1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines an abstract interface that is used by the machine code 11 // emission framework to output the code. This allows machine code emission to 12 // be separated from concerns such as resolution of call targets, and where the 13 // machine code will be written (memory or disk, f.e.). 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H 18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H 19 20 #include "llvm/Support/DataTypes.h" 21 #include "llvm/Support/DebugLoc.h" 22 23 namespace llvm { 24 25 class MachineBasicBlock; 26 class MachineConstantPool; 27 class MachineJumpTableInfo; 28 class MachineFunction; 29 class MachineModuleInfo; 30 class MachineRelocation; 31 class Value; 32 class GlobalValue; 33 class Function; 34 class MCSymbol; 35 36 /// MachineCodeEmitter - This class defines two sorts of methods: those for 37 /// emitting the actual bytes of machine code, and those for emitting auxiliary 38 /// structures, such as jump tables, relocations, etc. 39 /// 40 /// Emission of machine code is complicated by the fact that we don't (in 41 /// general) know the size of the machine code that we're about to emit before 42 /// we emit it. As such, we preallocate a certain amount of memory, and set the 43 /// BufferBegin/BufferEnd pointers to the start and end of the buffer. As we 44 /// emit machine instructions, we advance the CurBufferPtr to indicate the 45 /// location of the next byte to emit. In the case of a buffer overflow (we 46 /// need to emit more machine code than we have allocated space for), the 47 /// CurBufferPtr will saturate to BufferEnd and ignore stores. Once the entire 48 /// function has been emitted, the overflow condition is checked, and if it has 49 /// occurred, more memory is allocated, and we reemit the code into it. 50 /// 51 class MachineCodeEmitter { 52 protected: 53 /// BufferBegin/BufferEnd - Pointers to the start and end of the memory 54 /// allocated for this code buffer. 55 uint8_t *BufferBegin, *BufferEnd; 56 /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting 57 /// code. This is guaranteed to be in the range [BufferBegin,BufferEnd]. If 58 /// this pointer is at BufferEnd, it will never move due to code emission, and 59 /// all code emission requests will be ignored (this is the buffer overflow 60 /// condition). 61 uint8_t *CurBufferPtr; 62 63 public: 64 virtual ~MachineCodeEmitter() {} 65 66 /// startFunction - This callback is invoked when the specified function is 67 /// about to be code generated. This initializes the BufferBegin/End/Ptr 68 /// fields. 69 /// 70 virtual void startFunction(MachineFunction &F) = 0; 71 72 /// finishFunction - This callback is invoked when the specified function has 73 /// finished code generation. If a buffer overflow has occurred, this method 74 /// returns true (the callee is required to try again), otherwise it returns 75 /// false. 76 /// 77 virtual bool finishFunction(MachineFunction &F) = 0; 78 79 /// emitByte - This callback is invoked when a byte needs to be written to the 80 /// output stream. 81 /// 82 void emitByte(uint8_t B) { 83 if (CurBufferPtr != BufferEnd) 84 *CurBufferPtr++ = B; 85 } 86 87 /// emitWordLE - This callback is invoked when a 32-bit word needs to be 88 /// written to the output stream in little-endian format. 89 /// 90 void emitWordLE(uint32_t W) { 91 if (4 <= BufferEnd-CurBufferPtr) { 92 emitWordLEInto(CurBufferPtr, W); 93 } else { 94 CurBufferPtr = BufferEnd; 95 } 96 } 97 98 /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be 99 /// written to an arbitrary buffer in little-endian format. Buf must have at 100 /// least 4 bytes of available space. 101 /// 102 static void emitWordLEInto(uint8_t *&Buf, uint32_t W) { 103 *Buf++ = (uint8_t)(W >> 0); 104 *Buf++ = (uint8_t)(W >> 8); 105 *Buf++ = (uint8_t)(W >> 16); 106 *Buf++ = (uint8_t)(W >> 24); 107 } 108 109 /// emitWordBE - This callback is invoked when a 32-bit word needs to be 110 /// written to the output stream in big-endian format. 111 /// 112 void emitWordBE(uint32_t W) { 113 if (4 <= BufferEnd-CurBufferPtr) { 114 *CurBufferPtr++ = (uint8_t)(W >> 24); 115 *CurBufferPtr++ = (uint8_t)(W >> 16); 116 *CurBufferPtr++ = (uint8_t)(W >> 8); 117 *CurBufferPtr++ = (uint8_t)(W >> 0); 118 } else { 119 CurBufferPtr = BufferEnd; 120 } 121 } 122 123 /// emitDWordLE - This callback is invoked when a 64-bit word needs to be 124 /// written to the output stream in little-endian format. 125 /// 126 void emitDWordLE(uint64_t W) { 127 if (8 <= BufferEnd-CurBufferPtr) { 128 *CurBufferPtr++ = (uint8_t)(W >> 0); 129 *CurBufferPtr++ = (uint8_t)(W >> 8); 130 *CurBufferPtr++ = (uint8_t)(W >> 16); 131 *CurBufferPtr++ = (uint8_t)(W >> 24); 132 *CurBufferPtr++ = (uint8_t)(W >> 32); 133 *CurBufferPtr++ = (uint8_t)(W >> 40); 134 *CurBufferPtr++ = (uint8_t)(W >> 48); 135 *CurBufferPtr++ = (uint8_t)(W >> 56); 136 } else { 137 CurBufferPtr = BufferEnd; 138 } 139 } 140 141 /// emitDWordBE - This callback is invoked when a 64-bit word needs to be 142 /// written to the output stream in big-endian format. 143 /// 144 void emitDWordBE(uint64_t W) { 145 if (8 <= BufferEnd-CurBufferPtr) { 146 *CurBufferPtr++ = (uint8_t)(W >> 56); 147 *CurBufferPtr++ = (uint8_t)(W >> 48); 148 *CurBufferPtr++ = (uint8_t)(W >> 40); 149 *CurBufferPtr++ = (uint8_t)(W >> 32); 150 *CurBufferPtr++ = (uint8_t)(W >> 24); 151 *CurBufferPtr++ = (uint8_t)(W >> 16); 152 *CurBufferPtr++ = (uint8_t)(W >> 8); 153 *CurBufferPtr++ = (uint8_t)(W >> 0); 154 } else { 155 CurBufferPtr = BufferEnd; 156 } 157 } 158 159 /// emitAlignment - Move the CurBufferPtr pointer up to the specified 160 /// alignment (saturated to BufferEnd of course). 161 void emitAlignment(unsigned Alignment) { 162 if (Alignment == 0) Alignment = 1; 163 164 if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) { 165 // Move the current buffer ptr up to the specified alignment. 166 CurBufferPtr = 167 (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) & 168 ~(uintptr_t)(Alignment-1)); 169 } else { 170 CurBufferPtr = BufferEnd; 171 } 172 } 173 174 175 /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be 176 /// written to the output stream. 177 void emitULEB128Bytes(uint64_t Value) { 178 do { 179 uint8_t Byte = Value & 0x7f; 180 Value >>= 7; 181 if (Value) Byte |= 0x80; 182 emitByte(Byte); 183 } while (Value); 184 } 185 186 /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be 187 /// written to the output stream. 188 void emitSLEB128Bytes(uint64_t Value) { 189 uint64_t Sign = Value >> (8 * sizeof(Value) - 1); 190 bool IsMore; 191 192 do { 193 uint8_t Byte = Value & 0x7f; 194 Value >>= 7; 195 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 196 if (IsMore) Byte |= 0x80; 197 emitByte(Byte); 198 } while (IsMore); 199 } 200 201 /// emitString - This callback is invoked when a String needs to be 202 /// written to the output stream. 203 void emitString(const std::string &String) { 204 for (unsigned i = 0, N = static_cast<unsigned>(String.size()); 205 i < N; ++i) { 206 uint8_t C = String[i]; 207 emitByte(C); 208 } 209 emitByte(0); 210 } 211 212 /// emitInt32 - Emit a int32 directive. 213 void emitInt32(int32_t Value) { 214 if (4 <= BufferEnd-CurBufferPtr) { 215 *((uint32_t*)CurBufferPtr) = Value; 216 CurBufferPtr += 4; 217 } else { 218 CurBufferPtr = BufferEnd; 219 } 220 } 221 222 /// emitInt64 - Emit a int64 directive. 223 void emitInt64(uint64_t Value) { 224 if (8 <= BufferEnd-CurBufferPtr) { 225 *((uint64_t*)CurBufferPtr) = Value; 226 CurBufferPtr += 8; 227 } else { 228 CurBufferPtr = BufferEnd; 229 } 230 } 231 232 /// emitInt32At - Emit the Int32 Value in Addr. 233 void emitInt32At(uintptr_t *Addr, uintptr_t Value) { 234 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 235 (*(uint32_t*)Addr) = (uint32_t)Value; 236 } 237 238 /// emitInt64At - Emit the Int64 Value in Addr. 239 void emitInt64At(uintptr_t *Addr, uintptr_t Value) { 240 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 241 (*(uint64_t*)Addr) = (uint64_t)Value; 242 } 243 244 /// processDebugLoc - Records debug location information about a 245 /// MachineInstruction. This is called before emitting any bytes associated 246 /// with the instruction. Even if successive instructions have the same debug 247 /// location, this method will be called for each one. 248 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {} 249 250 /// emitLabel - Emits a label 251 virtual void emitLabel(MCSymbol *Label) = 0; 252 253 /// allocateSpace - Allocate a block of space in the current output buffer, 254 /// returning null (and setting conditions to indicate buffer overflow) on 255 /// failure. Alignment is the alignment in bytes of the buffer desired. 256 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) { 257 emitAlignment(Alignment); 258 void *Result; 259 260 // Check for buffer overflow. 261 if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) { 262 CurBufferPtr = BufferEnd; 263 Result = 0; 264 } else { 265 // Allocate the space. 266 Result = CurBufferPtr; 267 CurBufferPtr += Size; 268 } 269 270 return Result; 271 } 272 273 /// StartMachineBasicBlock - This should be called by the target when a new 274 /// basic block is about to be emitted. This way the MCE knows where the 275 /// start of the block is, and can implement getMachineBasicBlockAddress. 276 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0; 277 278 /// getCurrentPCValue - This returns the address that the next emitted byte 279 /// will be output to. 280 /// 281 virtual uintptr_t getCurrentPCValue() const { 282 return (uintptr_t)CurBufferPtr; 283 } 284 285 /// getCurrentPCOffset - Return the offset from the start of the emitted 286 /// buffer that we are currently writing to. 287 virtual uintptr_t getCurrentPCOffset() const { 288 return CurBufferPtr-BufferBegin; 289 } 290 291 /// earlyResolveAddresses - True if the code emitter can use symbol addresses 292 /// during code emission time. The JIT is capable of doing this because it 293 /// creates jump tables or constant pools in memory on the fly while the 294 /// object code emitters rely on a linker to have real addresses and should 295 /// use relocations instead. 296 virtual bool earlyResolveAddresses() const = 0; 297 298 /// addRelocation - Whenever a relocatable address is needed, it should be 299 /// noted with this interface. 300 virtual void addRelocation(const MachineRelocation &MR) = 0; 301 302 /// FIXME: These should all be handled with relocations! 303 304 /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in 305 /// the constant pool that was last emitted with the emitConstantPool method. 306 /// 307 virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0; 308 309 /// getJumpTableEntryAddress - Return the address of the jump table with index 310 /// 'Index' in the function that last called initJumpTableInfo. 311 /// 312 virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0; 313 314 /// getMachineBasicBlockAddress - Return the address of the specified 315 /// MachineBasicBlock, only usable after the label for the MBB has been 316 /// emitted. 317 /// 318 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0; 319 320 /// getLabelAddress - Return the address of the specified Label, only usable 321 /// after the LabelID has been emitted. 322 /// 323 virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0; 324 325 /// Specifies the MachineModuleInfo object. This is used for exception handling 326 /// purposes. 327 virtual void setModuleInfo(MachineModuleInfo* Info) = 0; 328 }; 329 330 } // End llvm namespace 331 332 #endif 333