1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "post-RA-sched" 17 #include "CriticalAntiDepBreaker.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/Target/TargetMachine.h" 21 #include "llvm/Target/TargetInstrInfo.h" 22 #include "llvm/Target/TargetRegisterInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 CriticalAntiDepBreaker:: 30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) : 31 AntiDepBreaker(), MF(MFi), 32 MRI(MF.getRegInfo()), 33 TII(MF.getTarget().getInstrInfo()), 34 TRI(MF.getTarget().getRegisterInfo()), 35 RegClassInfo(RCI), 36 Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)), 37 KillIndices(TRI->getNumRegs(), 0), 38 DefIndices(TRI->getNumRegs(), 0) {} 39 40 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 41 } 42 43 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 44 const unsigned BBSize = BB->size(); 45 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 46 // Clear out the register class data. 47 Classes[i] = static_cast<const TargetRegisterClass *>(0); 48 49 // Initialize the indices to indicate that no registers are live. 50 KillIndices[i] = ~0u; 51 DefIndices[i] = BBSize; 52 } 53 54 // Clear "do not change" set. 55 KeepRegs.clear(); 56 57 bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn()); 58 59 // Determine the live-out physregs for this block. 60 if (IsReturnBlock) { 61 // In a return block, examine the function live-out regs. 62 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), 63 E = MRI.liveout_end(); I != E; ++I) { 64 unsigned Reg = *I; 65 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 66 KillIndices[Reg] = BB->size(); 67 DefIndices[Reg] = ~0u; 68 69 // Repeat, for all aliases. 70 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 71 unsigned AliasReg = *Alias; 72 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 73 KillIndices[AliasReg] = BB->size(); 74 DefIndices[AliasReg] = ~0u; 75 } 76 } 77 } 78 79 // In a non-return block, examine the live-in regs of all successors. 80 // Note a return block can have successors if the return instruction is 81 // predicated. 82 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 83 SE = BB->succ_end(); SI != SE; ++SI) 84 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 85 E = (*SI)->livein_end(); I != E; ++I) { 86 unsigned Reg = *I; 87 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 88 KillIndices[Reg] = BB->size(); 89 DefIndices[Reg] = ~0u; 90 91 // Repeat, for all aliases. 92 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 93 unsigned AliasReg = *Alias; 94 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 95 KillIndices[AliasReg] = BB->size(); 96 DefIndices[AliasReg] = ~0u; 97 } 98 } 99 100 // Mark live-out callee-saved registers. In a return block this is 101 // all callee-saved registers. In non-return this is any 102 // callee-saved register that is not saved in the prolog. 103 const MachineFrameInfo *MFI = MF.getFrameInfo(); 104 BitVector Pristine = MFI->getPristineRegs(BB); 105 for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { 106 unsigned Reg = *I; 107 if (!IsReturnBlock && !Pristine.test(Reg)) continue; 108 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 109 KillIndices[Reg] = BB->size(); 110 DefIndices[Reg] = ~0u; 111 112 // Repeat, for all aliases. 113 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 114 unsigned AliasReg = *Alias; 115 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 116 KillIndices[AliasReg] = BB->size(); 117 DefIndices[AliasReg] = ~0u; 118 } 119 } 120 } 121 122 void CriticalAntiDepBreaker::FinishBlock() { 123 RegRefs.clear(); 124 KeepRegs.clear(); 125 } 126 127 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 128 unsigned InsertPosIndex) { 129 if (MI->isDebugValue()) 130 return; 131 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 132 133 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 134 if (KillIndices[Reg] != ~0u) { 135 // If Reg is currently live, then mark that it can't be renamed as 136 // we don't know the extent of its live-range anymore (now that it 137 // has been scheduled). 138 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 139 KillIndices[Reg] = Count; 140 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 141 // Any register which was defined within the previous scheduling region 142 // may have been rescheduled and its lifetime may overlap with registers 143 // in ways not reflected in our current liveness state. For each such 144 // register, adjust the liveness state to be conservatively correct. 145 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 146 147 // Move the def index to the end of the previous region, to reflect 148 // that the def could theoretically have been scheduled at the end. 149 DefIndices[Reg] = InsertPosIndex; 150 } 151 } 152 153 PrescanInstruction(MI); 154 ScanInstruction(MI, Count); 155 } 156 157 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 158 /// critical path. 159 static const SDep *CriticalPathStep(const SUnit *SU) { 160 const SDep *Next = 0; 161 unsigned NextDepth = 0; 162 // Find the predecessor edge with the greatest depth. 163 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 164 P != PE; ++P) { 165 const SUnit *PredSU = P->getSUnit(); 166 unsigned PredLatency = P->getLatency(); 167 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 168 // In the case of a latency tie, prefer an anti-dependency edge over 169 // other types of edges. 170 if (NextDepth < PredTotalLatency || 171 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 172 NextDepth = PredTotalLatency; 173 Next = &*P; 174 } 175 } 176 return Next; 177 } 178 179 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 180 // It's not safe to change register allocation for source operands of 181 // that have special allocation requirements. Also assume all registers 182 // used in a call must not be changed (ABI). 183 // FIXME: The issue with predicated instruction is more complex. We are being 184 // conservative here because the kill markers cannot be trusted after 185 // if-conversion: 186 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 187 // ... 188 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 189 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 190 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 191 // 192 // The first R6 kill is not really a kill since it's killed by a predicated 193 // instruction which may not be executed. The second R6 def may or may not 194 // re-define R6 so it's not safe to change it since the last R6 use cannot be 195 // changed. 196 bool Special = MI->getDesc().isCall() || 197 MI->getDesc().hasExtraSrcRegAllocReq() || 198 TII->isPredicated(MI); 199 200 // Scan the register operands for this instruction and update 201 // Classes and RegRefs. 202 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 203 MachineOperand &MO = MI->getOperand(i); 204 if (!MO.isReg()) continue; 205 unsigned Reg = MO.getReg(); 206 if (Reg == 0) continue; 207 const TargetRegisterClass *NewRC = 0; 208 209 if (i < MI->getDesc().getNumOperands()) 210 NewRC = TII->getRegClass(MI->getDesc(), i, TRI); 211 212 // For now, only allow the register to be changed if its register 213 // class is consistent across all uses. 214 if (!Classes[Reg] && NewRC) 215 Classes[Reg] = NewRC; 216 else if (!NewRC || Classes[Reg] != NewRC) 217 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 218 219 // Now check for aliases. 220 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 221 // If an alias of the reg is used during the live range, give up. 222 // Note that this allows us to skip checking if AntiDepReg 223 // overlaps with any of the aliases, among other things. 224 unsigned AliasReg = *Alias; 225 if (Classes[AliasReg]) { 226 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 227 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 228 } 229 } 230 231 // If we're still willing to consider this register, note the reference. 232 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 233 RegRefs.insert(std::make_pair(Reg, &MO)); 234 235 if (MO.isUse() && Special) { 236 if (KeepRegs.insert(Reg)) { 237 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 238 *Subreg; ++Subreg) 239 KeepRegs.insert(*Subreg); 240 } 241 } 242 } 243 } 244 245 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 246 unsigned Count) { 247 // Update liveness. 248 // Proceding upwards, registers that are defed but not used in this 249 // instruction are now dead. 250 251 if (!TII->isPredicated(MI)) { 252 // Predicated defs are modeled as read + write, i.e. similar to two 253 // address updates. 254 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 255 MachineOperand &MO = MI->getOperand(i); 256 if (!MO.isReg()) continue; 257 unsigned Reg = MO.getReg(); 258 if (Reg == 0) continue; 259 if (!MO.isDef()) continue; 260 // Ignore two-addr defs. 261 if (MI->isRegTiedToUseOperand(i)) continue; 262 263 DefIndices[Reg] = Count; 264 KillIndices[Reg] = ~0u; 265 assert(((KillIndices[Reg] == ~0u) != 266 (DefIndices[Reg] == ~0u)) && 267 "Kill and Def maps aren't consistent for Reg!"); 268 KeepRegs.erase(Reg); 269 Classes[Reg] = 0; 270 RegRefs.erase(Reg); 271 // Repeat, for all subregs. 272 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 273 *Subreg; ++Subreg) { 274 unsigned SubregReg = *Subreg; 275 DefIndices[SubregReg] = Count; 276 KillIndices[SubregReg] = ~0u; 277 KeepRegs.erase(SubregReg); 278 Classes[SubregReg] = 0; 279 RegRefs.erase(SubregReg); 280 } 281 // Conservatively mark super-registers as unusable. 282 for (const unsigned *Super = TRI->getSuperRegisters(Reg); 283 *Super; ++Super) { 284 unsigned SuperReg = *Super; 285 Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1); 286 } 287 } 288 } 289 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 290 MachineOperand &MO = MI->getOperand(i); 291 if (!MO.isReg()) continue; 292 unsigned Reg = MO.getReg(); 293 if (Reg == 0) continue; 294 if (!MO.isUse()) continue; 295 296 const TargetRegisterClass *NewRC = 0; 297 if (i < MI->getDesc().getNumOperands()) 298 NewRC = TII->getRegClass(MI->getDesc(), i, TRI); 299 300 // For now, only allow the register to be changed if its register 301 // class is consistent across all uses. 302 if (!Classes[Reg] && NewRC) 303 Classes[Reg] = NewRC; 304 else if (!NewRC || Classes[Reg] != NewRC) 305 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 306 307 RegRefs.insert(std::make_pair(Reg, &MO)); 308 309 // It wasn't previously live but now it is, this is a kill. 310 if (KillIndices[Reg] == ~0u) { 311 KillIndices[Reg] = Count; 312 DefIndices[Reg] = ~0u; 313 assert(((KillIndices[Reg] == ~0u) != 314 (DefIndices[Reg] == ~0u)) && 315 "Kill and Def maps aren't consistent for Reg!"); 316 } 317 // Repeat, for all aliases. 318 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 319 unsigned AliasReg = *Alias; 320 if (KillIndices[AliasReg] == ~0u) { 321 KillIndices[AliasReg] = Count; 322 DefIndices[AliasReg] = ~0u; 323 } 324 } 325 } 326 } 327 328 // Check all machine operands that reference the antidependent register and must 329 // be replaced by NewReg. Return true if any of their parent instructions may 330 // clobber the new register. 331 // 332 // Note: AntiDepReg may be referenced by a two-address instruction such that 333 // it's use operand is tied to a def operand. We guard against the case in which 334 // the two-address instruction also defines NewReg, as may happen with 335 // pre/postincrement loads. In this case, both the use and def operands are in 336 // RegRefs because the def is inserted by PrescanInstruction and not erased 337 // during ScanInstruction. So checking for an instructions with definitions of 338 // both NewReg and AntiDepReg covers it. 339 bool 340 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 341 RegRefIter RegRefEnd, 342 unsigned NewReg) 343 { 344 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 345 MachineOperand *RefOper = I->second; 346 347 // Don't allow the instruction defining AntiDepReg to earlyclobber its 348 // operands, in case they may be assigned to NewReg. In this case antidep 349 // breaking must fail, but it's too rare to bother optimizing. 350 if (RefOper->isDef() && RefOper->isEarlyClobber()) 351 return true; 352 353 // Handle cases in which this instructions defines NewReg. 354 MachineInstr *MI = RefOper->getParent(); 355 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 356 const MachineOperand &CheckOper = MI->getOperand(i); 357 358 if (!CheckOper.isReg() || !CheckOper.isDef() || 359 CheckOper.getReg() != NewReg) 360 continue; 361 362 // Don't allow the instruction to define NewReg and AntiDepReg. 363 // When AntiDepReg is renamed it will be an illegal op. 364 if (RefOper->isDef()) 365 return true; 366 367 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 368 // NewReg 369 if (CheckOper.isEarlyClobber()) 370 return true; 371 372 // Don't allow inline asm to define NewReg at all. Who know what it's 373 // doing with it. 374 if (MI->isInlineAsm()) 375 return true; 376 } 377 } 378 return false; 379 } 380 381 unsigned 382 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin, 383 RegRefIter RegRefEnd, 384 unsigned AntiDepReg, 385 unsigned LastNewReg, 386 const TargetRegisterClass *RC) 387 { 388 ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC); 389 for (unsigned i = 0; i != Order.size(); ++i) { 390 unsigned NewReg = Order[i]; 391 // Don't replace a register with itself. 392 if (NewReg == AntiDepReg) continue; 393 // Don't replace a register with one that was recently used to repair 394 // an anti-dependence with this AntiDepReg, because that would 395 // re-introduce that anti-dependence. 396 if (NewReg == LastNewReg) continue; 397 // If any instructions that define AntiDepReg also define the NewReg, it's 398 // not suitable. For example, Instruction with multiple definitions can 399 // result in this condition. 400 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 401 // If NewReg is dead and NewReg's most recent def is not before 402 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 403 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 404 && "Kill and Def maps aren't consistent for AntiDepReg!"); 405 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 406 && "Kill and Def maps aren't consistent for NewReg!"); 407 if (KillIndices[NewReg] != ~0u || 408 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 409 KillIndices[AntiDepReg] > DefIndices[NewReg]) 410 continue; 411 return NewReg; 412 } 413 414 // No registers are free and available! 415 return 0; 416 } 417 418 unsigned CriticalAntiDepBreaker:: 419 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 420 MachineBasicBlock::iterator Begin, 421 MachineBasicBlock::iterator End, 422 unsigned InsertPosIndex, 423 DbgValueVector &DbgValues) { 424 // The code below assumes that there is at least one instruction, 425 // so just duck out immediately if the block is empty. 426 if (SUnits.empty()) return 0; 427 428 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 429 // This is used for updating debug information. 430 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 431 432 // Find the node at the bottom of the critical path. 433 const SUnit *Max = 0; 434 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 435 const SUnit *SU = &SUnits[i]; 436 MISUnitMap[SU->getInstr()] = SU; 437 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 438 Max = SU; 439 } 440 441 #ifndef NDEBUG 442 { 443 DEBUG(dbgs() << "Critical path has total latency " 444 << (Max->getDepth() + Max->Latency) << "\n"); 445 DEBUG(dbgs() << "Available regs:"); 446 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 447 if (KillIndices[Reg] == ~0u) 448 DEBUG(dbgs() << " " << TRI->getName(Reg)); 449 } 450 DEBUG(dbgs() << '\n'); 451 } 452 #endif 453 454 // Track progress along the critical path through the SUnit graph as we walk 455 // the instructions. 456 const SUnit *CriticalPathSU = Max; 457 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 458 459 // Consider this pattern: 460 // A = ... 461 // ... = A 462 // A = ... 463 // ... = A 464 // A = ... 465 // ... = A 466 // A = ... 467 // ... = A 468 // There are three anti-dependencies here, and without special care, 469 // we'd break all of them using the same register: 470 // A = ... 471 // ... = A 472 // B = ... 473 // ... = B 474 // B = ... 475 // ... = B 476 // B = ... 477 // ... = B 478 // because at each anti-dependence, B is the first register that 479 // isn't A which is free. This re-introduces anti-dependencies 480 // at all but one of the original anti-dependencies that we were 481 // trying to break. To avoid this, keep track of the most recent 482 // register that each register was replaced with, avoid 483 // using it to repair an anti-dependence on the same register. 484 // This lets us produce this: 485 // A = ... 486 // ... = A 487 // B = ... 488 // ... = B 489 // C = ... 490 // ... = C 491 // B = ... 492 // ... = B 493 // This still has an anti-dependence on B, but at least it isn't on the 494 // original critical path. 495 // 496 // TODO: If we tracked more than one register here, we could potentially 497 // fix that remaining critical edge too. This is a little more involved, 498 // because unlike the most recent register, less recent registers should 499 // still be considered, though only if no other registers are available. 500 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 501 502 // Attempt to break anti-dependence edges on the critical path. Walk the 503 // instructions from the bottom up, tracking information about liveness 504 // as we go to help determine which registers are available. 505 unsigned Broken = 0; 506 unsigned Count = InsertPosIndex - 1; 507 for (MachineBasicBlock::iterator I = End, E = Begin; 508 I != E; --Count) { 509 MachineInstr *MI = --I; 510 if (MI->isDebugValue()) 511 continue; 512 513 // Check if this instruction has a dependence on the critical path that 514 // is an anti-dependence that we may be able to break. If it is, set 515 // AntiDepReg to the non-zero register associated with the anti-dependence. 516 // 517 // We limit our attention to the critical path as a heuristic to avoid 518 // breaking anti-dependence edges that aren't going to significantly 519 // impact the overall schedule. There are a limited number of registers 520 // and we want to save them for the important edges. 521 // 522 // TODO: Instructions with multiple defs could have multiple 523 // anti-dependencies. The current code here only knows how to break one 524 // edge per instruction. Note that we'd have to be able to break all of 525 // the anti-dependencies in an instruction in order to be effective. 526 unsigned AntiDepReg = 0; 527 if (MI == CriticalPathMI) { 528 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 529 const SUnit *NextSU = Edge->getSUnit(); 530 531 // Only consider anti-dependence edges. 532 if (Edge->getKind() == SDep::Anti) { 533 AntiDepReg = Edge->getReg(); 534 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 535 if (!RegClassInfo.isAllocatable(AntiDepReg)) 536 // Don't break anti-dependencies on non-allocatable registers. 537 AntiDepReg = 0; 538 else if (KeepRegs.count(AntiDepReg)) 539 // Don't break anti-dependencies if an use down below requires 540 // this exact register. 541 AntiDepReg = 0; 542 else { 543 // If the SUnit has other dependencies on the SUnit that it 544 // anti-depends on, don't bother breaking the anti-dependency 545 // since those edges would prevent such units from being 546 // scheduled past each other regardless. 547 // 548 // Also, if there are dependencies on other SUnits with the 549 // same register as the anti-dependency, don't attempt to 550 // break it. 551 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 552 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 553 if (P->getSUnit() == NextSU ? 554 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 555 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 556 AntiDepReg = 0; 557 break; 558 } 559 } 560 } 561 CriticalPathSU = NextSU; 562 CriticalPathMI = CriticalPathSU->getInstr(); 563 } else { 564 // We've reached the end of the critical path. 565 CriticalPathSU = 0; 566 CriticalPathMI = 0; 567 } 568 } 569 570 PrescanInstruction(MI); 571 572 // If MI's defs have a special allocation requirement, don't allow 573 // any def registers to be changed. Also assume all registers 574 // defined in a call must not be changed (ABI). 575 if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() || 576 TII->isPredicated(MI)) 577 // If this instruction's defs have special allocation requirement, don't 578 // break this anti-dependency. 579 AntiDepReg = 0; 580 else if (AntiDepReg) { 581 // If this instruction has a use of AntiDepReg, breaking it 582 // is invalid. 583 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 584 MachineOperand &MO = MI->getOperand(i); 585 if (!MO.isReg()) continue; 586 unsigned Reg = MO.getReg(); 587 if (Reg == 0) continue; 588 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 589 AntiDepReg = 0; 590 break; 591 } 592 } 593 } 594 595 // Determine AntiDepReg's register class, if it is live and is 596 // consistently used within a single class. 597 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; 598 assert((AntiDepReg == 0 || RC != NULL) && 599 "Register should be live if it's causing an anti-dependence!"); 600 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 601 AntiDepReg = 0; 602 603 // Look for a suitable register to use to break the anti-depenence. 604 // 605 // TODO: Instead of picking the first free register, consider which might 606 // be the best. 607 if (AntiDepReg != 0) { 608 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 609 std::multimap<unsigned, MachineOperand *>::iterator> 610 Range = RegRefs.equal_range(AntiDepReg); 611 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 612 AntiDepReg, 613 LastNewReg[AntiDepReg], 614 RC)) { 615 DEBUG(dbgs() << "Breaking anti-dependence edge on " 616 << TRI->getName(AntiDepReg) 617 << " with " << RegRefs.count(AntiDepReg) << " references" 618 << " using " << TRI->getName(NewReg) << "!\n"); 619 620 // Update the references to the old register to refer to the new 621 // register. 622 for (std::multimap<unsigned, MachineOperand *>::iterator 623 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 624 Q->second->setReg(NewReg); 625 // If the SU for the instruction being updated has debug information 626 // related to the anti-dependency register, make sure to update that 627 // as well. 628 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 629 if (!SU) continue; 630 for (DbgValueVector::iterator DVI = DbgValues.begin(), 631 DVE = DbgValues.end(); DVI != DVE; ++DVI) 632 if (DVI->second == Q->second->getParent()) 633 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 634 } 635 636 // We just went back in time and modified history; the 637 // liveness information for the anti-dependence reg is now 638 // inconsistent. Set the state as if it were dead. 639 Classes[NewReg] = Classes[AntiDepReg]; 640 DefIndices[NewReg] = DefIndices[AntiDepReg]; 641 KillIndices[NewReg] = KillIndices[AntiDepReg]; 642 assert(((KillIndices[NewReg] == ~0u) != 643 (DefIndices[NewReg] == ~0u)) && 644 "Kill and Def maps aren't consistent for NewReg!"); 645 646 Classes[AntiDepReg] = 0; 647 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 648 KillIndices[AntiDepReg] = ~0u; 649 assert(((KillIndices[AntiDepReg] == ~0u) != 650 (DefIndices[AntiDepReg] == ~0u)) && 651 "Kill and Def maps aren't consistent for AntiDepReg!"); 652 653 RegRefs.erase(AntiDepReg); 654 LastNewReg[AntiDepReg] = NewReg; 655 ++Broken; 656 } 657 } 658 659 ScanInstruction(MI, Count); 660 } 661 662 return Broken; 663 } 664