // types. 4457 if (!D.isInvalidType()) 4458 return R; 4459 4460 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 4461 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4462 EPI.Variadic = false; 4463 EPI.TypeQuals = 0; 4464 EPI.RefQualifier = RQ_None; 4465 return Context.getFunctionType(Context.VoidTy, 0, 0, EPI); 4466 } 4467 4468 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 4469 /// well-formednes of the conversion function declarator @p D with 4470 /// type @p R. If there are any errors in the declarator, this routine 4471 /// will emit diagnostics and return true. Otherwise, it will return 4472 /// false. Either way, the type @p R will be updated to reflect a 4473 /// well-formed type for the conversion operator. 4474 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 4475 StorageClass& SC) { 4476 // C++ [class.conv.fct]p1: 4477 // Neither parameter types nor return type can be specified. The 4478 // type of a conversion function (8.3.5) is "function taking no 4479 // parameter returning conversion-type-id." 4480 if (SC == SC_Static) { 4481 if (!D.isInvalidType()) 4482 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 4483 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 4484 << SourceRange(D.getIdentifierLoc()); 4485 D.setInvalidType(); 4486 SC = SC_None; 4487 } 4488 4489 QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); 4490 4491 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { 4492 // Conversion functions don't have return types, but the parser will 4493 // happily parse something like: 4494 // 4495 // class X { 4496 // float operator bool(); 4497 // }; 4498 // 4499 // The return type will be changed later anyway. 4500 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 4501 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 4502 << SourceRange(D.getIdentifierLoc()); 4503 D.setInvalidType(); 4504 } 4505 4506 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 4507 4508 // Make sure we don't have any parameters. 4509 if (Proto->getNumArgs() > 0) { 4510 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 4511 4512 // Delete the parameters. 4513 D.getFunctionTypeInfo().freeArgs(); 4514 D.setInvalidType(); 4515 } else if (Proto->isVariadic()) { 4516 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 4517 D.setInvalidType(); 4518 } 4519 4520 // Diagnose "&operator bool()" and other such nonsense. This 4521 // is actually a gcc extension which we don't support. 4522 if (Proto->getResultType() != ConvType) { 4523 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 4524 << Proto->getResultType(); 4525 D.setInvalidType(); 4526 ConvType = Proto->getResultType(); 4527 } 4528 4529 // C++ [class.conv.fct]p4: 4530 // The conversion-type-id shall not represent a function type nor 4531 // an array type. 4532 if (ConvType->isArrayType()) { 4533 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 4534 ConvType = Context.getPointerType(ConvType); 4535 D.setInvalidType(); 4536 } else if (ConvType->isFunctionType()) { 4537 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 4538 ConvType = Context.getPointerType(ConvType); 4539 D.setInvalidType(); 4540 } 4541 4542 // Rebuild the function type "R" without any parameters (in case any 4543 // of the errors above fired) and with the conversion type as the 4544 // return type. 4545 if (D.isInvalidType()) 4546 R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo()); 4547 4548 // C++0x explicit conversion operators. 4549 if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) 4550 Diag(D.getDeclSpec().getExplicitSpecLoc(), 4551 diag::warn_explicit_conversion_functions) 4552 << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); 4553 } 4554 4555 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 4556 /// the declaration of the given C++ conversion function. This routine 4557 /// is responsible for recording the conversion function in the C++ 4558 /// class, if possible. 4559 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 4560 assert(Conversion && "Expected to receive a conversion function declaration"); 4561 4562 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 4563 4564 // Make sure we aren't redeclaring the conversion function. 4565 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 4566 4567 // C++ [class.conv.fct]p1: 4568 // [...] A conversion function is never used to convert a 4569 // (possibly cv-qualified) object to the (possibly cv-qualified) 4570 // same object type (or a reference to it), to a (possibly 4571 // cv-qualified) base class of that type (or a reference to it), 4572 // or to (possibly cv-qualified) void. 4573 // FIXME: Suppress this warning if the conversion function ends up being a 4574 // virtual function that overrides a virtual function in a base class. 4575 QualType ClassType 4576 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 4577 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 4578 ConvType = ConvTypeRef->getPointeeType(); 4579 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 4580 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 4581 /* Suppress diagnostics for instantiations. */; 4582 else if (ConvType->isRecordType()) { 4583 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 4584 if (ConvType == ClassType) 4585 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 4586 << ClassType; 4587 else if (IsDerivedFrom(ClassType, ConvType)) 4588 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 4589 << ClassType << ConvType; 4590 } else if (ConvType->isVoidType()) { 4591 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 4592 << ClassType << ConvType; 4593 } 4594 4595 if (FunctionTemplateDecl *ConversionTemplate 4596 = Conversion->getDescribedFunctionTemplate()) 4597 return ConversionTemplate; 4598 4599 return Conversion; 4600 } 4601 4602 //===----------------------------------------------------------------------===// 4603 // Namespace Handling 4604 //===----------------------------------------------------------------------===// 4605 4606 4607 4608 /// ActOnStartNamespaceDef - This is called at the start of a namespace 4609 /// definition. 4610 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 4611 SourceLocation InlineLoc, 4612 SourceLocation NamespaceLoc, 4613 SourceLocation IdentLoc, 4614 IdentifierInfo *II, 4615 SourceLocation LBrace, 4616 AttributeList *AttrList) { 4617 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 4618 // For anonymous namespace, take the location of the left brace. 4619 SourceLocation Loc = II ? IdentLoc : LBrace; 4620 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, 4621 StartLoc, Loc, II); 4622 Namespc->setInline(InlineLoc.isValid()); 4623 4624 Scope *DeclRegionScope = NamespcScope->getParent(); 4625 4626 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 4627 4628 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 4629 PushNamespaceVisibilityAttr(Attr); 4630 4631 if (II) { 4632 // C++ [namespace.def]p2: 4633 // The identifier in an original-namespace-definition shall not 4634 // have been previously defined in the declarative region in 4635 // which the original-namespace-definition appears. The 4636 // identifier in an original-namespace-definition is the name of 4637 // the namespace. Subsequently in that declarative region, it is 4638 // treated as an original-namespace-name. 4639 // 4640 // Since namespace names are unique in their scope, and we don't 4641 // look through using directives, just look for any ordinary names. 4642 4643 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member | 4644 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag | 4645 Decl::IDNS_Namespace; 4646 NamedDecl *PrevDecl = 0; 4647 for (DeclContext::lookup_result R 4648 = CurContext->getRedeclContext()->lookup(II); 4649 R.first != R.second; ++R.first) { 4650 if ((*R.first)->getIdentifierNamespace() & IDNS) { 4651 PrevDecl = *R.first; 4652 break; 4653 } 4654 } 4655 4656 if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { 4657 // This is an extended namespace definition. 4658 if (Namespc->isInline() != OrigNS->isInline()) { 4659 // inline-ness must match 4660 if (OrigNS->isInline()) { 4661 // The user probably just forgot the 'inline', so suggest that it 4662 // be added back. 4663 Diag(Namespc->getLocation(), 4664 diag::warn_inline_namespace_reopened_noninline) 4665 << FixItHint::CreateInsertion(NamespaceLoc, "inline "); 4666 } else { 4667 Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) 4668 << Namespc->isInline(); 4669 } 4670 Diag(OrigNS->getLocation(), diag::note_previous_definition); 4671 4672 // Recover by ignoring the new namespace's inline status. 4673 Namespc->setInline(OrigNS->isInline()); 4674 } 4675 4676 // Attach this namespace decl to the chain of extended namespace 4677 // definitions. 4678 OrigNS->setNextNamespace(Namespc); 4679 Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); 4680 4681 // Remove the previous declaration from the scope. 4682 if (DeclRegionScope->isDeclScope(OrigNS)) { 4683 IdResolver.RemoveDecl(OrigNS); 4684 DeclRegionScope->RemoveDecl(OrigNS); 4685 } 4686 } else if (PrevDecl) { 4687 // This is an invalid name redefinition. 4688 Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) 4689 << Namespc->getDeclName(); 4690 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 4691 Namespc->setInvalidDecl(); 4692 // Continue on to push Namespc as current DeclContext and return it. 4693 } else if (II->isStr("std") && 4694 CurContext->getRedeclContext()->isTranslationUnit()) { 4695 // This is the first "real" definition of the namespace "std", so update 4696 // our cache of the "std" namespace to point at this definition. 4697 if (NamespaceDecl *StdNS = getStdNamespace()) { 4698 // We had already defined a dummy namespace "std". Link this new 4699 // namespace definition to the dummy namespace "std". 4700 StdNS->setNextNamespace(Namespc); 4701 StdNS->setLocation(IdentLoc); 4702 Namespc->setOriginalNamespace(StdNS->getOriginalNamespace()); 4703 } 4704 4705 // Make our StdNamespace cache point at the first real definition of the 4706 // "std" namespace. 4707 StdNamespace = Namespc; 4708 4709 // Add this instance of "std" to the set of known namespaces 4710 KnownNamespaces[Namespc] = false; 4711 } else if (!Namespc->isInline()) { 4712 // Since this is an "original" namespace, add it to the known set of 4713 // namespaces if it is not an inline namespace. 4714 KnownNamespaces[Namespc] = false; 4715 } 4716 4717 PushOnScopeChains(Namespc, DeclRegionScope); 4718 } else { 4719 // Anonymous namespaces. 4720 assert(Namespc->isAnonymousNamespace()); 4721 4722 // Link the anonymous namespace into its parent. 4723 NamespaceDecl *PrevDecl; 4724 DeclContext *Parent = CurContext->getRedeclContext(); 4725 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 4726 PrevDecl = TU->getAnonymousNamespace(); 4727 TU->setAnonymousNamespace(Namespc); 4728 } else { 4729 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 4730 PrevDecl = ND->getAnonymousNamespace(); 4731 ND->setAnonymousNamespace(Namespc); 4732 } 4733 4734 // Link the anonymous namespace with its previous declaration. 4735 if (PrevDecl) { 4736 assert(PrevDecl->isAnonymousNamespace()); 4737 assert(!PrevDecl->getNextNamespace()); 4738 Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); 4739 PrevDecl->setNextNamespace(Namespc); 4740 4741 if (Namespc->isInline() != PrevDecl->isInline()) { 4742 // inline-ness must match 4743 Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) 4744 << Namespc->isInline(); 4745 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 4746 Namespc->setInvalidDecl(); 4747 // Recover by ignoring the new namespace's inline status. 4748 Namespc->setInline(PrevDecl->isInline()); 4749 } 4750 } 4751 4752 CurContext->addDecl(Namespc); 4753 4754 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 4755 // behaves as if it were replaced by 4756 // namespace unique { /* empty body */ } 4757 // using namespace unique; 4758 // namespace unique { namespace-body } 4759 // where all occurrences of 'unique' in a translation unit are 4760 // replaced by the same identifier and this identifier differs 4761 // from all other identifiers in the entire program. 4762 4763 // We just create the namespace with an empty name and then add an 4764 // implicit using declaration, just like the standard suggests. 4765 // 4766 // CodeGen enforces the "universally unique" aspect by giving all 4767 // declarations semantically contained within an anonymous 4768 // namespace internal linkage. 4769 4770 if (!PrevDecl) { 4771 UsingDirectiveDecl* UD 4772 = UsingDirectiveDecl::Create(Context, CurContext, 4773 /* 'using' */ LBrace, 4774 /* 'namespace' */ SourceLocation(), 4775 /* qualifier */ NestedNameSpecifierLoc(), 4776 /* identifier */ SourceLocation(), 4777 Namespc, 4778 /* Ancestor */ CurContext); 4779 UD->setImplicit(); 4780 CurContext->addDecl(UD); 4781 } 4782 } 4783 4784 // Although we could have an invalid decl (i.e. the namespace name is a 4785 // redefinition), push it as current DeclContext and try to continue parsing. 4786 // FIXME: We should be able to push Namespc here, so that the each DeclContext 4787 // for the namespace has the declarations that showed up in that particular 4788 // namespace definition. 4789 PushDeclContext(NamespcScope, Namespc); 4790 return Namespc; 4791 } 4792 4793 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 4794 /// is a namespace alias, returns the namespace it points to. 4795 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 4796 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 4797 return AD->getNamespace(); 4798 return dyn_cast_or_null<NamespaceDecl>(D); 4799 } 4800 4801 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 4802 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 4803 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 4804 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 4805 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 4806 Namespc->setRBraceLoc(RBrace); 4807 PopDeclContext(); 4808 if (Namespc->hasAttr<VisibilityAttr>()) 4809 PopPragmaVisibility(); 4810 } 4811 4812 CXXRecordDecl *Sema::getStdBadAlloc() const { 4813 return cast_or_null<CXXRecordDecl>( 4814 StdBadAlloc.get(Context.getExternalSource())); 4815 } 4816 4817 NamespaceDecl *Sema::getStdNamespace() const { 4818 return cast_or_null<NamespaceDecl>( 4819 StdNamespace.get(Context.getExternalSource())); 4820 } 4821 4822 /// \brief Retrieve the special "std" namespace, which may require us to 4823 /// implicitly define the namespace. 4824 NamespaceDecl *Sema::getOrCreateStdNamespace() { 4825 if (!StdNamespace) { 4826 // The "std" namespace has not yet been defined, so build one implicitly. 4827 StdNamespace = NamespaceDecl::Create(Context, 4828 Context.getTranslationUnitDecl(), 4829 SourceLocation(), SourceLocation(), 4830 &PP.getIdentifierTable().get("std")); 4831 getStdNamespace()->setImplicit(true); 4832 } 4833 4834 return getStdNamespace(); 4835 } 4836 4837 /// \brief Determine whether a using statement is in a context where it will be 4838 /// apply in all contexts. 4839 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 4840 switch (CurContext->getDeclKind()) { 4841 case Decl::TranslationUnit: 4842 return true; 4843 case Decl::LinkageSpec: 4844 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 4845 default: 4846 return false; 4847 } 4848 } 4849 4850 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 4851 CXXScopeSpec &SS, 4852 SourceLocation IdentLoc, 4853 IdentifierInfo *Ident) { 4854 R.clear(); 4855 if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(), 4856 R.getLookupKind(), Sc, &SS, NULL, 4857 false, S.CTC_NoKeywords, NULL)) { 4858 if (Corrected.getCorrectionDeclAs<NamespaceDecl>() || 4859 Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) { 4860 std::string CorrectedStr(Corrected.getAsString(S.getLangOptions())); 4861 std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions())); 4862 if (DeclContext *DC = S.computeDeclContext(SS, false)) 4863 S.Diag(IdentLoc, diag::err_using_directive_member_suggest) 4864 << Ident << DC << CorrectedQuotedStr << SS.getRange() 4865 << FixItHint::CreateReplacement(IdentLoc, CorrectedStr); 4866 else 4867 S.Diag(IdentLoc, diag::err_using_directive_suggest) 4868 << Ident << CorrectedQuotedStr 4869 << FixItHint::CreateReplacement(IdentLoc, CorrectedStr); 4870 4871 S.Diag(Corrected.getCorrectionDecl()->getLocation(), 4872 diag::note_namespace_defined_here) << CorrectedQuotedStr; 4873 4874 Ident = Corrected.getCorrectionAsIdentifierInfo(); 4875 R.addDecl(Corrected.getCorrectionDecl()); 4876 return true; 4877 } 4878 R.setLookupName(Ident); 4879 } 4880 return false; 4881 } 4882 4883 Decl *Sema::ActOnUsingDirective(Scope *S, 4884 SourceLocation UsingLoc, 4885 SourceLocation NamespcLoc, 4886 CXXScopeSpec &SS, 4887 SourceLocation IdentLoc, 4888 IdentifierInfo *NamespcName, 4889 AttributeList *AttrList) { 4890 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 4891 assert(NamespcName && "Invalid NamespcName."); 4892 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 4893 4894 // This can only happen along a recovery path. 4895 while (S->getFlags() & Scope::TemplateParamScope) 4896 S = S->getParent(); 4897 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 4898 4899 UsingDirectiveDecl *UDir = 0; 4900 NestedNameSpecifier *Qualifier = 0; 4901 if (SS.isSet()) 4902 Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4903 4904 // Lookup namespace name. 4905 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 4906 LookupParsedName(R, S, &SS); 4907 if (R.isAmbiguous()) 4908 return 0; 4909 4910 if (R.empty()) { 4911 R.clear(); 4912 // Allow "using namespace std;" or "using namespace ::std;" even if 4913 // "std" hasn't been defined yet, for GCC compatibility. 4914 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 4915 NamespcName->isStr("std")) { 4916 Diag(IdentLoc, diag::ext_using_undefined_std); 4917 R.addDecl(getOrCreateStdNamespace()); 4918 R.resolveKind(); 4919 } 4920 // Otherwise, attempt typo correction. 4921 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 4922 } 4923 4924 if (!R.empty()) { 4925 NamedDecl *Named = R.getFoundDecl(); 4926 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) 4927 && "expected namespace decl"); 4928 // C++ [namespace.udir]p1: 4929 // A using-directive specifies that the names in the nominated 4930 // namespace can be used in the scope in which the 4931 // using-directive appears after the using-directive. During 4932 // unqualified name lookup (3.4.1), the names appear as if they 4933 // were declared in the nearest enclosing namespace which 4934 // contains both the using-directive and the nominated 4935 // namespace. [Note: in this context, "contains" means "contains 4936 // directly or indirectly". ] 4937 4938 // Find enclosing context containing both using-directive and 4939 // nominated namespace. 4940 NamespaceDecl *NS = getNamespaceDecl(Named); 4941 DeclContext *CommonAncestor = cast<DeclContext>(NS); 4942 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 4943 CommonAncestor = CommonAncestor->getParent(); 4944 4945 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 4946 SS.getWithLocInContext(Context), 4947 IdentLoc, Named, CommonAncestor); 4948 4949 if (IsUsingDirectiveInToplevelContext(CurContext) && 4950 !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) { 4951 Diag(IdentLoc, diag::warn_using_directive_in_header); 4952 } 4953 4954 PushUsingDirective(S, UDir); 4955 } else { 4956 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 4957 } 4958 4959 // FIXME: We ignore attributes for now. 4960 return UDir; 4961 } 4962 4963 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 4964 // If scope has associated entity, then using directive is at namespace 4965 // or translation unit scope. We add UsingDirectiveDecls, into 4966 // it's lookup structure. 4967 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) 4968 Ctx->addDecl(UDir); 4969 else 4970 // Otherwise it is block-sope. using-directives will affect lookup 4971 // only to the end of scope. 4972 S->PushUsingDirective(UDir); 4973 } 4974 4975 4976 Decl *Sema::ActOnUsingDeclaration(Scope *S, 4977 AccessSpecifier AS, 4978 bool HasUsingKeyword, 4979 SourceLocation UsingLoc, 4980 CXXScopeSpec &SS, 4981 UnqualifiedId &Name, 4982 AttributeList *AttrList, 4983 bool IsTypeName, 4984 SourceLocation TypenameLoc) { 4985 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 4986 4987 switch (Name.getKind()) { 4988 case UnqualifiedId::IK_ImplicitSelfParam: 4989 case UnqualifiedId::IK_Identifier: 4990 case UnqualifiedId::IK_OperatorFunctionId: 4991 case UnqualifiedId::IK_LiteralOperatorId: 4992 case UnqualifiedId::IK_ConversionFunctionId: 4993 break; 4994 4995 case UnqualifiedId::IK_ConstructorName: 4996 case UnqualifiedId::IK_ConstructorTemplateId: 4997 // C++0x inherited constructors. 4998 if (getLangOptions().CPlusPlus0x) break; 4999 5000 Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) 5001 << SS.getRange(); 5002 return 0; 5003 5004 case UnqualifiedId::IK_DestructorName: 5005 Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) 5006 << SS.getRange(); 5007 return 0; 5008 5009 case UnqualifiedId::IK_TemplateId: 5010 Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) 5011 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 5012 return 0; 5013 } 5014 5015 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 5016 DeclarationName TargetName = TargetNameInfo.getName(); 5017 if (!TargetName) 5018 return 0; 5019 5020 // Warn about using declarations. 5021 // TODO: store that the declaration was written without 'using' and 5022 // talk about access decls instead of using decls in the 5023 // diagnostics. 5024 if (!HasUsingKeyword) { 5025 UsingLoc = Name.getSourceRange().getBegin(); 5026 5027 Diag(UsingLoc, diag::warn_access_decl_deprecated) 5028 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 5029 } 5030 5031 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 5032 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 5033 return 0; 5034 5035 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, 5036 TargetNameInfo, AttrList, 5037 /* IsInstantiation */ false, 5038 IsTypeName, TypenameLoc); 5039 if (UD) 5040 PushOnScopeChains(UD, S, /*AddToContext*/ false); 5041 5042 return UD; 5043 } 5044 5045 /// \brief Determine whether a using declaration considers the given 5046 /// declarations as "equivalent", e.g., if they are redeclarations of 5047 /// the same entity or are both typedefs of the same type. 5048 static bool 5049 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2, 5050 bool &SuppressRedeclaration) { 5051 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) { 5052 SuppressRedeclaration = false; 5053 return true; 5054 } 5055 5056 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 5057 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) { 5058 SuppressRedeclaration = true; 5059 return Context.hasSameType(TD1->getUnderlyingType(), 5060 TD2->getUnderlyingType()); 5061 } 5062 5063 return false; 5064 } 5065 5066 5067 /// Determines whether to create a using shadow decl for a particular 5068 /// decl, given the set of decls existing prior to this using lookup. 5069 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, 5070 const LookupResult &Previous) { 5071 // Diagnose finding a decl which is not from a base class of the 5072 // current class. We do this now because there are cases where this 5073 // function will silently decide not to build a shadow decl, which 5074 // will pre-empt further diagnostics. 5075 // 5076 // We don't need to do this in C++0x because we do the check once on 5077 // the qualifier. 5078 // 5079 // FIXME: diagnose the following if we care enough: 5080 // struct A { int foo; }; 5081 // struct B : A { using A::foo; }; 5082 // template <class T> struct C : A {}; 5083 // template <class T> struct D : C<T> { using B::foo; } // <--- 5084 // This is invalid (during instantiation) in C++03 because B::foo 5085 // resolves to the using decl in B, which is not a base class of D<T>. 5086 // We can't diagnose it immediately because C<T> is an unknown 5087 // specialization. The UsingShadowDecl in D<T> then points directly 5088 // to A::foo, which will look well-formed when we instantiate. 5089 // The right solution is to not collapse the shadow-decl chain. 5090 if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { 5091 DeclContext *OrigDC = Orig->getDeclContext(); 5092 5093 // Handle enums and anonymous structs. 5094 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); 5095 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 5096 while (OrigRec->isAnonymousStructOrUnion()) 5097 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 5098 5099 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 5100 if (OrigDC == CurContext) { 5101 Diag(Using->getLocation(), 5102 diag::err_using_decl_nested_name_specifier_is_current_class) 5103 << Using->getQualifierLoc().getSourceRange(); 5104 Diag(Orig->getLocation(), diag::note_using_decl_target); 5105 return true; 5106 } 5107 5108 Diag(Using->getQualifierLoc().getBeginLoc(), 5109 diag::err_using_decl_nested_name_specifier_is_not_base_class) 5110 << Using->getQualifier() 5111 << cast<CXXRecordDecl>(CurContext) 5112 << Using->getQualifierLoc().getSourceRange(); 5113 Diag(Orig->getLocation(), diag::note_using_decl_target); 5114 return true; 5115 } 5116 } 5117 5118 if (Previous.empty()) return false; 5119 5120 NamedDecl *Target = Orig; 5121 if (isa<UsingShadowDecl>(Target)) 5122 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 5123 5124 // If the target happens to be one of the previous declarations, we 5125 // don't have a conflict. 5126 // 5127 // FIXME: but we might be increasing its access, in which case we 5128 // should redeclare it. 5129 NamedDecl *NonTag = 0, *Tag = 0; 5130 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5131 I != E; ++I) { 5132 NamedDecl *D = (*I)->getUnderlyingDecl(); 5133 bool Result; 5134 if (IsEquivalentForUsingDecl(Context, D, Target, Result)) 5135 return Result; 5136 5137 (isa<TagDecl>(D) ? Tag : NonTag) = D; 5138 } 5139 5140 if (Target->isFunctionOrFunctionTemplate()) { 5141 FunctionDecl *FD; 5142 if (isa<FunctionTemplateDecl>(Target)) 5143 FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); 5144 else 5145 FD = cast<FunctionDecl>(Target); 5146 5147 NamedDecl *OldDecl = 0; 5148 switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { 5149 case Ovl_Overload: 5150 return false; 5151 5152 case Ovl_NonFunction: 5153 Diag(Using->getLocation(), diag::err_using_decl_conflict); 5154 break; 5155 5156 // We found a decl with the exact signature. 5157 case Ovl_Match: 5158 // If we're in a record, we want to hide the target, so we 5159 // return true (without a diagnostic) to tell the caller not to 5160 // build a shadow decl. 5161 if (CurContext->isRecord()) 5162 return true; 5163 5164 // If we're not in a record, this is an error. 5165 Diag(Using->getLocation(), diag::err_using_decl_conflict); 5166 break; 5167 } 5168 5169 Diag(Target->getLocation(), diag::note_using_decl_target); 5170 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 5171 return true; 5172 } 5173 5174 // Target is not a function. 5175 5176 if (isa<TagDecl>(Target)) { 5177 // No conflict between a tag and a non-tag. 5178 if (!Tag) return false; 5179 5180 Diag(Using->getLocation(), diag::err_using_decl_conflict); 5181 Diag(Target->getLocation(), diag::note_using_decl_target); 5182 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 5183 return true; 5184 } 5185 5186 // No conflict between a tag and a non-tag. 5187 if (!NonTag) return false; 5188 5189 Diag(Using->getLocation(), diag::err_using_decl_conflict); 5190 Diag(Target->getLocation(), diag::note_using_decl_target); 5191 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 5192 return true; 5193 } 5194 5195 /// Builds a shadow declaration corresponding to a 'using' declaration. 5196 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, 5197 UsingDecl *UD, 5198 NamedDecl *Orig) { 5199 5200 // If we resolved to another shadow declaration, just coalesce them. 5201 NamedDecl *Target = Orig; 5202 if (isa<UsingShadowDecl>(Target)) { 5203 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 5204 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 5205 } 5206 5207 UsingShadowDecl *Shadow 5208 = UsingShadowDecl::Create(Context, CurContext, 5209 UD->getLocation(), UD, Target); 5210 UD->addShadowDecl(Shadow); 5211 5212 Shadow->setAccess(UD->getAccess()); 5213 if (Orig->isInvalidDecl() || UD->isInvalidDecl()) 5214 Shadow->setInvalidDecl(); 5215 5216 if (S) 5217 PushOnScopeChains(Shadow, S); 5218 else 5219 CurContext->addDecl(Shadow); 5220 5221 5222 return Shadow; 5223 } 5224 5225 /// Hides a using shadow declaration. This is required by the current 5226 /// using-decl implementation when a resolvable using declaration in a 5227 /// class is followed by a declaration which would hide or override 5228 /// one or more of the using decl's targets; for example: 5229 /// 5230 /// struct Base { void foo(int); }; 5231 /// struct Derived : Base { 5232 /// using Base::foo; 5233 /// void foo(int); 5234 /// }; 5235 /// 5236 /// The governing language is C++03 [namespace.udecl]p12: 5237 /// 5238 /// When a using-declaration brings names from a base class into a 5239 /// derived class scope, member functions in the derived class 5240 /// override and/or hide member functions with the same name and 5241 /// parameter types in a base class (rather than conflicting). 5242 /// 5243 /// There are two ways to implement this: 5244 /// (1) optimistically create shadow decls when they're not hidden 5245 /// by existing declarations, or 5246 /// (2) don't create any shadow decls (or at least don't make them 5247 /// visible) until we've fully parsed/instantiated the class. 5248 /// The problem with (1) is that we might have to retroactively remove 5249 /// a shadow decl, which requires several O(n) operations because the 5250 /// decl structures are (very reasonably) not designed for removal. 5251 /// (2) avoids this but is very fiddly and phase-dependent. 5252 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 5253 if (Shadow->getDeclName().getNameKind() == 5254 DeclarationName::CXXConversionFunctionName) 5255 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 5256 5257 // Remove it from the DeclContext... 5258 Shadow->getDeclContext()->removeDecl(Shadow); 5259 5260 // ...and the scope, if applicable... 5261 if (S) { 5262 S->RemoveDecl(Shadow); 5263 IdResolver.RemoveDecl(Shadow); 5264 } 5265 5266 // ...and the using decl. 5267 Shadow->getUsingDecl()->removeShadowDecl(Shadow); 5268 5269 // TODO: complain somehow if Shadow was used. It shouldn't 5270 // be possible for this to happen, because...? 5271 } 5272 5273 /// Builds a using declaration. 5274 /// 5275 /// \param IsInstantiation - Whether this call arises from an 5276 /// instantiation of an unresolved using declaration. We treat 5277 /// the lookup differently for these declarations. 5278 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, 5279 SourceLocation UsingLoc, 5280 CXXScopeSpec &SS, 5281 const DeclarationNameInfo &NameInfo, 5282 AttributeList *AttrList, 5283 bool IsInstantiation, 5284 bool IsTypeName, 5285 SourceLocation TypenameLoc) { 5286 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 5287 SourceLocation IdentLoc = NameInfo.getLoc(); 5288 assert(IdentLoc.isValid() && "Invalid TargetName location."); 5289 5290 // FIXME: We ignore attributes for now. 5291 5292 if (SS.isEmpty()) { 5293 Diag(IdentLoc, diag::err_using_requires_qualname); 5294 return 0; 5295 } 5296 5297 // Do the redeclaration lookup in the current scope. 5298 LookupResult Previous(*this, NameInfo, LookupUsingDeclName, 5299 ForRedeclaration); 5300 Previous.setHideTags(false); 5301 if (S) { 5302 LookupName(Previous, S); 5303 5304 // It is really dumb that we have to do this. 5305 LookupResult::Filter F = Previous.makeFilter(); 5306 while (F.hasNext()) { 5307 NamedDecl *D = F.next(); 5308 if (!isDeclInScope(D, CurContext, S)) 5309 F.erase(); 5310 } 5311 F.done(); 5312 } else { 5313 assert(IsInstantiation && "no scope in non-instantiation"); 5314 assert(CurContext->isRecord() && "scope not record in instantiation"); 5315 LookupQualifiedName(Previous, CurContext); 5316 } 5317 5318 // Check for invalid redeclarations. 5319 if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) 5320 return 0; 5321 5322 // Check for bad qualifiers. 5323 if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) 5324 return 0; 5325 5326 DeclContext *LookupContext = computeDeclContext(SS); 5327 NamedDecl *D; 5328 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 5329 if (!LookupContext) { 5330 if (IsTypeName) { 5331 // FIXME: not all declaration name kinds are legal here 5332 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 5333 UsingLoc, TypenameLoc, 5334 QualifierLoc, 5335 IdentLoc, NameInfo.getName()); 5336 } else { 5337 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 5338 QualifierLoc, NameInfo); 5339 } 5340 } else { 5341 D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 5342 NameInfo, IsTypeName); 5343 } 5344 D->setAccess(AS); 5345 CurContext->addDecl(D); 5346 5347 if (!LookupContext) return D; 5348 UsingDecl *UD = cast<UsingDecl>(D); 5349 5350 if (RequireCompleteDeclContext(SS, LookupContext)) { 5351 UD->setInvalidDecl(); 5352 return UD; 5353 } 5354 5355 // Constructor inheriting using decls get special treatment. 5356 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { 5357 if (CheckInheritedConstructorUsingDecl(UD)) 5358 UD->setInvalidDecl(); 5359 return UD; 5360 } 5361 5362 // Otherwise, look up the target name. 5363 5364 LookupResult R(*this, NameInfo, LookupOrdinaryName); 5365 R.setUsingDeclaration(true); 5366 5367 // Unlike most lookups, we don't always want to hide tag 5368 // declarations: tag names are visible through the using declaration 5369 // even if hidden by ordinary names, *except* in a dependent context 5370 // where it's important for the sanity of two-phase lookup. 5371 if (!IsInstantiation) 5372 R.setHideTags(false); 5373 5374 LookupQualifiedName(R, LookupContext); 5375 5376 if (R.empty()) { 5377 Diag(IdentLoc, diag::err_no_member) 5378 << NameInfo.getName() << LookupContext << SS.getRange(); 5379 UD->setInvalidDecl(); 5380 return UD; 5381 } 5382 5383 if (R.isAmbiguous()) { 5384 UD->setInvalidDecl(); 5385 return UD; 5386 } 5387 5388 if (IsTypeName) { 5389 // If we asked for a typename and got a non-type decl, error out. 5390 if (!R.getAsSingle<TypeDecl>()) { 5391 Diag(IdentLoc, diag::err_using_typename_non_type); 5392 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 5393 Diag((*I)->getUnderlyingDecl()->getLocation(), 5394 diag::note_using_decl_target); 5395 UD->setInvalidDecl(); 5396 return UD; 5397 } 5398 } else { 5399 // If we asked for a non-typename and we got a type, error out, 5400 // but only if this is an instantiation of an unresolved using 5401 // decl. Otherwise just silently find the type name. 5402 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 5403 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 5404 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 5405 UD->setInvalidDecl(); 5406 return UD; 5407 } 5408 } 5409 5410 // C++0x N2914 [namespace.udecl]p6: 5411 // A using-declaration shall not name a namespace. 5412 if (R.getAsSingle<NamespaceDecl>()) { 5413 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 5414 << SS.getRange(); 5415 UD->setInvalidDecl(); 5416 return UD; 5417 } 5418 5419 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 5420 if (!CheckUsingShadowDecl(UD, *I, Previous)) 5421 BuildUsingShadowDecl(S, UD, *I); 5422 } 5423 5424 return UD; 5425 } 5426 5427 /// Additional checks for a using declaration referring to a constructor name. 5428 bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) { 5429 if (UD->isTypeName()) { 5430 // FIXME: Cannot specify typename when specifying constructor 5431 return true; 5432 } 5433 5434 const Type *SourceType = UD->getQualifier()->getAsType(); 5435 assert(SourceType && 5436 "Using decl naming constructor doesn't have type in scope spec."); 5437 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 5438 5439 // Check whether the named type is a direct base class. 5440 CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified(); 5441 CXXRecordDecl::base_class_iterator BaseIt, BaseE; 5442 for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end(); 5443 BaseIt != BaseE; ++BaseIt) { 5444 CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified(); 5445 if (CanonicalSourceType == BaseType) 5446 break; 5447 } 5448 5449 if (BaseIt == BaseE) { 5450 // Did not find SourceType in the bases. 5451 Diag(UD->getUsingLocation(), 5452 diag::err_using_decl_constructor_not_in_direct_base) 5453 << UD->getNameInfo().getSourceRange() 5454 << QualType(SourceType, 0) << TargetClass; 5455 return true; 5456 } 5457 5458 BaseIt->setInheritConstructors(); 5459 5460 return false; 5461 } 5462 5463 /// Checks that the given using declaration is not an invalid 5464 /// redeclaration. Note that this is checking only for the using decl 5465 /// itself, not for any ill-formedness among the UsingShadowDecls. 5466 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 5467 bool isTypeName, 5468 const CXXScopeSpec &SS, 5469 SourceLocation NameLoc, 5470 const LookupResult &Prev) { 5471 // C++03 [namespace.udecl]p8: 5472 // C++0x [namespace.udecl]p10: 5473 // A using-declaration is a declaration and can therefore be used 5474 // repeatedly where (and only where) multiple declarations are 5475 // allowed. 5476 // 5477 // That's in non-member contexts. 5478 if (!CurContext->getRedeclContext()->isRecord()) 5479 return false; 5480 5481 NestedNameSpecifier *Qual 5482 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5483 5484 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 5485 NamedDecl *D = *I; 5486 5487 bool DTypename; 5488 NestedNameSpecifier *DQual; 5489 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 5490 DTypename = UD->isTypeName(); 5491 DQual = UD->getQualifier(); 5492 } else if (UnresolvedUsingValueDecl *UD 5493 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 5494 DTypename = false; 5495 DQual = UD->getQualifier(); 5496 } else if (UnresolvedUsingTypenameDecl *UD 5497 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 5498 DTypename = true; 5499 DQual = UD->getQualifier(); 5500 } else continue; 5501 5502 // using decls differ if one says 'typename' and the other doesn't. 5503 // FIXME: non-dependent using decls? 5504 if (isTypeName != DTypename) continue; 5505 5506 // using decls differ if they name different scopes (but note that 5507 // template instantiation can cause this check to trigger when it 5508 // didn't before instantiation). 5509 if (Context.getCanonicalNestedNameSpecifier(Qual) != 5510 Context.getCanonicalNestedNameSpecifier(DQual)) 5511 continue; 5512 5513 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 5514 Diag(D->getLocation(), diag::note_using_decl) << 1; 5515 return true; 5516 } 5517 5518 return false; 5519 } 5520 5521 5522 /// Checks that the given nested-name qualifier used in a using decl 5523 /// in the current context is appropriately related to the current 5524 /// scope. If an error is found, diagnoses it and returns true. 5525 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, 5526 const CXXScopeSpec &SS, 5527 SourceLocation NameLoc) { 5528 DeclContext *NamedContext = computeDeclContext(SS); 5529 5530 if (!CurContext->isRecord()) { 5531 // C++03 [namespace.udecl]p3: 5532 // C++0x [namespace.udecl]p8: 5533 // A using-declaration for a class member shall be a member-declaration. 5534 5535 // If we weren't able to compute a valid scope, it must be a 5536 // dependent class scope. 5537 if (!NamedContext || NamedContext->isRecord()) { 5538 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) 5539 << SS.getRange(); 5540 return true; 5541 } 5542 5543 // Otherwise, everything is known to be fine. 5544 return false; 5545 } 5546 5547 // The current scope is a record. 5548 5549 // If the named context is dependent, we can't decide much. 5550 if (!NamedContext) { 5551 // FIXME: in C++0x, we can diagnose if we can prove that the 5552 // nested-name-specifier does not refer to a base class, which is 5553 // still possible in some cases. 5554 5555 // Otherwise we have to conservatively report that things might be 5556 // okay. 5557 return false; 5558 } 5559 5560 if (!NamedContext->isRecord()) { 5561 // Ideally this would point at the last name in the specifier, 5562 // but we don't have that level of source info. 5563 Diag(SS.getRange().getBegin(), 5564 diag::err_using_decl_nested_name_specifier_is_not_class) 5565 << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); 5566 return true; 5567 } 5568 5569 if (!NamedContext->isDependentContext() && 5570 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 5571 return true; 5572 5573 if (getLangOptions().CPlusPlus0x) { 5574 // C++0x [namespace.udecl]p3: 5575 // In a using-declaration used as a member-declaration, the 5576 // nested-name-specifier shall name a base class of the class 5577 // being defined. 5578 5579 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 5580 cast<CXXRecordDecl>(NamedContext))) { 5581 if (CurContext == NamedContext) { 5582 Diag(NameLoc, 5583 diag::err_using_decl_nested_name_specifier_is_current_class) 5584 << SS.getRange(); 5585 return true; 5586 } 5587 5588 Diag(SS.getRange().getBegin(), 5589 diag::err_using_decl_nested_name_specifier_is_not_base_class) 5590 << (NestedNameSpecifier*) SS.getScopeRep() 5591 << cast<CXXRecordDecl>(CurContext) 5592 << SS.getRange(); 5593 return true; 5594 } 5595 5596 return false; 5597 } 5598 5599 // C++03 [namespace.udecl]p4: 5600 // A using-declaration used as a member-declaration shall refer 5601 // to a member of a base class of the class being defined [etc.]. 5602 5603 // Salient point: SS doesn't have to name a base class as long as 5604 // lookup only finds members from base classes. Therefore we can 5605 // diagnose here only if we can prove that that can't happen, 5606 // i.e. if the class hierarchies provably don't intersect. 5607 5608 // TODO: it would be nice if "definitely valid" results were cached 5609 // in the UsingDecl and UsingShadowDecl so that these checks didn't 5610 // need to be repeated. 5611 5612 struct UserData { 5613 llvm::DenseSet<const CXXRecordDecl*> Bases; 5614 5615 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { 5616 UserData *Data = reinterpret_cast<UserData*>(OpaqueData); 5617 Data->Bases.insert(Base); 5618 return true; 5619 } 5620 5621 bool hasDependentBases(const CXXRecordDecl *Class) { 5622 return !Class->forallBases(collect, this); 5623 } 5624 5625 /// Returns true if the base is dependent or is one of the 5626 /// accumulated base classes. 5627 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { 5628 UserData *Data = reinterpret_cast<UserData*>(OpaqueData); 5629 return !Data->Bases.count(Base); 5630 } 5631 5632 bool mightShareBases(const CXXRecordDecl *Class) { 5633 return Bases.count(Class) || !Class->forallBases(doesNotContain, this); 5634 } 5635 }; 5636 5637 UserData Data; 5638 5639 // Returns false if we find a dependent base. 5640 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) 5641 return false; 5642 5643 // Returns false if the class has a dependent base or if it or one 5644 // of its bases is present in the base set of the current context. 5645 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) 5646 return false; 5647 5648 Diag(SS.getRange().getBegin(), 5649 diag::err_using_decl_nested_name_specifier_is_not_base_class) 5650 << (NestedNameSpecifier*) SS.getScopeRep() 5651 << cast<CXXRecordDecl>(CurContext) 5652 << SS.getRange(); 5653 5654 return true; 5655 } 5656 5657 Decl *Sema::ActOnAliasDeclaration(Scope *S, 5658 AccessSpecifier AS, 5659 MultiTemplateParamsArg TemplateParamLists, 5660 SourceLocation UsingLoc, 5661 UnqualifiedId &Name, 5662 TypeResult Type) { 5663 // Skip up to the relevant declaration scope. 5664 while (S->getFlags() & Scope::TemplateParamScope) 5665 S = S->getParent(); 5666 assert((S->getFlags() & Scope::DeclScope) && 5667 "got alias-declaration outside of declaration scope"); 5668 5669 if (Type.isInvalid()) 5670 return 0; 5671 5672 bool Invalid = false; 5673 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 5674 TypeSourceInfo *TInfo = 0; 5675 GetTypeFromParser(Type.get(), &TInfo); 5676 5677 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 5678 return 0; 5679 5680 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 5681 UPPC_DeclarationType)) { 5682 Invalid = true; 5683 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 5684 TInfo->getTypeLoc().getBeginLoc()); 5685 } 5686 5687 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration); 5688 LookupName(Previous, S); 5689 5690 // Warn about shadowing the name of a template parameter. 5691 if (Previous.isSingleResult() && 5692 Previous.getFoundDecl()->isTemplateParameter()) { 5693 if (DiagnoseTemplateParameterShadow(Name.StartLocation, 5694 Previous.getFoundDecl())) 5695 Invalid = true; 5696 Previous.clear(); 5697 } 5698 5699 assert(Name.Kind == UnqualifiedId::IK_Identifier && 5700 "name in alias declaration must be an identifier"); 5701 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 5702 Name.StartLocation, 5703 Name.Identifier, TInfo); 5704 5705 NewTD->setAccess(AS); 5706 5707 if (Invalid) 5708 NewTD->setInvalidDecl(); 5709 5710 CheckTypedefForVariablyModifiedType(S, NewTD); 5711 Invalid |= NewTD->isInvalidDecl(); 5712 5713 bool Redeclaration = false; 5714 5715 NamedDecl *NewND; 5716 if (TemplateParamLists.size()) { 5717 TypeAliasTemplateDecl *OldDecl = 0; 5718 TemplateParameterList *OldTemplateParams = 0; 5719 5720 if (TemplateParamLists.size() != 1) { 5721 Diag(UsingLoc, diag::err_alias_template_extra_headers) 5722 << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(), 5723 TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc()); 5724 } 5725 TemplateParameterList *TemplateParams = TemplateParamLists.get()[0]; 5726 5727 // Only consider previous declarations in the same scope. 5728 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 5729 /*ExplicitInstantiationOrSpecialization*/false); 5730 if (!Previous.empty()) { 5731 Redeclaration = true; 5732 5733 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 5734 if (!OldDecl && !Invalid) { 5735 Diag(UsingLoc, diag::err_redefinition_different_kind) 5736 << Name.Identifier; 5737 5738 NamedDecl *OldD = Previous.getRepresentativeDecl(); 5739 if (OldD->getLocation().isValid()) 5740 Diag(OldD->getLocation(), diag::note_previous_definition); 5741 5742 Invalid = true; 5743 } 5744 5745 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 5746 if (TemplateParameterListsAreEqual(TemplateParams, 5747 OldDecl->getTemplateParameters(), 5748 /*Complain=*/true, 5749 TPL_TemplateMatch)) 5750 OldTemplateParams = OldDecl->getTemplateParameters(); 5751 else 5752 Invalid = true; 5753 5754 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 5755 if (!Invalid && 5756 !Context.hasSameType(OldTD->getUnderlyingType(), 5757 NewTD->getUnderlyingType())) { 5758 // FIXME: The C++0x standard does not clearly say this is ill-formed, 5759 // but we can't reasonably accept it. 5760 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 5761 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 5762 if (OldTD->getLocation().isValid()) 5763 Diag(OldTD->getLocation(), diag::note_previous_definition); 5764 Invalid = true; 5765 } 5766 } 5767 } 5768 5769 // Merge any previous default template arguments into our parameters, 5770 // and check the parameter list. 5771 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 5772 TPC_TypeAliasTemplate)) 5773 return 0; 5774 5775 TypeAliasTemplateDecl *NewDecl = 5776 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 5777 Name.Identifier, TemplateParams, 5778 NewTD); 5779 5780 NewDecl->setAccess(AS); 5781 5782 if (Invalid) 5783 NewDecl->setInvalidDecl(); 5784 else if (OldDecl) 5785 NewDecl->setPreviousDeclaration(OldDecl); 5786 5787 NewND = NewDecl; 5788 } else { 5789 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 5790 NewND = NewTD; 5791 } 5792 5793 if (!Redeclaration) 5794 PushOnScopeChains(NewND, S); 5795 5796 return NewND; 5797 } 5798 5799 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, 5800 SourceLocation NamespaceLoc, 5801 SourceLocation AliasLoc, 5802 IdentifierInfo *Alias, 5803 CXXScopeSpec &SS, 5804 SourceLocation IdentLoc, 5805 IdentifierInfo *Ident) { 5806 5807 // Lookup the namespace name. 5808 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 5809 LookupParsedName(R, S, &SS); 5810 5811 // Check if we have a previous declaration with the same name. 5812 NamedDecl *PrevDecl 5813 = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, 5814 ForRedeclaration); 5815 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) 5816 PrevDecl = 0; 5817 5818 if (PrevDecl) { 5819 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 5820 // We already have an alias with the same name that points to the same 5821 // namespace, so don't create a new one. 5822 // FIXME: At some point, we'll want to create the (redundant) 5823 // declaration to maintain better source information. 5824 if (!R.isAmbiguous() && !R.empty() && 5825 AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) 5826 return 0; 5827 } 5828 5829 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : 5830 diag::err_redefinition_different_kind; 5831 Diag(AliasLoc, DiagID) << Alias; 5832 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 5833 return 0; 5834 } 5835 5836 if (R.isAmbiguous()) 5837 return 0; 5838 5839 if (R.empty()) { 5840 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 5841 Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); 5842 return 0; 5843 } 5844 } 5845 5846 NamespaceAliasDecl *AliasDecl = 5847 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 5848 Alias, SS.getWithLocInContext(Context), 5849 IdentLoc, R.getFoundDecl()); 5850 5851 PushOnScopeChains(AliasDecl, S); 5852 return AliasDecl; 5853 } 5854 5855 namespace { 5856 /// \brief Scoped object used to handle the state changes required in Sema 5857 /// to implicitly define the body of a C++ member function; 5858 class ImplicitlyDefinedFunctionScope { 5859 Sema &S; 5860 Sema::ContextRAII SavedContext; 5861 5862 public: 5863 ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) 5864 : S(S), SavedContext(S, Method) 5865 { 5866 S.PushFunctionScope(); 5867 S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); 5868 } 5869 5870 ~ImplicitlyDefinedFunctionScope() { 5871 S.PopExpressionEvaluationContext(); 5872 S.PopFunctionOrBlockScope(); 5873 } 5874 }; 5875 } 5876 5877 Sema::ImplicitExceptionSpecification 5878 Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) { 5879 // C++ [except.spec]p14: 5880 // An implicitly declared special member function (Clause 12) shall have an 5881 // exception-specification. [...] 5882 ImplicitExceptionSpecification ExceptSpec(Context); 5883 if (ClassDecl->isInvalidDecl()) 5884 return ExceptSpec; 5885 5886 // Direct base-class constructors. 5887 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), 5888 BEnd = ClassDecl->bases_end(); 5889 B != BEnd; ++B) { 5890 if (B->isVirtual()) // Handled below. 5891 continue; 5892 5893 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { 5894 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 5895 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 5896 // If this is a deleted function, add it anyway. This might be conformant 5897 // with the standard. This might not. I'm not sure. It might not matter. 5898 if (Constructor) 5899 ExceptSpec.CalledDecl(Constructor); 5900 } 5901 } 5902 5903 // Virtual base-class constructors. 5904 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), 5905 BEnd = ClassDecl->vbases_end(); 5906 B != BEnd; ++B) { 5907 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { 5908 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 5909 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 5910 // If this is a deleted function, add it anyway. This might be conformant 5911 // with the standard. This might not. I'm not sure. It might not matter. 5912 if (Constructor) 5913 ExceptSpec.CalledDecl(Constructor); 5914 } 5915 } 5916 5917 // Field constructors. 5918 for (RecordDecl::field_iterator F = ClassDecl->field_begin(), 5919 FEnd = ClassDecl->field_end(); 5920 F != FEnd; ++F) { 5921 if (F->hasInClassInitializer()) { 5922 if (Expr *E = F->getInClassInitializer()) 5923 ExceptSpec.CalledExpr(E); 5924 else if (!F->isInvalidDecl()) 5925 ExceptSpec.SetDelayed(); 5926 } else if (const RecordType *RecordTy 5927 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { 5928 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 5929 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl); 5930 // If this is a deleted function, add it anyway. This might be conformant 5931 // with the standard. This might not. I'm not sure. It might not matter. 5932 // In particular, the problem is that this function never gets called. It 5933 // might just be ill-formed because this function attempts to refer to 5934 // a deleted function here. 5935 if (Constructor) 5936 ExceptSpec.CalledDecl(Constructor); 5937 } 5938 } 5939 5940 return ExceptSpec; 5941 } 5942 5943 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 5944 CXXRecordDecl *ClassDecl) { 5945 // C++ [class.ctor]p5: 5946 // A default constructor for a class X is a constructor of class X 5947 // that can be called without an argument. If there is no 5948 // user-declared constructor for class X, a default constructor is 5949 // implicitly declared. An implicitly-declared default constructor 5950 // is an inline public member of its class. 5951 assert(!ClassDecl->hasUserDeclaredConstructor() && 5952 "Should not build implicit default constructor!"); 5953 5954 ImplicitExceptionSpecification Spec = 5955 ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl); 5956 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 5957 5958 // Create the actual constructor declaration. 5959 CanQualType ClassType 5960 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 5961 SourceLocation ClassLoc = ClassDecl->getLocation(); 5962 DeclarationName Name 5963 = Context.DeclarationNames.getCXXConstructorName(ClassType); 5964 DeclarationNameInfo NameInfo(Name, ClassLoc); 5965 CXXConstructorDecl *DefaultCon 5966 = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 5967 Context.getFunctionType(Context.VoidTy, 5968 0, 0, EPI), 5969 /*TInfo=*/0, 5970 /*isExplicit=*/false, 5971 /*isInline=*/true, 5972 /*isImplicitlyDeclared=*/true); 5973 DefaultCon->setAccess(AS_public); 5974 DefaultCon->setDefaulted(); 5975 DefaultCon->setImplicit(); 5976 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 5977 5978 // Note that we have declared this constructor. 5979 ++ASTContext::NumImplicitDefaultConstructorsDeclared; 5980 5981 if (Scope *S = getScopeForContext(ClassDecl)) 5982 PushOnScopeChains(DefaultCon, S, false); 5983 ClassDecl->addDecl(DefaultCon); 5984 5985 if (ShouldDeleteDefaultConstructor(DefaultCon)) 5986 DefaultCon->setDeletedAsWritten(); 5987 5988 return DefaultCon; 5989 } 5990 5991 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 5992 CXXConstructorDecl *Constructor) { 5993 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5994 !Constructor->doesThisDeclarationHaveABody() && 5995 !Constructor->isDeleted()) && 5996 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 5997 5998 CXXRecordDecl *ClassDecl = Constructor->getParent(); 5999 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 6000 6001 ImplicitlyDefinedFunctionScope Scope(*this, Constructor); 6002 DiagnosticErrorTrap Trap(Diags); 6003 if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || 6004 Trap.hasErrorOccurred()) { 6005 Diag(CurrentLocation, diag::note_member_synthesized_at) 6006 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); 6007 Constructor->setInvalidDecl(); 6008 return; 6009 } 6010 6011 SourceLocation Loc = Constructor->getLocation(); 6012 Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); 6013 6014 Constructor->setUsed(); 6015 MarkVTableUsed(CurrentLocation, ClassDecl); 6016 6017 if (ASTMutationListener *L = getASTMutationListener()) { 6018 L->CompletedImplicitDefinition(Constructor); 6019 } 6020 } 6021 6022 /// Get any existing defaulted default constructor for the given class. Do not 6023 /// implicitly define one if it does not exist. 6024 static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self, 6025 CXXRecordDecl *D) { 6026 ASTContext &Context = Self.Context; 6027 QualType ClassType = Context.getTypeDeclType(D); 6028 DeclarationName ConstructorName 6029 = Context.DeclarationNames.getCXXConstructorName( 6030 Context.getCanonicalType(ClassType.getUnqualifiedType())); 6031 6032 DeclContext::lookup_const_iterator Con, ConEnd; 6033 for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName); 6034 Con != ConEnd; ++Con) { 6035 // A function template cannot be defaulted. 6036 if (isa<FunctionTemplateDecl>(*Con)) 6037 continue; 6038 6039 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 6040 if (Constructor->isDefaultConstructor()) 6041 return Constructor->isDefaulted() ? Constructor : 0; 6042 } 6043 return 0; 6044 } 6045 6046 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 6047 if (!D) return; 6048 AdjustDeclIfTemplate(D); 6049 6050 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D); 6051 CXXConstructorDecl *CtorDecl 6052 = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl); 6053 6054 if (!CtorDecl) return; 6055 6056 // Compute the exception specification for the default constructor. 6057 const FunctionProtoType *CtorTy = 6058 CtorDecl->getType()->castAs<FunctionProtoType>(); 6059 if (CtorTy->getExceptionSpecType() == EST_Delayed) { 6060 ImplicitExceptionSpecification Spec = 6061 ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl); 6062 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 6063 assert(EPI.ExceptionSpecType != EST_Delayed); 6064 6065 CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI)); 6066 } 6067 6068 // If the default constructor is explicitly defaulted, checking the exception 6069 // specification is deferred until now. 6070 if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() && 6071 !ClassDecl->isDependentType()) 6072 CheckExplicitlyDefaultedDefaultConstructor(CtorDecl); 6073 } 6074 6075 void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) { 6076 // We start with an initial pass over the base classes to collect those that 6077 // inherit constructors from. If there are none, we can forgo all further 6078 // processing. 6079 typedef llvm::SmallVector<const RecordType *, 4> BasesVector; 6080 BasesVector BasesToInheritFrom; 6081 for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(), 6082 BaseE = ClassDecl->bases_end(); 6083 BaseIt != BaseE; ++BaseIt) { 6084 if (BaseIt->getInheritConstructors()) { 6085 QualType Base = BaseIt->getType(); 6086 if (Base->isDependentType()) { 6087 // If we inherit constructors from anything that is dependent, just 6088 // abort processing altogether. We'll get another chance for the 6089 // instantiations. 6090 return; 6091 } 6092 BasesToInheritFrom.push_back(Base->castAs<RecordType>()); 6093 } 6094 } 6095 if (BasesToInheritFrom.empty()) 6096 return; 6097 6098 // Now collect the constructors that we already have in the current class. 6099 // Those take precedence over inherited constructors. 6100 // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...] 6101 // unless there is a user-declared constructor with the same signature in 6102 // the class where the using-declaration appears. 6103 llvm::SmallSet<const Type *, 8> ExistingConstructors; 6104 for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(), 6105 CtorE = ClassDecl->ctor_end(); 6106 CtorIt != CtorE; ++CtorIt) { 6107 ExistingConstructors.insert( 6108 Context.getCanonicalType(CtorIt->getType()).getTypePtr()); 6109 } 6110 6111 Scope *S = getScopeForContext(ClassDecl); 6112 DeclarationName CreatedCtorName = 6113 Context.DeclarationNames.getCXXConstructorName( 6114 ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified()); 6115 6116 // Now comes the true work. 6117 // First, we keep a map from constructor types to the base that introduced 6118 // them. Needed for finding conflicting constructors. We also keep the 6119 // actually inserted declarations in there, for pretty diagnostics. 6120 typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo; 6121 typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap; 6122 ConstructorToSourceMap InheritedConstructors; 6123 for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(), 6124 BaseE = BasesToInheritFrom.end(); 6125 BaseIt != BaseE; ++BaseIt) { 6126 const RecordType *Base = *BaseIt; 6127 CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified(); 6128 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl()); 6129 for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(), 6130 CtorE = BaseDecl->ctor_end(); 6131 CtorIt != CtorE; ++CtorIt) { 6132 // Find the using declaration for inheriting this base's constructors. 6133 DeclarationName Name = 6134 Context.DeclarationNames.getCXXConstructorName(CanonicalBase); 6135 UsingDecl *UD = dyn_cast_or_null<UsingDecl>( 6136 LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName)); 6137 SourceLocation UsingLoc = UD ? UD->getLocation() : 6138 ClassDecl->getLocation(); 6139 6140 // C++0x [class.inhctor]p1: The candidate set of inherited constructors 6141 // from the class X named in the using-declaration consists of actual 6142 // constructors and notional constructors that result from the 6143 // transformation of defaulted parameters as follows: 6144 // - all non-template default constructors of X, and 6145 // - for each non-template constructor of X that has at least one 6146 // parameter with a default argument, the set of constructors that 6147 // results from omitting any ellipsis parameter specification and 6148 // successively omitting parameters with a default argument from the 6149 // end of the parameter-type-list. 6150 CXXConstructorDecl *BaseCtor = *CtorIt; 6151 bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor(); 6152 const FunctionProtoType *BaseCtorType = 6153 BaseCtor->getType()->getAs<FunctionProtoType>(); 6154 6155 for (unsigned params = BaseCtor->getMinRequiredArguments(), 6156 maxParams = BaseCtor->getNumParams(); 6157 params <= maxParams; ++params) { 6158 // Skip default constructors. They're never inherited. 6159 if (params == 0) 6160 continue; 6161 // Skip copy and move constructors for the same reason. 6162 if (CanBeCopyOrMove && params == 1) 6163 continue; 6164 6165 // Build up a function type for this particular constructor. 6166 // FIXME: The working paper does not consider that the exception spec 6167 // for the inheriting constructor might be larger than that of the 6168 // source. This code doesn't yet, either. When it does, this code will 6169 // need to be delayed until after exception specifications and in-class 6170 // member initializers are attached. 6171 const Type *NewCtorType; 6172 if (params == maxParams) 6173 NewCtorType = BaseCtorType; 6174 else { 6175 llvm::SmallVector<QualType, 16> Args; 6176 for (unsigned i = 0; i < params; ++i) { 6177 Args.push_back(BaseCtorType->getArgType(i)); 6178 } 6179 FunctionProtoType::ExtProtoInfo ExtInfo = 6180 BaseCtorType->getExtProtoInfo(); 6181 ExtInfo.Variadic = false; 6182 NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(), 6183 Args.data(), params, ExtInfo) 6184 .getTypePtr(); 6185 } 6186 const Type *CanonicalNewCtorType = 6187 Context.getCanonicalType(NewCtorType); 6188 6189 // Now that we have the type, first check if the class already has a 6190 // constructor with this signature. 6191 if (ExistingConstructors.count(CanonicalNewCtorType)) 6192 continue; 6193 6194 // Then we check if we have already declared an inherited constructor 6195 // with this signature. 6196 std::pair<ConstructorToSourceMap::iterator, bool> result = 6197 InheritedConstructors.insert(std::make_pair( 6198 CanonicalNewCtorType, 6199 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0))); 6200 if (!result.second) { 6201 // Already in the map. If it came from a different class, that's an 6202 // error. Not if it's from the same. 6203 CanQualType PreviousBase = result.first->second.first; 6204 if (CanonicalBase != PreviousBase) { 6205 const CXXConstructorDecl *PrevCtor = result.first->second.second; 6206 const CXXConstructorDecl *PrevBaseCtor = 6207 PrevCtor->getInheritedConstructor(); 6208 assert(PrevBaseCtor && "Conflicting constructor was not inherited"); 6209 6210 Diag(UsingLoc, diag::err_using_decl_constructor_conflict); 6211 Diag(BaseCtor->getLocation(), 6212 diag::note_using_decl_constructor_conflict_current_ctor); 6213 Diag(PrevBaseCtor->getLocation(), 6214 diag::note_using_decl_constructor_conflict_previous_ctor); 6215 Diag(PrevCtor->getLocation(), 6216 diag::note_using_decl_constructor_conflict_previous_using); 6217 } 6218 continue; 6219 } 6220 6221 // OK, we're there, now add the constructor. 6222 // C++0x [class.inhctor]p8: [...] that would be performed by a 6223 // user-writtern inline constructor [...] 6224 DeclarationNameInfo DNI(CreatedCtorName, UsingLoc); 6225 CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create( 6226 Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0), 6227 /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true, 6228 /*ImplicitlyDeclared=*/true); 6229 NewCtor->setAccess(BaseCtor->getAccess()); 6230 6231 // Build up the parameter decls and add them. 6232 llvm::SmallVector<ParmVarDecl *, 16> ParamDecls; 6233 for (unsigned i = 0; i < params; ++i) { 6234 ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, 6235 UsingLoc, UsingLoc, 6236 /*IdentifierInfo=*/0, 6237 BaseCtorType->getArgType(i), 6238 /*TInfo=*/0, SC_None, 6239 SC_None, /*DefaultArg=*/0)); 6240 } 6241 NewCtor->setParams(ParamDecls.data(), ParamDecls.size()); 6242 NewCtor->setInheritedConstructor(BaseCtor); 6243 6244 PushOnScopeChains(NewCtor, S, false); 6245 ClassDecl->addDecl(NewCtor); 6246 result.first->second.second = NewCtor; 6247 } 6248 } 6249 } 6250 } 6251 6252 Sema::ImplicitExceptionSpecification 6253 Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) { 6254 // C++ [except.spec]p14: 6255 // An implicitly declared special member function (Clause 12) shall have 6256 // an exception-specification. 6257 ImplicitExceptionSpecification ExceptSpec(Context); 6258 if (ClassDecl->isInvalidDecl()) 6259 return ExceptSpec; 6260 6261 // Direct base-class destructors. 6262 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), 6263 BEnd = ClassDecl->bases_end(); 6264 B != BEnd; ++B) { 6265 if (B->isVirtual()) // Handled below. 6266 continue; 6267 6268 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) 6269 ExceptSpec.CalledDecl( 6270 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); 6271 } 6272 6273 // Virtual base-class destructors. 6274 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), 6275 BEnd = ClassDecl->vbases_end(); 6276 B != BEnd; ++B) { 6277 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) 6278 ExceptSpec.CalledDecl( 6279 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); 6280 } 6281 6282 // Field destructors. 6283 for (RecordDecl::field_iterator F = ClassDecl->field_begin(), 6284 FEnd = ClassDecl->field_end(); 6285 F != FEnd; ++F) { 6286 if (const RecordType *RecordTy 6287 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) 6288 ExceptSpec.CalledDecl( 6289 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl()))); 6290 } 6291 6292 return ExceptSpec; 6293 } 6294 6295 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 6296 // C++ [class.dtor]p2: 6297 // If a class has no user-declared destructor, a destructor is 6298 // declared implicitly. An implicitly-declared destructor is an 6299 // inline public member of its class. 6300 6301 ImplicitExceptionSpecification Spec = 6302 ComputeDefaultedDtorExceptionSpec(ClassDecl); 6303 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 6304 6305 // Create the actual destructor declaration. 6306 QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI); 6307 6308 CanQualType ClassType 6309 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 6310 SourceLocation ClassLoc = ClassDecl->getLocation(); 6311 DeclarationName Name 6312 = Context.DeclarationNames.getCXXDestructorName(ClassType); 6313 DeclarationNameInfo NameInfo(Name, ClassLoc); 6314 CXXDestructorDecl *Destructor 6315 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0, 6316 /*isInline=*/true, 6317 /*isImplicitlyDeclared=*/true); 6318 Destructor->setAccess(AS_public); 6319 Destructor->setDefaulted(); 6320 Destructor->setImplicit(); 6321 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 6322 6323 // Note that we have declared this destructor. 6324 ++ASTContext::NumImplicitDestructorsDeclared; 6325 6326 // Introduce this destructor into its scope. 6327 if (Scope *S = getScopeForContext(ClassDecl)) 6328 PushOnScopeChains(Destructor, S, false); 6329 ClassDecl->addDecl(Destructor); 6330 6331 // This could be uniqued if it ever proves significant. 6332 Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); 6333 6334 if (ShouldDeleteDestructor(Destructor)) 6335 Destructor->setDeletedAsWritten(); 6336 6337 AddOverriddenMethods(ClassDecl, Destructor); 6338 6339 return Destructor; 6340 } 6341 6342 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 6343 CXXDestructorDecl *Destructor) { 6344 assert((Destructor->isDefaulted() && 6345 !Destructor->doesThisDeclarationHaveABody()) && 6346 "DefineImplicitDestructor - call it for implicit default dtor"); 6347 CXXRecordDecl *ClassDecl = Destructor->getParent(); 6348 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 6349 6350 if (Destructor->isInvalidDecl()) 6351 return; 6352 6353 ImplicitlyDefinedFunctionScope Scope(*this, Destructor); 6354 6355 DiagnosticErrorTrap Trap(Diags); 6356 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 6357 Destructor->getParent()); 6358 6359 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { 6360 Diag(CurrentLocation, diag::note_member_synthesized_at) 6361 << CXXDestructor << Context.getTagDeclType(ClassDecl); 6362 6363 Destructor->setInvalidDecl(); 6364 return; 6365 } 6366 6367 SourceLocation Loc = Destructor->getLocation(); 6368 Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); 6369 6370 Destructor->setUsed(); 6371 MarkVTableUsed(CurrentLocation, ClassDecl); 6372 6373 if (ASTMutationListener *L = getASTMutationListener()) { 6374 L->CompletedImplicitDefinition(Destructor); 6375 } 6376 } 6377 6378 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl, 6379 CXXDestructorDecl *destructor) { 6380 // C++11 [class.dtor]p3: 6381 // A declaration of a destructor that does not have an exception- 6382 // specification is implicitly considered to have the same exception- 6383 // specification as an implicit declaration. 6384 const FunctionProtoType *dtorType = destructor->getType()-> 6385 getAs<FunctionProtoType>(); 6386 if (dtorType->hasExceptionSpec()) 6387 return; 6388 6389 ImplicitExceptionSpecification exceptSpec = 6390 ComputeDefaultedDtorExceptionSpec(classDecl); 6391 6392 // Replace the destructor's type. 6393 FunctionProtoType::ExtProtoInfo epi; 6394 epi.ExceptionSpecType = exceptSpec.getExceptionSpecType(); 6395 epi.NumExceptions = exceptSpec.size(); 6396 epi.Exceptions = exceptSpec.data(); 6397 QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi); 6398 6399 destructor->setType(ty); 6400 6401 // FIXME: If the destructor has a body that could throw, and the newly created 6402 // spec doesn't allow exceptions, we should emit a warning, because this 6403 // change in behavior can break conforming C++03 programs at runtime. 6404 // However, we don't have a body yet, so it needs to be done somewhere else. 6405 } 6406 6407 /// \brief Builds a statement that copies the given entity from \p From to 6408 /// \c To. 6409 /// 6410 /// This routine is used to copy the members of a class with an 6411 /// implicitly-declared copy assignment operator. When the entities being 6412 /// copied are arrays, this routine builds for loops to copy them. 6413 /// 6414 /// \param S The Sema object used for type-checking. 6415 /// 6416 /// \param Loc The location where the implicit copy is being generated. 6417 /// 6418 /// \param T The type of the expressions being copied. Both expressions must 6419 /// have this type. 6420 /// 6421 /// \param To The expression we are copying to. 6422 /// 6423 /// \param From The expression we are copying from. 6424 /// 6425 /// \param CopyingBaseSubobject Whether we're copying a base subobject. 6426 /// Otherwise, it's a non-static member subobject. 6427 /// 6428 /// \param Depth Internal parameter recording the depth of the recursion. 6429 /// 6430 /// \returns A statement or a loop that copies the expressions. 6431 static StmtResult 6432 BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 6433 Expr *To, Expr *From, 6434 bool CopyingBaseSubobject, unsigned Depth = 0) { 6435 // C++0x [class.copy]p30: 6436 // Each subobject is assigned in the manner appropriate to its type: 6437 // 6438 // - if the subobject is of class type, the copy assignment operator 6439 // for the class is used (as if by explicit qualification; that is, 6440 // ignoring any possible virtual overriding functions in more derived 6441 // classes); 6442 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 6443 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 6444 6445 // Look for operator=. 6446 DeclarationName Name 6447 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 6448 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 6449 S.LookupQualifiedName(OpLookup, ClassDecl, false); 6450 6451 // Filter out any result that isn't a copy-assignment operator. 6452 LookupResult::Filter F = OpLookup.makeFilter(); 6453 while (F.hasNext()) { 6454 NamedDecl *D = F.next(); 6455 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 6456 if (Method->isCopyAssignmentOperator()) 6457 continue; 6458 6459 F.erase(); 6460 } 6461 F.done(); 6462 6463 // Suppress the protected check (C++ [class.protected]) for each of the 6464 // assignment operators we found. This strange dance is required when 6465 // we're assigning via a base classes's copy-assignment operator. To 6466 // ensure that we're getting the right base class subobject (without 6467 // ambiguities), we need to cast "this" to that subobject type; to 6468 // ensure that we don't go through the virtual call mechanism, we need 6469 // to qualify the operator= name with the base class (see below). However, 6470 // this means that if the base class has a protected copy assignment 6471 // operator, the protected member access check will fail. So, we 6472 // rewrite "protected" access to "public" access in this case, since we 6473 // know by construction that we're calling from a derived class. 6474 if (CopyingBaseSubobject) { 6475 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 6476 L != LEnd; ++L) { 6477 if (L.getAccess() == AS_protected) 6478 L.setAccess(AS_public); 6479 } 6480 } 6481 6482 // Create the nested-name-specifier that will be used to qualify the 6483 // reference to operator=; this is required to suppress the virtual 6484 // call mechanism. 6485 CXXScopeSpec SS; 6486 SS.MakeTrivial(S.Context, 6487 NestedNameSpecifier::Create(S.Context, 0, false, 6488 T.getTypePtr()), 6489 Loc); 6490 6491 // Create the reference to operator=. 6492 ExprResult OpEqualRef 6493 = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS, 6494 /*FirstQualifierInScope=*/0, OpLookup, 6495 /*TemplateArgs=*/0, 6496 /*SuppressQualifierCheck=*/true); 6497 if (OpEqualRef.isInvalid()) 6498 return StmtError(); 6499 6500 // Build the call to the assignment operator. 6501 6502 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, 6503 OpEqualRef.takeAs<Expr>(), 6504 Loc, &From, 1, Loc); 6505 if (Call.isInvalid()) 6506 return StmtError(); 6507 6508 return S.Owned(Call.takeAs<Stmt>()); 6509 } 6510 6511 // - if the subobject is of scalar type, the built-in assignment 6512 // operator is used. 6513 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 6514 if (!ArrayTy) { 6515 ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From); 6516 if (Assignment.isInvalid()) 6517 return StmtError(); 6518 6519 return S.Owned(Assignment.takeAs<Stmt>()); 6520 } 6521 6522 // - if the subobject is an array, each element is assigned, in the 6523 // manner appropriate to the element type; 6524 6525 // Construct a loop over the array bounds, e.g., 6526 // 6527 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 6528 // 6529 // that will copy each of the array elements. 6530 QualType SizeType = S.Context.getSizeType(); 6531 6532 // Create the iteration variable. 6533 IdentifierInfo *IterationVarName = 0; 6534 { 6535 llvm::SmallString<8> Str; 6536 llvm::raw_svector_ostream OS(Str); 6537 OS << "__i" << Depth; 6538 IterationVarName = &S.Context.Idents.get(OS.str()); 6539 } 6540 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 6541 IterationVarName, SizeType, 6542 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 6543 SC_None, SC_None); 6544 6545 // Initialize the iteration variable to zero. 6546 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 6547 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 6548 6549 // Create a reference to the iteration variable; we'll use this several 6550 // times throughout. 6551 Expr *IterationVarRef 6552 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take(); 6553 assert(IterationVarRef && "Reference to invented variable cannot fail!"); 6554 6555 // Create the DeclStmt that holds the iteration variable. 6556 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 6557 6558 // Create the comparison against the array bound. 6559 llvm::APInt Upper 6560 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 6561 Expr *Comparison 6562 = new (S.Context) BinaryOperator(IterationVarRef, 6563 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), 6564 BO_NE, S.Context.BoolTy, 6565 VK_RValue, OK_Ordinary, Loc); 6566 6567 // Create the pre-increment of the iteration variable. 6568 Expr *Increment 6569 = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType, 6570 VK_LValue, OK_Ordinary, Loc); 6571 6572 // Subscript the "from" and "to" expressions with the iteration variable. 6573 From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc, 6574 IterationVarRef, Loc)); 6575 To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc, 6576 IterationVarRef, Loc)); 6577 6578 // Build the copy for an individual element of the array. 6579 StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(), 6580 To, From, CopyingBaseSubobject, 6581 Depth + 1); 6582 if (Copy.isInvalid()) 6583 return StmtError(); 6584 6585 // Construct the loop that copies all elements of this array. 6586 return S.ActOnForStmt(Loc, Loc, InitStmt, 6587 S.MakeFullExpr(Comparison), 6588 0, S.MakeFullExpr(Increment), 6589 Loc, Copy.take()); 6590 } 6591 6592 std::pair<Sema::ImplicitExceptionSpecification, bool> 6593 Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst( 6594 CXXRecordDecl *ClassDecl) { 6595 if (ClassDecl->isInvalidDecl()) 6596 return std::make_pair(ImplicitExceptionSpecification(Context), false); 6597 6598 // C++ [class.copy]p10: 6599 // If the class definition does not explicitly declare a copy 6600 // assignment operator, one is declared implicitly. 6601 // The implicitly-defined copy assignment operator for a class X 6602 // will have the form 6603 // 6604 // X& X::operator=(const X&) 6605 // 6606 // if 6607 bool HasConstCopyAssignment = true; 6608 6609 // -- each direct base class B of X has a copy assignment operator 6610 // whose parameter is of type const B&, const volatile B& or B, 6611 // and 6612 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 6613 BaseEnd = ClassDecl->bases_end(); 6614 HasConstCopyAssignment && Base != BaseEnd; ++Base) { 6615 // We'll handle this below 6616 if (LangOpts.CPlusPlus0x && Base->isVirtual()) 6617 continue; 6618 6619 assert(!Base->getType()->isDependentType() && 6620 "Cannot generate implicit members for class with dependent bases."); 6621 CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl(); 6622 LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0, 6623 &HasConstCopyAssignment); 6624 } 6625 6626 // In C++0x, the above citation has "or virtual added" 6627 if (LangOpts.CPlusPlus0x) { 6628 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), 6629 BaseEnd = ClassDecl->vbases_end(); 6630 HasConstCopyAssignment && Base != BaseEnd; ++Base) { 6631 assert(!Base->getType()->isDependentType() && 6632 "Cannot generate implicit members for class with dependent bases."); 6633 CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl(); 6634 LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0, 6635 &HasConstCopyAssignment); 6636 } 6637 } 6638 6639 // -- for all the nonstatic data members of X that are of a class 6640 // type M (or array thereof), each such class type has a copy 6641 // assignment operator whose parameter is of type const M&, 6642 // const volatile M& or M. 6643 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 6644 FieldEnd = ClassDecl->field_end(); 6645 HasConstCopyAssignment && Field != FieldEnd; 6646 ++Field) { 6647 QualType FieldType = Context.getBaseElementType((*Field)->getType()); 6648 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 6649 LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0, 6650 &HasConstCopyAssignment); 6651 } 6652 } 6653 6654 // Otherwise, the implicitly declared copy assignment operator will 6655 // have the form 6656 // 6657 // X& X::operator=(X&) 6658 6659 // C++ [except.spec]p14: 6660 // An implicitly declared special member function (Clause 12) shall have an 6661 // exception-specification. [...] 6662 6663 // It is unspecified whether or not an implicit copy assignment operator 6664 // attempts to deduplicate calls to assignment operators of virtual bases are 6665 // made. As such, this exception specification is effectively unspecified. 6666 // Based on a similar decision made for constness in C++0x, we're erring on 6667 // the side of assuming such calls to be made regardless of whether they 6668 // actually happen. 6669 ImplicitExceptionSpecification ExceptSpec(Context); 6670 unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0; 6671 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 6672 BaseEnd = ClassDecl->bases_end(); 6673 Base != BaseEnd; ++Base) { 6674 if (Base->isVirtual()) 6675 continue; 6676 6677 CXXRecordDecl *BaseClassDecl 6678 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 6679 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, 6680 ArgQuals, false, 0)) 6681 ExceptSpec.CalledDecl(CopyAssign); 6682 } 6683 6684 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), 6685 BaseEnd = ClassDecl->vbases_end(); 6686 Base != BaseEnd; ++Base) { 6687 CXXRecordDecl *BaseClassDecl 6688 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 6689 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, 6690 ArgQuals, false, 0)) 6691 ExceptSpec.CalledDecl(CopyAssign); 6692 } 6693 6694 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 6695 FieldEnd = ClassDecl->field_end(); 6696 Field != FieldEnd; 6697 ++Field) { 6698 QualType FieldType = Context.getBaseElementType((*Field)->getType()); 6699 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 6700 if (CXXMethodDecl *CopyAssign = 6701 LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0)) 6702 ExceptSpec.CalledDecl(CopyAssign); 6703 } 6704 } 6705 6706 return std::make_pair(ExceptSpec, HasConstCopyAssignment); 6707 } 6708 6709 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 6710 // Note: The following rules are largely analoguous to the copy 6711 // constructor rules. Note that virtual bases are not taken into account 6712 // for determining the argument type of the operator. Note also that 6713 // operators taking an object instead of a reference are allowed. 6714 6715 ImplicitExceptionSpecification Spec(Context); 6716 bool Const; 6717 llvm::tie(Spec, Const) = 6718 ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl); 6719 6720 QualType ArgType = Context.getTypeDeclType(ClassDecl); 6721 QualType RetType = Context.getLValueReferenceType(ArgType); 6722 if (Const) 6723 ArgType = ArgType.withConst(); 6724 ArgType = Context.getLValueReferenceType(ArgType); 6725 6726 // An implicitly-declared copy assignment operator is an inline public 6727 // member of its class. 6728 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 6729 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 6730 SourceLocation ClassLoc = ClassDecl->getLocation(); 6731 DeclarationNameInfo NameInfo(Name, ClassLoc); 6732 CXXMethodDecl *CopyAssignment 6733 = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 6734 Context.getFunctionType(RetType, &ArgType, 1, EPI), 6735 /*TInfo=*/0, /*isStatic=*/false, 6736 /*StorageClassAsWritten=*/SC_None, 6737 /*isInline=*/true, 6738 SourceLocation()); 6739 CopyAssignment->setAccess(AS_public); 6740 CopyAssignment->setDefaulted(); 6741 CopyAssignment->setImplicit(); 6742 CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); 6743 6744 // Add the parameter to the operator. 6745 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 6746 ClassLoc, ClassLoc, /*Id=*/0, 6747 ArgType, /*TInfo=*/0, 6748 SC_None, 6749 SC_None, 0); 6750 CopyAssignment->setParams(&FromParam, 1); 6751 6752 // Note that we have added this copy-assignment operator. 6753 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 6754 6755 if (Scope *S = getScopeForContext(ClassDecl)) 6756 PushOnScopeChains(CopyAssignment, S, false); 6757 ClassDecl->addDecl(CopyAssignment); 6758 6759 // C++0x [class.copy]p18: 6760 // ... If the class definition declares a move constructor or move 6761 // assignment operator, the implicitly declared copy assignment operator is 6762 // defined as deleted; ... 6763 if (ClassDecl->hasUserDeclaredMoveConstructor() || 6764 ClassDecl->hasUserDeclaredMoveAssignment() || 6765 ShouldDeleteCopyAssignmentOperator(CopyAssignment)) 6766 CopyAssignment->setDeletedAsWritten(); 6767 6768 AddOverriddenMethods(ClassDecl, CopyAssignment); 6769 return CopyAssignment; 6770 } 6771 6772 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 6773 CXXMethodDecl *CopyAssignOperator) { 6774 assert((CopyAssignOperator->isDefaulted() && 6775 CopyAssignOperator->isOverloadedOperator() && 6776 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 6777 !CopyAssignOperator->doesThisDeclarationHaveABody()) && 6778 "DefineImplicitCopyAssignment called for wrong function"); 6779 6780 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 6781 6782 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { 6783 CopyAssignOperator->setInvalidDecl(); 6784 return; 6785 } 6786 6787 CopyAssignOperator->setUsed(); 6788 6789 ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); 6790 DiagnosticErrorTrap Trap(Diags); 6791 6792 // C++0x [class.copy]p30: 6793 // The implicitly-defined or explicitly-defaulted copy assignment operator 6794 // for a non-union class X performs memberwise copy assignment of its 6795 // subobjects. The direct base classes of X are assigned first, in the 6796 // order of their declaration in the base-specifier-list, and then the 6797 // immediate non-static data members of X are assigned, in the order in 6798 // which they were declared in the class definition. 6799 6800 // The statements that form the synthesized function body. 6801 ASTOwningVector<Stmt*> Statements(*this); 6802 6803 // The parameter for the "other" object, which we are copying from. 6804 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 6805 Qualifiers OtherQuals = Other->getType().getQualifiers(); 6806 QualType OtherRefType = Other->getType(); 6807 if (const LValueReferenceType *OtherRef 6808 = OtherRefType->getAs<LValueReferenceType>()) { 6809 OtherRefType = OtherRef->getPointeeType(); 6810 OtherQuals = OtherRefType.getQualifiers(); 6811 } 6812 6813 // Our location for everything implicitly-generated. 6814 SourceLocation Loc = CopyAssignOperator->getLocation(); 6815 6816 // Construct a reference to the "other" object. We'll be using this 6817 // throughout the generated ASTs. 6818 Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take(); 6819 assert(OtherRef && "Reference to parameter cannot fail!"); 6820 6821 // Construct the "this" pointer. We'll be using this throughout the generated 6822 // ASTs. 6823 Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); 6824 assert(This && "Reference to this cannot fail!"); 6825 6826 // Assign base classes. 6827 bool Invalid = false; 6828 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 6829 E = ClassDecl->bases_end(); Base != E; ++Base) { 6830 // Form the assignment: 6831 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 6832 QualType BaseType = Base->getType().getUnqualifiedType(); 6833 if (!BaseType->isRecordType()) { 6834 Invalid = true; 6835 continue; 6836 } 6837 6838 CXXCastPath BasePath; 6839 BasePath.push_back(Base); 6840 6841 // Construct the "from" expression, which is an implicit cast to the 6842 // appropriately-qualified base type. 6843 Expr *From = OtherRef; 6844 From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), 6845 CK_UncheckedDerivedToBase, 6846 VK_LValue, &BasePath).take(); 6847 6848 // Dereference "this". 6849 ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 6850 6851 // Implicitly cast "this" to the appropriately-qualified base type. 6852 To = ImpCastExprToType(To.take(), 6853 Context.getCVRQualifiedType(BaseType, 6854 CopyAssignOperator->getTypeQualifiers()), 6855 CK_UncheckedDerivedToBase, 6856 VK_LValue, &BasePath); 6857 6858 // Build the copy. 6859 StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, 6860 To.get(), From, 6861 /*CopyingBaseSubobject=*/true); 6862 if (Copy.isInvalid()) { 6863 Diag(CurrentLocation, diag::note_member_synthesized_at) 6864 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 6865 CopyAssignOperator->setInvalidDecl(); 6866 return; 6867 } 6868 6869 // Success! Record the copy. 6870 Statements.push_back(Copy.takeAs<Expr>()); 6871 } 6872 6873 // \brief Reference to the __builtin_memcpy function. 6874 Expr *BuiltinMemCpyRef = 0; 6875 // \brief Reference to the __builtin_objc_memmove_collectable function. 6876 Expr *CollectableMemCpyRef = 0; 6877 6878 // Assign non-static members. 6879 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 6880 FieldEnd = ClassDecl->field_end(); 6881 Field != FieldEnd; ++Field) { 6882 // Check for members of reference type; we can't copy those. 6883 if (Field->getType()->isReferenceType()) { 6884 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 6885 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 6886 Diag(Field->getLocation(), diag::note_declared_at); 6887 Diag(CurrentLocation, diag::note_member_synthesized_at) 6888 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 6889 Invalid = true; 6890 continue; 6891 } 6892 6893 // Check for members of const-qualified, non-class type. 6894 QualType BaseType = Context.getBaseElementType(Field->getType()); 6895 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 6896 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 6897 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 6898 Diag(Field->getLocation(), diag::note_declared_at); 6899 Diag(CurrentLocation, diag::note_member_synthesized_at) 6900 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 6901 Invalid = true; 6902 continue; 6903 } 6904 6905 // Suppress assigning zero-width bitfields. 6906 if (const Expr *Width = Field->getBitWidth()) 6907 if (Width->EvaluateAsInt(Context) == 0) 6908 continue; 6909 6910 QualType FieldType = Field->getType().getNonReferenceType(); 6911 if (FieldType->isIncompleteArrayType()) { 6912 assert(ClassDecl->hasFlexibleArrayMember() && 6913 "Incomplete array type is not valid"); 6914 continue; 6915 } 6916 6917 // Build references to the field in the object we're copying from and to. 6918 CXXScopeSpec SS; // Intentionally empty 6919 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 6920 LookupMemberName); 6921 MemberLookup.addDecl(*Field); 6922 MemberLookup.resolveKind(); 6923 ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, 6924 Loc, /*IsArrow=*/false, 6925 SS, 0, MemberLookup, 0); 6926 ExprResult To = BuildMemberReferenceExpr(This, This->getType(), 6927 Loc, /*IsArrow=*/true, 6928 SS, 0, MemberLookup, 0); 6929 assert(!From.isInvalid() && "Implicit field reference cannot fail"); 6930 assert(!To.isInvalid() && "Implicit field reference cannot fail"); 6931 6932 // If the field should be copied with __builtin_memcpy rather than via 6933 // explicit assignments, do so. This optimization only applies for arrays 6934 // of scalars and arrays of class type with trivial copy-assignment 6935 // operators. 6936 if (FieldType->isArrayType() && 6937 BaseType.hasTrivialCopyAssignment(Context)) { 6938 // Compute the size of the memory buffer to be copied. 6939 QualType SizeType = Context.getSizeType(); 6940 llvm::APInt Size(Context.getTypeSize(SizeType), 6941 Context.getTypeSizeInChars(BaseType).getQuantity()); 6942 for (const ConstantArrayType *Array 6943 = Context.getAsConstantArrayType(FieldType); 6944 Array; 6945 Array = Context.getAsConstantArrayType(Array->getElementType())) { 6946 llvm::APInt ArraySize 6947 = Array->getSize().zextOrTrunc(Size.getBitWidth()); 6948 Size *= ArraySize; 6949 } 6950 6951 // Take the address of the field references for "from" and "to". 6952 From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get()); 6953 To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get()); 6954 6955 bool NeedsCollectableMemCpy = 6956 (BaseType->isRecordType() && 6957 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()); 6958 6959 if (NeedsCollectableMemCpy) { 6960 if (!CollectableMemCpyRef) { 6961 // Create a reference to the __builtin_objc_memmove_collectable function. 6962 LookupResult R(*this, 6963 &Context.Idents.get("__builtin_objc_memmove_collectable"), 6964 Loc, LookupOrdinaryName); 6965 LookupName(R, TUScope, true); 6966 6967 FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>(); 6968 if (!CollectableMemCpy) { 6969 // Something went horribly wrong earlier, and we will have 6970 // complained about it. 6971 Invalid = true; 6972 continue; 6973 } 6974 6975 CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy, 6976 CollectableMemCpy->getType(), 6977 VK_LValue, Loc, 0).take(); 6978 assert(CollectableMemCpyRef && "Builtin reference cannot fail"); 6979 } 6980 } 6981 // Create a reference to the __builtin_memcpy builtin function. 6982 else if (!BuiltinMemCpyRef) { 6983 LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, 6984 LookupOrdinaryName); 6985 LookupName(R, TUScope, true); 6986 6987 FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); 6988 if (!BuiltinMemCpy) { 6989 // Something went horribly wrong earlier, and we will have complained 6990 // about it. 6991 Invalid = true; 6992 continue; 6993 } 6994 6995 BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, 6996 BuiltinMemCpy->getType(), 6997 VK_LValue, Loc, 0).take(); 6998 assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); 6999 } 7000 7001 ASTOwningVector<Expr*> CallArgs(*this); 7002 CallArgs.push_back(To.takeAs<Expr>()); 7003 CallArgs.push_back(From.takeAs<Expr>()); 7004 CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); 7005 ExprResult Call = ExprError(); 7006 if (NeedsCollectableMemCpy) 7007 Call = ActOnCallExpr(/*Scope=*/0, 7008 CollectableMemCpyRef, 7009 Loc, move_arg(CallArgs), 7010 Loc); 7011 else 7012 Call = ActOnCallExpr(/*Scope=*/0, 7013 BuiltinMemCpyRef, 7014 Loc, move_arg(CallArgs), 7015 Loc); 7016 7017 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 7018 Statements.push_back(Call.takeAs<Expr>()); 7019 continue; 7020 } 7021 7022 // Build the copy of this field. 7023 StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, 7024 To.get(), From.get(), 7025 /*CopyingBaseSubobject=*/false); 7026 if (Copy.isInvalid()) { 7027 Diag(CurrentLocation, diag::note_member_synthesized_at) 7028 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 7029 CopyAssignOperator->setInvalidDecl(); 7030 return; 7031 } 7032 7033 // Success! Record the copy. 7034 Statements.push_back(Copy.takeAs<Stmt>()); 7035 } 7036 7037 if (!Invalid) { 7038 // Add a "return *this;" 7039 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 7040 7041 StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); 7042 if (Return.isInvalid()) 7043 Invalid = true; 7044 else { 7045 Statements.push_back(Return.takeAs<Stmt>()); 7046 7047 if (Trap.hasErrorOccurred()) { 7048 Diag(CurrentLocation, diag::note_member_synthesized_at) 7049 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 7050 Invalid = true; 7051 } 7052 } 7053 } 7054 7055 if (Invalid) { 7056 CopyAssignOperator->setInvalidDecl(); 7057 return; 7058 } 7059 7060 StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), 7061 /*isStmtExpr=*/false); 7062 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 7063 CopyAssignOperator->setBody(Body.takeAs<Stmt>()); 7064 7065 if (ASTMutationListener *L = getASTMutationListener()) { 7066 L->CompletedImplicitDefinition(CopyAssignOperator); 7067 } 7068 } 7069 7070 std::pair<Sema::ImplicitExceptionSpecification, bool> 7071 Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) { 7072 if (ClassDecl->isInvalidDecl()) 7073 return std::make_pair(ImplicitExceptionSpecification(Context), false); 7074 7075 // C++ [class.copy]p5: 7076 // The implicitly-declared copy constructor for a class X will 7077 // have the form 7078 // 7079 // X::X(const X&) 7080 // 7081 // if 7082 // FIXME: It ought to be possible to store this on the record. 7083 bool HasConstCopyConstructor = true; 7084 7085 // -- each direct or virtual base class B of X has a copy 7086 // constructor whose first parameter is of type const B& or 7087 // const volatile B&, and 7088 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 7089 BaseEnd = ClassDecl->bases_end(); 7090 HasConstCopyConstructor && Base != BaseEnd; 7091 ++Base) { 7092 // Virtual bases are handled below. 7093 if (Base->isVirtual()) 7094 continue; 7095 7096 CXXRecordDecl *BaseClassDecl 7097 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 7098 LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const, 7099 &HasConstCopyConstructor); 7100 } 7101 7102 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), 7103 BaseEnd = ClassDecl->vbases_end(); 7104 HasConstCopyConstructor && Base != BaseEnd; 7105 ++Base) { 7106 CXXRecordDecl *BaseClassDecl 7107 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 7108 LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const, 7109 &HasConstCopyConstructor); 7110 } 7111 7112 // -- for all the nonstatic data members of X that are of a 7113 // class type M (or array thereof), each such class type 7114 // has a copy constructor whose first parameter is of type 7115 // const M& or const volatile M&. 7116 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 7117 FieldEnd = ClassDecl->field_end(); 7118 HasConstCopyConstructor && Field != FieldEnd; 7119 ++Field) { 7120 QualType FieldType = Context.getBaseElementType((*Field)->getType()); 7121 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 7122 LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const, 7123 &HasConstCopyConstructor); 7124 } 7125 } 7126 // Otherwise, the implicitly declared copy constructor will have 7127 // the form 7128 // 7129 // X::X(X&) 7130 7131 // C++ [except.spec]p14: 7132 // An implicitly declared special member function (Clause 12) shall have an 7133 // exception-specification. [...] 7134 ImplicitExceptionSpecification ExceptSpec(Context); 7135 unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0; 7136 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), 7137 BaseEnd = ClassDecl->bases_end(); 7138 Base != BaseEnd; 7139 ++Base) { 7140 // Virtual bases are handled below. 7141 if (Base->isVirtual()) 7142 continue; 7143 7144 CXXRecordDecl *BaseClassDecl 7145 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 7146 if (CXXConstructorDecl *CopyConstructor = 7147 LookupCopyingConstructor(BaseClassDecl, Quals)) 7148 ExceptSpec.CalledDecl(CopyConstructor); 7149 } 7150 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), 7151 BaseEnd = ClassDecl->vbases_end(); 7152 Base != BaseEnd; 7153 ++Base) { 7154 CXXRecordDecl *BaseClassDecl 7155 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 7156 if (CXXConstructorDecl *CopyConstructor = 7157 LookupCopyingConstructor(BaseClassDecl, Quals)) 7158 ExceptSpec.CalledDecl(CopyConstructor); 7159 } 7160 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 7161 FieldEnd = ClassDecl->field_end(); 7162 Field != FieldEnd; 7163 ++Field) { 7164 QualType FieldType = Context.getBaseElementType((*Field)->getType()); 7165 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 7166 if (CXXConstructorDecl *CopyConstructor = 7167 LookupCopyingConstructor(FieldClassDecl, Quals)) 7168 ExceptSpec.CalledDecl(CopyConstructor); 7169 } 7170 } 7171 7172 return std::make_pair(ExceptSpec, HasConstCopyConstructor); 7173 } 7174 7175 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 7176 CXXRecordDecl *ClassDecl) { 7177 // C++ [class.copy]p4: 7178 // If the class definition does not explicitly declare a copy 7179 // constructor, one is declared implicitly. 7180 7181 ImplicitExceptionSpecification Spec(Context); 7182 bool Const; 7183 llvm::tie(Spec, Const) = 7184 ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl); 7185 7186 QualType ClassType = Context.getTypeDeclType(ClassDecl); 7187 QualType ArgType = ClassType; 7188 if (Const) 7189 ArgType = ArgType.withConst(); 7190 ArgType = Context.getLValueReferenceType(ArgType); 7191 7192 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); 7193 7194 DeclarationName Name 7195 = Context.DeclarationNames.getCXXConstructorName( 7196 Context.getCanonicalType(ClassType)); 7197 SourceLocation ClassLoc = ClassDecl->getLocation(); 7198 DeclarationNameInfo NameInfo(Name, ClassLoc); 7199 7200 // An implicitly-declared copy constructor is an inline public 7201 // member of its class. 7202 CXXConstructorDecl *CopyConstructor 7203 = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 7204 Context.getFunctionType(Context.VoidTy, 7205 &ArgType, 1, EPI), 7206 /*TInfo=*/0, 7207 /*isExplicit=*/false, 7208 /*isInline=*/true, 7209 /*isImplicitlyDeclared=*/true); 7210 CopyConstructor->setAccess(AS_public); 7211 CopyConstructor->setDefaulted(); 7212 CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); 7213 7214 // Note that we have declared this constructor. 7215 ++ASTContext::NumImplicitCopyConstructorsDeclared; 7216 7217 // Add the parameter to the constructor. 7218 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, 7219 ClassLoc, ClassLoc, 7220 /*IdentifierInfo=*/0, 7221 ArgType, /*TInfo=*/0, 7222 SC_None, 7223 SC_None, 0); 7224 CopyConstructor->setParams(&FromParam, 1); 7225 7226 if (Scope *S = getScopeForContext(ClassDecl)) 7227 PushOnScopeChains(CopyConstructor, S, false); 7228 ClassDecl->addDecl(CopyConstructor); 7229 7230 // C++0x [class.copy]p7: 7231 // ... If the class definition declares a move constructor or move 7232 // assignment operator, the implicitly declared constructor is defined as 7233 // deleted; ... 7234 if (ClassDecl->hasUserDeclaredMoveConstructor() || 7235 ClassDecl->hasUserDeclaredMoveAssignment() || 7236 ShouldDeleteCopyConstructor(CopyConstructor)) 7237 CopyConstructor->setDeletedAsWritten(); 7238 7239 return CopyConstructor; 7240 } 7241 7242 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 7243 CXXConstructorDecl *CopyConstructor) { 7244 assert((CopyConstructor->isDefaulted() && 7245 CopyConstructor->isCopyConstructor() && 7246 !CopyConstructor->doesThisDeclarationHaveABody()) && 7247 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 7248 7249 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 7250 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 7251 7252 ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); 7253 DiagnosticErrorTrap Trap(Diags); 7254 7255 if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || 7256 Trap.hasErrorOccurred()) { 7257 Diag(CurrentLocation, diag::note_member_synthesized_at) 7258 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); 7259 CopyConstructor->setInvalidDecl(); 7260 } else { 7261 CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), 7262 CopyConstructor->getLocation(), 7263 MultiStmtArg(*this, 0, 0), 7264 /*isStmtExpr=*/false) 7265 .takeAs<Stmt>()); 7266 } 7267 7268 CopyConstructor->setUsed(); 7269 7270 if (ASTMutationListener *L = getASTMutationListener()) { 7271 L->CompletedImplicitDefinition(CopyConstructor); 7272 } 7273 } 7274 7275 ExprResult 7276 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 7277 CXXConstructorDecl *Constructor, 7278 MultiExprArg ExprArgs, 7279 bool RequiresZeroInit, 7280 unsigned ConstructKind, 7281 SourceRange ParenRange) { 7282 bool Elidable = false; 7283 7284 // C++0x [class.copy]p34: 7285 // When certain criteria are met, an implementation is allowed to 7286 // omit the copy/move construction of a class object, even if the 7287 // copy/move constructor and/or destructor for the object have 7288 // side effects. [...] 7289 // - when a temporary class object that has not been bound to a 7290 // reference (12.2) would be copied/moved to a class object 7291 // with the same cv-unqualified type, the copy/move operation 7292 // can be omitted by constructing the temporary object 7293 // directly into the target of the omitted copy/move 7294 if (ConstructKind == CXXConstructExpr::CK_Complete && 7295 Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) { 7296 Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; 7297 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent()); 7298 } 7299 7300 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, 7301 Elidable, move(ExprArgs), RequiresZeroInit, 7302 ConstructKind, ParenRange); 7303 } 7304 7305 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 7306 /// including handling of its default argument expressions. 7307 ExprResult 7308 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 7309 CXXConstructorDecl *Constructor, bool Elidable, 7310 MultiExprArg ExprArgs, 7311 bool RequiresZeroInit, 7312 unsigned ConstructKind, 7313 SourceRange ParenRange) { 7314 unsigned NumExprs = ExprArgs.size(); 7315 Expr **Exprs = (Expr **)ExprArgs.release(); 7316 7317 for (specific_attr_iterator<NonNullAttr> 7318 i = Constructor->specific_attr_begin<NonNullAttr>(), 7319 e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) { 7320 const NonNullAttr *NonNull = *i; 7321 CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc); 7322 } 7323 7324 MarkDeclarationReferenced(ConstructLoc, Constructor); 7325 return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, 7326 Constructor, Elidable, Exprs, NumExprs, 7327 RequiresZeroInit, 7328 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 7329 ParenRange)); 7330 } 7331 7332 bool Sema::InitializeVarWithConstructor(VarDecl *VD, 7333 CXXConstructorDecl *Constructor, 7334 MultiExprArg Exprs) { 7335 // FIXME: Provide the correct paren SourceRange when available. 7336 ExprResult TempResult = 7337 BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, 7338 move(Exprs), false, CXXConstructExpr::CK_Complete, 7339 SourceRange()); 7340 if (TempResult.isInvalid()) 7341 return true; 7342 7343 Expr *Temp = TempResult.takeAs<Expr>(); 7344 CheckImplicitConversions(Temp, VD->getLocation()); 7345 MarkDeclarationReferenced(VD->getLocation(), Constructor); 7346 Temp = MaybeCreateExprWithCleanups(Temp); 7347 VD->setInit(Temp); 7348 7349 return false; 7350 } 7351 7352 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 7353 if (VD->isInvalidDecl()) return; 7354 7355 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 7356 if (ClassDecl->isInvalidDecl()) return; 7357 if (ClassDecl->hasTrivialDestructor()) return; 7358 if (ClassDecl->isDependentContext()) return; 7359 7360 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 7361 MarkDeclarationReferenced(VD->getLocation(), Destructor); 7362 CheckDestructorAccess(VD->getLocation(), Destructor, 7363 PDiag(diag::err_access_dtor_var) 7364 << VD->getDeclName() 7365 << VD->getType()); 7366 7367 if (!VD->hasGlobalStorage()) return; 7368 7369 // Emit warning for non-trivial dtor in global scope (a real global, 7370 // class-static, function-static). 7371 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 7372 7373 // TODO: this should be re-enabled for static locals by !CXAAtExit 7374 if (!VD->isStaticLocal()) 7375 Diag(VD->getLocation(), diag::warn_global_destructor); 7376 } 7377 7378 /// AddCXXDirectInitializerToDecl - This action is called immediately after 7379 /// ActOnDeclarator, when a C++ direct initializer is present. 7380 /// e.g: "int x(1);" 7381 void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl, 7382 SourceLocation LParenLoc, 7383 MultiExprArg Exprs, 7384 SourceLocation RParenLoc, 7385 bool TypeMayContainAuto) { 7386 assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); 7387 7388 // If there is no declaration, there was an error parsing it. Just ignore 7389 // the initializer. 7390 if (RealDecl == 0) 7391 return; 7392 7393 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 7394 if (!VDecl) { 7395 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 7396 RealDecl->setInvalidDecl(); 7397 return; 7398 } 7399 7400 // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 7401 if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) { 7402 // FIXME: n3225 doesn't actually seem to indicate this is ill-formed 7403 if (Exprs.size() > 1) { 7404 Diag(Exprs.get()[1]->getSourceRange().getBegin(), 7405 diag::err_auto_var_init_multiple_expressions) 7406 << VDecl->getDeclName() << VDecl->getType() 7407 << VDecl->getSourceRange(); 7408 RealDecl->setInvalidDecl(); 7409 return; 7410 } 7411 7412 Expr *Init = Exprs.get()[0]; 7413 TypeSourceInfo *DeducedType = 0; 7414 if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType)) 7415 Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure) 7416 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 7417 << Init->getSourceRange(); 7418 if (!DeducedType) { 7419 RealDecl->setInvalidDecl(); 7420 return; 7421 } 7422 VDecl->setTypeSourceInfo(DeducedType); 7423 VDecl->setType(DeducedType->getType()); 7424 7425 // In ARC, infer lifetime. 7426 if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 7427 VDecl->setInvalidDecl(); 7428 7429 // If this is a redeclaration, check that the type we just deduced matches 7430 // the previously declared type. 7431 if (VarDecl *Old = VDecl->getPreviousDeclaration()) 7432 MergeVarDeclTypes(VDecl, Old); 7433 } 7434 7435 // We will represent direct-initialization similarly to copy-initialization: 7436 // int x(1); -as-> int x = 1; 7437 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 7438 // 7439 // Clients that want to distinguish between the two forms, can check for 7440 // direct initializer using VarDecl::hasCXXDirectInitializer(). 7441 // A major benefit is that clients that don't particularly care about which 7442 // exactly form was it (like the CodeGen) can handle both cases without 7443 // special case code. 7444 7445 // C++ 8.5p11: 7446 // The form of initialization (using parentheses or '=') is generally 7447 // insignificant, but does matter when the entity being initialized has a 7448 // class type. 7449 7450 if (!VDecl->getType()->isDependentType() && 7451 RequireCompleteType(VDecl->getLocation(), VDecl->getType(), 7452 diag::err_typecheck_decl_incomplete_type)) { 7453 VDecl->setInvalidDecl(); 7454 return; 7455 } 7456 7457 // The variable can not have an abstract class type. 7458 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 7459 diag::err_abstract_type_in_decl, 7460 AbstractVariableType)) 7461 VDecl->setInvalidDecl(); 7462 7463 const VarDecl *Def; 7464 if ((Def = VDecl->getDefinition()) && Def != VDecl) { 7465 Diag(VDecl->getLocation(), diag::err_redefinition) 7466 << VDecl->getDeclName(); 7467 Diag(Def->getLocation(), diag::note_previous_definition); 7468 VDecl->setInvalidDecl(); 7469 return; 7470 } 7471 7472 // C++ [class.static.data]p4 7473 // If a static data member is of const integral or const 7474 // enumeration type, its declaration in the class definition can 7475 // specify a constant-initializer which shall be an integral 7476 // constant expression (5.19). In that case, the member can appear 7477 // in integral constant expressions. The member shall still be 7478 // defined in a namespace scope if it is used in the program and the 7479 // namespace scope definition shall not contain an initializer. 7480 // 7481 // We already performed a redefinition check above, but for static 7482 // data members we also need to check whether there was an in-class 7483 // declaration with an initializer. 7484 const VarDecl* PrevInit = 0; 7485 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { 7486 Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); 7487 Diag(PrevInit->getLocation(), diag::note_previous_definition); 7488 return; 7489 } 7490 7491 bool IsDependent = false; 7492 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) { 7493 if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) { 7494 VDecl->setInvalidDecl(); 7495 return; 7496 } 7497 7498 if (Exprs.get()[I]->isTypeDependent()) 7499 IsDependent = true; 7500 } 7501 7502 // If either the declaration has a dependent type or if any of the 7503 // expressions is type-dependent, we represent the initialization 7504 // via a ParenListExpr for later use during template instantiation. 7505 if (VDecl->getType()->isDependentType() || IsDependent) { 7506 // Let clients know that initialization was done with a direct initializer. 7507 VDecl->setCXXDirectInitializer(true); 7508 7509 // Store the initialization expressions as a ParenListExpr. 7510 unsigned NumExprs = Exprs.size(); 7511 VDecl->setInit(new (Context) ParenListExpr( 7512 Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc, 7513 VDecl->getType().getNonReferenceType())); 7514 return; 7515 } 7516 7517 // Capture the variable that is being initialized and the style of 7518 // initialization. 7519 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 7520 7521 // FIXME: Poor source location information. 7522 InitializationKind Kind 7523 = InitializationKind::CreateDirect(VDecl->getLocation(), 7524 LParenLoc, RParenLoc); 7525 7526 InitializationSequence InitSeq(*this, Entity, Kind, 7527 Exprs.get(), Exprs.size()); 7528 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); 7529 if (Result.isInvalid()) { 7530 VDecl->setInvalidDecl(); 7531 return; 7532 } 7533 7534 CheckImplicitConversions(Result.get(), LParenLoc); 7535 7536 Result = MaybeCreateExprWithCleanups(Result); 7537 VDecl->setInit(Result.takeAs<Expr>()); 7538 VDecl->setCXXDirectInitializer(true); 7539 7540 CheckCompleteVariableDeclaration(VDecl); 7541 } 7542 7543 /// \brief Given a constructor and the set of arguments provided for the 7544 /// constructor, convert the arguments and add any required default arguments 7545 /// to form a proper call to this constructor. 7546 /// 7547 /// \returns true if an error occurred, false otherwise. 7548 bool 7549 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 7550 MultiExprArg ArgsPtr, 7551 SourceLocation Loc, 7552 ASTOwningVector<Expr*> &ConvertedArgs) { 7553 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 7554 unsigned NumArgs = ArgsPtr.size(); 7555 Expr **Args = (Expr **)ArgsPtr.get(); 7556 7557 const FunctionProtoType *Proto 7558 = Constructor->getType()->getAs<FunctionProtoType>(); 7559 assert(Proto && "Constructor without a prototype?"); 7560 unsigned NumArgsInProto = Proto->getNumArgs(); 7561 7562 // If too few arguments are available, we'll fill in the rest with defaults. 7563 if (NumArgs < NumArgsInProto) 7564 ConvertedArgs.reserve(NumArgsInProto); 7565 else 7566 ConvertedArgs.reserve(NumArgs); 7567 7568 VariadicCallType CallType = 7569 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 7570 llvm::SmallVector<Expr *, 8> AllArgs; 7571 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 7572 Proto, 0, Args, NumArgs, AllArgs, 7573 CallType); 7574 for (unsigned i =0, size = AllArgs.size(); i < size; i++) 7575 ConvertedArgs.push_back(AllArgs[i]); 7576 return Invalid; 7577 } 7578 7579 static inline bool 7580 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 7581 const FunctionDecl *FnDecl) { 7582 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 7583 if (isa<NamespaceDecl>(DC)) { 7584 return SemaRef.Diag(FnDecl->getLocation(), 7585 diag::err_operator_new_delete_declared_in_namespace) 7586 << FnDecl->getDeclName(); 7587 } 7588 7589 if (isa<TranslationUnitDecl>(DC) && 7590 FnDecl->getStorageClass() == SC_Static) { 7591 return SemaRef.Diag(FnDecl->getLocation(), 7592 diag::err_operator_new_delete_declared_static) 7593 << FnDecl->getDeclName(); 7594 } 7595 7596 return false; 7597 } 7598 7599 static inline bool 7600 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 7601 CanQualType ExpectedResultType, 7602 CanQualType ExpectedFirstParamType, 7603 unsigned DependentParamTypeDiag, 7604 unsigned InvalidParamTypeDiag) { 7605 QualType ResultType = 7606 FnDecl->getType()->getAs<FunctionType>()->getResultType(); 7607 7608 // Check that the result type is not dependent. 7609 if (ResultType->isDependentType()) 7610 return SemaRef.Diag(FnDecl->getLocation(), 7611 diag::err_operator_new_delete_dependent_result_type) 7612 << FnDecl->getDeclName() << ExpectedResultType; 7613 7614 // Check that the result type is what we expect. 7615 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) 7616 return SemaRef.Diag(FnDecl->getLocation(), 7617 diag::err_operator_new_delete_invalid_result_type) 7618 << FnDecl->getDeclName() << ExpectedResultType; 7619 7620 // A function template must have at least 2 parameters. 7621 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 7622 return SemaRef.Diag(FnDecl->getLocation(), 7623 diag::err_operator_new_delete_template_too_few_parameters) 7624 << FnDecl->getDeclName(); 7625 7626 // The function decl must have at least 1 parameter. 7627 if (FnDecl->getNumParams() == 0) 7628 return SemaRef.Diag(FnDecl->getLocation(), 7629 diag::err_operator_new_delete_too_few_parameters) 7630 << FnDecl->getDeclName(); 7631 7632 // Check the the first parameter type is not dependent. 7633 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 7634 if (FirstParamType->isDependentType()) 7635 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) 7636 << FnDecl->getDeclName() << ExpectedFirstParamType; 7637 7638 // Check that the first parameter type is what we expect. 7639 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 7640 ExpectedFirstParamType) 7641 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) 7642 << FnDecl->getDeclName() << ExpectedFirstParamType; 7643 7644 return false; 7645 } 7646 7647 static bool 7648 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 7649 // C++ [basic.stc.dynamic.allocation]p1: 7650 // A program is ill-formed if an allocation function is declared in a 7651 // namespace scope other than global scope or declared static in global 7652 // scope. 7653 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 7654 return true; 7655 7656 CanQualType SizeTy = 7657 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 7658 7659 // C++ [basic.stc.dynamic.allocation]p1: 7660 // The return type shall be void*. The first parameter shall have type 7661 // std::size_t. 7662 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 7663 SizeTy, 7664 diag::err_operator_new_dependent_param_type, 7665 diag::err_operator_new_param_type)) 7666 return true; 7667 7668 // C++ [basic.stc.dynamic.allocation]p1: 7669 // The first parameter shall not have an associated default argument. 7670 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 7671 return SemaRef.Diag(FnDecl->getLocation(), 7672 diag::err_operator_new_default_arg) 7673 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 7674 7675 return false; 7676 } 7677 7678 static bool 7679 CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 7680 // C++ [basic.stc.dynamic.deallocation]p1: 7681 // A program is ill-formed if deallocation functions are declared in a 7682 // namespace scope other than global scope or declared static in global 7683 // scope. 7684 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 7685 return true; 7686 7687 // C++ [basic.stc.dynamic.deallocation]p2: 7688 // Each deallocation function shall return void and its first parameter 7689 // shall be void*. 7690 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, 7691 SemaRef.Context.VoidPtrTy, 7692 diag::err_operator_delete_dependent_param_type, 7693 diag::err_operator_delete_param_type)) 7694 return true; 7695 7696 return false; 7697 } 7698 7699 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 7700 /// of this overloaded operator is well-formed. If so, returns false; 7701 /// otherwise, emits appropriate diagnostics and returns true. 7702 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 7703 assert(FnDecl && FnDecl->isOverloadedOperator() && 7704 "Expected an overloaded operator declaration"); 7705 7706 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 7707 7708 // C++ [over.oper]p5: 7709 // The allocation and deallocation functions, operator new, 7710 // operator new[], operator delete and operator delete[], are 7711 // described completely in 3.7.3. The attributes and restrictions 7712 // found in the rest of this subclause do not apply to them unless 7713 // explicitly stated in 3.7.3. 7714 if (Op == OO_Delete || Op == OO_Array_Delete) 7715 return CheckOperatorDeleteDeclaration(*this, FnDecl); 7716 7717 if (Op == OO_New || Op == OO_Array_New) 7718 return CheckOperatorNewDeclaration(*this, FnDecl); 7719 7720 // C++ [over.oper]p6: 7721 // An operator function shall either be a non-static member 7722 // function or be a non-member function and have at least one 7723 // parameter whose type is a class, a reference to a class, an 7724 // enumeration, or a reference to an enumeration. 7725 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 7726 if (MethodDecl->isStatic()) 7727 return Diag(FnDecl->getLocation(), 7728 diag::err_operator_overload_static) << FnDecl->getDeclName(); 7729 } else { 7730 bool ClassOrEnumParam = false; 7731 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), 7732 ParamEnd = FnDecl->param_end(); 7733 Param != ParamEnd; ++Param) { 7734 QualType ParamType = (*Param)->getType().getNonReferenceType(); 7735 if (ParamType->isDependentType() || ParamType->isRecordType() || 7736 ParamType->isEnumeralType()) { 7737 ClassOrEnumParam = true; 7738 break; 7739 } 7740 } 7741 7742 if (!ClassOrEnumParam) 7743 return Diag(FnDecl->getLocation(), 7744 diag::err_operator_overload_needs_class_or_enum) 7745 << FnDecl->getDeclName(); 7746 } 7747 7748 // C++ [over.oper]p8: 7749 // An operator function cannot have default arguments (8.3.6), 7750 // except where explicitly stated below. 7751 // 7752 // Only the function-call operator allows default arguments 7753 // (C++ [over.call]p1). 7754 if (Op != OO_Call) { 7755 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); 7756 Param != FnDecl->param_end(); ++Param) { 7757 if ((*Param)->hasDefaultArg()) 7758 return Diag((*Param)->getLocation(), 7759 diag::err_operator_overload_default_arg) 7760 << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); 7761 } 7762 } 7763 7764 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 7765 { false, false, false } 7766 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 7767 , { Unary, Binary, MemberOnly } 7768 #include "clang/Basic/OperatorKinds.def" 7769 }; 7770 7771 bool CanBeUnaryOperator = OperatorUses[Op][0]; 7772 bool CanBeBinaryOperator = OperatorUses[Op][1]; 7773 bool MustBeMemberOperator = OperatorUses[Op][2]; 7774 7775 // C++ [over.oper]p8: 7776 // [...] Operator functions cannot have more or fewer parameters 7777 // than the number required for the corresponding operator, as 7778 // described in the rest of this subclause. 7779 unsigned NumParams = FnDecl->getNumParams() 7780 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 7781 if (Op != OO_Call && 7782 ((NumParams == 1 && !CanBeUnaryOperator) || 7783 (NumParams == 2 && !CanBeBinaryOperator) || 7784 (NumParams < 1) || (NumParams > 2))) { 7785 // We have the wrong number of parameters. 7786 unsigned ErrorKind; 7787 if (CanBeUnaryOperator && CanBeBinaryOperator) { 7788 ErrorKind = 2; // 2 -> unary or binary. 7789 } else if (CanBeUnaryOperator) { 7790 ErrorKind = 0; // 0 -> unary 7791 } else { 7792 assert(CanBeBinaryOperator && 7793 "All non-call overloaded operators are unary or binary!"); 7794 ErrorKind = 1; // 1 -> binary 7795 } 7796 7797 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 7798 << FnDecl->getDeclName() << NumParams << ErrorKind; 7799 } 7800 7801 // Overloaded operators other than operator() cannot be variadic. 7802 if (Op != OO_Call && 7803 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { 7804 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 7805 << FnDecl->getDeclName(); 7806 } 7807 7808 // Some operators must be non-static member functions. 7809 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 7810 return Diag(FnDecl->getLocation(), 7811 diag::err_operator_overload_must_be_member) 7812 << FnDecl->getDeclName(); 7813 } 7814 7815 // C++ [over.inc]p1: 7816 // The user-defined function called operator++ implements the 7817 // prefix and postfix ++ operator. If this function is a member 7818 // function with no parameters, or a non-member function with one 7819 // parameter of class or enumeration type, it defines the prefix 7820 // increment operator ++ for objects of that type. If the function 7821 // is a member function with one parameter (which shall be of type 7822 // int) or a non-member function with two parameters (the second 7823 // of which shall be of type int), it defines the postfix 7824 // increment operator ++ for objects of that type. 7825 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 7826 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 7827 bool ParamIsInt = false; 7828 if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) 7829 ParamIsInt = BT->getKind() == BuiltinType::Int; 7830 7831 if (!ParamIsInt) 7832 return Diag(LastParam->getLocation(), 7833 diag::err_operator_overload_post_incdec_must_be_int) 7834 << LastParam->getType() << (Op == OO_MinusMinus); 7835 } 7836 7837 return false; 7838 } 7839 7840 /// CheckLiteralOperatorDeclaration - Check whether the declaration 7841 /// of this literal operator function is well-formed. If so, returns 7842 /// false; otherwise, emits appropriate diagnostics and returns true. 7843 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 7844 DeclContext *DC = FnDecl->getDeclContext(); 7845 Decl::Kind Kind = DC->getDeclKind(); 7846 if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && 7847 Kind != Decl::LinkageSpec) { 7848 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 7849 << FnDecl->getDeclName(); 7850 return true; 7851 } 7852 7853 bool Valid = false; 7854 7855 // template <char...> type operator "" name() is the only valid template 7856 // signature, and the only valid signature with no parameters. 7857 if (FnDecl->param_size() == 0) { 7858 if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { 7859 // Must have only one template parameter 7860 TemplateParameterList *Params = TpDecl->getTemplateParameters(); 7861 if (Params->size() == 1) { 7862 NonTypeTemplateParmDecl *PmDecl = 7863 cast<NonTypeTemplateParmDecl>(Params->getParam(0)); 7864 7865 // The template parameter must be a char parameter pack. 7866 if (PmDecl && PmDecl->isTemplateParameterPack() && 7867 Context.hasSameType(PmDecl->getType(), Context.CharTy)) 7868 Valid = true; 7869 } 7870 } 7871 } else { 7872 // Check the first parameter 7873 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 7874 7875 QualType T = (*Param)->getType(); 7876 7877 // unsigned long long int, long double, and any character type are allowed 7878 // as the only parameters. 7879 if (Context.hasSameType(T, Context.UnsignedLongLongTy) || 7880 Context.hasSameType(T, Context.LongDoubleTy) || 7881 Context.hasSameType(T, Context.CharTy) || 7882 Context.hasSameType(T, Context.WCharTy) || 7883 Context.hasSameType(T, Context.Char16Ty) || 7884 Context.hasSameType(T, Context.Char32Ty)) { 7885 if (++Param == FnDecl->param_end()) 7886 Valid = true; 7887 goto FinishedParams; 7888 } 7889 7890 // Otherwise it must be a pointer to const; let's strip those qualifiers. 7891 const PointerType *PT = T->getAs<PointerType>(); 7892 if (!PT) 7893 goto FinishedParams; 7894 T = PT->getPointeeType(); 7895 if (!T.isConstQualified()) 7896 goto FinishedParams; 7897 T = T.getUnqualifiedType(); 7898 7899 // Move on to the second parameter; 7900 ++Param; 7901 7902 // If there is no second parameter, the first must be a const char * 7903 if (Param == FnDecl->param_end()) { 7904 if (Context.hasSameType(T, Context.CharTy)) 7905 Valid = true; 7906 goto FinishedParams; 7907 } 7908 7909 // const char *, const wchar_t*, const char16_t*, and const char32_t* 7910 // are allowed as the first parameter to a two-parameter function 7911 if (!(Context.hasSameType(T, Context.CharTy) || 7912 Context.hasSameType(T, Context.WCharTy) || 7913 Context.hasSameType(T, Context.Char16Ty) || 7914 Context.hasSameType(T, Context.Char32Ty))) 7915 goto FinishedParams; 7916 7917 // The second and final parameter must be an std::size_t 7918 T = (*Param)->getType().getUnqualifiedType(); 7919 if (Context.hasSameType(T, Context.getSizeType()) && 7920 ++Param == FnDecl->param_end()) 7921 Valid = true; 7922 } 7923 7924 // FIXME: This diagnostic is absolutely terrible. 7925 FinishedParams: 7926 if (!Valid) { 7927 Diag(FnDecl->getLocation(), diag::err_literal_operator_params) 7928 << FnDecl->getDeclName(); 7929 return true; 7930 } 7931 7932 return false; 7933 } 7934 7935 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 7936 /// linkage specification, including the language and (if present) 7937 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is 7938 /// the location of the language string literal, which is provided 7939 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of 7940 /// the '{' brace. Otherwise, this linkage specification does not 7941 /// have any braces. 7942 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 7943 SourceLocation LangLoc, 7944 llvm::StringRef Lang, 7945 SourceLocation LBraceLoc) { 7946 LinkageSpecDecl::LanguageIDs Language; 7947 if (Lang == "\"C\"") 7948 Language = LinkageSpecDecl::lang_c; 7949 else if (Lang == "\"C++\"") 7950 Language = LinkageSpecDecl::lang_cxx; 7951 else { 7952 Diag(LangLoc, diag::err_bad_language); 7953 return 0; 7954 } 7955 7956 // FIXME: Add all the various semantics of linkage specifications 7957 7958 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, 7959 ExternLoc, LangLoc, Language); 7960 CurContext->addDecl(D); 7961 PushDeclContext(S, D); 7962 return D; 7963 } 7964 7965 /// ActOnFinishLinkageSpecification - Complete the definition of 7966 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 7967 /// valid, it's the position of the closing '}' brace in a linkage 7968 /// specification that uses braces. 7969 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 7970 Decl *LinkageSpec, 7971 SourceLocation RBraceLoc) { 7972 if (LinkageSpec) { 7973 if (RBraceLoc.isValid()) { 7974 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 7975 LSDecl->setRBraceLoc(RBraceLoc); 7976 } 7977 PopDeclContext(); 7978 } 7979 return LinkageSpec; 7980 } 7981 7982 /// \brief Perform semantic analysis for the variable declaration that 7983 /// occurs within a C++ catch clause, returning the newly-created 7984 /// variable. 7985 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 7986 TypeSourceInfo *TInfo, 7987 SourceLocation StartLoc, 7988 SourceLocation Loc, 7989 IdentifierInfo *Name) { 7990 bool Invalid = false; 7991 QualType ExDeclType = TInfo->getType(); 7992 7993 // Arrays and functions decay. 7994 if (ExDeclType->isArrayType()) 7995 ExDeclType = Context.getArrayDecayedType(ExDeclType); 7996 else if (ExDeclType->isFunctionType()) 7997 ExDeclType = Context.getPointerType(ExDeclType); 7998 7999 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 8000 // The exception-declaration shall not denote a pointer or reference to an 8001 // incomplete type, other than [cv] void*. 8002 // N2844 forbids rvalue references. 8003 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 8004 Diag(Loc, diag::err_catch_rvalue_ref); 8005 Invalid = true; 8006 } 8007 8008 // GCC allows catching pointers and references to incomplete types 8009 // as an extension; so do we, but we warn by default. 8010 8011 QualType BaseType = ExDeclType; 8012 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 8013 unsigned DK = diag::err_catch_incomplete; 8014 bool IncompleteCatchIsInvalid = true; 8015 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 8016 BaseType = Ptr->getPointeeType(); 8017 Mode = 1; 8018 DK = diag::ext_catch_incomplete_ptr; 8019 IncompleteCatchIsInvalid = false; 8020 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 8021 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 8022 BaseType = Ref->getPointeeType(); 8023 Mode = 2; 8024 DK = diag::ext_catch_incomplete_ref; 8025 IncompleteCatchIsInvalid = false; 8026 } 8027 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 8028 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) && 8029 IncompleteCatchIsInvalid) 8030 Invalid = true; 8031 8032 if (!Invalid && !ExDeclType->isDependentType() && 8033 RequireNonAbstractType(Loc, ExDeclType, 8034 diag::err_abstract_type_in_decl, 8035 AbstractVariableType)) 8036 Invalid = true; 8037 8038 // Only the non-fragile NeXT runtime currently supports C++ catches 8039 // of ObjC types, and no runtime supports catching ObjC types by value. 8040 if (!Invalid && getLangOptions().ObjC1) { 8041 QualType T = ExDeclType; 8042 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 8043 T = RT->getPointeeType(); 8044 8045 if (T->isObjCObjectType()) { 8046 Diag(Loc, diag::err_objc_object_catch); 8047 Invalid = true; 8048 } else if (T->isObjCObjectPointerType()) { 8049 if (!getLangOptions().ObjCNonFragileABI) 8050 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 8051 } 8052 } 8053 8054 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 8055 ExDeclType, TInfo, SC_None, SC_None); 8056 ExDecl->setExceptionVariable(true); 8057 8058 if (!Invalid && !ExDeclType->isDependentType()) { 8059 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 8060 // C++ [except.handle]p16: 8061 // The object declared in an exception-declaration or, if the 8062 // exception-declaration does not specify a name, a temporary (12.2) is 8063 // copy-initialized (8.5) from the exception object. [...] 8064 // The object is destroyed when the handler exits, after the destruction 8065 // of any automatic objects initialized within the handler. 8066 // 8067 // We just pretend to initialize the object with itself, then make sure 8068 // it can be destroyed later. 8069 QualType initType = ExDeclType; 8070 8071 InitializedEntity entity = 8072 InitializedEntity::InitializeVariable(ExDecl); 8073 InitializationKind initKind = 8074 InitializationKind::CreateCopy(Loc, SourceLocation()); 8075 8076 Expr *opaqueValue = 8077 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 8078 InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1); 8079 ExprResult result = sequence.Perform(*this, entity, initKind, 8080 MultiExprArg(&opaqueValue, 1)); 8081 if (result.isInvalid()) 8082 Invalid = true; 8083 else { 8084 // If the constructor used was non-trivial, set this as the 8085 // "initializer". 8086 CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take()); 8087 if (!construct->getConstructor()->isTrivial()) { 8088 Expr *init = MaybeCreateExprWithCleanups(construct); 8089 ExDecl->setInit(init); 8090 } 8091 8092 // And make sure it's destructable. 8093 FinalizeVarWithDestructor(ExDecl, recordType); 8094 } 8095 } 8096 } 8097 8098 if (Invalid) 8099 ExDecl->setInvalidDecl(); 8100 8101 return ExDecl; 8102 } 8103 8104 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 8105 /// handler. 8106 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 8107 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 8108 bool Invalid = D.isInvalidType(); 8109 8110 // Check for unexpanded parameter packs. 8111 if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 8112 UPPC_ExceptionType)) { 8113 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 8114 D.getIdentifierLoc()); 8115 Invalid = true; 8116 } 8117 8118 IdentifierInfo *II = D.getIdentifier(); 8119 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 8120 LookupOrdinaryName, 8121 ForRedeclaration)) { 8122 // The scope should be freshly made just for us. There is just no way 8123 // it contains any previous declaration. 8124 assert(!S->isDeclScope(PrevDecl)); 8125 if (PrevDecl->isTemplateParameter()) { 8126 // Maybe we will complain about the shadowed template parameter. 8127 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 8128 } 8129 } 8130 8131 if (D.getCXXScopeSpec().isSet() && !Invalid) { 8132 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 8133 << D.getCXXScopeSpec().getRange(); 8134 Invalid = true; 8135 } 8136 8137 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo, 8138 D.getSourceRange().getBegin(), 8139 D.getIdentifierLoc(), 8140 D.getIdentifier()); 8141 if (Invalid) 8142 ExDecl->setInvalidDecl(); 8143 8144 // Add the exception declaration into this scope. 8145 if (II) 8146 PushOnScopeChains(ExDecl, S); 8147 else 8148 CurContext->addDecl(ExDecl); 8149 8150 ProcessDeclAttributes(S, ExDecl, D); 8151 return ExDecl; 8152 } 8153 8154 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 8155 Expr *AssertExpr, 8156 Expr *AssertMessageExpr_, 8157 SourceLocation RParenLoc) { 8158 StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_); 8159 8160 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { 8161 llvm::APSInt Value(32); 8162 if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { 8163 Diag(StaticAssertLoc, 8164 diag::err_static_assert_expression_is_not_constant) << 8165 AssertExpr->getSourceRange(); 8166 return 0; 8167 } 8168 8169 if (Value == 0) { 8170 Diag(StaticAssertLoc, diag::err_static_assert_failed) 8171 << AssertMessage->getString() << AssertExpr->getSourceRange(); 8172 } 8173 } 8174 8175 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 8176 return 0; 8177 8178 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 8179 AssertExpr, AssertMessage, RParenLoc); 8180 8181 CurContext->addDecl(Decl); 8182 return Decl; 8183 } 8184 8185 /// \brief Perform semantic analysis of the given friend type declaration. 8186 /// 8187 /// \returns A friend declaration that. 8188 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, 8189 TypeSourceInfo *TSInfo) { 8190 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 8191 8192 QualType T = TSInfo->getType(); 8193 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 8194 8195 if (!getLangOptions().CPlusPlus0x) { 8196 // C++03 [class.friend]p2: 8197 // An elaborated-type-specifier shall be used in a friend declaration 8198 // for a class.* 8199 // 8200 // * The class-key of the elaborated-type-specifier is required. 8201 if (!ActiveTemplateInstantiations.empty()) { 8202 // Do not complain about the form of friend template types during 8203 // template instantiation; we will already have complained when the 8204 // template was declared. 8205 } else if (!T->isElaboratedTypeSpecifier()) { 8206 // If we evaluated the type to a record type, suggest putting 8207 // a tag in front. 8208 if (const RecordType *RT = T->getAs<RecordType>()) { 8209 RecordDecl *RD = RT->getDecl(); 8210 8211 std::string InsertionText = std::string(" ") + RD->getKindName(); 8212 8213 Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type) 8214 << (unsigned) RD->getTagKind() 8215 << T 8216 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), 8217 InsertionText); 8218 } else { 8219 Diag(FriendLoc, diag::ext_nonclass_type_friend) 8220 << T 8221 << SourceRange(FriendLoc, TypeRange.getEnd()); 8222 } 8223 } else if (T->getAs<EnumType>()) { 8224 Diag(FriendLoc, diag::ext_enum_friend) 8225 << T 8226 << SourceRange(FriendLoc, TypeRange.getEnd()); 8227 } 8228 } 8229 8230 // C++0x [class.friend]p3: 8231 // If the type specifier in a friend declaration designates a (possibly 8232 // cv-qualified) class type, that class is declared as a friend; otherwise, 8233 // the friend declaration is ignored. 8234 8235 // FIXME: C++0x has some syntactic restrictions on friend type declarations 8236 // in [class.friend]p3 that we do not implement. 8237 8238 return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc); 8239 } 8240 8241 /// Handle a friend tag declaration where the scope specifier was 8242 /// templated. 8243 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 8244 unsigned TagSpec, SourceLocation TagLoc, 8245 CXXScopeSpec &SS, 8246 IdentifierInfo *Name, SourceLocation NameLoc, 8247 AttributeList *Attr, 8248 MultiTemplateParamsArg TempParamLists) { 8249 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8250 8251 bool isExplicitSpecialization = false; 8252 bool Invalid = false; 8253 8254 if (TemplateParameterList *TemplateParams 8255 = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS, 8256 TempParamLists.get(), 8257 TempParamLists.size(), 8258 /*friend*/ true, 8259 isExplicitSpecialization, 8260 Invalid)) { 8261 if (TemplateParams->size() > 0) { 8262 // This is a declaration of a class template. 8263 if (Invalid) 8264 return 0; 8265 8266 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, 8267 SS, Name, NameLoc, Attr, 8268 TemplateParams, AS_public, 8269 TempParamLists.size() - 1, 8270 (TemplateParameterList**) TempParamLists.release()).take(); 8271 } else { 8272 // The "template<>" header is extraneous. 8273 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 8274 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 8275 isExplicitSpecialization = true; 8276 } 8277 } 8278 8279 if (Invalid) return 0; 8280 8281 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 8282 8283 bool isAllExplicitSpecializations = true; 8284 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 8285 if (TempParamLists.get()[I]->size()) { 8286 isAllExplicitSpecializations = false; 8287 break; 8288 } 8289 } 8290 8291 // FIXME: don't ignore attributes. 8292 8293 // If it's explicit specializations all the way down, just forget 8294 // about the template header and build an appropriate non-templated 8295 // friend. TODO: for source fidelity, remember the headers. 8296 if (isAllExplicitSpecializations) { 8297 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 8298 ElaboratedTypeKeyword Keyword 8299 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 8300 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 8301 *Name, NameLoc); 8302 if (T.isNull()) 8303 return 0; 8304 8305 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 8306 if (isa<DependentNameType>(T)) { 8307 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 8308 TL.setKeywordLoc(TagLoc); 8309 TL.setQualifierLoc(QualifierLoc); 8310 TL.setNameLoc(NameLoc); 8311 } else { 8312 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 8313 TL.setKeywordLoc(TagLoc); 8314 TL.setQualifierLoc(QualifierLoc); 8315 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc); 8316 } 8317 8318 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 8319 TSI, FriendLoc); 8320 Friend->setAccess(AS_public); 8321 CurContext->addDecl(Friend); 8322 return Friend; 8323 } 8324 8325 // Handle the case of a templated-scope friend class. e.g. 8326 // template <class T> class A<T>::B; 8327 // FIXME: we don't support these right now. 8328 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 8329 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 8330 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 8331 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 8332 TL.setKeywordLoc(TagLoc); 8333 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 8334 TL.setNameLoc(NameLoc); 8335 8336 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 8337 TSI, FriendLoc); 8338 Friend->setAccess(AS_public); 8339 Friend->setUnsupportedFriend(true); 8340 CurContext->addDecl(Friend); 8341 return Friend; 8342 } 8343 8344 8345 /// Handle a friend type declaration. This works in tandem with 8346 /// ActOnTag. 8347 /// 8348 /// Notes on friend class templates: 8349 /// 8350 /// We generally treat friend class declarations as if they were 8351 /// declaring a class. So, for example, the elaborated type specifier 8352 /// in a friend declaration is required to obey the restrictions of a 8353 /// class-head (i.e. no typedefs in the scope chain), template 8354 /// parameters are required to match up with simple template-ids, &c. 8355 /// However, unlike when declaring a template specialization, it's 8356 /// okay to refer to a template specialization without an empty 8357 /// template parameter declaration, e.g. 8358 /// friend class A<T>::B<unsigned>; 8359 /// We permit this as a special case; if there are any template 8360 /// parameters present at all, require proper matching, i.e. 8361 /// template <> template <class T> friend class A<int>::B; 8362 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 8363 MultiTemplateParamsArg TempParams) { 8364 SourceLocation Loc = DS.getSourceRange().getBegin(); 8365 8366 assert(DS.isFriendSpecified()); 8367 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 8368 8369 // Try to convert the decl specifier to a type. This works for 8370 // friend templates because ActOnTag never produces a ClassTemplateDecl 8371 // for a TUK_Friend. 8372 Declarator TheDeclarator(DS, Declarator::MemberContext); 8373 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 8374 QualType T = TSI->getType(); 8375 if (TheDeclarator.isInvalidType()) 8376 return 0; 8377 8378 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 8379 return 0; 8380 8381 // This is definitely an error in C++98. It's probably meant to 8382 // be forbidden in C++0x, too, but the specification is just 8383 // poorly written. 8384 // 8385 // The problem is with declarations like the following: 8386 // template <T> friend A<T>::foo; 8387 // where deciding whether a class C is a friend or not now hinges 8388 // on whether there exists an instantiation of A that causes 8389 // 'foo' to equal C. There are restrictions on class-heads 8390 // (which we declare (by fiat) elaborated friend declarations to 8391 // be) that makes this tractable. 8392 // 8393 // FIXME: handle "template <> friend class A<T>;", which 8394 // is possibly well-formed? Who even knows? 8395 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 8396 Diag(Loc, diag::err_tagless_friend_type_template) 8397 << DS.getSourceRange(); 8398 return 0; 8399 } 8400 8401 // C++98 [class.friend]p1: A friend of a class is a function 8402 // or class that is not a member of the class . . . 8403 // This is fixed in DR77, which just barely didn't make the C++03 8404 // deadline. It's also a very silly restriction that seriously 8405 // affects inner classes and which nobody else seems to implement; 8406 // thus we never diagnose it, not even in -pedantic. 8407 // 8408 // But note that we could warn about it: it's always useless to 8409 // friend one of your own members (it's not, however, worthless to 8410 // friend a member of an arbitrary specialization of your template). 8411 8412 Decl *D; 8413 if (unsigned NumTempParamLists = TempParams.size()) 8414 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 8415 NumTempParamLists, 8416 TempParams.release(), 8417 TSI, 8418 DS.getFriendSpecLoc()); 8419 else 8420 D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI); 8421 8422 if (!D) 8423 return 0; 8424 8425 D->setAccess(AS_public); 8426 CurContext->addDecl(D); 8427 8428 return D; 8429 } 8430 8431 Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition, 8432 MultiTemplateParamsArg TemplateParams) { 8433 const DeclSpec &DS = D.getDeclSpec(); 8434 8435 assert(DS.isFriendSpecified()); 8436 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 8437 8438 SourceLocation Loc = D.getIdentifierLoc(); 8439 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 8440 QualType T = TInfo->getType(); 8441 8442 // C++ [class.friend]p1 8443 // A friend of a class is a function or class.... 8444 // Note that this sees through typedefs, which is intended. 8445 // It *doesn't* see through dependent types, which is correct 8446 // according to [temp.arg.type]p3: 8447 // If a declaration acquires a function type through a 8448 // type dependent on a template-parameter and this causes 8449 // a declaration that does not use the syntactic form of a 8450 // function declarator to have a function type, the program 8451 // is ill-formed. 8452 if (!T->isFunctionType()) { 8453 Diag(Loc, diag::err_unexpected_friend); 8454 8455 // It might be worthwhile to try to recover by creating an 8456 // appropriate declaration. 8457 return 0; 8458 } 8459 8460 // C++ [namespace.memdef]p3 8461 // - If a friend declaration in a non-local class first declares a 8462 // class or function, the friend class or function is a member 8463 // of the innermost enclosing namespace. 8464 // - The name of the friend is not found by simple name lookup 8465 // until a matching declaration is provided in that namespace 8466 // scope (either before or after the class declaration granting 8467 // friendship). 8468 // - If a friend function is called, its name may be found by the 8469 // name lookup that considers functions from namespaces and 8470 // classes associated with the types of the function arguments. 8471 // - When looking for a prior declaration of a class or a function 8472 // declared as a friend, scopes outside the innermost enclosing 8473 // namespace scope are not considered. 8474 8475 CXXScopeSpec &SS = D.getCXXScopeSpec(); 8476 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 8477 DeclarationName Name = NameInfo.getName(); 8478 assert(Name); 8479 8480 // Check for unexpanded parameter packs. 8481 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 8482 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 8483 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 8484 return 0; 8485 8486 // The context we found the declaration in, or in which we should 8487 // create the declaration. 8488 DeclContext *DC; 8489 Scope *DCScope = S; 8490 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8491 ForRedeclaration); 8492 8493 // FIXME: there are different rules in local classes 8494 8495 // There are four cases here. 8496 // - There's no scope specifier, in which case we just go to the 8497 // appropriate scope and look for a function or function template 8498 // there as appropriate. 8499 // Recover from invalid scope qualifiers as if they just weren't there. 8500 if (SS.isInvalid() || !SS.isSet()) { 8501 // C++0x [namespace.memdef]p3: 8502 // If the name in a friend declaration is neither qualified nor 8503 // a template-id and the declaration is a function or an 8504 // elaborated-type-specifier, the lookup to determine whether 8505 // the entity has been previously declared shall not consider 8506 // any scopes outside the innermost enclosing namespace. 8507 // C++0x [class.friend]p11: 8508 // If a friend declaration appears in a local class and the name 8509 // specified is an unqualified name, a prior declaration is 8510 // looked up without considering scopes that are outside the 8511 // innermost enclosing non-class scope. For a friend function 8512 // declaration, if there is no prior declaration, the program is 8513 // ill-formed. 8514 bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass(); 8515 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId; 8516 8517 // Find the appropriate context according to the above. 8518 DC = CurContext; 8519 while (true) { 8520 // Skip class contexts. If someone can cite chapter and verse 8521 // for this behavior, that would be nice --- it's what GCC and 8522 // EDG do, and it seems like a reasonable intent, but the spec 8523 // really only says that checks for unqualified existing 8524 // declarations should stop at the nearest enclosing namespace, 8525 // not that they should only consider the nearest enclosing 8526 // namespace. 8527 while (DC->isRecord()) 8528 DC = DC->getParent(); 8529 8530 LookupQualifiedName(Previous, DC); 8531 8532 // TODO: decide what we think about using declarations. 8533 if (isLocal || !Previous.empty()) 8534 break; 8535 8536 if (isTemplateId) { 8537 if (isa<TranslationUnitDecl>(DC)) break; 8538 } else { 8539 if (DC->isFileContext()) break; 8540 } 8541 DC = DC->getParent(); 8542 } 8543 8544 // C++ [class.friend]p1: A friend of a class is a function or 8545 // class that is not a member of the class . . . 8546 // C++0x changes this for both friend types and functions. 8547 // Most C++ 98 compilers do seem to give an error here, so 8548 // we do, too. 8549 if (!Previous.empty() && DC->Equals(CurContext) 8550 && !getLangOptions().CPlusPlus0x) 8551 Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); 8552 8553 DCScope = getScopeForDeclContext(S, DC); 8554 8555 // - There's a non-dependent scope specifier, in which case we 8556 // compute it and do a previous lookup there for a function 8557 // or function template. 8558 } else if (!SS.getScopeRep()->isDependent()) { 8559 DC = computeDeclContext(SS); 8560 if (!DC) return 0; 8561 8562 if (RequireCompleteDeclContext(SS, DC)) return 0; 8563 8564 LookupQualifiedName(Previous, DC); 8565 8566 // Ignore things found implicitly in the wrong scope. 8567 // TODO: better diagnostics for this case. Suggesting the right 8568 // qualified scope would be nice... 8569 LookupResult::Filter F = Previous.makeFilter(); 8570 while (F.hasNext()) { 8571 NamedDecl *D = F.next(); 8572 if (!DC->InEnclosingNamespaceSetOf( 8573 D->getDeclContext()->getRedeclContext())) 8574 F.erase(); 8575 } 8576 F.done(); 8577 8578 if (Previous.empty()) { 8579 D.setInvalidType(); 8580 Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; 8581 return 0; 8582 } 8583 8584 // C++ [class.friend]p1: A friend of a class is a function or 8585 // class that is not a member of the class . . . 8586 if (DC->Equals(CurContext)) 8587 Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); 8588 8589 // - There's a scope specifier that does not match any template 8590 // parameter lists, in which case we use some arbitrary context, 8591 // create a method or method template, and wait for instantiation. 8592 // - There's a scope specifier that does match some template 8593 // parameter lists, which we don't handle right now. 8594 } else { 8595 DC = CurContext; 8596 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 8597 } 8598 8599 if (!DC->isRecord()) { 8600 // This implies that it has to be an operator or function. 8601 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || 8602 D.getName().getKind() == UnqualifiedId::IK_DestructorName || 8603 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { 8604 Diag(Loc, diag::err_introducing_special_friend) << 8605 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : 8606 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); 8607 return 0; 8608 } 8609 } 8610 8611 bool Redeclaration = false; 8612 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous, 8613 move(TemplateParams), 8614 IsDefinition, 8615 Redeclaration); 8616 if (!ND) return 0; 8617 8618 assert(ND->getDeclContext() == DC); 8619 assert(ND->getLexicalDeclContext() == CurContext); 8620 8621 // Add the function declaration to the appropriate lookup tables, 8622 // adjusting the redeclarations list as necessary. We don't 8623 // want to do this yet if the friending class is dependent. 8624 // 8625 // Also update the scope-based lookup if the target context's 8626 // lookup context is in lexical scope. 8627 if (!CurContext->isDependentContext()) { 8628 DC = DC->getRedeclContext(); 8629 DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); 8630 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 8631 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 8632 } 8633 8634 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 8635 D.getIdentifierLoc(), ND, 8636 DS.getFriendSpecLoc()); 8637 FrD->setAccess(AS_public); 8638 CurContext->addDecl(FrD); 8639 8640 if (ND->isInvalidDecl()) 8641 FrD->setInvalidDecl(); 8642 else { 8643 FunctionDecl *FD; 8644 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 8645 FD = FTD->getTemplatedDecl(); 8646 else 8647 FD = cast<FunctionDecl>(ND); 8648 8649 // Mark templated-scope function declarations as unsupported. 8650 if (FD->getNumTemplateParameterLists()) 8651 FrD->setUnsupportedFriend(true); 8652 } 8653 8654 return ND; 8655 } 8656 8657 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 8658 AdjustDeclIfTemplate(Dcl); 8659 8660 FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); 8661 if (!Fn) { 8662 Diag(DelLoc, diag::err_deleted_non_function); 8663 return; 8664 } 8665 if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { 8666 Diag(DelLoc, diag::err_deleted_decl_not_first); 8667 Diag(Prev->getLocation(), diag::note_previous_declaration); 8668 // If the declaration wasn't the first, we delete the function anyway for 8669 // recovery. 8670 } 8671 Fn->setDeletedAsWritten(); 8672 } 8673 8674 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 8675 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl); 8676 8677 if (MD) { 8678 if (MD->getParent()->isDependentType()) { 8679 MD->setDefaulted(); 8680 MD->setExplicitlyDefaulted(); 8681 return; 8682 } 8683 8684 CXXSpecialMember Member = getSpecialMember(MD); 8685 if (Member == CXXInvalid) { 8686 Diag(DefaultLoc, diag::err_default_special_members); 8687 return; 8688 } 8689 8690 MD->setDefaulted(); 8691 MD->setExplicitlyDefaulted(); 8692 8693 // If this definition appears within the record, do the checking when 8694 // the record is complete. 8695 const FunctionDecl *Primary = MD; 8696 if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate) 8697 // Find the uninstantiated declaration that actually had the '= default' 8698 // on it. 8699 MD->getTemplateInstantiationPattern()->isDefined(Primary); 8700 8701 if (Primary == Primary->getCanonicalDecl()) 8702 return; 8703 8704 switch (Member) { 8705 case CXXDefaultConstructor: { 8706 CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD); 8707 CheckExplicitlyDefaultedDefaultConstructor(CD); 8708 if (!CD->isInvalidDecl()) 8709 DefineImplicitDefaultConstructor(DefaultLoc, CD); 8710 break; 8711 } 8712 8713 case CXXCopyConstructor: { 8714 CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD); 8715 CheckExplicitlyDefaultedCopyConstructor(CD); 8716 if (!CD->isInvalidDecl()) 8717 DefineImplicitCopyConstructor(DefaultLoc, CD); 8718 break; 8719 } 8720 8721 case CXXCopyAssignment: { 8722 CheckExplicitlyDefaultedCopyAssignment(MD); 8723 if (!MD->isInvalidDecl()) 8724 DefineImplicitCopyAssignment(DefaultLoc, MD); 8725 break; 8726 } 8727 8728 case CXXDestructor: { 8729 CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD); 8730 CheckExplicitlyDefaultedDestructor(DD); 8731 if (!DD->isInvalidDecl()) 8732 DefineImplicitDestructor(DefaultLoc, DD); 8733 break; 8734 } 8735 8736 case CXXMoveConstructor: 8737 case CXXMoveAssignment: 8738 Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported); 8739 break; 8740 8741 default: 8742 // FIXME: Do the rest once we have move functions 8743 break; 8744 } 8745 } else { 8746 Diag(DefaultLoc, diag::err_default_special_members); 8747 } 8748 } 8749 8750 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 8751 for (Stmt::child_range CI = S->children(); CI; ++CI) { 8752 Stmt *SubStmt = *CI; 8753 if (!SubStmt) 8754 continue; 8755 if (isa<ReturnStmt>(SubStmt)) 8756 Self.Diag(SubStmt->getSourceRange().getBegin(), 8757 diag::err_return_in_constructor_handler); 8758 if (!isa<Expr>(SubStmt)) 8759 SearchForReturnInStmt(Self, SubStmt); 8760 } 8761 } 8762 8763 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 8764 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 8765 CXXCatchStmt *Handler = TryBlock->getHandler(I); 8766 SearchForReturnInStmt(*this, Handler); 8767 } 8768 } 8769 8770 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 8771 const CXXMethodDecl *Old) { 8772 QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); 8773 QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); 8774 8775 if (Context.hasSameType(NewTy, OldTy) || 8776 NewTy->isDependentType() || OldTy->isDependentType()) 8777 return false; 8778 8779 // Check if the return types are covariant 8780 QualType NewClassTy, OldClassTy; 8781 8782 /// Both types must be pointers or references to classes. 8783 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 8784 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 8785 NewClassTy = NewPT->getPointeeType(); 8786 OldClassTy = OldPT->getPointeeType(); 8787 } 8788 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 8789 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 8790 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 8791 NewClassTy = NewRT->getPointeeType(); 8792 OldClassTy = OldRT->getPointeeType(); 8793 } 8794 } 8795 } 8796 8797 // The return types aren't either both pointers or references to a class type. 8798 if (NewClassTy.isNull()) { 8799 Diag(New->getLocation(), 8800 diag::err_different_return_type_for_overriding_virtual_function) 8801 << New->getDeclName() << NewTy << OldTy; 8802 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 8803 8804 return true; 8805 } 8806 8807 // C++ [class.virtual]p6: 8808 // If the return type of D::f differs from the return type of B::f, the 8809 // class type in the return type of D::f shall be complete at the point of 8810 // declaration of D::f or shall be the class type D. 8811 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 8812 if (!RT->isBeingDefined() && 8813 RequireCompleteType(New->getLocation(), NewClassTy, 8814 PDiag(diag::err_covariant_return_incomplete) 8815 << New->getDeclName())) 8816 return true; 8817 } 8818 8819 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 8820 // Check if the new class derives from the old class. 8821 if (!IsDerivedFrom(NewClassTy, OldClassTy)) { 8822 Diag(New->getLocation(), 8823 diag::err_covariant_return_not_derived) 8824 << New->getDeclName() << NewTy << OldTy; 8825 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 8826 return true; 8827 } 8828 8829 // Check if we the conversion from derived to base is valid. 8830 if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, 8831 diag::err_covariant_return_inaccessible_base, 8832 diag::err_covariant_return_ambiguous_derived_to_base_conv, 8833 // FIXME: Should this point to the return type? 8834 New->getLocation(), SourceRange(), New->getDeclName(), 0)) { 8835 // FIXME: this note won't trigger for delayed access control 8836 // diagnostics, and it's impossible to get an undelayed error 8837 // here from access control during the original parse because 8838 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 8839 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 8840 return true; 8841 } 8842 } 8843 8844 // The qualifiers of the return types must be the same. 8845 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 8846 Diag(New->getLocation(), 8847 diag::err_covariant_return_type_different_qualifications) 8848 << New->getDeclName() << NewTy << OldTy; 8849 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 8850 return true; 8851 }; 8852 8853 8854 // The new class type must have the same or less qualifiers as the old type. 8855 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 8856 Diag(New->getLocation(), 8857 diag::err_covariant_return_type_class_type_more_qualified) 8858 << New->getDeclName() << NewTy << OldTy; 8859 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 8860 return true; 8861 }; 8862 8863 return false; 8864 } 8865 8866 /// \brief Mark the given method pure. 8867 /// 8868 /// \param Method the method to be marked pure. 8869 /// 8870 /// \param InitRange the source range that covers the "0" initializer. 8871 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 8872 SourceLocation EndLoc = InitRange.getEnd(); 8873 if (EndLoc.isValid()) 8874 Method->setRangeEnd(EndLoc); 8875 8876 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 8877 Method->setPure(); 8878 return false; 8879 } 8880 8881 if (!Method->isInvalidDecl()) 8882 Diag(Method->getLocation(), diag::err_non_virtual_pure) 8883 << Method->getDeclName() << InitRange; 8884 return true; 8885 } 8886 8887 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse 8888 /// an initializer for the out-of-line declaration 'Dcl'. The scope 8889 /// is a fresh scope pushed for just this purpose. 8890 /// 8891 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 8892 /// static data member of class X, names should be looked up in the scope of 8893 /// class X. 8894 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 8895 // If there is no declaration, there was an error parsing it. 8896 if (D == 0 || D->isInvalidDecl()) return; 8897 8898 // We should only get called for declarations with scope specifiers, like: 8899 // int foo::bar; 8900 assert(D->isOutOfLine()); 8901 EnterDeclaratorContext(S, D->getDeclContext()); 8902 } 8903 8904 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an 8905 /// initializer for the out-of-line declaration 'D'. 8906 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 8907 // If there is no declaration, there was an error parsing it. 8908 if (D == 0 || D->isInvalidDecl()) return; 8909 8910 assert(D->isOutOfLine()); 8911 ExitDeclaratorContext(S); 8912 } 8913 8914 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 8915 /// C++ if/switch/while/for statement. 8916 /// e.g: "if (int x = f()) {...}" 8917 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 8918 // C++ 6.4p2: 8919 // The declarator shall not specify a function or an array. 8920 // The type-specifier-seq shall not contain typedef and shall not declare a 8921 // new class or enumeration. 8922 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 8923 "Parser allowed 'typedef' as storage class of condition decl."); 8924 8925 Decl *Dcl = ActOnDeclarator(S, D); 8926 if (!Dcl) 8927 return true; 8928 8929 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 8930 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 8931 << D.getSourceRange(); 8932 return true; 8933 } 8934 8935 return Dcl; 8936 } 8937 8938 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 8939 bool DefinitionRequired) { 8940 // Ignore any vtable uses in unevaluated operands or for classes that do 8941 // not have a vtable. 8942 if (!Class->isDynamicClass() || Class->isDependentContext() || 8943 CurContext->isDependentContext() || 8944 ExprEvalContexts.back().Context == Unevaluated) 8945 return; 8946 8947 // Try to insert this class into the map. 8948 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); 8949 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 8950 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 8951 if (!Pos.second) { 8952 // If we already had an entry, check to see if we are promoting this vtable 8953 // to required a definition. If so, we need to reappend to the VTableUses 8954 // list, since we may have already processed the first entry. 8955 if (DefinitionRequired && !Pos.first->second) { 8956 Pos.first->second = true; 8957 } else { 8958 // Otherwise, we can early exit. 8959 return; 8960 } 8961 } 8962 8963 // Local classes need to have their virtual members marked 8964 // immediately. For all other classes, we mark their virtual members 8965 // at the end of the translation unit. 8966 if (Class->isLocalClass()) 8967 MarkVirtualMembersReferenced(Loc, Class); 8968 else 8969 VTableUses.push_back(std::make_pair(Class, Loc)); 8970 } 8971 8972 bool Sema::DefineUsedVTables() { 8973 if (VTableUses.empty()) 8974 return false; 8975 8976 // Note: The VTableUses vector could grow as a result of marking 8977 // the members of a class as "used", so we check the size each 8978 // time through the loop and prefer indices (with are stable) to 8979 // iterators (which are not). 8980 bool DefinedAnything = false; 8981 for (unsigned I = 0; I != VTableUses.size(); ++I) { 8982 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 8983 if (!Class) 8984 continue; 8985 8986 SourceLocation Loc = VTableUses[I].second; 8987 8988 // If this class has a key function, but that key function is 8989 // defined in another translation unit, we don't need to emit the 8990 // vtable even though we're using it. 8991 const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); 8992 if (KeyFunction && !KeyFunction->hasBody()) { 8993 switch (KeyFunction->getTemplateSpecializationKind()) { 8994 case TSK_Undeclared: 8995 case TSK_ExplicitSpecialization: 8996 case TSK_ExplicitInstantiationDeclaration: 8997 // The key function is in another translation unit. 8998 continue; 8999 9000 case TSK_ExplicitInstantiationDefinition: 9001 case TSK_ImplicitInstantiation: 9002 // We will be instantiating the key function. 9003 break; 9004 } 9005 } else if (!KeyFunction) { 9006 // If we have a class with no key function that is the subject 9007 // of an explicit instantiation declaration, suppress the 9008 // vtable; it will live with the explicit instantiation 9009 // definition. 9010 bool IsExplicitInstantiationDeclaration 9011 = Class->getTemplateSpecializationKind() 9012 == TSK_ExplicitInstantiationDeclaration; 9013 for (TagDecl::redecl_iterator R = Class->redecls_begin(), 9014 REnd = Class->redecls_end(); 9015 R != REnd; ++R) { 9016 TemplateSpecializationKind TSK 9017 = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind(); 9018 if (TSK == TSK_ExplicitInstantiationDeclaration) 9019 IsExplicitInstantiationDeclaration = true; 9020 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9021 IsExplicitInstantiationDeclaration = false; 9022 break; 9023 } 9024 } 9025 9026 if (IsExplicitInstantiationDeclaration) 9027 continue; 9028 } 9029 9030 // Mark all of the virtual members of this class as referenced, so 9031 // that we can build a vtable. Then, tell the AST consumer that a 9032 // vtable for this class is required. 9033 DefinedAnything = true; 9034 MarkVirtualMembersReferenced(Loc, Class); 9035 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); 9036 Consumer.HandleVTable(Class, VTablesUsed[Canonical]); 9037 9038 // Optionally warn if we're emitting a weak vtable. 9039 if (Class->getLinkage() == ExternalLinkage && 9040 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { 9041 if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined())) 9042 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 9043 } 9044 } 9045 VTableUses.clear(); 9046 9047 return DefinedAnything; 9048 } 9049 9050 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 9051 const CXXRecordDecl *RD) { 9052 for (CXXRecordDecl::method_iterator i = RD->method_begin(), 9053 e = RD->method_end(); i != e; ++i) { 9054 CXXMethodDecl *MD = *i; 9055 9056 // C++ [basic.def.odr]p2: 9057 // [...] A virtual member function is used if it is not pure. [...] 9058 if (MD->isVirtual() && !MD->isPure()) 9059 MarkDeclarationReferenced(Loc, MD); 9060 } 9061 9062 // Only classes that have virtual bases need a VTT. 9063 if (RD->getNumVBases() == 0) 9064 return; 9065 9066 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), 9067 e = RD->bases_end(); i != e; ++i) { 9068 const CXXRecordDecl *Base = 9069 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 9070 if (Base->getNumVBases() == 0) 9071 continue; 9072 MarkVirtualMembersReferenced(Loc, Base); 9073 } 9074 } 9075 9076 /// SetIvarInitializers - This routine builds initialization ASTs for the 9077 /// Objective-C implementation whose ivars need be initialized. 9078 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 9079 if (!getLangOptions().CPlusPlus) 9080 return; 9081 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 9082 llvm::SmallVector<ObjCIvarDecl*, 8> ivars; 9083 CollectIvarsToConstructOrDestruct(OID, ivars); 9084 if (ivars.empty()) 9085 return; 9086 llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit; 9087 for (unsigned i = 0; i < ivars.size(); i++) { 9088 FieldDecl *Field = ivars[i]; 9089 if (Field->isInvalidDecl()) 9090 continue; 9091 9092 CXXCtorInitializer *Member; 9093 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 9094 InitializationKind InitKind = 9095 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 9096 9097 InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); 9098 ExprResult MemberInit = 9099 InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg()); 9100 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 9101 // Note, MemberInit could actually come back empty if no initialization 9102 // is required (e.g., because it would call a trivial default constructor) 9103 if (!MemberInit.get() || MemberInit.isInvalid()) 9104 continue; 9105 9106 Member = 9107 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 9108 SourceLocation(), 9109 MemberInit.takeAs<Expr>(), 9110 SourceLocation()); 9111 AllToInit.push_back(Member); 9112 9113 // Be sure that the destructor is accessible and is marked as referenced. 9114 if (const RecordType *RecordTy 9115 = Context.getBaseElementType(Field->getType()) 9116 ->getAs<RecordType>()) { 9117 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 9118 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 9119 MarkDeclarationReferenced(Field->getLocation(), Destructor); 9120 CheckDestructorAccess(Field->getLocation(), Destructor, 9121 PDiag(diag::err_access_dtor_ivar) 9122 << Context.getBaseElementType(Field->getType())); 9123 } 9124 } 9125 } 9126 ObjCImplementation->setIvarInitializers(Context, 9127 AllToInit.data(), AllToInit.size()); 9128 } 9129 } 9130 9131 static 9132 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 9133 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid, 9134 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid, 9135 llvm::SmallSet<CXXConstructorDecl*, 4> &Current, 9136 Sema &S) { 9137 llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(), 9138 CE = Current.end(); 9139 if (Ctor->isInvalidDecl()) 9140 return; 9141 9142 const FunctionDecl *FNTarget = 0; 9143 CXXConstructorDecl *Target; 9144 9145 // We ignore the result here since if we don't have a body, Target will be 9146 // null below. 9147 (void)Ctor->getTargetConstructor()->hasBody(FNTarget); 9148 Target 9149 = const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget)); 9150 9151 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 9152 // Avoid dereferencing a null pointer here. 9153 *TCanonical = Target ? Target->getCanonicalDecl() : 0; 9154 9155 if (!Current.insert(Canonical)) 9156 return; 9157 9158 // We know that beyond here, we aren't chaining into a cycle. 9159 if (!Target || !Target->isDelegatingConstructor() || 9160 Target->isInvalidDecl() || Valid.count(TCanonical)) { 9161 for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI) 9162 Valid.insert(*CI); 9163 Current.clear(); 9164 // We've hit a cycle. 9165 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 9166 Current.count(TCanonical)) { 9167 // If we haven't diagnosed this cycle yet, do so now. 9168 if (!Invalid.count(TCanonical)) { 9169 S.Diag((*Ctor->init_begin())->getSourceLocation(), 9170 diag::warn_delegating_ctor_cycle) 9171 << Ctor; 9172 9173 // Don't add a note for a function delegating directo to itself. 9174 if (TCanonical != Canonical) 9175 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 9176 9177 CXXConstructorDecl *C = Target; 9178 while (C->getCanonicalDecl() != Canonical) { 9179 (void)C->getTargetConstructor()->hasBody(FNTarget); 9180 assert(FNTarget && "Ctor cycle through bodiless function"); 9181 9182 C 9183 = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget)); 9184 S.Diag(C->getLocation(), diag::note_which_delegates_to); 9185 } 9186 } 9187 9188 for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI) 9189 Invalid.insert(*CI); 9190 Current.clear(); 9191 } else { 9192 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 9193 } 9194 } 9195 9196 9197 void Sema::CheckDelegatingCtorCycles() { 9198 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 9199 9200 llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(), 9201 CE = Current.end(); 9202 9203 for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator 9204 I = DelegatingCtorDecls.begin(), 9205 E = DelegatingCtorDecls.end(); 9206 I != E; ++I) { 9207 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 9208 } 9209 9210 for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 9211 (*CI)->setInvalidDecl(); 9212 } 9213