Home | History | Annotate | Download | only in CodeGen
      1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CriticalAntiDepBreaker class, which
     11 // implements register anti-dependence breaking along a blocks
     12 // critical path during post-RA scheduler.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "post-RA-sched"
     17 #include "CriticalAntiDepBreaker.h"
     18 #include "llvm/CodeGen/MachineBasicBlock.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/Target/TargetMachine.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "llvm/Target/TargetRegisterInfo.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 
     27 using namespace llvm;
     28 
     29 CriticalAntiDepBreaker::
     30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
     31   AntiDepBreaker(), MF(MFi),
     32   MRI(MF.getRegInfo()),
     33   TII(MF.getTarget().getInstrInfo()),
     34   TRI(MF.getTarget().getRegisterInfo()),
     35   RegClassInfo(RCI),
     36   Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
     37   KillIndices(TRI->getNumRegs(), 0),
     38   DefIndices(TRI->getNumRegs(), 0) {}
     39 
     40 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
     41 }
     42 
     43 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
     44   const unsigned BBSize = BB->size();
     45   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
     46     // Clear out the register class data.
     47     Classes[i] = static_cast<const TargetRegisterClass *>(0);
     48 
     49     // Initialize the indices to indicate that no registers are live.
     50     KillIndices[i] = ~0u;
     51     DefIndices[i] = BBSize;
     52   }
     53 
     54   // Clear "do not change" set.
     55   KeepRegs.clear();
     56 
     57   bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
     58 
     59   // Determine the live-out physregs for this block.
     60   if (IsReturnBlock) {
     61     // In a return block, examine the function live-out regs.
     62     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
     63          E = MRI.liveout_end(); I != E; ++I) {
     64       unsigned Reg = *I;
     65       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     66       KillIndices[Reg] = BB->size();
     67       DefIndices[Reg] = ~0u;
     68 
     69       // Repeat, for all aliases.
     70       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
     71         unsigned AliasReg = *Alias;
     72         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
     73         KillIndices[AliasReg] = BB->size();
     74         DefIndices[AliasReg] = ~0u;
     75       }
     76     }
     77   }
     78 
     79   // In a non-return block, examine the live-in regs of all successors.
     80   // Note a return block can have successors if the return instruction is
     81   // predicated.
     82   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
     83          SE = BB->succ_end(); SI != SE; ++SI)
     84     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
     85            E = (*SI)->livein_end(); I != E; ++I) {
     86       unsigned Reg = *I;
     87       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     88       KillIndices[Reg] = BB->size();
     89       DefIndices[Reg] = ~0u;
     90 
     91       // Repeat, for all aliases.
     92       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
     93         unsigned AliasReg = *Alias;
     94         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
     95         KillIndices[AliasReg] = BB->size();
     96         DefIndices[AliasReg] = ~0u;
     97       }
     98     }
     99 
    100   // Mark live-out callee-saved registers. In a return block this is
    101   // all callee-saved registers. In non-return this is any
    102   // callee-saved register that is not saved in the prolog.
    103   const MachineFrameInfo *MFI = MF.getFrameInfo();
    104   BitVector Pristine = MFI->getPristineRegs(BB);
    105   for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
    106     unsigned Reg = *I;
    107     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
    108     Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    109     KillIndices[Reg] = BB->size();
    110     DefIndices[Reg] = ~0u;
    111 
    112     // Repeat, for all aliases.
    113     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    114       unsigned AliasReg = *Alias;
    115       Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    116       KillIndices[AliasReg] = BB->size();
    117       DefIndices[AliasReg] = ~0u;
    118     }
    119   }
    120 }
    121 
    122 void CriticalAntiDepBreaker::FinishBlock() {
    123   RegRefs.clear();
    124   KeepRegs.clear();
    125 }
    126 
    127 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
    128                                      unsigned InsertPosIndex) {
    129   if (MI->isDebugValue())
    130     return;
    131   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    132 
    133   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    134     if (KillIndices[Reg] != ~0u) {
    135       // If Reg is currently live, then mark that it can't be renamed as
    136       // we don't know the extent of its live-range anymore (now that it
    137       // has been scheduled).
    138       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    139       KillIndices[Reg] = Count;
    140     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
    141       // Any register which was defined within the previous scheduling region
    142       // may have been rescheduled and its lifetime may overlap with registers
    143       // in ways not reflected in our current liveness state. For each such
    144       // register, adjust the liveness state to be conservatively correct.
    145       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    146 
    147       // Move the def index to the end of the previous region, to reflect
    148       // that the def could theoretically have been scheduled at the end.
    149       DefIndices[Reg] = InsertPosIndex;
    150     }
    151   }
    152 
    153   PrescanInstruction(MI);
    154   ScanInstruction(MI, Count);
    155 }
    156 
    157 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    158 /// critical path.
    159 static const SDep *CriticalPathStep(const SUnit *SU) {
    160   const SDep *Next = 0;
    161   unsigned NextDepth = 0;
    162   // Find the predecessor edge with the greatest depth.
    163   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    164        P != PE; ++P) {
    165     const SUnit *PredSU = P->getSUnit();
    166     unsigned PredLatency = P->getLatency();
    167     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    168     // In the case of a latency tie, prefer an anti-dependency edge over
    169     // other types of edges.
    170     if (NextDepth < PredTotalLatency ||
    171         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    172       NextDepth = PredTotalLatency;
    173       Next = &*P;
    174     }
    175   }
    176   return Next;
    177 }
    178 
    179 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
    180   // It's not safe to change register allocation for source operands of
    181   // that have special allocation requirements. Also assume all registers
    182   // used in a call must not be changed (ABI).
    183   // FIXME: The issue with predicated instruction is more complex. We are being
    184   // conservative here because the kill markers cannot be trusted after
    185   // if-conversion:
    186   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    187   // ...
    188   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    189   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    190   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    191   //
    192   // The first R6 kill is not really a kill since it's killed by a predicated
    193   // instruction which may not be executed. The second R6 def may or may not
    194   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    195   // changed.
    196   bool Special = MI->getDesc().isCall() ||
    197     MI->getDesc().hasExtraSrcRegAllocReq() ||
    198     TII->isPredicated(MI);
    199 
    200   // Scan the register operands for this instruction and update
    201   // Classes and RegRefs.
    202   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    203     MachineOperand &MO = MI->getOperand(i);
    204     if (!MO.isReg()) continue;
    205     unsigned Reg = MO.getReg();
    206     if (Reg == 0) continue;
    207     const TargetRegisterClass *NewRC = 0;
    208 
    209     if (i < MI->getDesc().getNumOperands())
    210       NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
    211 
    212     // For now, only allow the register to be changed if its register
    213     // class is consistent across all uses.
    214     if (!Classes[Reg] && NewRC)
    215       Classes[Reg] = NewRC;
    216     else if (!NewRC || Classes[Reg] != NewRC)
    217       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    218 
    219     // Now check for aliases.
    220     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    221       // If an alias of the reg is used during the live range, give up.
    222       // Note that this allows us to skip checking if AntiDepReg
    223       // overlaps with any of the aliases, among other things.
    224       unsigned AliasReg = *Alias;
    225       if (Classes[AliasReg]) {
    226         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    227         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    228       }
    229     }
    230 
    231     // If we're still willing to consider this register, note the reference.
    232     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
    233       RegRefs.insert(std::make_pair(Reg, &MO));
    234 
    235     if (MO.isUse() && Special) {
    236       if (KeepRegs.insert(Reg)) {
    237         for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    238              *Subreg; ++Subreg)
    239           KeepRegs.insert(*Subreg);
    240       }
    241     }
    242   }
    243 }
    244 
    245 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
    246                                              unsigned Count) {
    247   // Update liveness.
    248   // Proceding upwards, registers that are defed but not used in this
    249   // instruction are now dead.
    250 
    251   if (!TII->isPredicated(MI)) {
    252     // Predicated defs are modeled as read + write, i.e. similar to two
    253     // address updates.
    254     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    255       MachineOperand &MO = MI->getOperand(i);
    256       if (!MO.isReg()) continue;
    257       unsigned Reg = MO.getReg();
    258       if (Reg == 0) continue;
    259       if (!MO.isDef()) continue;
    260       // Ignore two-addr defs.
    261       if (MI->isRegTiedToUseOperand(i)) continue;
    262 
    263       DefIndices[Reg] = Count;
    264       KillIndices[Reg] = ~0u;
    265       assert(((KillIndices[Reg] == ~0u) !=
    266               (DefIndices[Reg] == ~0u)) &&
    267              "Kill and Def maps aren't consistent for Reg!");
    268       KeepRegs.erase(Reg);
    269       Classes[Reg] = 0;
    270       RegRefs.erase(Reg);
    271       // Repeat, for all subregs.
    272       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    273            *Subreg; ++Subreg) {
    274         unsigned SubregReg = *Subreg;
    275         DefIndices[SubregReg] = Count;
    276         KillIndices[SubregReg] = ~0u;
    277         KeepRegs.erase(SubregReg);
    278         Classes[SubregReg] = 0;
    279         RegRefs.erase(SubregReg);
    280       }
    281       // Conservatively mark super-registers as unusable.
    282       for (const unsigned *Super = TRI->getSuperRegisters(Reg);
    283            *Super; ++Super) {
    284         unsigned SuperReg = *Super;
    285         Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    286       }
    287     }
    288   }
    289   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    290     MachineOperand &MO = MI->getOperand(i);
    291     if (!MO.isReg()) continue;
    292     unsigned Reg = MO.getReg();
    293     if (Reg == 0) continue;
    294     if (!MO.isUse()) continue;
    295 
    296     const TargetRegisterClass *NewRC = 0;
    297     if (i < MI->getDesc().getNumOperands())
    298       NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
    299 
    300     // For now, only allow the register to be changed if its register
    301     // class is consistent across all uses.
    302     if (!Classes[Reg] && NewRC)
    303       Classes[Reg] = NewRC;
    304     else if (!NewRC || Classes[Reg] != NewRC)
    305       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    306 
    307     RegRefs.insert(std::make_pair(Reg, &MO));
    308 
    309     // It wasn't previously live but now it is, this is a kill.
    310     if (KillIndices[Reg] == ~0u) {
    311       KillIndices[Reg] = Count;
    312       DefIndices[Reg] = ~0u;
    313           assert(((KillIndices[Reg] == ~0u) !=
    314                   (DefIndices[Reg] == ~0u)) &&
    315                "Kill and Def maps aren't consistent for Reg!");
    316     }
    317     // Repeat, for all aliases.
    318     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    319       unsigned AliasReg = *Alias;
    320       if (KillIndices[AliasReg] == ~0u) {
    321         KillIndices[AliasReg] = Count;
    322         DefIndices[AliasReg] = ~0u;
    323       }
    324     }
    325   }
    326 }
    327 
    328 // Check all machine operands that reference the antidependent register and must
    329 // be replaced by NewReg. Return true if any of their parent instructions may
    330 // clobber the new register.
    331 //
    332 // Note: AntiDepReg may be referenced by a two-address instruction such that
    333 // it's use operand is tied to a def operand. We guard against the case in which
    334 // the two-address instruction also defines NewReg, as may happen with
    335 // pre/postincrement loads. In this case, both the use and def operands are in
    336 // RegRefs because the def is inserted by PrescanInstruction and not erased
    337 // during ScanInstruction. So checking for an instructions with definitions of
    338 // both NewReg and AntiDepReg covers it.
    339 bool
    340 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
    341                                                 RegRefIter RegRefEnd,
    342                                                 unsigned NewReg)
    343 {
    344   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    345     MachineOperand *RefOper = I->second;
    346 
    347     // Don't allow the instruction defining AntiDepReg to earlyclobber its
    348     // operands, in case they may be assigned to NewReg. In this case antidep
    349     // breaking must fail, but it's too rare to bother optimizing.
    350     if (RefOper->isDef() && RefOper->isEarlyClobber())
    351       return true;
    352 
    353     // Handle cases in which this instructions defines NewReg.
    354     MachineInstr *MI = RefOper->getParent();
    355     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    356       const MachineOperand &CheckOper = MI->getOperand(i);
    357 
    358       if (!CheckOper.isReg() || !CheckOper.isDef() ||
    359           CheckOper.getReg() != NewReg)
    360         continue;
    361 
    362       // Don't allow the instruction to define NewReg and AntiDepReg.
    363       // When AntiDepReg is renamed it will be an illegal op.
    364       if (RefOper->isDef())
    365         return true;
    366 
    367       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
    368       // NewReg
    369       if (CheckOper.isEarlyClobber())
    370         return true;
    371 
    372       // Don't allow inline asm to define NewReg at all. Who know what it's
    373       // doing with it.
    374       if (MI->isInlineAsm())
    375         return true;
    376     }
    377   }
    378   return false;
    379 }
    380 
    381 unsigned
    382 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
    383                                                  RegRefIter RegRefEnd,
    384                                                  unsigned AntiDepReg,
    385                                                  unsigned LastNewReg,
    386                                                  const TargetRegisterClass *RC)
    387 {
    388   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
    389   for (unsigned i = 0; i != Order.size(); ++i) {
    390     unsigned NewReg = Order[i];
    391     // Don't replace a register with itself.
    392     if (NewReg == AntiDepReg) continue;
    393     // Don't replace a register with one that was recently used to repair
    394     // an anti-dependence with this AntiDepReg, because that would
    395     // re-introduce that anti-dependence.
    396     if (NewReg == LastNewReg) continue;
    397     // If any instructions that define AntiDepReg also define the NewReg, it's
    398     // not suitable.  For example, Instruction with multiple definitions can
    399     // result in this condition.
    400     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    401     // If NewReg is dead and NewReg's most recent def is not before
    402     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    403     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
    404            && "Kill and Def maps aren't consistent for AntiDepReg!");
    405     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
    406            && "Kill and Def maps aren't consistent for NewReg!");
    407     if (KillIndices[NewReg] != ~0u ||
    408         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
    409         KillIndices[AntiDepReg] > DefIndices[NewReg])
    410       continue;
    411     return NewReg;
    412   }
    413 
    414   // No registers are free and available!
    415   return 0;
    416 }
    417 
    418 unsigned CriticalAntiDepBreaker::
    419 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
    420                       MachineBasicBlock::iterator Begin,
    421                       MachineBasicBlock::iterator End,
    422                       unsigned InsertPosIndex,
    423                       DbgValueVector &DbgValues) {
    424   // The code below assumes that there is at least one instruction,
    425   // so just duck out immediately if the block is empty.
    426   if (SUnits.empty()) return 0;
    427 
    428   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
    429   // This is used for updating debug information.
    430   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
    431 
    432   // Find the node at the bottom of the critical path.
    433   const SUnit *Max = 0;
    434   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    435     const SUnit *SU = &SUnits[i];
    436     MISUnitMap[SU->getInstr()] = SU;
    437     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
    438       Max = SU;
    439   }
    440 
    441 #ifndef NDEBUG
    442   {
    443     DEBUG(dbgs() << "Critical path has total latency "
    444           << (Max->getDepth() + Max->Latency) << "\n");
    445     DEBUG(dbgs() << "Available regs:");
    446     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    447       if (KillIndices[Reg] == ~0u)
    448         DEBUG(dbgs() << " " << TRI->getName(Reg));
    449     }
    450     DEBUG(dbgs() << '\n');
    451   }
    452 #endif
    453 
    454   // Track progress along the critical path through the SUnit graph as we walk
    455   // the instructions.
    456   const SUnit *CriticalPathSU = Max;
    457   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
    458 
    459   // Consider this pattern:
    460   //   A = ...
    461   //   ... = A
    462   //   A = ...
    463   //   ... = A
    464   //   A = ...
    465   //   ... = A
    466   //   A = ...
    467   //   ... = A
    468   // There are three anti-dependencies here, and without special care,
    469   // we'd break all of them using the same register:
    470   //   A = ...
    471   //   ... = A
    472   //   B = ...
    473   //   ... = B
    474   //   B = ...
    475   //   ... = B
    476   //   B = ...
    477   //   ... = B
    478   // because at each anti-dependence, B is the first register that
    479   // isn't A which is free.  This re-introduces anti-dependencies
    480   // at all but one of the original anti-dependencies that we were
    481   // trying to break.  To avoid this, keep track of the most recent
    482   // register that each register was replaced with, avoid
    483   // using it to repair an anti-dependence on the same register.
    484   // This lets us produce this:
    485   //   A = ...
    486   //   ... = A
    487   //   B = ...
    488   //   ... = B
    489   //   C = ...
    490   //   ... = C
    491   //   B = ...
    492   //   ... = B
    493   // This still has an anti-dependence on B, but at least it isn't on the
    494   // original critical path.
    495   //
    496   // TODO: If we tracked more than one register here, we could potentially
    497   // fix that remaining critical edge too. This is a little more involved,
    498   // because unlike the most recent register, less recent registers should
    499   // still be considered, though only if no other registers are available.
    500   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
    501 
    502   // Attempt to break anti-dependence edges on the critical path. Walk the
    503   // instructions from the bottom up, tracking information about liveness
    504   // as we go to help determine which registers are available.
    505   unsigned Broken = 0;
    506   unsigned Count = InsertPosIndex - 1;
    507   for (MachineBasicBlock::iterator I = End, E = Begin;
    508        I != E; --Count) {
    509     MachineInstr *MI = --I;
    510     if (MI->isDebugValue())
    511       continue;
    512 
    513     // Check if this instruction has a dependence on the critical path that
    514     // is an anti-dependence that we may be able to break. If it is, set
    515     // AntiDepReg to the non-zero register associated with the anti-dependence.
    516     //
    517     // We limit our attention to the critical path as a heuristic to avoid
    518     // breaking anti-dependence edges that aren't going to significantly
    519     // impact the overall schedule. There are a limited number of registers
    520     // and we want to save them for the important edges.
    521     //
    522     // TODO: Instructions with multiple defs could have multiple
    523     // anti-dependencies. The current code here only knows how to break one
    524     // edge per instruction. Note that we'd have to be able to break all of
    525     // the anti-dependencies in an instruction in order to be effective.
    526     unsigned AntiDepReg = 0;
    527     if (MI == CriticalPathMI) {
    528       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
    529         const SUnit *NextSU = Edge->getSUnit();
    530 
    531         // Only consider anti-dependence edges.
    532         if (Edge->getKind() == SDep::Anti) {
    533           AntiDepReg = Edge->getReg();
    534           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    535           if (!RegClassInfo.isAllocatable(AntiDepReg))
    536             // Don't break anti-dependencies on non-allocatable registers.
    537             AntiDepReg = 0;
    538           else if (KeepRegs.count(AntiDepReg))
    539             // Don't break anti-dependencies if an use down below requires
    540             // this exact register.
    541             AntiDepReg = 0;
    542           else {
    543             // If the SUnit has other dependencies on the SUnit that it
    544             // anti-depends on, don't bother breaking the anti-dependency
    545             // since those edges would prevent such units from being
    546             // scheduled past each other regardless.
    547             //
    548             // Also, if there are dependencies on other SUnits with the
    549             // same register as the anti-dependency, don't attempt to
    550             // break it.
    551             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
    552                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
    553               if (P->getSUnit() == NextSU ?
    554                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    555                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    556                 AntiDepReg = 0;
    557                 break;
    558               }
    559           }
    560         }
    561         CriticalPathSU = NextSU;
    562         CriticalPathMI = CriticalPathSU->getInstr();
    563       } else {
    564         // We've reached the end of the critical path.
    565         CriticalPathSU = 0;
    566         CriticalPathMI = 0;
    567       }
    568     }
    569 
    570     PrescanInstruction(MI);
    571 
    572     // If MI's defs have a special allocation requirement, don't allow
    573     // any def registers to be changed. Also assume all registers
    574     // defined in a call must not be changed (ABI).
    575     if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
    576         TII->isPredicated(MI))
    577       // If this instruction's defs have special allocation requirement, don't
    578       // break this anti-dependency.
    579       AntiDepReg = 0;
    580     else if (AntiDepReg) {
    581       // If this instruction has a use of AntiDepReg, breaking it
    582       // is invalid.
    583       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    584         MachineOperand &MO = MI->getOperand(i);
    585         if (!MO.isReg()) continue;
    586         unsigned Reg = MO.getReg();
    587         if (Reg == 0) continue;
    588         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
    589           AntiDepReg = 0;
    590           break;
    591         }
    592       }
    593     }
    594 
    595     // Determine AntiDepReg's register class, if it is live and is
    596     // consistently used within a single class.
    597     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
    598     assert((AntiDepReg == 0 || RC != NULL) &&
    599            "Register should be live if it's causing an anti-dependence!");
    600     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
    601       AntiDepReg = 0;
    602 
    603     // Look for a suitable register to use to break the anti-depenence.
    604     //
    605     // TODO: Instead of picking the first free register, consider which might
    606     // be the best.
    607     if (AntiDepReg != 0) {
    608       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
    609                 std::multimap<unsigned, MachineOperand *>::iterator>
    610         Range = RegRefs.equal_range(AntiDepReg);
    611       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
    612                                                      AntiDepReg,
    613                                                      LastNewReg[AntiDepReg],
    614                                                      RC)) {
    615         DEBUG(dbgs() << "Breaking anti-dependence edge on "
    616               << TRI->getName(AntiDepReg)
    617               << " with " << RegRefs.count(AntiDepReg) << " references"
    618               << " using " << TRI->getName(NewReg) << "!\n");
    619 
    620         // Update the references to the old register to refer to the new
    621         // register.
    622         for (std::multimap<unsigned, MachineOperand *>::iterator
    623              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    624           Q->second->setReg(NewReg);
    625           // If the SU for the instruction being updated has debug information
    626           // related to the anti-dependency register, make sure to update that
    627           // as well.
    628           const SUnit *SU = MISUnitMap[Q->second->getParent()];
    629           if (!SU) continue;
    630           for (DbgValueVector::iterator DVI = DbgValues.begin(),
    631                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
    632             if (DVI->second == Q->second->getParent())
    633               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
    634         }
    635 
    636         // We just went back in time and modified history; the
    637         // liveness information for the anti-dependence reg is now
    638         // inconsistent. Set the state as if it were dead.
    639         Classes[NewReg] = Classes[AntiDepReg];
    640         DefIndices[NewReg] = DefIndices[AntiDepReg];
    641         KillIndices[NewReg] = KillIndices[AntiDepReg];
    642         assert(((KillIndices[NewReg] == ~0u) !=
    643                 (DefIndices[NewReg] == ~0u)) &&
    644              "Kill and Def maps aren't consistent for NewReg!");
    645 
    646         Classes[AntiDepReg] = 0;
    647         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
    648         KillIndices[AntiDepReg] = ~0u;
    649         assert(((KillIndices[AntiDepReg] == ~0u) !=
    650                 (DefIndices[AntiDepReg] == ~0u)) &&
    651              "Kill and Def maps aren't consistent for AntiDepReg!");
    652 
    653         RegRefs.erase(AntiDepReg);
    654         LastNewReg[AntiDepReg] = NewReg;
    655         ++Broken;
    656       }
    657     }
    658 
    659     ScanInstruction(MI, Count);
    660   }
    661 
    662   return Broken;
    663 }
    664