Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an abstract interface that is used by the machine code
     11 // emission framework to output the code.  This allows machine code emission to
     12 // be separated from concerns such as resolution of call targets, and where the
     13 // machine code will be written (memory or disk, f.e.).
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H
     18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H
     19 
     20 #include "llvm/Support/DataTypes.h"
     21 #include "llvm/Support/DebugLoc.h"
     22 
     23 namespace llvm {
     24 
     25 class MachineBasicBlock;
     26 class MachineConstantPool;
     27 class MachineJumpTableInfo;
     28 class MachineFunction;
     29 class MachineModuleInfo;
     30 class MachineRelocation;
     31 class Value;
     32 class GlobalValue;
     33 class Function;
     34 class MCSymbol;
     35 
     36 /// MachineCodeEmitter - This class defines two sorts of methods: those for
     37 /// emitting the actual bytes of machine code, and those for emitting auxiliary
     38 /// structures, such as jump tables, relocations, etc.
     39 ///
     40 /// Emission of machine code is complicated by the fact that we don't (in
     41 /// general) know the size of the machine code that we're about to emit before
     42 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
     43 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
     44 /// emit machine instructions, we advance the CurBufferPtr to indicate the
     45 /// location of the next byte to emit.  In the case of a buffer overflow (we
     46 /// need to emit more machine code than we have allocated space for), the
     47 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
     48 /// function has been emitted, the overflow condition is checked, and if it has
     49 /// occurred, more memory is allocated, and we reemit the code into it.
     50 ///
     51 class MachineCodeEmitter {
     52 protected:
     53   /// BufferBegin/BufferEnd - Pointers to the start and end of the memory
     54   /// allocated for this code buffer.
     55   uint8_t *BufferBegin, *BufferEnd;
     56   /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
     57   /// code.  This is guaranteed to be in the range [BufferBegin,BufferEnd].  If
     58   /// this pointer is at BufferEnd, it will never move due to code emission, and
     59   /// all code emission requests will be ignored (this is the buffer overflow
     60   /// condition).
     61   uint8_t *CurBufferPtr;
     62 
     63 public:
     64   virtual ~MachineCodeEmitter() {}
     65 
     66   /// startFunction - This callback is invoked when the specified function is
     67   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
     68   /// fields.
     69   ///
     70   virtual void startFunction(MachineFunction &F) = 0;
     71 
     72   /// finishFunction - This callback is invoked when the specified function has
     73   /// finished code generation.  If a buffer overflow has occurred, this method
     74   /// returns true (the callee is required to try again), otherwise it returns
     75   /// false.
     76   ///
     77   virtual bool finishFunction(MachineFunction &F) = 0;
     78 
     79   /// emitByte - This callback is invoked when a byte needs to be written to the
     80   /// output stream.
     81   ///
     82   void emitByte(uint8_t B) {
     83     if (CurBufferPtr != BufferEnd)
     84       *CurBufferPtr++ = B;
     85   }
     86 
     87   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
     88   /// written to the output stream in little-endian format.
     89   ///
     90   void emitWordLE(uint32_t W) {
     91     if (4 <= BufferEnd-CurBufferPtr) {
     92       emitWordLEInto(CurBufferPtr, W);
     93     } else {
     94       CurBufferPtr = BufferEnd;
     95     }
     96   }
     97 
     98   /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
     99   /// written to an arbitrary buffer in little-endian format.  Buf must have at
    100   /// least 4 bytes of available space.
    101   ///
    102   static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
    103     *Buf++ = (uint8_t)(W >>  0);
    104     *Buf++ = (uint8_t)(W >>  8);
    105     *Buf++ = (uint8_t)(W >> 16);
    106     *Buf++ = (uint8_t)(W >> 24);
    107   }
    108 
    109   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
    110   /// written to the output stream in big-endian format.
    111   ///
    112   void emitWordBE(uint32_t W) {
    113     if (4 <= BufferEnd-CurBufferPtr) {
    114       *CurBufferPtr++ = (uint8_t)(W >> 24);
    115       *CurBufferPtr++ = (uint8_t)(W >> 16);
    116       *CurBufferPtr++ = (uint8_t)(W >>  8);
    117       *CurBufferPtr++ = (uint8_t)(W >>  0);
    118     } else {
    119       CurBufferPtr = BufferEnd;
    120     }
    121   }
    122 
    123   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
    124   /// written to the output stream in little-endian format.
    125   ///
    126   void emitDWordLE(uint64_t W) {
    127     if (8 <= BufferEnd-CurBufferPtr) {
    128       *CurBufferPtr++ = (uint8_t)(W >>  0);
    129       *CurBufferPtr++ = (uint8_t)(W >>  8);
    130       *CurBufferPtr++ = (uint8_t)(W >> 16);
    131       *CurBufferPtr++ = (uint8_t)(W >> 24);
    132       *CurBufferPtr++ = (uint8_t)(W >> 32);
    133       *CurBufferPtr++ = (uint8_t)(W >> 40);
    134       *CurBufferPtr++ = (uint8_t)(W >> 48);
    135       *CurBufferPtr++ = (uint8_t)(W >> 56);
    136     } else {
    137       CurBufferPtr = BufferEnd;
    138     }
    139   }
    140 
    141   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
    142   /// written to the output stream in big-endian format.
    143   ///
    144   void emitDWordBE(uint64_t W) {
    145     if (8 <= BufferEnd-CurBufferPtr) {
    146       *CurBufferPtr++ = (uint8_t)(W >> 56);
    147       *CurBufferPtr++ = (uint8_t)(W >> 48);
    148       *CurBufferPtr++ = (uint8_t)(W >> 40);
    149       *CurBufferPtr++ = (uint8_t)(W >> 32);
    150       *CurBufferPtr++ = (uint8_t)(W >> 24);
    151       *CurBufferPtr++ = (uint8_t)(W >> 16);
    152       *CurBufferPtr++ = (uint8_t)(W >>  8);
    153       *CurBufferPtr++ = (uint8_t)(W >>  0);
    154     } else {
    155       CurBufferPtr = BufferEnd;
    156     }
    157   }
    158 
    159   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
    160   /// alignment (saturated to BufferEnd of course).
    161   void emitAlignment(unsigned Alignment) {
    162     if (Alignment == 0) Alignment = 1;
    163 
    164     if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    165       // Move the current buffer ptr up to the specified alignment.
    166       CurBufferPtr =
    167         (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) &
    168                    ~(uintptr_t)(Alignment-1));
    169     } else {
    170       CurBufferPtr = BufferEnd;
    171     }
    172   }
    173 
    174 
    175   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
    176   /// written to the output stream.
    177   void emitULEB128Bytes(uint64_t Value) {
    178     do {
    179       uint8_t Byte = Value & 0x7f;
    180       Value >>= 7;
    181       if (Value) Byte |= 0x80;
    182       emitByte(Byte);
    183     } while (Value);
    184   }
    185 
    186   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
    187   /// written to the output stream.
    188   void emitSLEB128Bytes(uint64_t Value) {
    189     uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
    190     bool IsMore;
    191 
    192     do {
    193       uint8_t Byte = Value & 0x7f;
    194       Value >>= 7;
    195       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
    196       if (IsMore) Byte |= 0x80;
    197       emitByte(Byte);
    198     } while (IsMore);
    199   }
    200 
    201   /// emitString - This callback is invoked when a String needs to be
    202   /// written to the output stream.
    203   void emitString(const std::string &String) {
    204     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
    205          i < N; ++i) {
    206       uint8_t C = String[i];
    207       emitByte(C);
    208     }
    209     emitByte(0);
    210   }
    211 
    212   /// emitInt32 - Emit a int32 directive.
    213   void emitInt32(int32_t Value) {
    214     if (4 <= BufferEnd-CurBufferPtr) {
    215       *((uint32_t*)CurBufferPtr) = Value;
    216       CurBufferPtr += 4;
    217     } else {
    218       CurBufferPtr = BufferEnd;
    219     }
    220   }
    221 
    222   /// emitInt64 - Emit a int64 directive.
    223   void emitInt64(uint64_t Value) {
    224     if (8 <= BufferEnd-CurBufferPtr) {
    225       *((uint64_t*)CurBufferPtr) = Value;
    226       CurBufferPtr += 8;
    227     } else {
    228       CurBufferPtr = BufferEnd;
    229     }
    230   }
    231 
    232   /// emitInt32At - Emit the Int32 Value in Addr.
    233   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
    234     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    235       (*(uint32_t*)Addr) = (uint32_t)Value;
    236   }
    237 
    238   /// emitInt64At - Emit the Int64 Value in Addr.
    239   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
    240     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    241       (*(uint64_t*)Addr) = (uint64_t)Value;
    242   }
    243 
    244   /// processDebugLoc - Records debug location information about a
    245   /// MachineInstruction.  This is called before emitting any bytes associated
    246   /// with the instruction.  Even if successive instructions have the same debug
    247   /// location, this method will be called for each one.
    248   virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
    249 
    250   /// emitLabel - Emits a label
    251   virtual void emitLabel(MCSymbol *Label) = 0;
    252 
    253   /// allocateSpace - Allocate a block of space in the current output buffer,
    254   /// returning null (and setting conditions to indicate buffer overflow) on
    255   /// failure.  Alignment is the alignment in bytes of the buffer desired.
    256   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
    257     emitAlignment(Alignment);
    258     void *Result;
    259 
    260     // Check for buffer overflow.
    261     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    262       CurBufferPtr = BufferEnd;
    263       Result = 0;
    264     } else {
    265       // Allocate the space.
    266       Result = CurBufferPtr;
    267       CurBufferPtr += Size;
    268     }
    269 
    270     return Result;
    271   }
    272 
    273   /// StartMachineBasicBlock - This should be called by the target when a new
    274   /// basic block is about to be emitted.  This way the MCE knows where the
    275   /// start of the block is, and can implement getMachineBasicBlockAddress.
    276   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
    277 
    278   /// getCurrentPCValue - This returns the address that the next emitted byte
    279   /// will be output to.
    280   ///
    281   virtual uintptr_t getCurrentPCValue() const {
    282     return (uintptr_t)CurBufferPtr;
    283   }
    284 
    285   /// getCurrentPCOffset - Return the offset from the start of the emitted
    286   /// buffer that we are currently writing to.
    287   virtual uintptr_t getCurrentPCOffset() const {
    288     return CurBufferPtr-BufferBegin;
    289   }
    290 
    291   /// earlyResolveAddresses - True if the code emitter can use symbol addresses
    292   /// during code emission time. The JIT is capable of doing this because it
    293   /// creates jump tables or constant pools in memory on the fly while the
    294   /// object code emitters rely on a linker to have real addresses and should
    295   /// use relocations instead.
    296   virtual bool earlyResolveAddresses() const = 0;
    297 
    298   /// addRelocation - Whenever a relocatable address is needed, it should be
    299   /// noted with this interface.
    300   virtual void addRelocation(const MachineRelocation &MR) = 0;
    301 
    302   /// FIXME: These should all be handled with relocations!
    303 
    304   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
    305   /// the constant pool that was last emitted with the emitConstantPool method.
    306   ///
    307   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
    308 
    309   /// getJumpTableEntryAddress - Return the address of the jump table with index
    310   /// 'Index' in the function that last called initJumpTableInfo.
    311   ///
    312   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
    313 
    314   /// getMachineBasicBlockAddress - Return the address of the specified
    315   /// MachineBasicBlock, only usable after the label for the MBB has been
    316   /// emitted.
    317   ///
    318   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
    319 
    320   /// getLabelAddress - Return the address of the specified Label, only usable
    321   /// after the LabelID has been emitted.
    322   ///
    323   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
    324 
    325   /// Specifies the MachineModuleInfo object. This is used for exception handling
    326   /// purposes.
    327   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
    328 };
    329 
    330 } // End llvm namespace
    331 
    332 #endif
    333