1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements name lookup for C, C++, Objective-C, and 11 // Objective-C++. 12 // 13 //===----------------------------------------------------------------------===// 14 #include "clang/Sema/Sema.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "clang/Sema/Lookup.h" 17 #include "clang/Sema/Overload.h" 18 #include "clang/Sema/DeclSpec.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/TemplateDeduction.h" 22 #include "clang/Sema/ExternalSemaSource.h" 23 #include "clang/Sema/TypoCorrection.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CXXInheritance.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Expr.h" 31 #include "clang/AST/ExprCXX.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/StringMap.h" 38 #include "llvm/ADT/TinyPtrVector.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include <limits> 41 #include <list> 42 #include <set> 43 #include <vector> 44 #include <iterator> 45 #include <utility> 46 #include <algorithm> 47 #include <map> 48 49 using namespace clang; 50 using namespace sema; 51 52 namespace { 53 class UnqualUsingEntry { 54 const DeclContext *Nominated; 55 const DeclContext *CommonAncestor; 56 57 public: 58 UnqualUsingEntry(const DeclContext *Nominated, 59 const DeclContext *CommonAncestor) 60 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 61 } 62 63 const DeclContext *getCommonAncestor() const { 64 return CommonAncestor; 65 } 66 67 const DeclContext *getNominatedNamespace() const { 68 return Nominated; 69 } 70 71 // Sort by the pointer value of the common ancestor. 72 struct Comparator { 73 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 74 return L.getCommonAncestor() < R.getCommonAncestor(); 75 } 76 77 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 78 return E.getCommonAncestor() < DC; 79 } 80 81 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 82 return DC < E.getCommonAncestor(); 83 } 84 }; 85 }; 86 87 /// A collection of using directives, as used by C++ unqualified 88 /// lookup. 89 class UnqualUsingDirectiveSet { 90 typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy; 91 92 ListTy list; 93 llvm::SmallPtrSet<DeclContext*, 8> visited; 94 95 public: 96 UnqualUsingDirectiveSet() {} 97 98 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 99 // C++ [namespace.udir]p1: 100 // During unqualified name lookup, the names appear as if they 101 // were declared in the nearest enclosing namespace which contains 102 // both the using-directive and the nominated namespace. 103 DeclContext *InnermostFileDC 104 = static_cast<DeclContext*>(InnermostFileScope->getEntity()); 105 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 106 107 for (; S; S = S->getParent()) { 108 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { 109 DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC); 110 visit(Ctx, EffectiveDC); 111 } else { 112 Scope::udir_iterator I = S->using_directives_begin(), 113 End = S->using_directives_end(); 114 115 for (; I != End; ++I) 116 visit(*I, InnermostFileDC); 117 } 118 } 119 } 120 121 // Visits a context and collect all of its using directives 122 // recursively. Treats all using directives as if they were 123 // declared in the context. 124 // 125 // A given context is only every visited once, so it is important 126 // that contexts be visited from the inside out in order to get 127 // the effective DCs right. 128 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 129 if (!visited.insert(DC)) 130 return; 131 132 addUsingDirectives(DC, EffectiveDC); 133 } 134 135 // Visits a using directive and collects all of its using 136 // directives recursively. Treats all using directives as if they 137 // were declared in the effective DC. 138 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 139 DeclContext *NS = UD->getNominatedNamespace(); 140 if (!visited.insert(NS)) 141 return; 142 143 addUsingDirective(UD, EffectiveDC); 144 addUsingDirectives(NS, EffectiveDC); 145 } 146 147 // Adds all the using directives in a context (and those nominated 148 // by its using directives, transitively) as if they appeared in 149 // the given effective context. 150 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 151 llvm::SmallVector<DeclContext*,4> queue; 152 while (true) { 153 DeclContext::udir_iterator I, End; 154 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { 155 UsingDirectiveDecl *UD = *I; 156 DeclContext *NS = UD->getNominatedNamespace(); 157 if (visited.insert(NS)) { 158 addUsingDirective(UD, EffectiveDC); 159 queue.push_back(NS); 160 } 161 } 162 163 if (queue.empty()) 164 return; 165 166 DC = queue.back(); 167 queue.pop_back(); 168 } 169 } 170 171 // Add a using directive as if it had been declared in the given 172 // context. This helps implement C++ [namespace.udir]p3: 173 // The using-directive is transitive: if a scope contains a 174 // using-directive that nominates a second namespace that itself 175 // contains using-directives, the effect is as if the 176 // using-directives from the second namespace also appeared in 177 // the first. 178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 179 // Find the common ancestor between the effective context and 180 // the nominated namespace. 181 DeclContext *Common = UD->getNominatedNamespace(); 182 while (!Common->Encloses(EffectiveDC)) 183 Common = Common->getParent(); 184 Common = Common->getPrimaryContext(); 185 186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 187 } 188 189 void done() { 190 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); 191 } 192 193 typedef ListTy::const_iterator const_iterator; 194 195 const_iterator begin() const { return list.begin(); } 196 const_iterator end() const { return list.end(); } 197 198 std::pair<const_iterator,const_iterator> 199 getNamespacesFor(DeclContext *DC) const { 200 return std::equal_range(begin(), end(), DC->getPrimaryContext(), 201 UnqualUsingEntry::Comparator()); 202 } 203 }; 204 } 205 206 // Retrieve the set of identifier namespaces that correspond to a 207 // specific kind of name lookup. 208 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 209 bool CPlusPlus, 210 bool Redeclaration) { 211 unsigned IDNS = 0; 212 switch (NameKind) { 213 case Sema::LookupObjCImplicitSelfParam: 214 case Sema::LookupOrdinaryName: 215 case Sema::LookupRedeclarationWithLinkage: 216 IDNS = Decl::IDNS_Ordinary; 217 if (CPlusPlus) { 218 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 219 if (Redeclaration) 220 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 221 } 222 break; 223 224 case Sema::LookupOperatorName: 225 // Operator lookup is its own crazy thing; it is not the same 226 // as (e.g.) looking up an operator name for redeclaration. 227 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 228 IDNS = Decl::IDNS_NonMemberOperator; 229 break; 230 231 case Sema::LookupTagName: 232 if (CPlusPlus) { 233 IDNS = Decl::IDNS_Type; 234 235 // When looking for a redeclaration of a tag name, we add: 236 // 1) TagFriend to find undeclared friend decls 237 // 2) Namespace because they can't "overload" with tag decls. 238 // 3) Tag because it includes class templates, which can't 239 // "overload" with tag decls. 240 if (Redeclaration) 241 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 242 } else { 243 IDNS = Decl::IDNS_Tag; 244 } 245 break; 246 case Sema::LookupLabel: 247 IDNS = Decl::IDNS_Label; 248 break; 249 250 case Sema::LookupMemberName: 251 IDNS = Decl::IDNS_Member; 252 if (CPlusPlus) 253 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 254 break; 255 256 case Sema::LookupNestedNameSpecifierName: 257 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 258 break; 259 260 case Sema::LookupNamespaceName: 261 IDNS = Decl::IDNS_Namespace; 262 break; 263 264 case Sema::LookupUsingDeclName: 265 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag 266 | Decl::IDNS_Member | Decl::IDNS_Using; 267 break; 268 269 case Sema::LookupObjCProtocolName: 270 IDNS = Decl::IDNS_ObjCProtocol; 271 break; 272 273 case Sema::LookupAnyName: 274 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 275 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 276 | Decl::IDNS_Type; 277 break; 278 } 279 return IDNS; 280 } 281 282 void LookupResult::configure() { 283 IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus, 284 isForRedeclaration()); 285 286 // If we're looking for one of the allocation or deallocation 287 // operators, make sure that the implicitly-declared new and delete 288 // operators can be found. 289 if (!isForRedeclaration()) { 290 switch (NameInfo.getName().getCXXOverloadedOperator()) { 291 case OO_New: 292 case OO_Delete: 293 case OO_Array_New: 294 case OO_Array_Delete: 295 SemaRef.DeclareGlobalNewDelete(); 296 break; 297 298 default: 299 break; 300 } 301 } 302 } 303 304 void LookupResult::sanity() const { 305 assert(ResultKind != NotFound || Decls.size() == 0); 306 assert(ResultKind != Found || Decls.size() == 1); 307 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 308 (Decls.size() == 1 && 309 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 310 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()); 311 assert(ResultKind != Ambiguous || Decls.size() > 1 || 312 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 313 Ambiguity == AmbiguousBaseSubobjectTypes))); 314 assert((Paths != NULL) == (ResultKind == Ambiguous && 315 (Ambiguity == AmbiguousBaseSubobjectTypes || 316 Ambiguity == AmbiguousBaseSubobjects))); 317 } 318 319 // Necessary because CXXBasePaths is not complete in Sema.h 320 void LookupResult::deletePaths(CXXBasePaths *Paths) { 321 delete Paths; 322 } 323 324 /// Resolves the result kind of this lookup. 325 void LookupResult::resolveKind() { 326 unsigned N = Decls.size(); 327 328 // Fast case: no possible ambiguity. 329 if (N == 0) { 330 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation); 331 return; 332 } 333 334 // If there's a single decl, we need to examine it to decide what 335 // kind of lookup this is. 336 if (N == 1) { 337 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 338 if (isa<FunctionTemplateDecl>(D)) 339 ResultKind = FoundOverloaded; 340 else if (isa<UnresolvedUsingValueDecl>(D)) 341 ResultKind = FoundUnresolvedValue; 342 return; 343 } 344 345 // Don't do any extra resolution if we've already resolved as ambiguous. 346 if (ResultKind == Ambiguous) return; 347 348 llvm::SmallPtrSet<NamedDecl*, 16> Unique; 349 llvm::SmallPtrSet<QualType, 16> UniqueTypes; 350 351 bool Ambiguous = false; 352 bool HasTag = false, HasFunction = false, HasNonFunction = false; 353 bool HasFunctionTemplate = false, HasUnresolved = false; 354 355 unsigned UniqueTagIndex = 0; 356 357 unsigned I = 0; 358 while (I < N) { 359 NamedDecl *D = Decls[I]->getUnderlyingDecl(); 360 D = cast<NamedDecl>(D->getCanonicalDecl()); 361 362 // Redeclarations of types via typedef can occur both within a scope 363 // and, through using declarations and directives, across scopes. There is 364 // no ambiguity if they all refer to the same type, so unique based on the 365 // canonical type. 366 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { 367 if (!TD->getDeclContext()->isRecord()) { 368 QualType T = SemaRef.Context.getTypeDeclType(TD); 369 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) { 370 // The type is not unique; pull something off the back and continue 371 // at this index. 372 Decls[I] = Decls[--N]; 373 continue; 374 } 375 } 376 } 377 378 if (!Unique.insert(D)) { 379 // If it's not unique, pull something off the back (and 380 // continue at this index). 381 Decls[I] = Decls[--N]; 382 continue; 383 } 384 385 // Otherwise, do some decl type analysis and then continue. 386 387 if (isa<UnresolvedUsingValueDecl>(D)) { 388 HasUnresolved = true; 389 } else if (isa<TagDecl>(D)) { 390 if (HasTag) 391 Ambiguous = true; 392 UniqueTagIndex = I; 393 HasTag = true; 394 } else if (isa<FunctionTemplateDecl>(D)) { 395 HasFunction = true; 396 HasFunctionTemplate = true; 397 } else if (isa<FunctionDecl>(D)) { 398 HasFunction = true; 399 } else { 400 if (HasNonFunction) 401 Ambiguous = true; 402 HasNonFunction = true; 403 } 404 I++; 405 } 406 407 // C++ [basic.scope.hiding]p2: 408 // A class name or enumeration name can be hidden by the name of 409 // an object, function, or enumerator declared in the same 410 // scope. If a class or enumeration name and an object, function, 411 // or enumerator are declared in the same scope (in any order) 412 // with the same name, the class or enumeration name is hidden 413 // wherever the object, function, or enumerator name is visible. 414 // But it's still an error if there are distinct tag types found, 415 // even if they're not visible. (ref?) 416 if (HideTags && HasTag && !Ambiguous && 417 (HasFunction || HasNonFunction || HasUnresolved)) { 418 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals( 419 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext())) 420 Decls[UniqueTagIndex] = Decls[--N]; 421 else 422 Ambiguous = true; 423 } 424 425 Decls.set_size(N); 426 427 if (HasNonFunction && (HasFunction || HasUnresolved)) 428 Ambiguous = true; 429 430 if (Ambiguous) 431 setAmbiguous(LookupResult::AmbiguousReference); 432 else if (HasUnresolved) 433 ResultKind = LookupResult::FoundUnresolvedValue; 434 else if (N > 1 || HasFunctionTemplate) 435 ResultKind = LookupResult::FoundOverloaded; 436 else 437 ResultKind = LookupResult::Found; 438 } 439 440 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 441 CXXBasePaths::const_paths_iterator I, E; 442 DeclContext::lookup_iterator DI, DE; 443 for (I = P.begin(), E = P.end(); I != E; ++I) 444 for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) 445 addDecl(*DI); 446 } 447 448 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 449 Paths = new CXXBasePaths; 450 Paths->swap(P); 451 addDeclsFromBasePaths(*Paths); 452 resolveKind(); 453 setAmbiguous(AmbiguousBaseSubobjects); 454 } 455 456 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 457 Paths = new CXXBasePaths; 458 Paths->swap(P); 459 addDeclsFromBasePaths(*Paths); 460 resolveKind(); 461 setAmbiguous(AmbiguousBaseSubobjectTypes); 462 } 463 464 void LookupResult::print(llvm::raw_ostream &Out) { 465 Out << Decls.size() << " result(s)"; 466 if (isAmbiguous()) Out << ", ambiguous"; 467 if (Paths) Out << ", base paths present"; 468 469 for (iterator I = begin(), E = end(); I != E; ++I) { 470 Out << "\n"; 471 (*I)->print(Out, 2); 472 } 473 } 474 475 /// \brief Lookup a builtin function, when name lookup would otherwise 476 /// fail. 477 static bool LookupBuiltin(Sema &S, LookupResult &R) { 478 Sema::LookupNameKind NameKind = R.getLookupKind(); 479 480 // If we didn't find a use of this identifier, and if the identifier 481 // corresponds to a compiler builtin, create the decl object for the builtin 482 // now, injecting it into translation unit scope, and return it. 483 if (NameKind == Sema::LookupOrdinaryName || 484 NameKind == Sema::LookupRedeclarationWithLinkage) { 485 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 486 if (II) { 487 // If this is a builtin on this (or all) targets, create the decl. 488 if (unsigned BuiltinID = II->getBuiltinID()) { 489 // In C++, we don't have any predefined library functions like 490 // 'malloc'. Instead, we'll just error. 491 if (S.getLangOptions().CPlusPlus && 492 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 493 return false; 494 495 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, 496 BuiltinID, S.TUScope, 497 R.isForRedeclaration(), 498 R.getNameLoc())) { 499 R.addDecl(D); 500 return true; 501 } 502 503 if (R.isForRedeclaration()) { 504 // If we're redeclaring this function anyway, forget that 505 // this was a builtin at all. 506 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents); 507 } 508 509 return false; 510 } 511 } 512 } 513 514 return false; 515 } 516 517 /// \brief Determine whether we can declare a special member function within 518 /// the class at this point. 519 static bool CanDeclareSpecialMemberFunction(ASTContext &Context, 520 const CXXRecordDecl *Class) { 521 // Don't do it if the class is invalid. 522 if (Class->isInvalidDecl()) 523 return false; 524 525 // We need to have a definition for the class. 526 if (!Class->getDefinition() || Class->isDependentContext()) 527 return false; 528 529 // We can't be in the middle of defining the class. 530 if (const RecordType *RecordTy 531 = Context.getTypeDeclType(Class)->getAs<RecordType>()) 532 return !RecordTy->isBeingDefined(); 533 534 return false; 535 } 536 537 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 538 if (!CanDeclareSpecialMemberFunction(Context, Class)) 539 return; 540 541 // If the default constructor has not yet been declared, do so now. 542 if (Class->needsImplicitDefaultConstructor()) 543 DeclareImplicitDefaultConstructor(Class); 544 545 // If the copy constructor has not yet been declared, do so now. 546 if (!Class->hasDeclaredCopyConstructor()) 547 DeclareImplicitCopyConstructor(Class); 548 549 // If the copy assignment operator has not yet been declared, do so now. 550 if (!Class->hasDeclaredCopyAssignment()) 551 DeclareImplicitCopyAssignment(Class); 552 553 // If the destructor has not yet been declared, do so now. 554 if (!Class->hasDeclaredDestructor()) 555 DeclareImplicitDestructor(Class); 556 } 557 558 /// \brief Determine whether this is the name of an implicitly-declared 559 /// special member function. 560 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 561 switch (Name.getNameKind()) { 562 case DeclarationName::CXXConstructorName: 563 case DeclarationName::CXXDestructorName: 564 return true; 565 566 case DeclarationName::CXXOperatorName: 567 return Name.getCXXOverloadedOperator() == OO_Equal; 568 569 default: 570 break; 571 } 572 573 return false; 574 } 575 576 /// \brief If there are any implicit member functions with the given name 577 /// that need to be declared in the given declaration context, do so. 578 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 579 DeclarationName Name, 580 const DeclContext *DC) { 581 if (!DC) 582 return; 583 584 switch (Name.getNameKind()) { 585 case DeclarationName::CXXConstructorName: 586 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 587 if (Record->getDefinition() && 588 CanDeclareSpecialMemberFunction(S.Context, Record)) { 589 if (Record->needsImplicitDefaultConstructor()) 590 S.DeclareImplicitDefaultConstructor( 591 const_cast<CXXRecordDecl *>(Record)); 592 if (!Record->hasDeclaredCopyConstructor()) 593 S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record)); 594 } 595 break; 596 597 case DeclarationName::CXXDestructorName: 598 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 599 if (Record->getDefinition() && !Record->hasDeclaredDestructor() && 600 CanDeclareSpecialMemberFunction(S.Context, Record)) 601 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 602 break; 603 604 case DeclarationName::CXXOperatorName: 605 if (Name.getCXXOverloadedOperator() != OO_Equal) 606 break; 607 608 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 609 if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() && 610 CanDeclareSpecialMemberFunction(S.Context, Record)) 611 S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record)); 612 break; 613 614 default: 615 break; 616 } 617 } 618 619 // Adds all qualifying matches for a name within a decl context to the 620 // given lookup result. Returns true if any matches were found. 621 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 622 bool Found = false; 623 624 // Lazily declare C++ special member functions. 625 if (S.getLangOptions().CPlusPlus) 626 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC); 627 628 // Perform lookup into this declaration context. 629 DeclContext::lookup_const_iterator I, E; 630 for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) { 631 NamedDecl *D = *I; 632 if (R.isAcceptableDecl(D)) { 633 R.addDecl(D); 634 Found = true; 635 } 636 } 637 638 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R)) 639 return true; 640 641 if (R.getLookupName().getNameKind() 642 != DeclarationName::CXXConversionFunctionName || 643 R.getLookupName().getCXXNameType()->isDependentType() || 644 !isa<CXXRecordDecl>(DC)) 645 return Found; 646 647 // C++ [temp.mem]p6: 648 // A specialization of a conversion function template is not found by 649 // name lookup. Instead, any conversion function templates visible in the 650 // context of the use are considered. [...] 651 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 652 if (!Record->isDefinition()) 653 return Found; 654 655 const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions(); 656 for (UnresolvedSetImpl::iterator U = Unresolved->begin(), 657 UEnd = Unresolved->end(); U != UEnd; ++U) { 658 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 659 if (!ConvTemplate) 660 continue; 661 662 // When we're performing lookup for the purposes of redeclaration, just 663 // add the conversion function template. When we deduce template 664 // arguments for specializations, we'll end up unifying the return 665 // type of the new declaration with the type of the function template. 666 if (R.isForRedeclaration()) { 667 R.addDecl(ConvTemplate); 668 Found = true; 669 continue; 670 } 671 672 // C++ [temp.mem]p6: 673 // [...] For each such operator, if argument deduction succeeds 674 // (14.9.2.3), the resulting specialization is used as if found by 675 // name lookup. 676 // 677 // When referencing a conversion function for any purpose other than 678 // a redeclaration (such that we'll be building an expression with the 679 // result), perform template argument deduction and place the 680 // specialization into the result set. We do this to avoid forcing all 681 // callers to perform special deduction for conversion functions. 682 TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc()); 683 FunctionDecl *Specialization = 0; 684 685 const FunctionProtoType *ConvProto 686 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 687 assert(ConvProto && "Nonsensical conversion function template type"); 688 689 // Compute the type of the function that we would expect the conversion 690 // function to have, if it were to match the name given. 691 // FIXME: Calling convention! 692 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 693 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default); 694 EPI.ExceptionSpecType = EST_None; 695 EPI.NumExceptions = 0; 696 QualType ExpectedType 697 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), 698 0, 0, EPI); 699 700 // Perform template argument deduction against the type that we would 701 // expect the function to have. 702 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType, 703 Specialization, Info) 704 == Sema::TDK_Success) { 705 R.addDecl(Specialization); 706 Found = true; 707 } 708 } 709 710 return Found; 711 } 712 713 // Performs C++ unqualified lookup into the given file context. 714 static bool 715 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 716 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { 717 718 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 719 720 // Perform direct name lookup into the LookupCtx. 721 bool Found = LookupDirect(S, R, NS); 722 723 // Perform direct name lookup into the namespaces nominated by the 724 // using directives whose common ancestor is this namespace. 725 UnqualUsingDirectiveSet::const_iterator UI, UEnd; 726 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); 727 728 for (; UI != UEnd; ++UI) 729 if (LookupDirect(S, R, UI->getNominatedNamespace())) 730 Found = true; 731 732 R.resolveKind(); 733 734 return Found; 735 } 736 737 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 738 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) 739 return Ctx->isFileContext(); 740 return false; 741 } 742 743 // Find the next outer declaration context from this scope. This 744 // routine actually returns the semantic outer context, which may 745 // differ from the lexical context (encoded directly in the Scope 746 // stack) when we are parsing a member of a class template. In this 747 // case, the second element of the pair will be true, to indicate that 748 // name lookup should continue searching in this semantic context when 749 // it leaves the current template parameter scope. 750 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) { 751 DeclContext *DC = static_cast<DeclContext *>(S->getEntity()); 752 DeclContext *Lexical = 0; 753 for (Scope *OuterS = S->getParent(); OuterS; 754 OuterS = OuterS->getParent()) { 755 if (OuterS->getEntity()) { 756 Lexical = static_cast<DeclContext *>(OuterS->getEntity()); 757 break; 758 } 759 } 760 761 // C++ [temp.local]p8: 762 // In the definition of a member of a class template that appears 763 // outside of the namespace containing the class template 764 // definition, the name of a template-parameter hides the name of 765 // a member of this namespace. 766 // 767 // Example: 768 // 769 // namespace N { 770 // class C { }; 771 // 772 // template<class T> class B { 773 // void f(T); 774 // }; 775 // } 776 // 777 // template<class C> void N::B<C>::f(C) { 778 // C b; // C is the template parameter, not N::C 779 // } 780 // 781 // In this example, the lexical context we return is the 782 // TranslationUnit, while the semantic context is the namespace N. 783 if (!Lexical || !DC || !S->getParent() || 784 !S->getParent()->isTemplateParamScope()) 785 return std::make_pair(Lexical, false); 786 787 // Find the outermost template parameter scope. 788 // For the example, this is the scope for the template parameters of 789 // template<class C>. 790 Scope *OutermostTemplateScope = S->getParent(); 791 while (OutermostTemplateScope->getParent() && 792 OutermostTemplateScope->getParent()->isTemplateParamScope()) 793 OutermostTemplateScope = OutermostTemplateScope->getParent(); 794 795 // Find the namespace context in which the original scope occurs. In 796 // the example, this is namespace N. 797 DeclContext *Semantic = DC; 798 while (!Semantic->isFileContext()) 799 Semantic = Semantic->getParent(); 800 801 // Find the declaration context just outside of the template 802 // parameter scope. This is the context in which the template is 803 // being lexically declaration (a namespace context). In the 804 // example, this is the global scope. 805 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) && 806 Lexical->Encloses(Semantic)) 807 return std::make_pair(Semantic, true); 808 809 return std::make_pair(Lexical, false); 810 } 811 812 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 813 assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); 814 815 DeclarationName Name = R.getLookupName(); 816 817 // If this is the name of an implicitly-declared special member function, 818 // go through the scope stack to implicitly declare 819 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 820 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 821 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity())) 822 DeclareImplicitMemberFunctionsWithName(*this, Name, DC); 823 } 824 825 // Implicitly declare member functions with the name we're looking for, if in 826 // fact we are in a scope where it matters. 827 828 Scope *Initial = S; 829 IdentifierResolver::iterator 830 I = IdResolver.begin(Name), 831 IEnd = IdResolver.end(); 832 833 // First we lookup local scope. 834 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 835 // ...During unqualified name lookup (3.4.1), the names appear as if 836 // they were declared in the nearest enclosing namespace which contains 837 // both the using-directive and the nominated namespace. 838 // [Note: in this context, "contains" means "contains directly or 839 // indirectly". 840 // 841 // For example: 842 // namespace A { int i; } 843 // void foo() { 844 // int i; 845 // { 846 // using namespace A; 847 // ++i; // finds local 'i', A::i appears at global scope 848 // } 849 // } 850 // 851 DeclContext *OutsideOfTemplateParamDC = 0; 852 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 853 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()); 854 855 // Check whether the IdResolver has anything in this scope. 856 bool Found = false; 857 for (; I != IEnd && S->isDeclScope(*I); ++I) { 858 if (R.isAcceptableDecl(*I)) { 859 Found = true; 860 R.addDecl(*I); 861 } 862 } 863 if (Found) { 864 R.resolveKind(); 865 if (S->isClassScope()) 866 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 867 R.setNamingClass(Record); 868 return true; 869 } 870 871 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && 872 S->getParent() && !S->getParent()->isTemplateParamScope()) { 873 // We've just searched the last template parameter scope and 874 // found nothing, so look into the the contexts between the 875 // lexical and semantic declaration contexts returned by 876 // findOuterContext(). This implements the name lookup behavior 877 // of C++ [temp.local]p8. 878 Ctx = OutsideOfTemplateParamDC; 879 OutsideOfTemplateParamDC = 0; 880 } 881 882 if (Ctx) { 883 DeclContext *OuterCtx; 884 bool SearchAfterTemplateScope; 885 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); 886 if (SearchAfterTemplateScope) 887 OutsideOfTemplateParamDC = OuterCtx; 888 889 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 890 // We do not directly look into transparent contexts, since 891 // those entities will be found in the nearest enclosing 892 // non-transparent context. 893 if (Ctx->isTransparentContext()) 894 continue; 895 896 // We do not look directly into function or method contexts, 897 // since all of the local variables and parameters of the 898 // function/method are present within the Scope. 899 if (Ctx->isFunctionOrMethod()) { 900 // If we have an Objective-C instance method, look for ivars 901 // in the corresponding interface. 902 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 903 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 904 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 905 ObjCInterfaceDecl *ClassDeclared; 906 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 907 Name.getAsIdentifierInfo(), 908 ClassDeclared)) { 909 if (R.isAcceptableDecl(Ivar)) { 910 R.addDecl(Ivar); 911 R.resolveKind(); 912 return true; 913 } 914 } 915 } 916 } 917 918 continue; 919 } 920 921 // Perform qualified name lookup into this context. 922 // FIXME: In some cases, we know that every name that could be found by 923 // this qualified name lookup will also be on the identifier chain. For 924 // example, inside a class without any base classes, we never need to 925 // perform qualified lookup because all of the members are on top of the 926 // identifier chain. 927 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 928 return true; 929 } 930 } 931 } 932 933 // Stop if we ran out of scopes. 934 // FIXME: This really, really shouldn't be happening. 935 if (!S) return false; 936 937 // If we are looking for members, no need to look into global/namespace scope. 938 if (R.getLookupKind() == LookupMemberName) 939 return false; 940 941 // Collect UsingDirectiveDecls in all scopes, and recursively all 942 // nominated namespaces by those using-directives. 943 // 944 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 945 // don't build it for each lookup! 946 947 UnqualUsingDirectiveSet UDirs; 948 UDirs.visitScopeChain(Initial, S); 949 UDirs.done(); 950 951 // Lookup namespace scope, and global scope. 952 // Unqualified name lookup in C++ requires looking into scopes 953 // that aren't strictly lexical, and therefore we walk through the 954 // context as well as walking through the scopes. 955 956 for (; S; S = S->getParent()) { 957 // Check whether the IdResolver has anything in this scope. 958 bool Found = false; 959 for (; I != IEnd && S->isDeclScope(*I); ++I) { 960 if (R.isAcceptableDecl(*I)) { 961 // We found something. Look for anything else in our scope 962 // with this same name and in an acceptable identifier 963 // namespace, so that we can construct an overload set if we 964 // need to. 965 Found = true; 966 R.addDecl(*I); 967 } 968 } 969 970 if (Found && S->isTemplateParamScope()) { 971 R.resolveKind(); 972 return true; 973 } 974 975 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 976 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && 977 S->getParent() && !S->getParent()->isTemplateParamScope()) { 978 // We've just searched the last template parameter scope and 979 // found nothing, so look into the the contexts between the 980 // lexical and semantic declaration contexts returned by 981 // findOuterContext(). This implements the name lookup behavior 982 // of C++ [temp.local]p8. 983 Ctx = OutsideOfTemplateParamDC; 984 OutsideOfTemplateParamDC = 0; 985 } 986 987 if (Ctx) { 988 DeclContext *OuterCtx; 989 bool SearchAfterTemplateScope; 990 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); 991 if (SearchAfterTemplateScope) 992 OutsideOfTemplateParamDC = OuterCtx; 993 994 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 995 // We do not directly look into transparent contexts, since 996 // those entities will be found in the nearest enclosing 997 // non-transparent context. 998 if (Ctx->isTransparentContext()) 999 continue; 1000 1001 // If we have a context, and it's not a context stashed in the 1002 // template parameter scope for an out-of-line definition, also 1003 // look into that context. 1004 if (!(Found && S && S->isTemplateParamScope())) { 1005 assert(Ctx->isFileContext() && 1006 "We should have been looking only at file context here already."); 1007 1008 // Look into context considering using-directives. 1009 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1010 Found = true; 1011 } 1012 1013 if (Found) { 1014 R.resolveKind(); 1015 return true; 1016 } 1017 1018 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1019 return false; 1020 } 1021 } 1022 1023 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1024 return false; 1025 } 1026 1027 return !R.empty(); 1028 } 1029 1030 /// @brief Perform unqualified name lookup starting from a given 1031 /// scope. 1032 /// 1033 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is 1034 /// used to find names within the current scope. For example, 'x' in 1035 /// @code 1036 /// int x; 1037 /// int f() { 1038 /// return x; // unqualified name look finds 'x' in the global scope 1039 /// } 1040 /// @endcode 1041 /// 1042 /// Different lookup criteria can find different names. For example, a 1043 /// particular scope can have both a struct and a function of the same 1044 /// name, and each can be found by certain lookup criteria. For more 1045 /// information about lookup criteria, see the documentation for the 1046 /// class LookupCriteria. 1047 /// 1048 /// @param S The scope from which unqualified name lookup will 1049 /// begin. If the lookup criteria permits, name lookup may also search 1050 /// in the parent scopes. 1051 /// 1052 /// @param Name The name of the entity that we are searching for. 1053 /// 1054 /// @param Loc If provided, the source location where we're performing 1055 /// name lookup. At present, this is only used to produce diagnostics when 1056 /// C library functions (like "malloc") are implicitly declared. 1057 /// 1058 /// @returns The result of name lookup, which includes zero or more 1059 /// declarations and possibly additional information used to diagnose 1060 /// ambiguities. 1061 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { 1062 DeclarationName Name = R.getLookupName(); 1063 if (!Name) return false; 1064 1065 LookupNameKind NameKind = R.getLookupKind(); 1066 1067 if (!getLangOptions().CPlusPlus) { 1068 // Unqualified name lookup in C/Objective-C is purely lexical, so 1069 // search in the declarations attached to the name. 1070 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 1071 // Find the nearest non-transparent declaration scope. 1072 while (!(S->getFlags() & Scope::DeclScope) || 1073 (S->getEntity() && 1074 static_cast<DeclContext *>(S->getEntity()) 1075 ->isTransparentContext())) 1076 S = S->getParent(); 1077 } 1078 1079 unsigned IDNS = R.getIdentifierNamespace(); 1080 1081 // Scan up the scope chain looking for a decl that matches this 1082 // identifier that is in the appropriate namespace. This search 1083 // should not take long, as shadowing of names is uncommon, and 1084 // deep shadowing is extremely uncommon. 1085 bool LeftStartingScope = false; 1086 1087 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 1088 IEnd = IdResolver.end(); 1089 I != IEnd; ++I) 1090 if ((*I)->isInIdentifierNamespace(IDNS)) { 1091 if (NameKind == LookupRedeclarationWithLinkage) { 1092 // Determine whether this (or a previous) declaration is 1093 // out-of-scope. 1094 if (!LeftStartingScope && !S->isDeclScope(*I)) 1095 LeftStartingScope = true; 1096 1097 // If we found something outside of our starting scope that 1098 // does not have linkage, skip it. 1099 if (LeftStartingScope && !((*I)->hasLinkage())) 1100 continue; 1101 } 1102 else if (NameKind == LookupObjCImplicitSelfParam && 1103 !isa<ImplicitParamDecl>(*I)) 1104 continue; 1105 1106 R.addDecl(*I); 1107 1108 if ((*I)->getAttr<OverloadableAttr>()) { 1109 // If this declaration has the "overloadable" attribute, we 1110 // might have a set of overloaded functions. 1111 1112 // Figure out what scope the identifier is in. 1113 while (!(S->getFlags() & Scope::DeclScope) || 1114 !S->isDeclScope(*I)) 1115 S = S->getParent(); 1116 1117 // Find the last declaration in this scope (with the same 1118 // name, naturally). 1119 IdentifierResolver::iterator LastI = I; 1120 for (++LastI; LastI != IEnd; ++LastI) { 1121 if (!S->isDeclScope(*LastI)) 1122 break; 1123 R.addDecl(*LastI); 1124 } 1125 } 1126 1127 R.resolveKind(); 1128 1129 return true; 1130 } 1131 } else { 1132 // Perform C++ unqualified name lookup. 1133 if (CppLookupName(R, S)) 1134 return true; 1135 } 1136 1137 // If we didn't find a use of this identifier, and if the identifier 1138 // corresponds to a compiler builtin, create the decl object for the builtin 1139 // now, injecting it into translation unit scope, and return it. 1140 if (AllowBuiltinCreation && LookupBuiltin(*this, R)) 1141 return true; 1142 1143 // If we didn't find a use of this identifier, the ExternalSource 1144 // may be able to handle the situation. 1145 // Note: some lookup failures are expected! 1146 // See e.g. R.isForRedeclaration(). 1147 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 1148 } 1149 1150 /// @brief Perform qualified name lookup in the namespaces nominated by 1151 /// using directives by the given context. 1152 /// 1153 /// C++98 [namespace.qual]p2: 1154 /// Given X::m (where X is a user-declared namespace), or given ::m 1155 /// (where X is the global namespace), let S be the set of all 1156 /// declarations of m in X and in the transitive closure of all 1157 /// namespaces nominated by using-directives in X and its used 1158 /// namespaces, except that using-directives are ignored in any 1159 /// namespace, including X, directly containing one or more 1160 /// declarations of m. No namespace is searched more than once in 1161 /// the lookup of a name. If S is the empty set, the program is 1162 /// ill-formed. Otherwise, if S has exactly one member, or if the 1163 /// context of the reference is a using-declaration 1164 /// (namespace.udecl), S is the required set of declarations of 1165 /// m. Otherwise if the use of m is not one that allows a unique 1166 /// declaration to be chosen from S, the program is ill-formed. 1167 /// C++98 [namespace.qual]p5: 1168 /// During the lookup of a qualified namespace member name, if the 1169 /// lookup finds more than one declaration of the member, and if one 1170 /// declaration introduces a class name or enumeration name and the 1171 /// other declarations either introduce the same object, the same 1172 /// enumerator or a set of functions, the non-type name hides the 1173 /// class or enumeration name if and only if the declarations are 1174 /// from the same namespace; otherwise (the declarations are from 1175 /// different namespaces), the program is ill-formed. 1176 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 1177 DeclContext *StartDC) { 1178 assert(StartDC->isFileContext() && "start context is not a file context"); 1179 1180 DeclContext::udir_iterator I = StartDC->using_directives_begin(); 1181 DeclContext::udir_iterator E = StartDC->using_directives_end(); 1182 1183 if (I == E) return false; 1184 1185 // We have at least added all these contexts to the queue. 1186 llvm::DenseSet<DeclContext*> Visited; 1187 Visited.insert(StartDC); 1188 1189 // We have not yet looked into these namespaces, much less added 1190 // their "using-children" to the queue. 1191 llvm::SmallVector<NamespaceDecl*, 8> Queue; 1192 1193 // We have already looked into the initial namespace; seed the queue 1194 // with its using-children. 1195 for (; I != E; ++I) { 1196 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); 1197 if (Visited.insert(ND).second) 1198 Queue.push_back(ND); 1199 } 1200 1201 // The easiest way to implement the restriction in [namespace.qual]p5 1202 // is to check whether any of the individual results found a tag 1203 // and, if so, to declare an ambiguity if the final result is not 1204 // a tag. 1205 bool FoundTag = false; 1206 bool FoundNonTag = false; 1207 1208 LookupResult LocalR(LookupResult::Temporary, R); 1209 1210 bool Found = false; 1211 while (!Queue.empty()) { 1212 NamespaceDecl *ND = Queue.back(); 1213 Queue.pop_back(); 1214 1215 // We go through some convolutions here to avoid copying results 1216 // between LookupResults. 1217 bool UseLocal = !R.empty(); 1218 LookupResult &DirectR = UseLocal ? LocalR : R; 1219 bool FoundDirect = LookupDirect(S, DirectR, ND); 1220 1221 if (FoundDirect) { 1222 // First do any local hiding. 1223 DirectR.resolveKind(); 1224 1225 // If the local result is a tag, remember that. 1226 if (DirectR.isSingleTagDecl()) 1227 FoundTag = true; 1228 else 1229 FoundNonTag = true; 1230 1231 // Append the local results to the total results if necessary. 1232 if (UseLocal) { 1233 R.addAllDecls(LocalR); 1234 LocalR.clear(); 1235 } 1236 } 1237 1238 // If we find names in this namespace, ignore its using directives. 1239 if (FoundDirect) { 1240 Found = true; 1241 continue; 1242 } 1243 1244 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { 1245 NamespaceDecl *Nom = (*I)->getNominatedNamespace(); 1246 if (Visited.insert(Nom).second) 1247 Queue.push_back(Nom); 1248 } 1249 } 1250 1251 if (Found) { 1252 if (FoundTag && FoundNonTag) 1253 R.setAmbiguousQualifiedTagHiding(); 1254 else 1255 R.resolveKind(); 1256 } 1257 1258 return Found; 1259 } 1260 1261 /// \brief Callback that looks for any member of a class with the given name. 1262 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, 1263 CXXBasePath &Path, 1264 void *Name) { 1265 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 1266 1267 DeclarationName N = DeclarationName::getFromOpaquePtr(Name); 1268 Path.Decls = BaseRecord->lookup(N); 1269 return Path.Decls.first != Path.Decls.second; 1270 } 1271 1272 /// \brief Determine whether the given set of member declarations contains only 1273 /// static members, nested types, and enumerators. 1274 template<typename InputIterator> 1275 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) { 1276 Decl *D = (*First)->getUnderlyingDecl(); 1277 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D)) 1278 return true; 1279 1280 if (isa<CXXMethodDecl>(D)) { 1281 // Determine whether all of the methods are static. 1282 bool AllMethodsAreStatic = true; 1283 for(; First != Last; ++First) { 1284 D = (*First)->getUnderlyingDecl(); 1285 1286 if (!isa<CXXMethodDecl>(D)) { 1287 assert(isa<TagDecl>(D) && "Non-function must be a tag decl"); 1288 break; 1289 } 1290 1291 if (!cast<CXXMethodDecl>(D)->isStatic()) { 1292 AllMethodsAreStatic = false; 1293 break; 1294 } 1295 } 1296 1297 if (AllMethodsAreStatic) 1298 return true; 1299 } 1300 1301 return false; 1302 } 1303 1304 /// \brief Perform qualified name lookup into a given context. 1305 /// 1306 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find 1307 /// names when the context of those names is explicit specified, e.g., 1308 /// "std::vector" or "x->member", or as part of unqualified name lookup. 1309 /// 1310 /// Different lookup criteria can find different names. For example, a 1311 /// particular scope can have both a struct and a function of the same 1312 /// name, and each can be found by certain lookup criteria. For more 1313 /// information about lookup criteria, see the documentation for the 1314 /// class LookupCriteria. 1315 /// 1316 /// \param R captures both the lookup criteria and any lookup results found. 1317 /// 1318 /// \param LookupCtx The context in which qualified name lookup will 1319 /// search. If the lookup criteria permits, name lookup may also search 1320 /// in the parent contexts or (for C++ classes) base classes. 1321 /// 1322 /// \param InUnqualifiedLookup true if this is qualified name lookup that 1323 /// occurs as part of unqualified name lookup. 1324 /// 1325 /// \returns true if lookup succeeded, false if it failed. 1326 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 1327 bool InUnqualifiedLookup) { 1328 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 1329 1330 if (!R.getLookupName()) 1331 return false; 1332 1333 // Make sure that the declaration context is complete. 1334 assert((!isa<TagDecl>(LookupCtx) || 1335 LookupCtx->isDependentContext() || 1336 cast<TagDecl>(LookupCtx)->isDefinition() || 1337 Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>() 1338 ->isBeingDefined()) && 1339 "Declaration context must already be complete!"); 1340 1341 // Perform qualified name lookup into the LookupCtx. 1342 if (LookupDirect(*this, R, LookupCtx)) { 1343 R.resolveKind(); 1344 if (isa<CXXRecordDecl>(LookupCtx)) 1345 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); 1346 return true; 1347 } 1348 1349 // Don't descend into implied contexts for redeclarations. 1350 // C++98 [namespace.qual]p6: 1351 // In a declaration for a namespace member in which the 1352 // declarator-id is a qualified-id, given that the qualified-id 1353 // for the namespace member has the form 1354 // nested-name-specifier unqualified-id 1355 // the unqualified-id shall name a member of the namespace 1356 // designated by the nested-name-specifier. 1357 // See also [class.mfct]p5 and [class.static.data]p2. 1358 if (R.isForRedeclaration()) 1359 return false; 1360 1361 // If this is a namespace, look it up in the implied namespaces. 1362 if (LookupCtx->isFileContext()) 1363 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 1364 1365 // If this isn't a C++ class, we aren't allowed to look into base 1366 // classes, we're done. 1367 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 1368 if (!LookupRec || !LookupRec->getDefinition()) 1369 return false; 1370 1371 // If we're performing qualified name lookup into a dependent class, 1372 // then we are actually looking into a current instantiation. If we have any 1373 // dependent base classes, then we either have to delay lookup until 1374 // template instantiation time (at which point all bases will be available) 1375 // or we have to fail. 1376 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 1377 LookupRec->hasAnyDependentBases()) { 1378 R.setNotFoundInCurrentInstantiation(); 1379 return false; 1380 } 1381 1382 // Perform lookup into our base classes. 1383 CXXBasePaths Paths; 1384 Paths.setOrigin(LookupRec); 1385 1386 // Look for this member in our base classes 1387 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; 1388 switch (R.getLookupKind()) { 1389 case LookupObjCImplicitSelfParam: 1390 case LookupOrdinaryName: 1391 case LookupMemberName: 1392 case LookupRedeclarationWithLinkage: 1393 BaseCallback = &CXXRecordDecl::FindOrdinaryMember; 1394 break; 1395 1396 case LookupTagName: 1397 BaseCallback = &CXXRecordDecl::FindTagMember; 1398 break; 1399 1400 case LookupAnyName: 1401 BaseCallback = &LookupAnyMember; 1402 break; 1403 1404 case LookupUsingDeclName: 1405 // This lookup is for redeclarations only. 1406 1407 case LookupOperatorName: 1408 case LookupNamespaceName: 1409 case LookupObjCProtocolName: 1410 case LookupLabel: 1411 // These lookups will never find a member in a C++ class (or base class). 1412 return false; 1413 1414 case LookupNestedNameSpecifierName: 1415 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; 1416 break; 1417 } 1418 1419 if (!LookupRec->lookupInBases(BaseCallback, 1420 R.getLookupName().getAsOpaquePtr(), Paths)) 1421 return false; 1422 1423 R.setNamingClass(LookupRec); 1424 1425 // C++ [class.member.lookup]p2: 1426 // [...] If the resulting set of declarations are not all from 1427 // sub-objects of the same type, or the set has a nonstatic member 1428 // and includes members from distinct sub-objects, there is an 1429 // ambiguity and the program is ill-formed. Otherwise that set is 1430 // the result of the lookup. 1431 QualType SubobjectType; 1432 int SubobjectNumber = 0; 1433 AccessSpecifier SubobjectAccess = AS_none; 1434 1435 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 1436 Path != PathEnd; ++Path) { 1437 const CXXBasePathElement &PathElement = Path->back(); 1438 1439 // Pick the best (i.e. most permissive i.e. numerically lowest) access 1440 // across all paths. 1441 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 1442 1443 // Determine whether we're looking at a distinct sub-object or not. 1444 if (SubobjectType.isNull()) { 1445 // This is the first subobject we've looked at. Record its type. 1446 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 1447 SubobjectNumber = PathElement.SubobjectNumber; 1448 continue; 1449 } 1450 1451 if (SubobjectType 1452 != Context.getCanonicalType(PathElement.Base->getType())) { 1453 // We found members of the given name in two subobjects of 1454 // different types. If the declaration sets aren't the same, this 1455 // this lookup is ambiguous. 1456 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) { 1457 CXXBasePaths::paths_iterator FirstPath = Paths.begin(); 1458 DeclContext::lookup_iterator FirstD = FirstPath->Decls.first; 1459 DeclContext::lookup_iterator CurrentD = Path->Decls.first; 1460 1461 while (FirstD != FirstPath->Decls.second && 1462 CurrentD != Path->Decls.second) { 1463 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() != 1464 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl()) 1465 break; 1466 1467 ++FirstD; 1468 ++CurrentD; 1469 } 1470 1471 if (FirstD == FirstPath->Decls.second && 1472 CurrentD == Path->Decls.second) 1473 continue; 1474 } 1475 1476 R.setAmbiguousBaseSubobjectTypes(Paths); 1477 return true; 1478 } 1479 1480 if (SubobjectNumber != PathElement.SubobjectNumber) { 1481 // We have a different subobject of the same type. 1482 1483 // C++ [class.member.lookup]p5: 1484 // A static member, a nested type or an enumerator defined in 1485 // a base class T can unambiguously be found even if an object 1486 // has more than one base class subobject of type T. 1487 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) 1488 continue; 1489 1490 // We have found a nonstatic member name in multiple, distinct 1491 // subobjects. Name lookup is ambiguous. 1492 R.setAmbiguousBaseSubobjects(Paths); 1493 return true; 1494 } 1495 } 1496 1497 // Lookup in a base class succeeded; return these results. 1498 1499 DeclContext::lookup_iterator I, E; 1500 for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) { 1501 NamedDecl *D = *I; 1502 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 1503 D->getAccess()); 1504 R.addDecl(D, AS); 1505 } 1506 R.resolveKind(); 1507 return true; 1508 } 1509 1510 /// @brief Performs name lookup for a name that was parsed in the 1511 /// source code, and may contain a C++ scope specifier. 1512 /// 1513 /// This routine is a convenience routine meant to be called from 1514 /// contexts that receive a name and an optional C++ scope specifier 1515 /// (e.g., "N::M::x"). It will then perform either qualified or 1516 /// unqualified name lookup (with LookupQualifiedName or LookupName, 1517 /// respectively) on the given name and return those results. 1518 /// 1519 /// @param S The scope from which unqualified name lookup will 1520 /// begin. 1521 /// 1522 /// @param SS An optional C++ scope-specifier, e.g., "::N::M". 1523 /// 1524 /// @param EnteringContext Indicates whether we are going to enter the 1525 /// context of the scope-specifier SS (if present). 1526 /// 1527 /// @returns True if any decls were found (but possibly ambiguous) 1528 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 1529 bool AllowBuiltinCreation, bool EnteringContext) { 1530 if (SS && SS->isInvalid()) { 1531 // When the scope specifier is invalid, don't even look for 1532 // anything. 1533 return false; 1534 } 1535 1536 if (SS && SS->isSet()) { 1537 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { 1538 // We have resolved the scope specifier to a particular declaration 1539 // contex, and will perform name lookup in that context. 1540 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 1541 return false; 1542 1543 R.setContextRange(SS->getRange()); 1544 1545 return LookupQualifiedName(R, DC); 1546 } 1547 1548 // We could not resolve the scope specified to a specific declaration 1549 // context, which means that SS refers to an unknown specialization. 1550 // Name lookup can't find anything in this case. 1551 return false; 1552 } 1553 1554 // Perform unqualified name lookup starting in the given scope. 1555 return LookupName(R, S, AllowBuiltinCreation); 1556 } 1557 1558 1559 /// @brief Produce a diagnostic describing the ambiguity that resulted 1560 /// from name lookup. 1561 /// 1562 /// @param Result The ambiguous name lookup result. 1563 /// 1564 /// @param Name The name of the entity that name lookup was 1565 /// searching for. 1566 /// 1567 /// @param NameLoc The location of the name within the source code. 1568 /// 1569 /// @param LookupRange A source range that provides more 1570 /// source-location information concerning the lookup itself. For 1571 /// example, this range might highlight a nested-name-specifier that 1572 /// precedes the name. 1573 /// 1574 /// @returns true 1575 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 1576 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 1577 1578 DeclarationName Name = Result.getLookupName(); 1579 SourceLocation NameLoc = Result.getNameLoc(); 1580 SourceRange LookupRange = Result.getContextRange(); 1581 1582 switch (Result.getAmbiguityKind()) { 1583 case LookupResult::AmbiguousBaseSubobjects: { 1584 CXXBasePaths *Paths = Result.getBasePaths(); 1585 QualType SubobjectType = Paths->front().back().Base->getType(); 1586 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 1587 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 1588 << LookupRange; 1589 1590 DeclContext::lookup_iterator Found = Paths->front().Decls.first; 1591 while (isa<CXXMethodDecl>(*Found) && 1592 cast<CXXMethodDecl>(*Found)->isStatic()) 1593 ++Found; 1594 1595 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 1596 1597 return true; 1598 } 1599 1600 case LookupResult::AmbiguousBaseSubobjectTypes: { 1601 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 1602 << Name << LookupRange; 1603 1604 CXXBasePaths *Paths = Result.getBasePaths(); 1605 std::set<Decl *> DeclsPrinted; 1606 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 1607 PathEnd = Paths->end(); 1608 Path != PathEnd; ++Path) { 1609 Decl *D = *Path->Decls.first; 1610 if (DeclsPrinted.insert(D).second) 1611 Diag(D->getLocation(), diag::note_ambiguous_member_found); 1612 } 1613 1614 return true; 1615 } 1616 1617 case LookupResult::AmbiguousTagHiding: { 1618 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 1619 1620 llvm::SmallPtrSet<NamedDecl*,8> TagDecls; 1621 1622 LookupResult::iterator DI, DE = Result.end(); 1623 for (DI = Result.begin(); DI != DE; ++DI) 1624 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) { 1625 TagDecls.insert(TD); 1626 Diag(TD->getLocation(), diag::note_hidden_tag); 1627 } 1628 1629 for (DI = Result.begin(); DI != DE; ++DI) 1630 if (!isa<TagDecl>(*DI)) 1631 Diag((*DI)->getLocation(), diag::note_hiding_object); 1632 1633 // For recovery purposes, go ahead and implement the hiding. 1634 LookupResult::Filter F = Result.makeFilter(); 1635 while (F.hasNext()) { 1636 if (TagDecls.count(F.next())) 1637 F.erase(); 1638 } 1639 F.done(); 1640 1641 return true; 1642 } 1643 1644 case LookupResult::AmbiguousReference: { 1645 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 1646 1647 LookupResult::iterator DI = Result.begin(), DE = Result.end(); 1648 for (; DI != DE; ++DI) 1649 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; 1650 1651 return true; 1652 } 1653 } 1654 1655 llvm_unreachable("unknown ambiguity kind"); 1656 return true; 1657 } 1658 1659 namespace { 1660 struct AssociatedLookup { 1661 AssociatedLookup(Sema &S, 1662 Sema::AssociatedNamespaceSet &Namespaces, 1663 Sema::AssociatedClassSet &Classes) 1664 : S(S), Namespaces(Namespaces), Classes(Classes) { 1665 } 1666 1667 Sema &S; 1668 Sema::AssociatedNamespaceSet &Namespaces; 1669 Sema::AssociatedClassSet &Classes; 1670 }; 1671 } 1672 1673 static void 1674 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 1675 1676 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 1677 DeclContext *Ctx) { 1678 // Add the associated namespace for this class. 1679 1680 // We don't use DeclContext::getEnclosingNamespaceContext() as this may 1681 // be a locally scoped record. 1682 1683 // We skip out of inline namespaces. The innermost non-inline namespace 1684 // contains all names of all its nested inline namespaces anyway, so we can 1685 // replace the entire inline namespace tree with its root. 1686 while (Ctx->isRecord() || Ctx->isTransparentContext() || 1687 Ctx->isInlineNamespace()) 1688 Ctx = Ctx->getParent(); 1689 1690 if (Ctx->isFileContext()) 1691 Namespaces.insert(Ctx->getPrimaryContext()); 1692 } 1693 1694 // \brief Add the associated classes and namespaces for argument-dependent 1695 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). 1696 static void 1697 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 1698 const TemplateArgument &Arg) { 1699 // C++ [basic.lookup.koenig]p2, last bullet: 1700 // -- [...] ; 1701 switch (Arg.getKind()) { 1702 case TemplateArgument::Null: 1703 break; 1704 1705 case TemplateArgument::Type: 1706 // [...] the namespaces and classes associated with the types of the 1707 // template arguments provided for template type parameters (excluding 1708 // template template parameters) 1709 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 1710 break; 1711 1712 case TemplateArgument::Template: 1713 case TemplateArgument::TemplateExpansion: { 1714 // [...] the namespaces in which any template template arguments are 1715 // defined; and the classes in which any member templates used as 1716 // template template arguments are defined. 1717 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 1718 if (ClassTemplateDecl *ClassTemplate 1719 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 1720 DeclContext *Ctx = ClassTemplate->getDeclContext(); 1721 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 1722 Result.Classes.insert(EnclosingClass); 1723 // Add the associated namespace for this class. 1724 CollectEnclosingNamespace(Result.Namespaces, Ctx); 1725 } 1726 break; 1727 } 1728 1729 case TemplateArgument::Declaration: 1730 case TemplateArgument::Integral: 1731 case TemplateArgument::Expression: 1732 // [Note: non-type template arguments do not contribute to the set of 1733 // associated namespaces. ] 1734 break; 1735 1736 case TemplateArgument::Pack: 1737 for (TemplateArgument::pack_iterator P = Arg.pack_begin(), 1738 PEnd = Arg.pack_end(); 1739 P != PEnd; ++P) 1740 addAssociatedClassesAndNamespaces(Result, *P); 1741 break; 1742 } 1743 } 1744 1745 // \brief Add the associated classes and namespaces for 1746 // argument-dependent lookup with an argument of class type 1747 // (C++ [basic.lookup.koenig]p2). 1748 static void 1749 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 1750 CXXRecordDecl *Class) { 1751 1752 // Just silently ignore anything whose name is __va_list_tag. 1753 if (Class->getDeclName() == Result.S.VAListTagName) 1754 return; 1755 1756 // C++ [basic.lookup.koenig]p2: 1757 // [...] 1758 // -- If T is a class type (including unions), its associated 1759 // classes are: the class itself; the class of which it is a 1760 // member, if any; and its direct and indirect base 1761 // classes. Its associated namespaces are the namespaces in 1762 // which its associated classes are defined. 1763 1764 // Add the class of which it is a member, if any. 1765 DeclContext *Ctx = Class->getDeclContext(); 1766 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 1767 Result.Classes.insert(EnclosingClass); 1768 // Add the associated namespace for this class. 1769 CollectEnclosingNamespace(Result.Namespaces, Ctx); 1770 1771 // Add the class itself. If we've already seen this class, we don't 1772 // need to visit base classes. 1773 if (!Result.Classes.insert(Class)) 1774 return; 1775 1776 // -- If T is a template-id, its associated namespaces and classes are 1777 // the namespace in which the template is defined; for member 1778 // templates, the member template's class; the namespaces and classes 1779 // associated with the types of the template arguments provided for 1780 // template type parameters (excluding template template parameters); the 1781 // namespaces in which any template template arguments are defined; and 1782 // the classes in which any member templates used as template template 1783 // arguments are defined. [Note: non-type template arguments do not 1784 // contribute to the set of associated namespaces. ] 1785 if (ClassTemplateSpecializationDecl *Spec 1786 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 1787 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 1788 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 1789 Result.Classes.insert(EnclosingClass); 1790 // Add the associated namespace for this class. 1791 CollectEnclosingNamespace(Result.Namespaces, Ctx); 1792 1793 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1794 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 1795 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 1796 } 1797 1798 // Only recurse into base classes for complete types. 1799 if (!Class->hasDefinition()) { 1800 // FIXME: we might need to instantiate templates here 1801 return; 1802 } 1803 1804 // Add direct and indirect base classes along with their associated 1805 // namespaces. 1806 llvm::SmallVector<CXXRecordDecl *, 32> Bases; 1807 Bases.push_back(Class); 1808 while (!Bases.empty()) { 1809 // Pop this class off the stack. 1810 Class = Bases.back(); 1811 Bases.pop_back(); 1812 1813 // Visit the base classes. 1814 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), 1815 BaseEnd = Class->bases_end(); 1816 Base != BaseEnd; ++Base) { 1817 const RecordType *BaseType = Base->getType()->getAs<RecordType>(); 1818 // In dependent contexts, we do ADL twice, and the first time around, 1819 // the base type might be a dependent TemplateSpecializationType, or a 1820 // TemplateTypeParmType. If that happens, simply ignore it. 1821 // FIXME: If we want to support export, we probably need to add the 1822 // namespace of the template in a TemplateSpecializationType, or even 1823 // the classes and namespaces of known non-dependent arguments. 1824 if (!BaseType) 1825 continue; 1826 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 1827 if (Result.Classes.insert(BaseDecl)) { 1828 // Find the associated namespace for this base class. 1829 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 1830 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 1831 1832 // Make sure we visit the bases of this base class. 1833 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 1834 Bases.push_back(BaseDecl); 1835 } 1836 } 1837 } 1838 } 1839 1840 // \brief Add the associated classes and namespaces for 1841 // argument-dependent lookup with an argument of type T 1842 // (C++ [basic.lookup.koenig]p2). 1843 static void 1844 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 1845 // C++ [basic.lookup.koenig]p2: 1846 // 1847 // For each argument type T in the function call, there is a set 1848 // of zero or more associated namespaces and a set of zero or more 1849 // associated classes to be considered. The sets of namespaces and 1850 // classes is determined entirely by the types of the function 1851 // arguments (and the namespace of any template template 1852 // argument). Typedef names and using-declarations used to specify 1853 // the types do not contribute to this set. The sets of namespaces 1854 // and classes are determined in the following way: 1855 1856 llvm::SmallVector<const Type *, 16> Queue; 1857 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 1858 1859 while (true) { 1860 switch (T->getTypeClass()) { 1861 1862 #define TYPE(Class, Base) 1863 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1864 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 1865 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 1866 #define ABSTRACT_TYPE(Class, Base) 1867 #include "clang/AST/TypeNodes.def" 1868 // T is canonical. We can also ignore dependent types because 1869 // we don't need to do ADL at the definition point, but if we 1870 // wanted to implement template export (or if we find some other 1871 // use for associated classes and namespaces...) this would be 1872 // wrong. 1873 break; 1874 1875 // -- If T is a pointer to U or an array of U, its associated 1876 // namespaces and classes are those associated with U. 1877 case Type::Pointer: 1878 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 1879 continue; 1880 case Type::ConstantArray: 1881 case Type::IncompleteArray: 1882 case Type::VariableArray: 1883 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 1884 continue; 1885 1886 // -- If T is a fundamental type, its associated sets of 1887 // namespaces and classes are both empty. 1888 case Type::Builtin: 1889 break; 1890 1891 // -- If T is a class type (including unions), its associated 1892 // classes are: the class itself; the class of which it is a 1893 // member, if any; and its direct and indirect base 1894 // classes. Its associated namespaces are the namespaces in 1895 // which its associated classes are defined. 1896 case Type::Record: { 1897 CXXRecordDecl *Class 1898 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 1899 addAssociatedClassesAndNamespaces(Result, Class); 1900 break; 1901 } 1902 1903 // -- If T is an enumeration type, its associated namespace is 1904 // the namespace in which it is defined. If it is class 1905 // member, its associated class is the member's class; else 1906 // it has no associated class. 1907 case Type::Enum: { 1908 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 1909 1910 DeclContext *Ctx = Enum->getDeclContext(); 1911 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 1912 Result.Classes.insert(EnclosingClass); 1913 1914 // Add the associated namespace for this class. 1915 CollectEnclosingNamespace(Result.Namespaces, Ctx); 1916 1917 break; 1918 } 1919 1920 // -- If T is a function type, its associated namespaces and 1921 // classes are those associated with the function parameter 1922 // types and those associated with the return type. 1923 case Type::FunctionProto: { 1924 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 1925 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), 1926 ArgEnd = Proto->arg_type_end(); 1927 Arg != ArgEnd; ++Arg) 1928 Queue.push_back(Arg->getTypePtr()); 1929 // fallthrough 1930 } 1931 case Type::FunctionNoProto: { 1932 const FunctionType *FnType = cast<FunctionType>(T); 1933 T = FnType->getResultType().getTypePtr(); 1934 continue; 1935 } 1936 1937 // -- If T is a pointer to a member function of a class X, its 1938 // associated namespaces and classes are those associated 1939 // with the function parameter types and return type, 1940 // together with those associated with X. 1941 // 1942 // -- If T is a pointer to a data member of class X, its 1943 // associated namespaces and classes are those associated 1944 // with the member type together with those associated with 1945 // X. 1946 case Type::MemberPointer: { 1947 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 1948 1949 // Queue up the class type into which this points. 1950 Queue.push_back(MemberPtr->getClass()); 1951 1952 // And directly continue with the pointee type. 1953 T = MemberPtr->getPointeeType().getTypePtr(); 1954 continue; 1955 } 1956 1957 // As an extension, treat this like a normal pointer. 1958 case Type::BlockPointer: 1959 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 1960 continue; 1961 1962 // References aren't covered by the standard, but that's such an 1963 // obvious defect that we cover them anyway. 1964 case Type::LValueReference: 1965 case Type::RValueReference: 1966 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 1967 continue; 1968 1969 // These are fundamental types. 1970 case Type::Vector: 1971 case Type::ExtVector: 1972 case Type::Complex: 1973 break; 1974 1975 // If T is an Objective-C object or interface type, or a pointer to an 1976 // object or interface type, the associated namespace is the global 1977 // namespace. 1978 case Type::ObjCObject: 1979 case Type::ObjCInterface: 1980 case Type::ObjCObjectPointer: 1981 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 1982 break; 1983 } 1984 1985 if (Queue.empty()) break; 1986 T = Queue.back(); 1987 Queue.pop_back(); 1988 } 1989 } 1990 1991 /// \brief Find the associated classes and namespaces for 1992 /// argument-dependent lookup for a call with the given set of 1993 /// arguments. 1994 /// 1995 /// This routine computes the sets of associated classes and associated 1996 /// namespaces searched by argument-dependent lookup 1997 /// (C++ [basic.lookup.argdep]) for a given set of arguments. 1998 void 1999 Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, 2000 AssociatedNamespaceSet &AssociatedNamespaces, 2001 AssociatedClassSet &AssociatedClasses) { 2002 AssociatedNamespaces.clear(); 2003 AssociatedClasses.clear(); 2004 2005 AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses); 2006 2007 // C++ [basic.lookup.koenig]p2: 2008 // For each argument type T in the function call, there is a set 2009 // of zero or more associated namespaces and a set of zero or more 2010 // associated classes to be considered. The sets of namespaces and 2011 // classes is determined entirely by the types of the function 2012 // arguments (and the namespace of any template template 2013 // argument). 2014 for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { 2015 Expr *Arg = Args[ArgIdx]; 2016 2017 if (Arg->getType() != Context.OverloadTy) { 2018 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 2019 continue; 2020 } 2021 2022 // [...] In addition, if the argument is the name or address of a 2023 // set of overloaded functions and/or function templates, its 2024 // associated classes and namespaces are the union of those 2025 // associated with each of the members of the set: the namespace 2026 // in which the function or function template is defined and the 2027 // classes and namespaces associated with its (non-dependent) 2028 // parameter types and return type. 2029 Arg = Arg->IgnoreParens(); 2030 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) 2031 if (unaryOp->getOpcode() == UO_AddrOf) 2032 Arg = unaryOp->getSubExpr(); 2033 2034 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg); 2035 if (!ULE) continue; 2036 2037 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end(); 2038 I != E; ++I) { 2039 // Look through any using declarations to find the underlying function. 2040 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 2041 2042 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn); 2043 if (!FDecl) 2044 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl(); 2045 2046 // Add the classes and namespaces associated with the parameter 2047 // types and return type of this function. 2048 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 2049 } 2050 } 2051 } 2052 2053 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 2054 /// an acceptable non-member overloaded operator for a call whose 2055 /// arguments have types T1 (and, if non-empty, T2). This routine 2056 /// implements the check in C++ [over.match.oper]p3b2 concerning 2057 /// enumeration types. 2058 static bool 2059 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, 2060 QualType T1, QualType T2, 2061 ASTContext &Context) { 2062 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 2063 return true; 2064 2065 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 2066 return true; 2067 2068 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); 2069 if (Proto->getNumArgs() < 1) 2070 return false; 2071 2072 if (T1->isEnumeralType()) { 2073 QualType ArgType = Proto->getArgType(0).getNonReferenceType(); 2074 if (Context.hasSameUnqualifiedType(T1, ArgType)) 2075 return true; 2076 } 2077 2078 if (Proto->getNumArgs() < 2) 2079 return false; 2080 2081 if (!T2.isNull() && T2->isEnumeralType()) { 2082 QualType ArgType = Proto->getArgType(1).getNonReferenceType(); 2083 if (Context.hasSameUnqualifiedType(T2, ArgType)) 2084 return true; 2085 } 2086 2087 return false; 2088 } 2089 2090 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 2091 SourceLocation Loc, 2092 LookupNameKind NameKind, 2093 RedeclarationKind Redecl) { 2094 LookupResult R(*this, Name, Loc, NameKind, Redecl); 2095 LookupName(R, S); 2096 return R.getAsSingle<NamedDecl>(); 2097 } 2098 2099 /// \brief Find the protocol with the given name, if any. 2100 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, 2101 SourceLocation IdLoc) { 2102 Decl *D = LookupSingleName(TUScope, II, IdLoc, 2103 LookupObjCProtocolName); 2104 return cast_or_null<ObjCProtocolDecl>(D); 2105 } 2106 2107 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 2108 QualType T1, QualType T2, 2109 UnresolvedSetImpl &Functions) { 2110 // C++ [over.match.oper]p3: 2111 // -- The set of non-member candidates is the result of the 2112 // unqualified lookup of operator@ in the context of the 2113 // expression according to the usual rules for name lookup in 2114 // unqualified function calls (3.4.2) except that all member 2115 // functions are ignored. However, if no operand has a class 2116 // type, only those non-member functions in the lookup set 2117 // that have a first parameter of type T1 or "reference to 2118 // (possibly cv-qualified) T1", when T1 is an enumeration 2119 // type, or (if there is a right operand) a second parameter 2120 // of type T2 or "reference to (possibly cv-qualified) T2", 2121 // when T2 is an enumeration type, are candidate functions. 2122 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2123 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 2124 LookupName(Operators, S); 2125 2126 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 2127 2128 if (Operators.empty()) 2129 return; 2130 2131 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); 2132 Op != OpEnd; ++Op) { 2133 NamedDecl *Found = (*Op)->getUnderlyingDecl(); 2134 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) { 2135 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) 2136 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD 2137 } else if (FunctionTemplateDecl *FunTmpl 2138 = dyn_cast<FunctionTemplateDecl>(Found)) { 2139 // FIXME: friend operators? 2140 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, 2141 // later? 2142 if (!FunTmpl->getDeclContext()->isRecord()) 2143 Functions.addDecl(*Op, Op.getAccess()); 2144 } 2145 } 2146 } 2147 2148 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD, 2149 CXXSpecialMember SM, 2150 bool ConstArg, 2151 bool VolatileArg, 2152 bool RValueThis, 2153 bool ConstThis, 2154 bool VolatileThis) { 2155 RD = RD->getDefinition(); 2156 assert((RD && !RD->isBeingDefined()) && 2157 "doing special member lookup into record that isn't fully complete"); 2158 if (RValueThis || ConstThis || VolatileThis) 2159 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && 2160 "constructors and destructors always have unqualified lvalue this"); 2161 if (ConstArg || VolatileArg) 2162 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && 2163 "parameter-less special members can't have qualified arguments"); 2164 2165 llvm::FoldingSetNodeID ID; 2166 ID.AddPointer(RD); 2167 ID.AddInteger(SM); 2168 ID.AddInteger(ConstArg); 2169 ID.AddInteger(VolatileArg); 2170 ID.AddInteger(RValueThis); 2171 ID.AddInteger(ConstThis); 2172 ID.AddInteger(VolatileThis); 2173 2174 void *InsertPoint; 2175 SpecialMemberOverloadResult *Result = 2176 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 2177 2178 // This was already cached 2179 if (Result) 2180 return Result; 2181 2182 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>(); 2183 Result = new (Result) SpecialMemberOverloadResult(ID); 2184 SpecialMemberCache.InsertNode(Result, InsertPoint); 2185 2186 if (SM == CXXDestructor) { 2187 if (!RD->hasDeclaredDestructor()) 2188 DeclareImplicitDestructor(RD); 2189 CXXDestructorDecl *DD = RD->getDestructor(); 2190 assert(DD && "record without a destructor"); 2191 Result->setMethod(DD); 2192 Result->setSuccess(DD->isDeleted()); 2193 Result->setConstParamMatch(false); 2194 return Result; 2195 } 2196 2197 // Prepare for overload resolution. Here we construct a synthetic argument 2198 // if necessary and make sure that implicit functions are declared. 2199 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 2200 DeclarationName Name; 2201 Expr *Arg = 0; 2202 unsigned NumArgs; 2203 2204 if (SM == CXXDefaultConstructor) { 2205 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 2206 NumArgs = 0; 2207 if (RD->needsImplicitDefaultConstructor()) 2208 DeclareImplicitDefaultConstructor(RD); 2209 } else { 2210 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { 2211 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 2212 if (!RD->hasDeclaredCopyConstructor()) 2213 DeclareImplicitCopyConstructor(RD); 2214 // TODO: Move constructors 2215 } else { 2216 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 2217 if (!RD->hasDeclaredCopyAssignment()) 2218 DeclareImplicitCopyAssignment(RD); 2219 // TODO: Move assignment 2220 } 2221 2222 QualType ArgType = CanTy; 2223 if (ConstArg) 2224 ArgType.addConst(); 2225 if (VolatileArg) 2226 ArgType.addVolatile(); 2227 2228 // This isn't /really/ specified by the standard, but it's implied 2229 // we should be working from an RValue in the case of move to ensure 2230 // that we prefer to bind to rvalue references, and an LValue in the 2231 // case of copy to ensure we don't bind to rvalue references. 2232 // Possibly an XValue is actually correct in the case of move, but 2233 // there is no semantic difference for class types in this restricted 2234 // case. 2235 ExprValueKind VK; 2236 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) 2237 VK = VK_LValue; 2238 else 2239 VK = VK_RValue; 2240 2241 NumArgs = 1; 2242 Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK); 2243 } 2244 2245 // Create the object argument 2246 QualType ThisTy = CanTy; 2247 if (ConstThis) 2248 ThisTy.addConst(); 2249 if (VolatileThis) 2250 ThisTy.addVolatile(); 2251 Expr::Classification Classification = 2252 (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy, 2253 RValueThis ? VK_RValue : VK_LValue))-> 2254 Classify(Context); 2255 2256 // Now we perform lookup on the name we computed earlier and do overload 2257 // resolution. Lookup is only performed directly into the class since there 2258 // will always be a (possibly implicit) declaration to shadow any others. 2259 OverloadCandidateSet OCS((SourceLocation())); 2260 DeclContext::lookup_iterator I, E; 2261 Result->setConstParamMatch(false); 2262 2263 llvm::tie(I, E) = RD->lookup(Name); 2264 assert((I != E) && 2265 "lookup for a constructor or assignment operator was empty"); 2266 for ( ; I != E; ++I) { 2267 Decl *Cand = *I; 2268 2269 if (Cand->isInvalidDecl()) 2270 continue; 2271 2272 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) { 2273 // FIXME: [namespace.udecl]p15 says that we should only consider a 2274 // using declaration here if it does not match a declaration in the 2275 // derived class. We do not implement this correctly in other cases 2276 // either. 2277 Cand = U->getTargetDecl(); 2278 2279 if (Cand->isInvalidDecl()) 2280 continue; 2281 } 2282 2283 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) { 2284 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 2285 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy, 2286 Classification, &Arg, NumArgs, OCS, true); 2287 else 2288 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public), &Arg, 2289 NumArgs, OCS, true); 2290 2291 // Here we're looking for a const parameter to speed up creation of 2292 // implicit copy methods. 2293 if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) || 2294 (SM == CXXCopyConstructor && 2295 cast<CXXConstructorDecl>(M)->isCopyConstructor())) { 2296 QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0); 2297 if (!ArgType->isReferenceType() || 2298 ArgType->getPointeeType().isConstQualified()) 2299 Result->setConstParamMatch(true); 2300 } 2301 } else if (FunctionTemplateDecl *Tmpl = 2302 dyn_cast<FunctionTemplateDecl>(Cand)) { 2303 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 2304 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), 2305 RD, 0, ThisTy, Classification, &Arg, NumArgs, 2306 OCS, true); 2307 else 2308 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), 2309 0, &Arg, NumArgs, OCS, true); 2310 } else { 2311 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl"); 2312 } 2313 } 2314 2315 OverloadCandidateSet::iterator Best; 2316 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) { 2317 case OR_Success: 2318 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 2319 Result->setSuccess(true); 2320 break; 2321 2322 case OR_Deleted: 2323 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 2324 Result->setSuccess(false); 2325 break; 2326 2327 case OR_Ambiguous: 2328 case OR_No_Viable_Function: 2329 Result->setMethod(0); 2330 Result->setSuccess(false); 2331 break; 2332 } 2333 2334 return Result; 2335 } 2336 2337 /// \brief Look up the default constructor for the given class. 2338 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 2339 SpecialMemberOverloadResult *Result = 2340 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, 2341 false, false); 2342 2343 return cast_or_null<CXXConstructorDecl>(Result->getMethod()); 2344 } 2345 2346 /// \brief Look up the copying constructor for the given class. 2347 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 2348 unsigned Quals, 2349 bool *ConstParamMatch) { 2350 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 2351 "non-const, non-volatile qualifiers for copy ctor arg"); 2352 SpecialMemberOverloadResult *Result = 2353 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, 2354 Quals & Qualifiers::Volatile, false, false, false); 2355 2356 if (ConstParamMatch) 2357 *ConstParamMatch = Result->hasConstParamMatch(); 2358 2359 return cast_or_null<CXXConstructorDecl>(Result->getMethod()); 2360 } 2361 2362 /// \brief Look up the constructors for the given class. 2363 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 2364 // If the implicit constructors have not yet been declared, do so now. 2365 if (CanDeclareSpecialMemberFunction(Context, Class)) { 2366 if (Class->needsImplicitDefaultConstructor()) 2367 DeclareImplicitDefaultConstructor(Class); 2368 if (!Class->hasDeclaredCopyConstructor()) 2369 DeclareImplicitCopyConstructor(Class); 2370 } 2371 2372 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 2373 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 2374 return Class->lookup(Name); 2375 } 2376 2377 /// \brief Look up the copying assignment operator for the given class. 2378 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 2379 unsigned Quals, bool RValueThis, 2380 unsigned ThisQuals, 2381 bool *ConstParamMatch) { 2382 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 2383 "non-const, non-volatile qualifiers for copy assignment arg"); 2384 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 2385 "non-const, non-volatile qualifiers for copy assignment this"); 2386 SpecialMemberOverloadResult *Result = 2387 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, 2388 Quals & Qualifiers::Volatile, RValueThis, 2389 ThisQuals & Qualifiers::Const, 2390 ThisQuals & Qualifiers::Volatile); 2391 2392 if (ConstParamMatch) 2393 *ConstParamMatch = Result->hasConstParamMatch(); 2394 2395 return Result->getMethod(); 2396 } 2397 2398 /// \brief Look for the destructor of the given class. 2399 /// 2400 /// During semantic analysis, this routine should be used in lieu of 2401 /// CXXRecordDecl::getDestructor(). 2402 /// 2403 /// \returns The destructor for this class. 2404 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 2405 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, 2406 false, false, false, 2407 false, false)->getMethod()); 2408 } 2409 2410 void ADLResult::insert(NamedDecl *New) { 2411 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 2412 2413 // If we haven't yet seen a decl for this key, or the last decl 2414 // was exactly this one, we're done. 2415 if (Old == 0 || Old == New) { 2416 Old = New; 2417 return; 2418 } 2419 2420 // Otherwise, decide which is a more recent redeclaration. 2421 FunctionDecl *OldFD, *NewFD; 2422 if (isa<FunctionTemplateDecl>(New)) { 2423 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl(); 2424 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl(); 2425 } else { 2426 OldFD = cast<FunctionDecl>(Old); 2427 NewFD = cast<FunctionDecl>(New); 2428 } 2429 2430 FunctionDecl *Cursor = NewFD; 2431 while (true) { 2432 Cursor = Cursor->getPreviousDeclaration(); 2433 2434 // If we got to the end without finding OldFD, OldFD is the newer 2435 // declaration; leave things as they are. 2436 if (!Cursor) return; 2437 2438 // If we do find OldFD, then NewFD is newer. 2439 if (Cursor == OldFD) break; 2440 2441 // Otherwise, keep looking. 2442 } 2443 2444 Old = New; 2445 } 2446 2447 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, 2448 Expr **Args, unsigned NumArgs, 2449 ADLResult &Result, 2450 bool StdNamespaceIsAssociated) { 2451 // Find all of the associated namespaces and classes based on the 2452 // arguments we have. 2453 AssociatedNamespaceSet AssociatedNamespaces; 2454 AssociatedClassSet AssociatedClasses; 2455 FindAssociatedClassesAndNamespaces(Args, NumArgs, 2456 AssociatedNamespaces, 2457 AssociatedClasses); 2458 if (StdNamespaceIsAssociated && StdNamespace) 2459 AssociatedNamespaces.insert(getStdNamespace()); 2460 2461 QualType T1, T2; 2462 if (Operator) { 2463 T1 = Args[0]->getType(); 2464 if (NumArgs >= 2) 2465 T2 = Args[1]->getType(); 2466 } 2467 2468 // C++ [basic.lookup.argdep]p3: 2469 // Let X be the lookup set produced by unqualified lookup (3.4.1) 2470 // and let Y be the lookup set produced by argument dependent 2471 // lookup (defined as follows). If X contains [...] then Y is 2472 // empty. Otherwise Y is the set of declarations found in the 2473 // namespaces associated with the argument types as described 2474 // below. The set of declarations found by the lookup of the name 2475 // is the union of X and Y. 2476 // 2477 // Here, we compute Y and add its members to the overloaded 2478 // candidate set. 2479 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), 2480 NSEnd = AssociatedNamespaces.end(); 2481 NS != NSEnd; ++NS) { 2482 // When considering an associated namespace, the lookup is the 2483 // same as the lookup performed when the associated namespace is 2484 // used as a qualifier (3.4.3.2) except that: 2485 // 2486 // -- Any using-directives in the associated namespace are 2487 // ignored. 2488 // 2489 // -- Any namespace-scope friend functions declared in 2490 // associated classes are visible within their respective 2491 // namespaces even if they are not visible during an ordinary 2492 // lookup (11.4). 2493 DeclContext::lookup_iterator I, E; 2494 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { 2495 NamedDecl *D = *I; 2496 // If the only declaration here is an ordinary friend, consider 2497 // it only if it was declared in an associated classes. 2498 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { 2499 DeclContext *LexDC = D->getLexicalDeclContext(); 2500 if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) 2501 continue; 2502 } 2503 2504 if (isa<UsingShadowDecl>(D)) 2505 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2506 2507 if (isa<FunctionDecl>(D)) { 2508 if (Operator && 2509 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D), 2510 T1, T2, Context)) 2511 continue; 2512 } else if (!isa<FunctionTemplateDecl>(D)) 2513 continue; 2514 2515 Result.insert(D); 2516 } 2517 } 2518 } 2519 2520 //---------------------------------------------------------------------------- 2521 // Search for all visible declarations. 2522 //---------------------------------------------------------------------------- 2523 VisibleDeclConsumer::~VisibleDeclConsumer() { } 2524 2525 namespace { 2526 2527 class ShadowContextRAII; 2528 2529 class VisibleDeclsRecord { 2530 public: 2531 /// \brief An entry in the shadow map, which is optimized to store a 2532 /// single declaration (the common case) but can also store a list 2533 /// of declarations. 2534 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 2535 2536 private: 2537 /// \brief A mapping from declaration names to the declarations that have 2538 /// this name within a particular scope. 2539 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 2540 2541 /// \brief A list of shadow maps, which is used to model name hiding. 2542 std::list<ShadowMap> ShadowMaps; 2543 2544 /// \brief The declaration contexts we have already visited. 2545 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 2546 2547 friend class ShadowContextRAII; 2548 2549 public: 2550 /// \brief Determine whether we have already visited this context 2551 /// (and, if not, note that we are going to visit that context now). 2552 bool visitedContext(DeclContext *Ctx) { 2553 return !VisitedContexts.insert(Ctx); 2554 } 2555 2556 bool alreadyVisitedContext(DeclContext *Ctx) { 2557 return VisitedContexts.count(Ctx); 2558 } 2559 2560 /// \brief Determine whether the given declaration is hidden in the 2561 /// current scope. 2562 /// 2563 /// \returns the declaration that hides the given declaration, or 2564 /// NULL if no such declaration exists. 2565 NamedDecl *checkHidden(NamedDecl *ND); 2566 2567 /// \brief Add a declaration to the current shadow map. 2568 void add(NamedDecl *ND) { 2569 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 2570 } 2571 }; 2572 2573 /// \brief RAII object that records when we've entered a shadow context. 2574 class ShadowContextRAII { 2575 VisibleDeclsRecord &Visible; 2576 2577 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 2578 2579 public: 2580 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 2581 Visible.ShadowMaps.push_back(ShadowMap()); 2582 } 2583 2584 ~ShadowContextRAII() { 2585 Visible.ShadowMaps.pop_back(); 2586 } 2587 }; 2588 2589 } // end anonymous namespace 2590 2591 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 2592 // Look through using declarations. 2593 ND = ND->getUnderlyingDecl(); 2594 2595 unsigned IDNS = ND->getIdentifierNamespace(); 2596 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 2597 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 2598 SM != SMEnd; ++SM) { 2599 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 2600 if (Pos == SM->end()) 2601 continue; 2602 2603 for (ShadowMapEntry::iterator I = Pos->second.begin(), 2604 IEnd = Pos->second.end(); 2605 I != IEnd; ++I) { 2606 // A tag declaration does not hide a non-tag declaration. 2607 if ((*I)->hasTagIdentifierNamespace() && 2608 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 2609 Decl::IDNS_ObjCProtocol))) 2610 continue; 2611 2612 // Protocols are in distinct namespaces from everything else. 2613 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 2614 || (IDNS & Decl::IDNS_ObjCProtocol)) && 2615 (*I)->getIdentifierNamespace() != IDNS) 2616 continue; 2617 2618 // Functions and function templates in the same scope overload 2619 // rather than hide. FIXME: Look for hiding based on function 2620 // signatures! 2621 if ((*I)->isFunctionOrFunctionTemplate() && 2622 ND->isFunctionOrFunctionTemplate() && 2623 SM == ShadowMaps.rbegin()) 2624 continue; 2625 2626 // We've found a declaration that hides this one. 2627 return *I; 2628 } 2629 } 2630 2631 return 0; 2632 } 2633 2634 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, 2635 bool QualifiedNameLookup, 2636 bool InBaseClass, 2637 VisibleDeclConsumer &Consumer, 2638 VisibleDeclsRecord &Visited) { 2639 if (!Ctx) 2640 return; 2641 2642 // Make sure we don't visit the same context twice. 2643 if (Visited.visitedContext(Ctx->getPrimaryContext())) 2644 return; 2645 2646 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 2647 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 2648 2649 // Enumerate all of the results in this context. 2650 for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; 2651 CurCtx = CurCtx->getNextContext()) { 2652 for (DeclContext::decl_iterator D = CurCtx->decls_begin(), 2653 DEnd = CurCtx->decls_end(); 2654 D != DEnd; ++D) { 2655 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) { 2656 if (Result.isAcceptableDecl(ND)) { 2657 Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass); 2658 Visited.add(ND); 2659 } 2660 } else if (ObjCForwardProtocolDecl *ForwardProto 2661 = dyn_cast<ObjCForwardProtocolDecl>(*D)) { 2662 for (ObjCForwardProtocolDecl::protocol_iterator 2663 P = ForwardProto->protocol_begin(), 2664 PEnd = ForwardProto->protocol_end(); 2665 P != PEnd; 2666 ++P) { 2667 if (Result.isAcceptableDecl(*P)) { 2668 Consumer.FoundDecl(*P, Visited.checkHidden(*P), InBaseClass); 2669 Visited.add(*P); 2670 } 2671 } 2672 } else if (ObjCClassDecl *Class = dyn_cast<ObjCClassDecl>(*D)) { 2673 for (ObjCClassDecl::iterator I = Class->begin(), IEnd = Class->end(); 2674 I != IEnd; ++I) { 2675 ObjCInterfaceDecl *IFace = I->getInterface(); 2676 if (Result.isAcceptableDecl(IFace)) { 2677 Consumer.FoundDecl(IFace, Visited.checkHidden(IFace), InBaseClass); 2678 Visited.add(IFace); 2679 } 2680 } 2681 } 2682 2683 // Visit transparent contexts and inline namespaces inside this context. 2684 if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) { 2685 if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace()) 2686 LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass, 2687 Consumer, Visited); 2688 } 2689 } 2690 } 2691 2692 // Traverse using directives for qualified name lookup. 2693 if (QualifiedNameLookup) { 2694 ShadowContextRAII Shadow(Visited); 2695 DeclContext::udir_iterator I, E; 2696 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) { 2697 LookupVisibleDecls((*I)->getNominatedNamespace(), Result, 2698 QualifiedNameLookup, InBaseClass, Consumer, Visited); 2699 } 2700 } 2701 2702 // Traverse the contexts of inherited C++ classes. 2703 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 2704 if (!Record->hasDefinition()) 2705 return; 2706 2707 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), 2708 BEnd = Record->bases_end(); 2709 B != BEnd; ++B) { 2710 QualType BaseType = B->getType(); 2711 2712 // Don't look into dependent bases, because name lookup can't look 2713 // there anyway. 2714 if (BaseType->isDependentType()) 2715 continue; 2716 2717 const RecordType *Record = BaseType->getAs<RecordType>(); 2718 if (!Record) 2719 continue; 2720 2721 // FIXME: It would be nice to be able to determine whether referencing 2722 // a particular member would be ambiguous. For example, given 2723 // 2724 // struct A { int member; }; 2725 // struct B { int member; }; 2726 // struct C : A, B { }; 2727 // 2728 // void f(C *c) { c->### } 2729 // 2730 // accessing 'member' would result in an ambiguity. However, we 2731 // could be smart enough to qualify the member with the base 2732 // class, e.g., 2733 // 2734 // c->B::member 2735 // 2736 // or 2737 // 2738 // c->A::member 2739 2740 // Find results in this base class (and its bases). 2741 ShadowContextRAII Shadow(Visited); 2742 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup, 2743 true, Consumer, Visited); 2744 } 2745 } 2746 2747 // Traverse the contexts of Objective-C classes. 2748 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 2749 // Traverse categories. 2750 for (ObjCCategoryDecl *Category = IFace->getCategoryList(); 2751 Category; Category = Category->getNextClassCategory()) { 2752 ShadowContextRAII Shadow(Visited); 2753 LookupVisibleDecls(Category, Result, QualifiedNameLookup, false, 2754 Consumer, Visited); 2755 } 2756 2757 // Traverse protocols. 2758 for (ObjCInterfaceDecl::all_protocol_iterator 2759 I = IFace->all_referenced_protocol_begin(), 2760 E = IFace->all_referenced_protocol_end(); I != E; ++I) { 2761 ShadowContextRAII Shadow(Visited); 2762 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, 2763 Visited); 2764 } 2765 2766 // Traverse the superclass. 2767 if (IFace->getSuperClass()) { 2768 ShadowContextRAII Shadow(Visited); 2769 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup, 2770 true, Consumer, Visited); 2771 } 2772 2773 // If there is an implementation, traverse it. We do this to find 2774 // synthesized ivars. 2775 if (IFace->getImplementation()) { 2776 ShadowContextRAII Shadow(Visited); 2777 LookupVisibleDecls(IFace->getImplementation(), Result, 2778 QualifiedNameLookup, true, Consumer, Visited); 2779 } 2780 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 2781 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(), 2782 E = Protocol->protocol_end(); I != E; ++I) { 2783 ShadowContextRAII Shadow(Visited); 2784 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, 2785 Visited); 2786 } 2787 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 2788 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(), 2789 E = Category->protocol_end(); I != E; ++I) { 2790 ShadowContextRAII Shadow(Visited); 2791 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, 2792 Visited); 2793 } 2794 2795 // If there is an implementation, traverse it. 2796 if (Category->getImplementation()) { 2797 ShadowContextRAII Shadow(Visited); 2798 LookupVisibleDecls(Category->getImplementation(), Result, 2799 QualifiedNameLookup, true, Consumer, Visited); 2800 } 2801 } 2802 } 2803 2804 static void LookupVisibleDecls(Scope *S, LookupResult &Result, 2805 UnqualUsingDirectiveSet &UDirs, 2806 VisibleDeclConsumer &Consumer, 2807 VisibleDeclsRecord &Visited) { 2808 if (!S) 2809 return; 2810 2811 if (!S->getEntity() || 2812 (!S->getParent() && 2813 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) || 2814 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) { 2815 // Walk through the declarations in this Scope. 2816 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); 2817 D != DEnd; ++D) { 2818 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) 2819 if (Result.isAcceptableDecl(ND)) { 2820 Consumer.FoundDecl(ND, Visited.checkHidden(ND), false); 2821 Visited.add(ND); 2822 } 2823 } 2824 } 2825 2826 // FIXME: C++ [temp.local]p8 2827 DeclContext *Entity = 0; 2828 if (S->getEntity()) { 2829 // Look into this scope's declaration context, along with any of its 2830 // parent lookup contexts (e.g., enclosing classes), up to the point 2831 // where we hit the context stored in the next outer scope. 2832 Entity = (DeclContext *)S->getEntity(); 2833 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME 2834 2835 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 2836 Ctx = Ctx->getLookupParent()) { 2837 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 2838 if (Method->isInstanceMethod()) { 2839 // For instance methods, look for ivars in the method's interface. 2840 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 2841 Result.getNameLoc(), Sema::LookupMemberName); 2842 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 2843 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false, 2844 /*InBaseClass=*/false, Consumer, Visited); 2845 2846 // Look for properties from which we can synthesize ivars, if 2847 // permitted. 2848 if (Result.getSema().getLangOptions().ObjCNonFragileABI2 && 2849 IFace->getImplementation() && 2850 Result.getLookupKind() == Sema::LookupOrdinaryName) { 2851 for (ObjCInterfaceDecl::prop_iterator 2852 P = IFace->prop_begin(), 2853 PEnd = IFace->prop_end(); 2854 P != PEnd; ++P) { 2855 if (Result.getSema().canSynthesizeProvisionalIvar(*P) && 2856 !IFace->lookupInstanceVariable((*P)->getIdentifier())) { 2857 Consumer.FoundDecl(*P, Visited.checkHidden(*P), false); 2858 Visited.add(*P); 2859 } 2860 } 2861 } 2862 } 2863 } 2864 2865 // We've already performed all of the name lookup that we need 2866 // to for Objective-C methods; the next context will be the 2867 // outer scope. 2868 break; 2869 } 2870 2871 if (Ctx->isFunctionOrMethod()) 2872 continue; 2873 2874 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, 2875 /*InBaseClass=*/false, Consumer, Visited); 2876 } 2877 } else if (!S->getParent()) { 2878 // Look into the translation unit scope. We walk through the translation 2879 // unit's declaration context, because the Scope itself won't have all of 2880 // the declarations if we loaded a precompiled header. 2881 // FIXME: We would like the translation unit's Scope object to point to the 2882 // translation unit, so we don't need this special "if" branch. However, 2883 // doing so would force the normal C++ name-lookup code to look into the 2884 // translation unit decl when the IdentifierInfo chains would suffice. 2885 // Once we fix that problem (which is part of a more general "don't look 2886 // in DeclContexts unless we have to" optimization), we can eliminate this. 2887 Entity = Result.getSema().Context.getTranslationUnitDecl(); 2888 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, 2889 /*InBaseClass=*/false, Consumer, Visited); 2890 } 2891 2892 if (Entity) { 2893 // Lookup visible declarations in any namespaces found by using 2894 // directives. 2895 UnqualUsingDirectiveSet::const_iterator UI, UEnd; 2896 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity); 2897 for (; UI != UEnd; ++UI) 2898 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()), 2899 Result, /*QualifiedNameLookup=*/false, 2900 /*InBaseClass=*/false, Consumer, Visited); 2901 } 2902 2903 // Lookup names in the parent scope. 2904 ShadowContextRAII Shadow(Visited); 2905 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited); 2906 } 2907 2908 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 2909 VisibleDeclConsumer &Consumer, 2910 bool IncludeGlobalScope) { 2911 // Determine the set of using directives available during 2912 // unqualified name lookup. 2913 Scope *Initial = S; 2914 UnqualUsingDirectiveSet UDirs; 2915 if (getLangOptions().CPlusPlus) { 2916 // Find the first namespace or translation-unit scope. 2917 while (S && !isNamespaceOrTranslationUnitScope(S)) 2918 S = S->getParent(); 2919 2920 UDirs.visitScopeChain(Initial, S); 2921 } 2922 UDirs.done(); 2923 2924 // Look for visible declarations. 2925 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); 2926 VisibleDeclsRecord Visited; 2927 if (!IncludeGlobalScope) 2928 Visited.visitedContext(Context.getTranslationUnitDecl()); 2929 ShadowContextRAII Shadow(Visited); 2930 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited); 2931 } 2932 2933 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 2934 VisibleDeclConsumer &Consumer, 2935 bool IncludeGlobalScope) { 2936 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); 2937 VisibleDeclsRecord Visited; 2938 if (!IncludeGlobalScope) 2939 Visited.visitedContext(Context.getTranslationUnitDecl()); 2940 ShadowContextRAII Shadow(Visited); 2941 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, 2942 /*InBaseClass=*/false, Consumer, Visited); 2943 } 2944 2945 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. 2946 /// If GnuLabelLoc is a valid source location, then this is a definition 2947 /// of an __label__ label name, otherwise it is a normal label definition 2948 /// or use. 2949 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 2950 SourceLocation GnuLabelLoc) { 2951 // Do a lookup to see if we have a label with this name already. 2952 NamedDecl *Res = 0; 2953 2954 if (GnuLabelLoc.isValid()) { 2955 // Local label definitions always shadow existing labels. 2956 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 2957 Scope *S = CurScope; 2958 PushOnScopeChains(Res, S, true); 2959 return cast<LabelDecl>(Res); 2960 } 2961 2962 // Not a GNU local label. 2963 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); 2964 // If we found a label, check to see if it is in the same context as us. 2965 // When in a Block, we don't want to reuse a label in an enclosing function. 2966 if (Res && Res->getDeclContext() != CurContext) 2967 Res = 0; 2968 if (Res == 0) { 2969 // If not forward referenced or defined already, create the backing decl. 2970 Res = LabelDecl::Create(Context, CurContext, Loc, II); 2971 Scope *S = CurScope->getFnParent(); 2972 assert(S && "Not in a function?"); 2973 PushOnScopeChains(Res, S, true); 2974 } 2975 return cast<LabelDecl>(Res); 2976 } 2977 2978 //===----------------------------------------------------------------------===// 2979 // Typo correction 2980 //===----------------------------------------------------------------------===// 2981 2982 namespace { 2983 2984 typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap; 2985 typedef std::map<unsigned, TypoResultsMap *> TypoEditDistanceMap; 2986 2987 static const unsigned MaxTypoDistanceResultSets = 5; 2988 2989 class TypoCorrectionConsumer : public VisibleDeclConsumer { 2990 /// \brief The name written that is a typo in the source. 2991 llvm::StringRef Typo; 2992 2993 /// \brief The results found that have the smallest edit distance 2994 /// found (so far) with the typo name. 2995 /// 2996 /// The pointer value being set to the current DeclContext indicates 2997 /// whether there is a keyword with this name. 2998 TypoEditDistanceMap BestResults; 2999 3000 /// \brief The worst of the best N edit distances found so far. 3001 unsigned MaxEditDistance; 3002 3003 Sema &SemaRef; 3004 3005 public: 3006 explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo) 3007 : Typo(Typo->getName()), 3008 MaxEditDistance((std::numeric_limits<unsigned>::max)()), 3009 SemaRef(SemaRef) { } 3010 3011 ~TypoCorrectionConsumer() { 3012 for (TypoEditDistanceMap::iterator I = BestResults.begin(), 3013 IEnd = BestResults.end(); 3014 I != IEnd; 3015 ++I) 3016 delete I->second; 3017 } 3018 3019 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass); 3020 void FoundName(llvm::StringRef Name); 3021 void addKeywordResult(llvm::StringRef Keyword); 3022 void addName(llvm::StringRef Name, NamedDecl *ND, unsigned Distance, 3023 NestedNameSpecifier *NNS=NULL); 3024 void addCorrection(TypoCorrection Correction); 3025 3026 typedef TypoResultsMap::iterator result_iterator; 3027 typedef TypoEditDistanceMap::iterator distance_iterator; 3028 distance_iterator begin() { return BestResults.begin(); } 3029 distance_iterator end() { return BestResults.end(); } 3030 void erase(distance_iterator I) { BestResults.erase(I); } 3031 unsigned size() const { return BestResults.size(); } 3032 bool empty() const { return BestResults.empty(); } 3033 3034 TypoCorrection &operator[](llvm::StringRef Name) { 3035 return (*BestResults.begin()->second)[Name]; 3036 } 3037 3038 unsigned getMaxEditDistance() const { 3039 return MaxEditDistance; 3040 } 3041 3042 unsigned getBestEditDistance() { 3043 return (BestResults.empty()) ? MaxEditDistance : BestResults.begin()->first; 3044 } 3045 }; 3046 3047 } 3048 3049 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 3050 bool InBaseClass) { 3051 // Don't consider hidden names for typo correction. 3052 if (Hiding) 3053 return; 3054 3055 // Only consider entities with identifiers for names, ignoring 3056 // special names (constructors, overloaded operators, selectors, 3057 // etc.). 3058 IdentifierInfo *Name = ND->getIdentifier(); 3059 if (!Name) 3060 return; 3061 3062 FoundName(Name->getName()); 3063 } 3064 3065 void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) { 3066 // Use a simple length-based heuristic to determine the minimum possible 3067 // edit distance. If the minimum isn't good enough, bail out early. 3068 unsigned MinED = abs((int)Name.size() - (int)Typo.size()); 3069 if (MinED > MaxEditDistance || (MinED && Typo.size() / MinED < 3)) 3070 return; 3071 3072 // Compute an upper bound on the allowable edit distance, so that the 3073 // edit-distance algorithm can short-circuit. 3074 unsigned UpperBound = 3075 std::min(unsigned((Typo.size() + 2) / 3), MaxEditDistance); 3076 3077 // Compute the edit distance between the typo and the name of this 3078 // entity. If this edit distance is not worse than the best edit 3079 // distance we've seen so far, add it to the list of results. 3080 unsigned ED = Typo.edit_distance(Name, true, UpperBound); 3081 3082 if (ED > MaxEditDistance) { 3083 // This result is worse than the best results we've seen so far; 3084 // ignore it. 3085 return; 3086 } 3087 3088 addName(Name, NULL, ED); 3089 } 3090 3091 void TypoCorrectionConsumer::addKeywordResult(llvm::StringRef Keyword) { 3092 // Compute the edit distance between the typo and this keyword. 3093 // If this edit distance is not worse than the best edit 3094 // distance we've seen so far, add it to the list of results. 3095 unsigned ED = Typo.edit_distance(Keyword); 3096 if (ED > MaxEditDistance) { 3097 // This result is worse than the best results we've seen so far; 3098 // ignore it. 3099 return; 3100 } 3101 3102 addName(Keyword, TypoCorrection::KeywordDecl(), ED); 3103 } 3104 3105 void TypoCorrectionConsumer::addName(llvm::StringRef Name, 3106 NamedDecl *ND, 3107 unsigned Distance, 3108 NestedNameSpecifier *NNS) { 3109 addCorrection(TypoCorrection(&SemaRef.Context.Idents.get(Name), 3110 ND, NNS, Distance)); 3111 } 3112 3113 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 3114 llvm::StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 3115 TypoResultsMap *& Map = BestResults[Correction.getEditDistance()]; 3116 if (!Map) 3117 Map = new TypoResultsMap; 3118 3119 TypoCorrection &CurrentCorrection = (*Map)[Name]; 3120 if (!CurrentCorrection || 3121 // FIXME: The following should be rolled up into an operator< on 3122 // TypoCorrection with a more principled definition. 3123 CurrentCorrection.isKeyword() < Correction.isKeyword() || 3124 Correction.getAsString(SemaRef.getLangOptions()) < 3125 CurrentCorrection.getAsString(SemaRef.getLangOptions())) 3126 CurrentCorrection = Correction; 3127 3128 while (BestResults.size() > MaxTypoDistanceResultSets) { 3129 TypoEditDistanceMap::iterator Last = BestResults.end(); 3130 --Last; 3131 delete Last->second; 3132 BestResults.erase(Last); 3133 } 3134 } 3135 3136 namespace { 3137 3138 class SpecifierInfo { 3139 public: 3140 DeclContext* DeclCtx; 3141 NestedNameSpecifier* NameSpecifier; 3142 unsigned EditDistance; 3143 3144 SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED) 3145 : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {} 3146 }; 3147 3148 typedef llvm::SmallVector<DeclContext*, 4> DeclContextList; 3149 typedef llvm::SmallVector<SpecifierInfo, 16> SpecifierInfoList; 3150 3151 class NamespaceSpecifierSet { 3152 ASTContext &Context; 3153 DeclContextList CurContextChain; 3154 bool isSorted; 3155 3156 SpecifierInfoList Specifiers; 3157 llvm::SmallSetVector<unsigned, 4> Distances; 3158 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap; 3159 3160 /// \brief Helper for building the list of DeclContexts between the current 3161 /// context and the top of the translation unit 3162 static DeclContextList BuildContextChain(DeclContext *Start); 3163 3164 void SortNamespaces(); 3165 3166 public: 3167 explicit NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext) 3168 : Context(Context), CurContextChain(BuildContextChain(CurContext)), 3169 isSorted(true) {} 3170 3171 /// \brief Add the namespace to the set, computing the corresponding 3172 /// NestedNameSpecifier and its distance in the process. 3173 void AddNamespace(NamespaceDecl *ND); 3174 3175 typedef SpecifierInfoList::iterator iterator; 3176 iterator begin() { 3177 if (!isSorted) SortNamespaces(); 3178 return Specifiers.begin(); 3179 } 3180 iterator end() { return Specifiers.end(); } 3181 }; 3182 3183 } 3184 3185 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) { 3186 assert(Start && "Bulding a context chain from a null context"); 3187 DeclContextList Chain; 3188 for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL; 3189 DC = DC->getLookupParent()) { 3190 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 3191 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 3192 !(ND && ND->isAnonymousNamespace())) 3193 Chain.push_back(DC->getPrimaryContext()); 3194 } 3195 return Chain; 3196 } 3197 3198 void NamespaceSpecifierSet::SortNamespaces() { 3199 llvm::SmallVector<unsigned, 4> sortedDistances; 3200 sortedDistances.append(Distances.begin(), Distances.end()); 3201 3202 if (sortedDistances.size() > 1) 3203 std::sort(sortedDistances.begin(), sortedDistances.end()); 3204 3205 Specifiers.clear(); 3206 for (llvm::SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(), 3207 DIEnd = sortedDistances.end(); 3208 DI != DIEnd; ++DI) { 3209 SpecifierInfoList &SpecList = DistanceMap[*DI]; 3210 Specifiers.append(SpecList.begin(), SpecList.end()); 3211 } 3212 3213 isSorted = true; 3214 } 3215 3216 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) { 3217 DeclContext *Ctx = cast<DeclContext>(ND); 3218 NestedNameSpecifier *NNS = NULL; 3219 unsigned NumSpecifiers = 0; 3220 DeclContextList NamespaceDeclChain(BuildContextChain(Ctx)); 3221 3222 // Eliminate common elements from the two DeclContext chains 3223 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(), 3224 CEnd = CurContextChain.rend(); 3225 C != CEnd && !NamespaceDeclChain.empty() && 3226 NamespaceDeclChain.back() == *C; ++C) { 3227 NamespaceDeclChain.pop_back(); 3228 } 3229 3230 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 3231 for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(), 3232 CEnd = NamespaceDeclChain.rend(); 3233 C != CEnd; ++C) { 3234 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C); 3235 if (ND) { 3236 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 3237 ++NumSpecifiers; 3238 } 3239 } 3240 3241 isSorted = false; 3242 Distances.insert(NumSpecifiers); 3243 DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers)); 3244 } 3245 3246 /// \brief Perform name lookup for a possible result for typo correction. 3247 static void LookupPotentialTypoResult(Sema &SemaRef, 3248 LookupResult &Res, 3249 IdentifierInfo *Name, 3250 Scope *S, CXXScopeSpec *SS, 3251 DeclContext *MemberContext, 3252 bool EnteringContext, 3253 Sema::CorrectTypoContext CTC) { 3254 Res.suppressDiagnostics(); 3255 Res.clear(); 3256 Res.setLookupName(Name); 3257 if (MemberContext) { 3258 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 3259 if (CTC == Sema::CTC_ObjCIvarLookup) { 3260 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 3261 Res.addDecl(Ivar); 3262 Res.resolveKind(); 3263 return; 3264 } 3265 } 3266 3267 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) { 3268 Res.addDecl(Prop); 3269 Res.resolveKind(); 3270 return; 3271 } 3272 } 3273 3274 SemaRef.LookupQualifiedName(Res, MemberContext); 3275 return; 3276 } 3277 3278 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, 3279 EnteringContext); 3280 3281 // Fake ivar lookup; this should really be part of 3282 // LookupParsedName. 3283 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 3284 if (Method->isInstanceMethod() && Method->getClassInterface() && 3285 (Res.empty() || 3286 (Res.isSingleResult() && 3287 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 3288 if (ObjCIvarDecl *IV 3289 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 3290 Res.addDecl(IV); 3291 Res.resolveKind(); 3292 } 3293 } 3294 } 3295 } 3296 3297 /// \brief Add keywords to the consumer as possible typo corrections. 3298 static void AddKeywordsToConsumer(Sema &SemaRef, 3299 TypoCorrectionConsumer &Consumer, 3300 Scope *S, Sema::CorrectTypoContext CTC) { 3301 // Add context-dependent keywords. 3302 bool WantTypeSpecifiers = false; 3303 bool WantExpressionKeywords = false; 3304 bool WantCXXNamedCasts = false; 3305 bool WantRemainingKeywords = false; 3306 switch (CTC) { 3307 case Sema::CTC_Unknown: 3308 WantTypeSpecifiers = true; 3309 WantExpressionKeywords = true; 3310 WantCXXNamedCasts = true; 3311 WantRemainingKeywords = true; 3312 3313 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) 3314 if (Method->getClassInterface() && 3315 Method->getClassInterface()->getSuperClass()) 3316 Consumer.addKeywordResult("super"); 3317 3318 break; 3319 3320 case Sema::CTC_NoKeywords: 3321 break; 3322 3323 case Sema::CTC_Type: 3324 WantTypeSpecifiers = true; 3325 break; 3326 3327 case Sema::CTC_ObjCMessageReceiver: 3328 Consumer.addKeywordResult("super"); 3329 // Fall through to handle message receivers like expressions. 3330 3331 case Sema::CTC_Expression: 3332 if (SemaRef.getLangOptions().CPlusPlus) 3333 WantTypeSpecifiers = true; 3334 WantExpressionKeywords = true; 3335 // Fall through to get C++ named casts. 3336 3337 case Sema::CTC_CXXCasts: 3338 WantCXXNamedCasts = true; 3339 break; 3340 3341 case Sema::CTC_ObjCPropertyLookup: 3342 // FIXME: Add "isa"? 3343 break; 3344 3345 case Sema::CTC_MemberLookup: 3346 if (SemaRef.getLangOptions().CPlusPlus) 3347 Consumer.addKeywordResult("template"); 3348 break; 3349 3350 case Sema::CTC_ObjCIvarLookup: 3351 break; 3352 } 3353 3354 if (WantTypeSpecifiers) { 3355 // Add type-specifier keywords to the set of results. 3356 const char *CTypeSpecs[] = { 3357 "char", "const", "double", "enum", "float", "int", "long", "short", 3358 "signed", "struct", "union", "unsigned", "void", "volatile", 3359 "_Complex", "_Imaginary", 3360 // storage-specifiers as well 3361 "extern", "inline", "static", "typedef" 3362 }; 3363 3364 const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]); 3365 for (unsigned I = 0; I != NumCTypeSpecs; ++I) 3366 Consumer.addKeywordResult(CTypeSpecs[I]); 3367 3368 if (SemaRef.getLangOptions().C99) 3369 Consumer.addKeywordResult("restrict"); 3370 if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) 3371 Consumer.addKeywordResult("bool"); 3372 else if (SemaRef.getLangOptions().C99) 3373 Consumer.addKeywordResult("_Bool"); 3374 3375 if (SemaRef.getLangOptions().CPlusPlus) { 3376 Consumer.addKeywordResult("class"); 3377 Consumer.addKeywordResult("typename"); 3378 Consumer.addKeywordResult("wchar_t"); 3379 3380 if (SemaRef.getLangOptions().CPlusPlus0x) { 3381 Consumer.addKeywordResult("char16_t"); 3382 Consumer.addKeywordResult("char32_t"); 3383 Consumer.addKeywordResult("constexpr"); 3384 Consumer.addKeywordResult("decltype"); 3385 Consumer.addKeywordResult("thread_local"); 3386 } 3387 } 3388 3389 if (SemaRef.getLangOptions().GNUMode) 3390 Consumer.addKeywordResult("typeof"); 3391 } 3392 3393 if (WantCXXNamedCasts && SemaRef.getLangOptions().CPlusPlus) { 3394 Consumer.addKeywordResult("const_cast"); 3395 Consumer.addKeywordResult("dynamic_cast"); 3396 Consumer.addKeywordResult("reinterpret_cast"); 3397 Consumer.addKeywordResult("static_cast"); 3398 } 3399 3400 if (WantExpressionKeywords) { 3401 Consumer.addKeywordResult("sizeof"); 3402 if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) { 3403 Consumer.addKeywordResult("false"); 3404 Consumer.addKeywordResult("true"); 3405 } 3406 3407 if (SemaRef.getLangOptions().CPlusPlus) { 3408 const char *CXXExprs[] = { 3409 "delete", "new", "operator", "throw", "typeid" 3410 }; 3411 const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]); 3412 for (unsigned I = 0; I != NumCXXExprs; ++I) 3413 Consumer.addKeywordResult(CXXExprs[I]); 3414 3415 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 3416 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 3417 Consumer.addKeywordResult("this"); 3418 3419 if (SemaRef.getLangOptions().CPlusPlus0x) { 3420 Consumer.addKeywordResult("alignof"); 3421 Consumer.addKeywordResult("nullptr"); 3422 } 3423 } 3424 } 3425 3426 if (WantRemainingKeywords) { 3427 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 3428 // Statements. 3429 const char *CStmts[] = { 3430 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 3431 const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]); 3432 for (unsigned I = 0; I != NumCStmts; ++I) 3433 Consumer.addKeywordResult(CStmts[I]); 3434 3435 if (SemaRef.getLangOptions().CPlusPlus) { 3436 Consumer.addKeywordResult("catch"); 3437 Consumer.addKeywordResult("try"); 3438 } 3439 3440 if (S && S->getBreakParent()) 3441 Consumer.addKeywordResult("break"); 3442 3443 if (S && S->getContinueParent()) 3444 Consumer.addKeywordResult("continue"); 3445 3446 if (!SemaRef.getCurFunction()->SwitchStack.empty()) { 3447 Consumer.addKeywordResult("case"); 3448 Consumer.addKeywordResult("default"); 3449 } 3450 } else { 3451 if (SemaRef.getLangOptions().CPlusPlus) { 3452 Consumer.addKeywordResult("namespace"); 3453 Consumer.addKeywordResult("template"); 3454 } 3455 3456 if (S && S->isClassScope()) { 3457 Consumer.addKeywordResult("explicit"); 3458 Consumer.addKeywordResult("friend"); 3459 Consumer.addKeywordResult("mutable"); 3460 Consumer.addKeywordResult("private"); 3461 Consumer.addKeywordResult("protected"); 3462 Consumer.addKeywordResult("public"); 3463 Consumer.addKeywordResult("virtual"); 3464 } 3465 } 3466 3467 if (SemaRef.getLangOptions().CPlusPlus) { 3468 Consumer.addKeywordResult("using"); 3469 3470 if (SemaRef.getLangOptions().CPlusPlus0x) 3471 Consumer.addKeywordResult("static_assert"); 3472 } 3473 } 3474 } 3475 3476 /// \brief Try to "correct" a typo in the source code by finding 3477 /// visible declarations whose names are similar to the name that was 3478 /// present in the source code. 3479 /// 3480 /// \param TypoName the \c DeclarationNameInfo structure that contains 3481 /// the name that was present in the source code along with its location. 3482 /// 3483 /// \param LookupKind the name-lookup criteria used to search for the name. 3484 /// 3485 /// \param S the scope in which name lookup occurs. 3486 /// 3487 /// \param SS the nested-name-specifier that precedes the name we're 3488 /// looking for, if present. 3489 /// 3490 /// \param MemberContext if non-NULL, the context in which to look for 3491 /// a member access expression. 3492 /// 3493 /// \param EnteringContext whether we're entering the context described by 3494 /// the nested-name-specifier SS. 3495 /// 3496 /// \param CTC The context in which typo correction occurs, which impacts the 3497 /// set of keywords permitted. 3498 /// 3499 /// \param OPT when non-NULL, the search for visible declarations will 3500 /// also walk the protocols in the qualified interfaces of \p OPT. 3501 /// 3502 /// \returns a \c TypoCorrection containing the corrected name if the typo 3503 /// along with information such as the \c NamedDecl where the corrected name 3504 /// was declared, and any additional \c NestedNameSpecifier needed to access 3505 /// it (C++ only). The \c TypoCorrection is empty if there is no correction. 3506 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 3507 Sema::LookupNameKind LookupKind, 3508 Scope *S, CXXScopeSpec *SS, 3509 DeclContext *MemberContext, 3510 bool EnteringContext, 3511 CorrectTypoContext CTC, 3512 const ObjCObjectPointerType *OPT) { 3513 if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking) 3514 return TypoCorrection(); 3515 3516 // We only attempt to correct typos for identifiers. 3517 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 3518 if (!Typo) 3519 return TypoCorrection(); 3520 3521 // If the scope specifier itself was invalid, don't try to correct 3522 // typos. 3523 if (SS && SS->isInvalid()) 3524 return TypoCorrection(); 3525 3526 // Never try to correct typos during template deduction or 3527 // instantiation. 3528 if (!ActiveTemplateInstantiations.empty()) 3529 return TypoCorrection(); 3530 3531 NamespaceSpecifierSet Namespaces(Context, CurContext); 3532 3533 TypoCorrectionConsumer Consumer(*this, Typo); 3534 3535 // Perform name lookup to find visible, similarly-named entities. 3536 bool IsUnqualifiedLookup = false; 3537 if (MemberContext) { 3538 LookupVisibleDecls(MemberContext, LookupKind, Consumer); 3539 3540 // Look in qualified interfaces. 3541 if (OPT) { 3542 for (ObjCObjectPointerType::qual_iterator 3543 I = OPT->qual_begin(), E = OPT->qual_end(); 3544 I != E; ++I) 3545 LookupVisibleDecls(*I, LookupKind, Consumer); 3546 } 3547 } else if (SS && SS->isSet()) { 3548 DeclContext *DC = computeDeclContext(*SS, EnteringContext); 3549 if (!DC) 3550 return TypoCorrection(); 3551 3552 // Provide a stop gap for files that are just seriously broken. Trying 3553 // to correct all typos can turn into a HUGE performance penalty, causing 3554 // some files to take minutes to get rejected by the parser. 3555 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) 3556 return TypoCorrection(); 3557 ++TyposCorrected; 3558 3559 LookupVisibleDecls(DC, LookupKind, Consumer); 3560 } else { 3561 IsUnqualifiedLookup = true; 3562 UnqualifiedTyposCorrectedMap::iterator Cached 3563 = UnqualifiedTyposCorrected.find(Typo); 3564 if (Cached == UnqualifiedTyposCorrected.end()) { 3565 // Provide a stop gap for files that are just seriously broken. Trying 3566 // to correct all typos can turn into a HUGE performance penalty, causing 3567 // some files to take minutes to get rejected by the parser. 3568 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) 3569 return TypoCorrection(); 3570 3571 // For unqualified lookup, look through all of the names that we have 3572 // seen in this translation unit. 3573 for (IdentifierTable::iterator I = Context.Idents.begin(), 3574 IEnd = Context.Idents.end(); 3575 I != IEnd; ++I) 3576 Consumer.FoundName(I->getKey()); 3577 3578 // Walk through identifiers in external identifier sources. 3579 if (IdentifierInfoLookup *External 3580 = Context.Idents.getExternalIdentifierLookup()) { 3581 llvm::OwningPtr<IdentifierIterator> Iter(External->getIdentifiers()); 3582 do { 3583 llvm::StringRef Name = Iter->Next(); 3584 if (Name.empty()) 3585 break; 3586 3587 Consumer.FoundName(Name); 3588 } while (true); 3589 } 3590 } else { 3591 // Use the cached value, unless it's a keyword. In the keyword case, we'll 3592 // end up adding the keyword below. 3593 if (!Cached->second) 3594 return TypoCorrection(); 3595 3596 if (!Cached->second.isKeyword()) 3597 Consumer.addCorrection(Cached->second); 3598 } 3599 } 3600 3601 AddKeywordsToConsumer(*this, Consumer, S, CTC); 3602 3603 // If we haven't found anything, we're done. 3604 if (Consumer.empty()) { 3605 // If this was an unqualified lookup, note that no correction was found. 3606 if (IsUnqualifiedLookup) 3607 (void)UnqualifiedTyposCorrected[Typo]; 3608 3609 return TypoCorrection(); 3610 } 3611 3612 // Make sure that the user typed at least 3 characters for each correction 3613 // made. Otherwise, we don't even both looking at the results. 3614 unsigned ED = Consumer.getBestEditDistance(); 3615 if (ED > 0 && Typo->getName().size() / ED < 3) { 3616 // If this was an unqualified lookup, note that no correction was found. 3617 if (IsUnqualifiedLookup) 3618 (void)UnqualifiedTyposCorrected[Typo]; 3619 3620 return TypoCorrection(); 3621 } 3622 3623 // Build the NestedNameSpecifiers for the KnownNamespaces 3624 if (getLangOptions().CPlusPlus) { 3625 // Load any externally-known namespaces. 3626 if (ExternalSource && !LoadedExternalKnownNamespaces) { 3627 llvm::SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 3628 LoadedExternalKnownNamespaces = true; 3629 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 3630 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I) 3631 KnownNamespaces[ExternalKnownNamespaces[I]] = true; 3632 } 3633 3634 for (llvm::DenseMap<NamespaceDecl*, bool>::iterator 3635 KNI = KnownNamespaces.begin(), 3636 KNIEnd = KnownNamespaces.end(); 3637 KNI != KNIEnd; ++KNI) 3638 Namespaces.AddNamespace(KNI->first); 3639 } 3640 3641 // Weed out any names that could not be found by name lookup. 3642 llvm::SmallPtrSet<IdentifierInfo*, 16> QualifiedResults; 3643 LookupResult TmpRes(*this, TypoName, LookupKind); 3644 TmpRes.suppressDiagnostics(); 3645 while (!Consumer.empty()) { 3646 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin(); 3647 unsigned ED = DI->first; 3648 for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(), 3649 IEnd = DI->second->end(); 3650 I != IEnd; /* Increment in loop. */) { 3651 // If the item already has been looked up or is a keyword, keep it 3652 if (I->second.isResolved()) { 3653 ++I; 3654 continue; 3655 } 3656 3657 // Perform name lookup on this name. 3658 IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo(); 3659 LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext, 3660 EnteringContext, CTC); 3661 3662 switch (TmpRes.getResultKind()) { 3663 case LookupResult::NotFound: 3664 case LookupResult::NotFoundInCurrentInstantiation: 3665 QualifiedResults.insert(Name); 3666 // We didn't find this name in our scope, or didn't like what we found; 3667 // ignore it. 3668 { 3669 TypoCorrectionConsumer::result_iterator Next = I; 3670 ++Next; 3671 DI->second->erase(I); 3672 I = Next; 3673 } 3674 break; 3675 3676 case LookupResult::Ambiguous: 3677 // We don't deal with ambiguities. 3678 return TypoCorrection(); 3679 3680 case LookupResult::Found: 3681 case LookupResult::FoundOverloaded: 3682 case LookupResult::FoundUnresolvedValue: 3683 I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>()); 3684 // FIXME: This sets the CorrectionDecl to NULL for overloaded functions. 3685 // It would be nice to find the right one with overload resolution. 3686 ++I; 3687 break; 3688 } 3689 } 3690 3691 if (DI->second->empty()) 3692 Consumer.erase(DI); 3693 else if (!getLangOptions().CPlusPlus || QualifiedResults.empty() || !ED) 3694 // If there are results in the closest possible bucket, stop 3695 break; 3696 3697 // Only perform the qualified lookups for C++ 3698 if (getLangOptions().CPlusPlus) { 3699 TmpRes.suppressDiagnostics(); 3700 for (llvm::SmallPtrSet<IdentifierInfo*, 3701 16>::iterator QRI = QualifiedResults.begin(), 3702 QRIEnd = QualifiedResults.end(); 3703 QRI != QRIEnd; ++QRI) { 3704 for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(), 3705 NIEnd = Namespaces.end(); 3706 NI != NIEnd; ++NI) { 3707 DeclContext *Ctx = NI->DeclCtx; 3708 unsigned QualifiedED = ED + NI->EditDistance; 3709 3710 // Stop searching once the namespaces are too far away to create 3711 // acceptable corrections for this identifier (since the namespaces 3712 // are sorted in ascending order by edit distance) 3713 if (QualifiedED > Consumer.getMaxEditDistance()) break; 3714 3715 TmpRes.clear(); 3716 TmpRes.setLookupName(*QRI); 3717 if (!LookupQualifiedName(TmpRes, Ctx)) continue; 3718 3719 switch (TmpRes.getResultKind()) { 3720 case LookupResult::Found: 3721 case LookupResult::FoundOverloaded: 3722 case LookupResult::FoundUnresolvedValue: 3723 Consumer.addName((*QRI)->getName(), TmpRes.getAsSingle<NamedDecl>(), 3724 QualifiedED, NI->NameSpecifier); 3725 break; 3726 case LookupResult::NotFound: 3727 case LookupResult::NotFoundInCurrentInstantiation: 3728 case LookupResult::Ambiguous: 3729 break; 3730 } 3731 } 3732 } 3733 } 3734 3735 QualifiedResults.clear(); 3736 } 3737 3738 // No corrections remain... 3739 if (Consumer.empty()) return TypoCorrection(); 3740 3741 TypoResultsMap &BestResults = *Consumer.begin()->second; 3742 ED = Consumer.begin()->first; 3743 3744 if (ED > 0 && Typo->getName().size() / ED < 3) { 3745 // If this was an unqualified lookup, note that no correction was found. 3746 if (IsUnqualifiedLookup) 3747 (void)UnqualifiedTyposCorrected[Typo]; 3748 3749 return TypoCorrection(); 3750 } 3751 3752 // If we have multiple possible corrections, eliminate the ones where we 3753 // added namespace qualifiers to try to resolve the ambiguity (and to favor 3754 // corrections without additional namespace qualifiers) 3755 if (getLangOptions().CPlusPlus && BestResults.size() > 1) { 3756 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin(); 3757 for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(), 3758 IEnd = DI->second->end(); 3759 I != IEnd; /* Increment in loop. */) { 3760 if (I->second.getCorrectionSpecifier() != NULL) { 3761 TypoCorrectionConsumer::result_iterator Cur = I; 3762 ++I; 3763 DI->second->erase(Cur); 3764 } else ++I; 3765 } 3766 } 3767 3768 // If only a single name remains, return that result. 3769 if (BestResults.size() == 1) { 3770 const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin()); 3771 const TypoCorrection &Result = Correction.second; 3772 3773 // Don't correct to a keyword that's the same as the typo; the keyword 3774 // wasn't actually in scope. 3775 if (ED == 0 && Result.isKeyword()) return TypoCorrection(); 3776 3777 // Record the correction for unqualified lookup. 3778 if (IsUnqualifiedLookup) 3779 UnqualifiedTyposCorrected[Typo] = Result; 3780 3781 return Result; 3782 } 3783 else if (BestResults.size() > 1 && CTC == CTC_ObjCMessageReceiver 3784 && BestResults["super"].isKeyword()) { 3785 // Prefer 'super' when we're completing in a message-receiver 3786 // context. 3787 3788 // Don't correct to a keyword that's the same as the typo; the keyword 3789 // wasn't actually in scope. 3790 if (ED == 0) return TypoCorrection(); 3791 3792 // Record the correction for unqualified lookup. 3793 if (IsUnqualifiedLookup) 3794 UnqualifiedTyposCorrected[Typo] = BestResults["super"]; 3795 3796 return BestResults["super"]; 3797 } 3798 3799 if (IsUnqualifiedLookup) 3800 (void)UnqualifiedTyposCorrected[Typo]; 3801 3802 return TypoCorrection(); 3803 } 3804 3805 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 3806 if (CorrectionNameSpec) { 3807 std::string tmpBuffer; 3808 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 3809 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 3810 return PrefixOStream.str() + CorrectionName.getAsString(); 3811 } 3812 3813 return CorrectionName.getAsString(); 3814 } 3815