Home | History | Annotate | Download | only in Sema
      1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements extra semantic analysis beyond what is enforced
     11 //  by the C type system.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/Sema.h"
     16 #include "clang/Sema/SemaInternal.h"
     17 #include "clang/Sema/ScopeInfo.h"
     18 #include "clang/Analysis/Analyses/FormatString.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/ExprObjC.h"
     25 #include "clang/AST/EvaluatedExprVisitor.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/AST/StmtCXX.h"
     28 #include "clang/AST/StmtObjC.h"
     29 #include "clang/Lex/Preprocessor.h"
     30 #include "llvm/ADT/BitVector.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "clang/Basic/TargetBuiltins.h"
     34 #include "clang/Basic/TargetInfo.h"
     35 #include "clang/Basic/ConvertUTF.h"
     36 #include <limits>
     37 using namespace clang;
     38 using namespace sema;
     39 
     40 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
     41                                                     unsigned ByteNo) const {
     42   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
     43                                PP.getLangOptions(), PP.getTargetInfo());
     44 }
     45 
     46 
     47 /// CheckablePrintfAttr - does a function call have a "printf" attribute
     48 /// and arguments that merit checking?
     49 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
     50   if (Format->getType() == "printf") return true;
     51   if (Format->getType() == "printf0") {
     52     // printf0 allows null "format" string; if so don't check format/args
     53     unsigned format_idx = Format->getFormatIdx() - 1;
     54     // Does the index refer to the implicit object argument?
     55     if (isa<CXXMemberCallExpr>(TheCall)) {
     56       if (format_idx == 0)
     57         return false;
     58       --format_idx;
     59     }
     60     if (format_idx < TheCall->getNumArgs()) {
     61       Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
     62       if (!Format->isNullPointerConstant(Context,
     63                                          Expr::NPC_ValueDependentIsNull))
     64         return true;
     65     }
     66   }
     67   return false;
     68 }
     69 
     70 /// Checks that a call expression's argument count is the desired number.
     71 /// This is useful when doing custom type-checking.  Returns true on error.
     72 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
     73   unsigned argCount = call->getNumArgs();
     74   if (argCount == desiredArgCount) return false;
     75 
     76   if (argCount < desiredArgCount)
     77     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
     78         << 0 /*function call*/ << desiredArgCount << argCount
     79         << call->getSourceRange();
     80 
     81   // Highlight all the excess arguments.
     82   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
     83                     call->getArg(argCount - 1)->getLocEnd());
     84 
     85   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
     86     << 0 /*function call*/ << desiredArgCount << argCount
     87     << call->getArg(1)->getSourceRange();
     88 }
     89 
     90 ExprResult
     91 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
     92   ExprResult TheCallResult(Owned(TheCall));
     93 
     94   // Find out if any arguments are required to be integer constant expressions.
     95   unsigned ICEArguments = 0;
     96   ASTContext::GetBuiltinTypeError Error;
     97   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
     98   if (Error != ASTContext::GE_None)
     99     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
    100 
    101   // If any arguments are required to be ICE's, check and diagnose.
    102   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
    103     // Skip arguments not required to be ICE's.
    104     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
    105 
    106     llvm::APSInt Result;
    107     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
    108       return true;
    109     ICEArguments &= ~(1 << ArgNo);
    110   }
    111 
    112   switch (BuiltinID) {
    113   case Builtin::BI__builtin___CFStringMakeConstantString:
    114     assert(TheCall->getNumArgs() == 1 &&
    115            "Wrong # arguments to builtin CFStringMakeConstantString");
    116     if (CheckObjCString(TheCall->getArg(0)))
    117       return ExprError();
    118     break;
    119   case Builtin::BI__builtin_stdarg_start:
    120   case Builtin::BI__builtin_va_start:
    121     if (SemaBuiltinVAStart(TheCall))
    122       return ExprError();
    123     break;
    124   case Builtin::BI__builtin_isgreater:
    125   case Builtin::BI__builtin_isgreaterequal:
    126   case Builtin::BI__builtin_isless:
    127   case Builtin::BI__builtin_islessequal:
    128   case Builtin::BI__builtin_islessgreater:
    129   case Builtin::BI__builtin_isunordered:
    130     if (SemaBuiltinUnorderedCompare(TheCall))
    131       return ExprError();
    132     break;
    133   case Builtin::BI__builtin_fpclassify:
    134     if (SemaBuiltinFPClassification(TheCall, 6))
    135       return ExprError();
    136     break;
    137   case Builtin::BI__builtin_isfinite:
    138   case Builtin::BI__builtin_isinf:
    139   case Builtin::BI__builtin_isinf_sign:
    140   case Builtin::BI__builtin_isnan:
    141   case Builtin::BI__builtin_isnormal:
    142     if (SemaBuiltinFPClassification(TheCall, 1))
    143       return ExprError();
    144     break;
    145   case Builtin::BI__builtin_shufflevector:
    146     return SemaBuiltinShuffleVector(TheCall);
    147     // TheCall will be freed by the smart pointer here, but that's fine, since
    148     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
    149   case Builtin::BI__builtin_prefetch:
    150     if (SemaBuiltinPrefetch(TheCall))
    151       return ExprError();
    152     break;
    153   case Builtin::BI__builtin_object_size:
    154     if (SemaBuiltinObjectSize(TheCall))
    155       return ExprError();
    156     break;
    157   case Builtin::BI__builtin_longjmp:
    158     if (SemaBuiltinLongjmp(TheCall))
    159       return ExprError();
    160     break;
    161 
    162   case Builtin::BI__builtin_classify_type:
    163     if (checkArgCount(*this, TheCall, 1)) return true;
    164     TheCall->setType(Context.IntTy);
    165     break;
    166   case Builtin::BI__builtin_constant_p:
    167     if (checkArgCount(*this, TheCall, 1)) return true;
    168     TheCall->setType(Context.IntTy);
    169     break;
    170   case Builtin::BI__sync_fetch_and_add:
    171   case Builtin::BI__sync_fetch_and_sub:
    172   case Builtin::BI__sync_fetch_and_or:
    173   case Builtin::BI__sync_fetch_and_and:
    174   case Builtin::BI__sync_fetch_and_xor:
    175   case Builtin::BI__sync_add_and_fetch:
    176   case Builtin::BI__sync_sub_and_fetch:
    177   case Builtin::BI__sync_and_and_fetch:
    178   case Builtin::BI__sync_or_and_fetch:
    179   case Builtin::BI__sync_xor_and_fetch:
    180   case Builtin::BI__sync_val_compare_and_swap:
    181   case Builtin::BI__sync_bool_compare_and_swap:
    182   case Builtin::BI__sync_lock_test_and_set:
    183   case Builtin::BI__sync_lock_release:
    184   case Builtin::BI__sync_swap:
    185     return SemaBuiltinAtomicOverloaded(move(TheCallResult));
    186   }
    187 
    188   // Since the target specific builtins for each arch overlap, only check those
    189   // of the arch we are compiling for.
    190   if (BuiltinID >= Builtin::FirstTSBuiltin) {
    191     switch (Context.Target.getTriple().getArch()) {
    192       case llvm::Triple::arm:
    193       case llvm::Triple::thumb:
    194         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
    195           return ExprError();
    196         break;
    197       default:
    198         break;
    199     }
    200   }
    201 
    202   return move(TheCallResult);
    203 }
    204 
    205 // Get the valid immediate range for the specified NEON type code.
    206 static unsigned RFT(unsigned t, bool shift = false) {
    207   bool quad = t & 0x10;
    208 
    209   switch (t & 0x7) {
    210     case 0: // i8
    211       return shift ? 7 : (8 << (int)quad) - 1;
    212     case 1: // i16
    213       return shift ? 15 : (4 << (int)quad) - 1;
    214     case 2: // i32
    215       return shift ? 31 : (2 << (int)quad) - 1;
    216     case 3: // i64
    217       return shift ? 63 : (1 << (int)quad) - 1;
    218     case 4: // f32
    219       assert(!shift && "cannot shift float types!");
    220       return (2 << (int)quad) - 1;
    221     case 5: // poly8
    222       return shift ? 7 : (8 << (int)quad) - 1;
    223     case 6: // poly16
    224       return shift ? 15 : (4 << (int)quad) - 1;
    225     case 7: // float16
    226       assert(!shift && "cannot shift float types!");
    227       return (4 << (int)quad) - 1;
    228   }
    229   return 0;
    230 }
    231 
    232 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    233   llvm::APSInt Result;
    234 
    235   unsigned mask = 0;
    236   unsigned TV = 0;
    237   switch (BuiltinID) {
    238 #define GET_NEON_OVERLOAD_CHECK
    239 #include "clang/Basic/arm_neon.inc"
    240 #undef GET_NEON_OVERLOAD_CHECK
    241   }
    242 
    243   // For NEON intrinsics which are overloaded on vector element type, validate
    244   // the immediate which specifies which variant to emit.
    245   if (mask) {
    246     unsigned ArgNo = TheCall->getNumArgs()-1;
    247     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
    248       return true;
    249 
    250     TV = Result.getLimitedValue(32);
    251     if ((TV > 31) || (mask & (1 << TV)) == 0)
    252       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
    253         << TheCall->getArg(ArgNo)->getSourceRange();
    254   }
    255 
    256   // For NEON intrinsics which take an immediate value as part of the
    257   // instruction, range check them here.
    258   unsigned i = 0, l = 0, u = 0;
    259   switch (BuiltinID) {
    260   default: return false;
    261   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
    262   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
    263   case ARM::BI__builtin_arm_vcvtr_f:
    264   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
    265 #define GET_NEON_IMMEDIATE_CHECK
    266 #include "clang/Basic/arm_neon.inc"
    267 #undef GET_NEON_IMMEDIATE_CHECK
    268   };
    269 
    270   // Check that the immediate argument is actually a constant.
    271   if (SemaBuiltinConstantArg(TheCall, i, Result))
    272     return true;
    273 
    274   // Range check against the upper/lower values for this isntruction.
    275   unsigned Val = Result.getZExtValue();
    276   if (Val < l || Val > (u + l))
    277     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    278       << l << u+l << TheCall->getArg(i)->getSourceRange();
    279 
    280   // FIXME: VFP Intrinsics should error if VFP not present.
    281   return false;
    282 }
    283 
    284 /// CheckFunctionCall - Check a direct function call for various correctness
    285 /// and safety properties not strictly enforced by the C type system.
    286 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
    287   // Get the IdentifierInfo* for the called function.
    288   IdentifierInfo *FnInfo = FDecl->getIdentifier();
    289 
    290   // None of the checks below are needed for functions that don't have
    291   // simple names (e.g., C++ conversion functions).
    292   if (!FnInfo)
    293     return false;
    294 
    295   // FIXME: This mechanism should be abstracted to be less fragile and
    296   // more efficient. For example, just map function ids to custom
    297   // handlers.
    298 
    299   // Printf and scanf checking.
    300   for (specific_attr_iterator<FormatAttr>
    301          i = FDecl->specific_attr_begin<FormatAttr>(),
    302          e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
    303 
    304     const FormatAttr *Format = *i;
    305     const bool b = Format->getType() == "scanf";
    306     if (b || CheckablePrintfAttr(Format, TheCall)) {
    307       bool HasVAListArg = Format->getFirstArg() == 0;
    308       CheckPrintfScanfArguments(TheCall, HasVAListArg,
    309                                 Format->getFormatIdx() - 1,
    310                                 HasVAListArg ? 0 : Format->getFirstArg() - 1,
    311                                 !b);
    312     }
    313   }
    314 
    315   for (specific_attr_iterator<NonNullAttr>
    316          i = FDecl->specific_attr_begin<NonNullAttr>(),
    317          e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
    318     CheckNonNullArguments(*i, TheCall->getArgs(),
    319                           TheCall->getCallee()->getLocStart());
    320   }
    321 
    322   // Memset/memcpy/memmove handling
    323   int CMF = -1;
    324   switch (FDecl->getBuiltinID()) {
    325   case Builtin::BI__builtin_memset:
    326   case Builtin::BI__builtin___memset_chk:
    327   case Builtin::BImemset:
    328     CMF = CMF_Memset;
    329     break;
    330 
    331   case Builtin::BI__builtin_memcpy:
    332   case Builtin::BI__builtin___memcpy_chk:
    333   case Builtin::BImemcpy:
    334     CMF = CMF_Memcpy;
    335     break;
    336 
    337   case Builtin::BI__builtin_memmove:
    338   case Builtin::BI__builtin___memmove_chk:
    339   case Builtin::BImemmove:
    340     CMF = CMF_Memmove;
    341     break;
    342 
    343   default:
    344     if (FDecl->getLinkage() == ExternalLinkage &&
    345         (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
    346       if (FnInfo->isStr("memset"))
    347         CMF = CMF_Memset;
    348       else if (FnInfo->isStr("memcpy"))
    349         CMF = CMF_Memcpy;
    350       else if (FnInfo->isStr("memmove"))
    351         CMF = CMF_Memmove;
    352     }
    353     break;
    354   }
    355 
    356   if (CMF != -1)
    357     CheckMemsetcpymoveArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
    358 
    359   return false;
    360 }
    361 
    362 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
    363   // Printf checking.
    364   const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
    365   if (!Format)
    366     return false;
    367 
    368   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
    369   if (!V)
    370     return false;
    371 
    372   QualType Ty = V->getType();
    373   if (!Ty->isBlockPointerType())
    374     return false;
    375 
    376   const bool b = Format->getType() == "scanf";
    377   if (!b && !CheckablePrintfAttr(Format, TheCall))
    378     return false;
    379 
    380   bool HasVAListArg = Format->getFirstArg() == 0;
    381   CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
    382                             HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
    383 
    384   return false;
    385 }
    386 
    387 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
    388 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
    389 /// type of its first argument.  The main ActOnCallExpr routines have already
    390 /// promoted the types of arguments because all of these calls are prototyped as
    391 /// void(...).
    392 ///
    393 /// This function goes through and does final semantic checking for these
    394 /// builtins,
    395 ExprResult
    396 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
    397   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
    398   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    399   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
    400 
    401   // Ensure that we have at least one argument to do type inference from.
    402   if (TheCall->getNumArgs() < 1) {
    403     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
    404       << 0 << 1 << TheCall->getNumArgs()
    405       << TheCall->getCallee()->getSourceRange();
    406     return ExprError();
    407   }
    408 
    409   // Inspect the first argument of the atomic builtin.  This should always be
    410   // a pointer type, whose element is an integral scalar or pointer type.
    411   // Because it is a pointer type, we don't have to worry about any implicit
    412   // casts here.
    413   // FIXME: We don't allow floating point scalars as input.
    414   Expr *FirstArg = TheCall->getArg(0);
    415   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
    416   if (!pointerType) {
    417     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
    418       << FirstArg->getType() << FirstArg->getSourceRange();
    419     return ExprError();
    420   }
    421 
    422   QualType ValType = pointerType->getPointeeType();
    423   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
    424       !ValType->isBlockPointerType()) {
    425     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
    426       << FirstArg->getType() << FirstArg->getSourceRange();
    427     return ExprError();
    428   }
    429 
    430   switch (ValType.getObjCLifetime()) {
    431   case Qualifiers::OCL_None:
    432   case Qualifiers::OCL_ExplicitNone:
    433     // okay
    434     break;
    435 
    436   case Qualifiers::OCL_Weak:
    437   case Qualifiers::OCL_Strong:
    438   case Qualifiers::OCL_Autoreleasing:
    439     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
    440       << ValType << FirstArg->getSourceRange();
    441     return ExprError();
    442   }
    443 
    444   // The majority of builtins return a value, but a few have special return
    445   // types, so allow them to override appropriately below.
    446   QualType ResultType = ValType;
    447 
    448   // We need to figure out which concrete builtin this maps onto.  For example,
    449   // __sync_fetch_and_add with a 2 byte object turns into
    450   // __sync_fetch_and_add_2.
    451 #define BUILTIN_ROW(x) \
    452   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
    453     Builtin::BI##x##_8, Builtin::BI##x##_16 }
    454 
    455   static const unsigned BuiltinIndices[][5] = {
    456     BUILTIN_ROW(__sync_fetch_and_add),
    457     BUILTIN_ROW(__sync_fetch_and_sub),
    458     BUILTIN_ROW(__sync_fetch_and_or),
    459     BUILTIN_ROW(__sync_fetch_and_and),
    460     BUILTIN_ROW(__sync_fetch_and_xor),
    461 
    462     BUILTIN_ROW(__sync_add_and_fetch),
    463     BUILTIN_ROW(__sync_sub_and_fetch),
    464     BUILTIN_ROW(__sync_and_and_fetch),
    465     BUILTIN_ROW(__sync_or_and_fetch),
    466     BUILTIN_ROW(__sync_xor_and_fetch),
    467 
    468     BUILTIN_ROW(__sync_val_compare_and_swap),
    469     BUILTIN_ROW(__sync_bool_compare_and_swap),
    470     BUILTIN_ROW(__sync_lock_test_and_set),
    471     BUILTIN_ROW(__sync_lock_release),
    472     BUILTIN_ROW(__sync_swap)
    473   };
    474 #undef BUILTIN_ROW
    475 
    476   // Determine the index of the size.
    477   unsigned SizeIndex;
    478   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
    479   case 1: SizeIndex = 0; break;
    480   case 2: SizeIndex = 1; break;
    481   case 4: SizeIndex = 2; break;
    482   case 8: SizeIndex = 3; break;
    483   case 16: SizeIndex = 4; break;
    484   default:
    485     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
    486       << FirstArg->getType() << FirstArg->getSourceRange();
    487     return ExprError();
    488   }
    489 
    490   // Each of these builtins has one pointer argument, followed by some number of
    491   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
    492   // that we ignore.  Find out which row of BuiltinIndices to read from as well
    493   // as the number of fixed args.
    494   unsigned BuiltinID = FDecl->getBuiltinID();
    495   unsigned BuiltinIndex, NumFixed = 1;
    496   switch (BuiltinID) {
    497   default: assert(0 && "Unknown overloaded atomic builtin!");
    498   case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
    499   case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
    500   case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
    501   case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
    502   case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
    503 
    504   case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
    505   case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
    506   case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
    507   case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
    508   case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
    509 
    510   case Builtin::BI__sync_val_compare_and_swap:
    511     BuiltinIndex = 10;
    512     NumFixed = 2;
    513     break;
    514   case Builtin::BI__sync_bool_compare_and_swap:
    515     BuiltinIndex = 11;
    516     NumFixed = 2;
    517     ResultType = Context.BoolTy;
    518     break;
    519   case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
    520   case Builtin::BI__sync_lock_release:
    521     BuiltinIndex = 13;
    522     NumFixed = 0;
    523     ResultType = Context.VoidTy;
    524     break;
    525   case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
    526   }
    527 
    528   // Now that we know how many fixed arguments we expect, first check that we
    529   // have at least that many.
    530   if (TheCall->getNumArgs() < 1+NumFixed) {
    531     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
    532       << 0 << 1+NumFixed << TheCall->getNumArgs()
    533       << TheCall->getCallee()->getSourceRange();
    534     return ExprError();
    535   }
    536 
    537   // Get the decl for the concrete builtin from this, we can tell what the
    538   // concrete integer type we should convert to is.
    539   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
    540   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
    541   IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
    542   FunctionDecl *NewBuiltinDecl =
    543     cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
    544                                            TUScope, false, DRE->getLocStart()));
    545 
    546   // The first argument --- the pointer --- has a fixed type; we
    547   // deduce the types of the rest of the arguments accordingly.  Walk
    548   // the remaining arguments, converting them to the deduced value type.
    549   for (unsigned i = 0; i != NumFixed; ++i) {
    550     ExprResult Arg = TheCall->getArg(i+1);
    551 
    552     // If the argument is an implicit cast, then there was a promotion due to
    553     // "...", just remove it now.
    554     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
    555       Arg = ICE->getSubExpr();
    556       ICE->setSubExpr(0);
    557       TheCall->setArg(i+1, Arg.get());
    558     }
    559 
    560     // GCC does an implicit conversion to the pointer or integer ValType.  This
    561     // can fail in some cases (1i -> int**), check for this error case now.
    562     CastKind Kind = CK_Invalid;
    563     ExprValueKind VK = VK_RValue;
    564     CXXCastPath BasePath;
    565     Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
    566                          ValType, Arg.take(), Kind, VK, BasePath);
    567     if (Arg.isInvalid())
    568       return ExprError();
    569 
    570     // Okay, we have something that *can* be converted to the right type.  Check
    571     // to see if there is a potentially weird extension going on here.  This can
    572     // happen when you do an atomic operation on something like an char* and
    573     // pass in 42.  The 42 gets converted to char.  This is even more strange
    574     // for things like 45.123 -> char, etc.
    575     // FIXME: Do this check.
    576     Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
    577     TheCall->setArg(i+1, Arg.get());
    578   }
    579 
    580   // Switch the DeclRefExpr to refer to the new decl.
    581   DRE->setDecl(NewBuiltinDecl);
    582   DRE->setType(NewBuiltinDecl->getType());
    583 
    584   // Set the callee in the CallExpr.
    585   // FIXME: This leaks the original parens and implicit casts.
    586   ExprResult PromotedCall = UsualUnaryConversions(DRE);
    587   if (PromotedCall.isInvalid())
    588     return ExprError();
    589   TheCall->setCallee(PromotedCall.take());
    590 
    591   // Change the result type of the call to match the original value type. This
    592   // is arbitrary, but the codegen for these builtins ins design to handle it
    593   // gracefully.
    594   TheCall->setType(ResultType);
    595 
    596   return move(TheCallResult);
    597 }
    598 
    599 
    600 /// CheckObjCString - Checks that the argument to the builtin
    601 /// CFString constructor is correct
    602 /// Note: It might also make sense to do the UTF-16 conversion here (would
    603 /// simplify the backend).
    604 bool Sema::CheckObjCString(Expr *Arg) {
    605   Arg = Arg->IgnoreParenCasts();
    606   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
    607 
    608   if (!Literal || Literal->isWide()) {
    609     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
    610       << Arg->getSourceRange();
    611     return true;
    612   }
    613 
    614   if (Literal->containsNonAsciiOrNull()) {
    615     llvm::StringRef String = Literal->getString();
    616     unsigned NumBytes = String.size();
    617     llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
    618     const UTF8 *FromPtr = (UTF8 *)String.data();
    619     UTF16 *ToPtr = &ToBuf[0];
    620 
    621     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
    622                                                  &ToPtr, ToPtr + NumBytes,
    623                                                  strictConversion);
    624     // Check for conversion failure.
    625     if (Result != conversionOK)
    626       Diag(Arg->getLocStart(),
    627            diag::warn_cfstring_truncated) << Arg->getSourceRange();
    628   }
    629   return false;
    630 }
    631 
    632 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
    633 /// Emit an error and return true on failure, return false on success.
    634 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
    635   Expr *Fn = TheCall->getCallee();
    636   if (TheCall->getNumArgs() > 2) {
    637     Diag(TheCall->getArg(2)->getLocStart(),
    638          diag::err_typecheck_call_too_many_args)
    639       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
    640       << Fn->getSourceRange()
    641       << SourceRange(TheCall->getArg(2)->getLocStart(),
    642                      (*(TheCall->arg_end()-1))->getLocEnd());
    643     return true;
    644   }
    645 
    646   if (TheCall->getNumArgs() < 2) {
    647     return Diag(TheCall->getLocEnd(),
    648       diag::err_typecheck_call_too_few_args_at_least)
    649       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
    650   }
    651 
    652   // Determine whether the current function is variadic or not.
    653   BlockScopeInfo *CurBlock = getCurBlock();
    654   bool isVariadic;
    655   if (CurBlock)
    656     isVariadic = CurBlock->TheDecl->isVariadic();
    657   else if (FunctionDecl *FD = getCurFunctionDecl())
    658     isVariadic = FD->isVariadic();
    659   else
    660     isVariadic = getCurMethodDecl()->isVariadic();
    661 
    662   if (!isVariadic) {
    663     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
    664     return true;
    665   }
    666 
    667   // Verify that the second argument to the builtin is the last argument of the
    668   // current function or method.
    669   bool SecondArgIsLastNamedArgument = false;
    670   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
    671 
    672   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
    673     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
    674       // FIXME: This isn't correct for methods (results in bogus warning).
    675       // Get the last formal in the current function.
    676       const ParmVarDecl *LastArg;
    677       if (CurBlock)
    678         LastArg = *(CurBlock->TheDecl->param_end()-1);
    679       else if (FunctionDecl *FD = getCurFunctionDecl())
    680         LastArg = *(FD->param_end()-1);
    681       else
    682         LastArg = *(getCurMethodDecl()->param_end()-1);
    683       SecondArgIsLastNamedArgument = PV == LastArg;
    684     }
    685   }
    686 
    687   if (!SecondArgIsLastNamedArgument)
    688     Diag(TheCall->getArg(1)->getLocStart(),
    689          diag::warn_second_parameter_of_va_start_not_last_named_argument);
    690   return false;
    691 }
    692 
    693 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
    694 /// friends.  This is declared to take (...), so we have to check everything.
    695 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
    696   if (TheCall->getNumArgs() < 2)
    697     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
    698       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
    699   if (TheCall->getNumArgs() > 2)
    700     return Diag(TheCall->getArg(2)->getLocStart(),
    701                 diag::err_typecheck_call_too_many_args)
    702       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
    703       << SourceRange(TheCall->getArg(2)->getLocStart(),
    704                      (*(TheCall->arg_end()-1))->getLocEnd());
    705 
    706   ExprResult OrigArg0 = TheCall->getArg(0);
    707   ExprResult OrigArg1 = TheCall->getArg(1);
    708 
    709   // Do standard promotions between the two arguments, returning their common
    710   // type.
    711   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
    712   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
    713     return true;
    714 
    715   // Make sure any conversions are pushed back into the call; this is
    716   // type safe since unordered compare builtins are declared as "_Bool
    717   // foo(...)".
    718   TheCall->setArg(0, OrigArg0.get());
    719   TheCall->setArg(1, OrigArg1.get());
    720 
    721   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
    722     return false;
    723 
    724   // If the common type isn't a real floating type, then the arguments were
    725   // invalid for this operation.
    726   if (!Res->isRealFloatingType())
    727     return Diag(OrigArg0.get()->getLocStart(),
    728                 diag::err_typecheck_call_invalid_ordered_compare)
    729       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
    730       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
    731 
    732   return false;
    733 }
    734 
    735 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
    736 /// __builtin_isnan and friends.  This is declared to take (...), so we have
    737 /// to check everything. We expect the last argument to be a floating point
    738 /// value.
    739 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
    740   if (TheCall->getNumArgs() < NumArgs)
    741     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
    742       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
    743   if (TheCall->getNumArgs() > NumArgs)
    744     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
    745                 diag::err_typecheck_call_too_many_args)
    746       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
    747       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
    748                      (*(TheCall->arg_end()-1))->getLocEnd());
    749 
    750   Expr *OrigArg = TheCall->getArg(NumArgs-1);
    751 
    752   if (OrigArg->isTypeDependent())
    753     return false;
    754 
    755   // This operation requires a non-_Complex floating-point number.
    756   if (!OrigArg->getType()->isRealFloatingType())
    757     return Diag(OrigArg->getLocStart(),
    758                 diag::err_typecheck_call_invalid_unary_fp)
    759       << OrigArg->getType() << OrigArg->getSourceRange();
    760 
    761   // If this is an implicit conversion from float -> double, remove it.
    762   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
    763     Expr *CastArg = Cast->getSubExpr();
    764     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
    765       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
    766              "promotion from float to double is the only expected cast here");
    767       Cast->setSubExpr(0);
    768       TheCall->setArg(NumArgs-1, CastArg);
    769       OrigArg = CastArg;
    770     }
    771   }
    772 
    773   return false;
    774 }
    775 
    776 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
    777 // This is declared to take (...), so we have to check everything.
    778 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
    779   if (TheCall->getNumArgs() < 2)
    780     return ExprError(Diag(TheCall->getLocEnd(),
    781                           diag::err_typecheck_call_too_few_args_at_least)
    782       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
    783       << TheCall->getSourceRange());
    784 
    785   // Determine which of the following types of shufflevector we're checking:
    786   // 1) unary, vector mask: (lhs, mask)
    787   // 2) binary, vector mask: (lhs, rhs, mask)
    788   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
    789   QualType resType = TheCall->getArg(0)->getType();
    790   unsigned numElements = 0;
    791 
    792   if (!TheCall->getArg(0)->isTypeDependent() &&
    793       !TheCall->getArg(1)->isTypeDependent()) {
    794     QualType LHSType = TheCall->getArg(0)->getType();
    795     QualType RHSType = TheCall->getArg(1)->getType();
    796 
    797     if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
    798       Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
    799         << SourceRange(TheCall->getArg(0)->getLocStart(),
    800                        TheCall->getArg(1)->getLocEnd());
    801       return ExprError();
    802     }
    803 
    804     numElements = LHSType->getAs<VectorType>()->getNumElements();
    805     unsigned numResElements = TheCall->getNumArgs() - 2;
    806 
    807     // Check to see if we have a call with 2 vector arguments, the unary shuffle
    808     // with mask.  If so, verify that RHS is an integer vector type with the
    809     // same number of elts as lhs.
    810     if (TheCall->getNumArgs() == 2) {
    811       if (!RHSType->hasIntegerRepresentation() ||
    812           RHSType->getAs<VectorType>()->getNumElements() != numElements)
    813         Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
    814           << SourceRange(TheCall->getArg(1)->getLocStart(),
    815                          TheCall->getArg(1)->getLocEnd());
    816       numResElements = numElements;
    817     }
    818     else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
    819       Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
    820         << SourceRange(TheCall->getArg(0)->getLocStart(),
    821                        TheCall->getArg(1)->getLocEnd());
    822       return ExprError();
    823     } else if (numElements != numResElements) {
    824       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
    825       resType = Context.getVectorType(eltType, numResElements,
    826                                       VectorType::GenericVector);
    827     }
    828   }
    829 
    830   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
    831     if (TheCall->getArg(i)->isTypeDependent() ||
    832         TheCall->getArg(i)->isValueDependent())
    833       continue;
    834 
    835     llvm::APSInt Result(32);
    836     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
    837       return ExprError(Diag(TheCall->getLocStart(),
    838                   diag::err_shufflevector_nonconstant_argument)
    839                 << TheCall->getArg(i)->getSourceRange());
    840 
    841     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
    842       return ExprError(Diag(TheCall->getLocStart(),
    843                   diag::err_shufflevector_argument_too_large)
    844                << TheCall->getArg(i)->getSourceRange());
    845   }
    846 
    847   llvm::SmallVector<Expr*, 32> exprs;
    848 
    849   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
    850     exprs.push_back(TheCall->getArg(i));
    851     TheCall->setArg(i, 0);
    852   }
    853 
    854   return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
    855                                             exprs.size(), resType,
    856                                             TheCall->getCallee()->getLocStart(),
    857                                             TheCall->getRParenLoc()));
    858 }
    859 
    860 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
    861 // This is declared to take (const void*, ...) and can take two
    862 // optional constant int args.
    863 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
    864   unsigned NumArgs = TheCall->getNumArgs();
    865 
    866   if (NumArgs > 3)
    867     return Diag(TheCall->getLocEnd(),
    868              diag::err_typecheck_call_too_many_args_at_most)
    869              << 0 /*function call*/ << 3 << NumArgs
    870              << TheCall->getSourceRange();
    871 
    872   // Argument 0 is checked for us and the remaining arguments must be
    873   // constant integers.
    874   for (unsigned i = 1; i != NumArgs; ++i) {
    875     Expr *Arg = TheCall->getArg(i);
    876 
    877     llvm::APSInt Result;
    878     if (SemaBuiltinConstantArg(TheCall, i, Result))
    879       return true;
    880 
    881     // FIXME: gcc issues a warning and rewrites these to 0. These
    882     // seems especially odd for the third argument since the default
    883     // is 3.
    884     if (i == 1) {
    885       if (Result.getLimitedValue() > 1)
    886         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    887              << "0" << "1" << Arg->getSourceRange();
    888     } else {
    889       if (Result.getLimitedValue() > 3)
    890         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    891             << "0" << "3" << Arg->getSourceRange();
    892     }
    893   }
    894 
    895   return false;
    896 }
    897 
    898 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
    899 /// TheCall is a constant expression.
    900 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
    901                                   llvm::APSInt &Result) {
    902   Expr *Arg = TheCall->getArg(ArgNum);
    903   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    904   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
    905 
    906   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
    907 
    908   if (!Arg->isIntegerConstantExpr(Result, Context))
    909     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
    910                 << FDecl->getDeclName() <<  Arg->getSourceRange();
    911 
    912   return false;
    913 }
    914 
    915 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
    916 /// int type). This simply type checks that type is one of the defined
    917 /// constants (0-3).
    918 // For compatibility check 0-3, llvm only handles 0 and 2.
    919 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
    920   llvm::APSInt Result;
    921 
    922   // Check constant-ness first.
    923   if (SemaBuiltinConstantArg(TheCall, 1, Result))
    924     return true;
    925 
    926   Expr *Arg = TheCall->getArg(1);
    927   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
    928     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    929              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
    930   }
    931 
    932   return false;
    933 }
    934 
    935 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
    936 /// This checks that val is a constant 1.
    937 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
    938   Expr *Arg = TheCall->getArg(1);
    939   llvm::APSInt Result;
    940 
    941   // TODO: This is less than ideal. Overload this to take a value.
    942   if (SemaBuiltinConstantArg(TheCall, 1, Result))
    943     return true;
    944 
    945   if (Result != 1)
    946     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
    947              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
    948 
    949   return false;
    950 }
    951 
    952 // Handle i > 1 ? "x" : "y", recursively.
    953 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
    954                                   bool HasVAListArg,
    955                                   unsigned format_idx, unsigned firstDataArg,
    956                                   bool isPrintf) {
    957  tryAgain:
    958   if (E->isTypeDependent() || E->isValueDependent())
    959     return false;
    960 
    961   E = E->IgnoreParens();
    962 
    963   switch (E->getStmtClass()) {
    964   case Stmt::BinaryConditionalOperatorClass:
    965   case Stmt::ConditionalOperatorClass: {
    966     const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
    967     return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
    968                                   format_idx, firstDataArg, isPrintf)
    969         && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
    970                                   format_idx, firstDataArg, isPrintf);
    971   }
    972 
    973   case Stmt::IntegerLiteralClass:
    974     // Technically -Wformat-nonliteral does not warn about this case.
    975     // The behavior of printf and friends in this case is implementation
    976     // dependent.  Ideally if the format string cannot be null then
    977     // it should have a 'nonnull' attribute in the function prototype.
    978     return true;
    979 
    980   case Stmt::ImplicitCastExprClass: {
    981     E = cast<ImplicitCastExpr>(E)->getSubExpr();
    982     goto tryAgain;
    983   }
    984 
    985   case Stmt::OpaqueValueExprClass:
    986     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
    987       E = src;
    988       goto tryAgain;
    989     }
    990     return false;
    991 
    992   case Stmt::PredefinedExprClass:
    993     // While __func__, etc., are technically not string literals, they
    994     // cannot contain format specifiers and thus are not a security
    995     // liability.
    996     return true;
    997 
    998   case Stmt::DeclRefExprClass: {
    999     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
   1000 
   1001     // As an exception, do not flag errors for variables binding to
   1002     // const string literals.
   1003     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
   1004       bool isConstant = false;
   1005       QualType T = DR->getType();
   1006 
   1007       if (const ArrayType *AT = Context.getAsArrayType(T)) {
   1008         isConstant = AT->getElementType().isConstant(Context);
   1009       } else if (const PointerType *PT = T->getAs<PointerType>()) {
   1010         isConstant = T.isConstant(Context) &&
   1011                      PT->getPointeeType().isConstant(Context);
   1012       }
   1013 
   1014       if (isConstant) {
   1015         if (const Expr *Init = VD->getAnyInitializer())
   1016           return SemaCheckStringLiteral(Init, TheCall,
   1017                                         HasVAListArg, format_idx, firstDataArg,
   1018                                         isPrintf);
   1019       }
   1020 
   1021       // For vprintf* functions (i.e., HasVAListArg==true), we add a
   1022       // special check to see if the format string is a function parameter
   1023       // of the function calling the printf function.  If the function
   1024       // has an attribute indicating it is a printf-like function, then we
   1025       // should suppress warnings concerning non-literals being used in a call
   1026       // to a vprintf function.  For example:
   1027       //
   1028       // void
   1029       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
   1030       //      va_list ap;
   1031       //      va_start(ap, fmt);
   1032       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
   1033       //      ...
   1034       //
   1035       //
   1036       //  FIXME: We don't have full attribute support yet, so just check to see
   1037       //    if the argument is a DeclRefExpr that references a parameter.  We'll
   1038       //    add proper support for checking the attribute later.
   1039       if (HasVAListArg)
   1040         if (isa<ParmVarDecl>(VD))
   1041           return true;
   1042     }
   1043 
   1044     return false;
   1045   }
   1046 
   1047   case Stmt::CallExprClass: {
   1048     const CallExpr *CE = cast<CallExpr>(E);
   1049     if (const ImplicitCastExpr *ICE
   1050           = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
   1051       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
   1052         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
   1053           if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
   1054             unsigned ArgIndex = FA->getFormatIdx();
   1055             const Expr *Arg = CE->getArg(ArgIndex - 1);
   1056 
   1057             return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
   1058                                           format_idx, firstDataArg, isPrintf);
   1059           }
   1060         }
   1061       }
   1062     }
   1063 
   1064     return false;
   1065   }
   1066   case Stmt::ObjCStringLiteralClass:
   1067   case Stmt::StringLiteralClass: {
   1068     const StringLiteral *StrE = NULL;
   1069 
   1070     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
   1071       StrE = ObjCFExpr->getString();
   1072     else
   1073       StrE = cast<StringLiteral>(E);
   1074 
   1075     if (StrE) {
   1076       CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
   1077                         firstDataArg, isPrintf);
   1078       return true;
   1079     }
   1080 
   1081     return false;
   1082   }
   1083 
   1084   default:
   1085     return false;
   1086   }
   1087 }
   1088 
   1089 void
   1090 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
   1091                             const Expr * const *ExprArgs,
   1092                             SourceLocation CallSiteLoc) {
   1093   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
   1094                                   e = NonNull->args_end();
   1095        i != e; ++i) {
   1096     const Expr *ArgExpr = ExprArgs[*i];
   1097     if (ArgExpr->isNullPointerConstant(Context,
   1098                                        Expr::NPC_ValueDependentIsNotNull))
   1099       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   1100   }
   1101 }
   1102 
   1103 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
   1104 /// functions) for correct use of format strings.
   1105 void
   1106 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
   1107                                 unsigned format_idx, unsigned firstDataArg,
   1108                                 bool isPrintf) {
   1109 
   1110   const Expr *Fn = TheCall->getCallee();
   1111 
   1112   // The way the format attribute works in GCC, the implicit this argument
   1113   // of member functions is counted. However, it doesn't appear in our own
   1114   // lists, so decrement format_idx in that case.
   1115   if (isa<CXXMemberCallExpr>(TheCall)) {
   1116     const CXXMethodDecl *method_decl =
   1117       dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
   1118     if (method_decl && method_decl->isInstance()) {
   1119       // Catch a format attribute mistakenly referring to the object argument.
   1120       if (format_idx == 0)
   1121         return;
   1122       --format_idx;
   1123       if(firstDataArg != 0)
   1124         --firstDataArg;
   1125     }
   1126   }
   1127 
   1128   // CHECK: printf/scanf-like function is called with no format string.
   1129   if (format_idx >= TheCall->getNumArgs()) {
   1130     Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
   1131       << Fn->getSourceRange();
   1132     return;
   1133   }
   1134 
   1135   const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
   1136 
   1137   // CHECK: format string is not a string literal.
   1138   //
   1139   // Dynamically generated format strings are difficult to
   1140   // automatically vet at compile time.  Requiring that format strings
   1141   // are string literals: (1) permits the checking of format strings by
   1142   // the compiler and thereby (2) can practically remove the source of
   1143   // many format string exploits.
   1144 
   1145   // Format string can be either ObjC string (e.g. @"%d") or
   1146   // C string (e.g. "%d")
   1147   // ObjC string uses the same format specifiers as C string, so we can use
   1148   // the same format string checking logic for both ObjC and C strings.
   1149   if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
   1150                              firstDataArg, isPrintf))
   1151     return;  // Literal format string found, check done!
   1152 
   1153   // If there are no arguments specified, warn with -Wformat-security, otherwise
   1154   // warn only with -Wformat-nonliteral.
   1155   if (TheCall->getNumArgs() == format_idx+1)
   1156     Diag(TheCall->getArg(format_idx)->getLocStart(),
   1157          diag::warn_format_nonliteral_noargs)
   1158       << OrigFormatExpr->getSourceRange();
   1159   else
   1160     Diag(TheCall->getArg(format_idx)->getLocStart(),
   1161          diag::warn_format_nonliteral)
   1162            << OrigFormatExpr->getSourceRange();
   1163 }
   1164 
   1165 namespace {
   1166 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
   1167 protected:
   1168   Sema &S;
   1169   const StringLiteral *FExpr;
   1170   const Expr *OrigFormatExpr;
   1171   const unsigned FirstDataArg;
   1172   const unsigned NumDataArgs;
   1173   const bool IsObjCLiteral;
   1174   const char *Beg; // Start of format string.
   1175   const bool HasVAListArg;
   1176   const CallExpr *TheCall;
   1177   unsigned FormatIdx;
   1178   llvm::BitVector CoveredArgs;
   1179   bool usesPositionalArgs;
   1180   bool atFirstArg;
   1181 public:
   1182   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
   1183                      const Expr *origFormatExpr, unsigned firstDataArg,
   1184                      unsigned numDataArgs, bool isObjCLiteral,
   1185                      const char *beg, bool hasVAListArg,
   1186                      const CallExpr *theCall, unsigned formatIdx)
   1187     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
   1188       FirstDataArg(firstDataArg),
   1189       NumDataArgs(numDataArgs),
   1190       IsObjCLiteral(isObjCLiteral), Beg(beg),
   1191       HasVAListArg(hasVAListArg),
   1192       TheCall(theCall), FormatIdx(formatIdx),
   1193       usesPositionalArgs(false), atFirstArg(true) {
   1194         CoveredArgs.resize(numDataArgs);
   1195         CoveredArgs.reset();
   1196       }
   1197 
   1198   void DoneProcessing();
   1199 
   1200   void HandleIncompleteSpecifier(const char *startSpecifier,
   1201                                  unsigned specifierLen);
   1202 
   1203   virtual void HandleInvalidPosition(const char *startSpecifier,
   1204                                      unsigned specifierLen,
   1205                                      analyze_format_string::PositionContext p);
   1206 
   1207   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
   1208 
   1209   void HandleNullChar(const char *nullCharacter);
   1210 
   1211 protected:
   1212   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
   1213                                         const char *startSpec,
   1214                                         unsigned specifierLen,
   1215                                         const char *csStart, unsigned csLen);
   1216 
   1217   SourceRange getFormatStringRange();
   1218   CharSourceRange getSpecifierRange(const char *startSpecifier,
   1219                                     unsigned specifierLen);
   1220   SourceLocation getLocationOfByte(const char *x);
   1221 
   1222   const Expr *getDataArg(unsigned i) const;
   1223 
   1224   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
   1225                     const analyze_format_string::ConversionSpecifier &CS,
   1226                     const char *startSpecifier, unsigned specifierLen,
   1227                     unsigned argIndex);
   1228 };
   1229 }
   1230 
   1231 SourceRange CheckFormatHandler::getFormatStringRange() {
   1232   return OrigFormatExpr->getSourceRange();
   1233 }
   1234 
   1235 CharSourceRange CheckFormatHandler::
   1236 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
   1237   SourceLocation Start = getLocationOfByte(startSpecifier);
   1238   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
   1239 
   1240   // Advance the end SourceLocation by one due to half-open ranges.
   1241   End = End.getFileLocWithOffset(1);
   1242 
   1243   return CharSourceRange::getCharRange(Start, End);
   1244 }
   1245 
   1246 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
   1247   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
   1248 }
   1249 
   1250 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
   1251                                                    unsigned specifierLen){
   1252   SourceLocation Loc = getLocationOfByte(startSpecifier);
   1253   S.Diag(Loc, diag::warn_printf_incomplete_specifier)
   1254     << getSpecifierRange(startSpecifier, specifierLen);
   1255 }
   1256 
   1257 void
   1258 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
   1259                                      analyze_format_string::PositionContext p) {
   1260   SourceLocation Loc = getLocationOfByte(startPos);
   1261   S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
   1262     << (unsigned) p << getSpecifierRange(startPos, posLen);
   1263 }
   1264 
   1265 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
   1266                                             unsigned posLen) {
   1267   SourceLocation Loc = getLocationOfByte(startPos);
   1268   S.Diag(Loc, diag::warn_format_zero_positional_specifier)
   1269     << getSpecifierRange(startPos, posLen);
   1270 }
   1271 
   1272 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
   1273   if (!IsObjCLiteral) {
   1274     // The presence of a null character is likely an error.
   1275     S.Diag(getLocationOfByte(nullCharacter),
   1276            diag::warn_printf_format_string_contains_null_char)
   1277       << getFormatStringRange();
   1278   }
   1279 }
   1280 
   1281 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
   1282   return TheCall->getArg(FirstDataArg + i);
   1283 }
   1284 
   1285 void CheckFormatHandler::DoneProcessing() {
   1286     // Does the number of data arguments exceed the number of
   1287     // format conversions in the format string?
   1288   if (!HasVAListArg) {
   1289       // Find any arguments that weren't covered.
   1290     CoveredArgs.flip();
   1291     signed notCoveredArg = CoveredArgs.find_first();
   1292     if (notCoveredArg >= 0) {
   1293       assert((unsigned)notCoveredArg < NumDataArgs);
   1294       S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
   1295              diag::warn_printf_data_arg_not_used)
   1296       << getFormatStringRange();
   1297     }
   1298   }
   1299 }
   1300 
   1301 bool
   1302 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
   1303                                                      SourceLocation Loc,
   1304                                                      const char *startSpec,
   1305                                                      unsigned specifierLen,
   1306                                                      const char *csStart,
   1307                                                      unsigned csLen) {
   1308 
   1309   bool keepGoing = true;
   1310   if (argIndex < NumDataArgs) {
   1311     // Consider the argument coverered, even though the specifier doesn't
   1312     // make sense.
   1313     CoveredArgs.set(argIndex);
   1314   }
   1315   else {
   1316     // If argIndex exceeds the number of data arguments we
   1317     // don't issue a warning because that is just a cascade of warnings (and
   1318     // they may have intended '%%' anyway). We don't want to continue processing
   1319     // the format string after this point, however, as we will like just get
   1320     // gibberish when trying to match arguments.
   1321     keepGoing = false;
   1322   }
   1323 
   1324   S.Diag(Loc, diag::warn_format_invalid_conversion)
   1325     << llvm::StringRef(csStart, csLen)
   1326     << getSpecifierRange(startSpec, specifierLen);
   1327 
   1328   return keepGoing;
   1329 }
   1330 
   1331 bool
   1332 CheckFormatHandler::CheckNumArgs(
   1333   const analyze_format_string::FormatSpecifier &FS,
   1334   const analyze_format_string::ConversionSpecifier &CS,
   1335   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
   1336 
   1337   if (argIndex >= NumDataArgs) {
   1338     if (FS.usesPositionalArg())  {
   1339       S.Diag(getLocationOfByte(CS.getStart()),
   1340              diag::warn_printf_positional_arg_exceeds_data_args)
   1341       << (argIndex+1) << NumDataArgs
   1342       << getSpecifierRange(startSpecifier, specifierLen);
   1343     }
   1344     else {
   1345       S.Diag(getLocationOfByte(CS.getStart()),
   1346              diag::warn_printf_insufficient_data_args)
   1347       << getSpecifierRange(startSpecifier, specifierLen);
   1348     }
   1349 
   1350     return false;
   1351   }
   1352   return true;
   1353 }
   1354 
   1355 //===--- CHECK: Printf format string checking ------------------------------===//
   1356 
   1357 namespace {
   1358 class CheckPrintfHandler : public CheckFormatHandler {
   1359 public:
   1360   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
   1361                      const Expr *origFormatExpr, unsigned firstDataArg,
   1362                      unsigned numDataArgs, bool isObjCLiteral,
   1363                      const char *beg, bool hasVAListArg,
   1364                      const CallExpr *theCall, unsigned formatIdx)
   1365   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   1366                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
   1367                        theCall, formatIdx) {}
   1368 
   1369 
   1370   bool HandleInvalidPrintfConversionSpecifier(
   1371                                       const analyze_printf::PrintfSpecifier &FS,
   1372                                       const char *startSpecifier,
   1373                                       unsigned specifierLen);
   1374 
   1375   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
   1376                              const char *startSpecifier,
   1377                              unsigned specifierLen);
   1378 
   1379   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
   1380                     const char *startSpecifier, unsigned specifierLen);
   1381   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
   1382                            const analyze_printf::OptionalAmount &Amt,
   1383                            unsigned type,
   1384                            const char *startSpecifier, unsigned specifierLen);
   1385   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   1386                   const analyze_printf::OptionalFlag &flag,
   1387                   const char *startSpecifier, unsigned specifierLen);
   1388   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
   1389                          const analyze_printf::OptionalFlag &ignoredFlag,
   1390                          const analyze_printf::OptionalFlag &flag,
   1391                          const char *startSpecifier, unsigned specifierLen);
   1392 };
   1393 }
   1394 
   1395 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
   1396                                       const analyze_printf::PrintfSpecifier &FS,
   1397                                       const char *startSpecifier,
   1398                                       unsigned specifierLen) {
   1399   const analyze_printf::PrintfConversionSpecifier &CS =
   1400     FS.getConversionSpecifier();
   1401 
   1402   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   1403                                           getLocationOfByte(CS.getStart()),
   1404                                           startSpecifier, specifierLen,
   1405                                           CS.getStart(), CS.getLength());
   1406 }
   1407 
   1408 bool CheckPrintfHandler::HandleAmount(
   1409                                const analyze_format_string::OptionalAmount &Amt,
   1410                                unsigned k, const char *startSpecifier,
   1411                                unsigned specifierLen) {
   1412 
   1413   if (Amt.hasDataArgument()) {
   1414     if (!HasVAListArg) {
   1415       unsigned argIndex = Amt.getArgIndex();
   1416       if (argIndex >= NumDataArgs) {
   1417         S.Diag(getLocationOfByte(Amt.getStart()),
   1418                diag::warn_printf_asterisk_missing_arg)
   1419           << k << getSpecifierRange(startSpecifier, specifierLen);
   1420         // Don't do any more checking.  We will just emit
   1421         // spurious errors.
   1422         return false;
   1423       }
   1424 
   1425       // Type check the data argument.  It should be an 'int'.
   1426       // Although not in conformance with C99, we also allow the argument to be
   1427       // an 'unsigned int' as that is a reasonably safe case.  GCC also
   1428       // doesn't emit a warning for that case.
   1429       CoveredArgs.set(argIndex);
   1430       const Expr *Arg = getDataArg(argIndex);
   1431       QualType T = Arg->getType();
   1432 
   1433       const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
   1434       assert(ATR.isValid());
   1435 
   1436       if (!ATR.matchesType(S.Context, T)) {
   1437         S.Diag(getLocationOfByte(Amt.getStart()),
   1438                diag::warn_printf_asterisk_wrong_type)
   1439           << k
   1440           << ATR.getRepresentativeType(S.Context) << T
   1441           << getSpecifierRange(startSpecifier, specifierLen)
   1442           << Arg->getSourceRange();
   1443         // Don't do any more checking.  We will just emit
   1444         // spurious errors.
   1445         return false;
   1446       }
   1447     }
   1448   }
   1449   return true;
   1450 }
   1451 
   1452 void CheckPrintfHandler::HandleInvalidAmount(
   1453                                       const analyze_printf::PrintfSpecifier &FS,
   1454                                       const analyze_printf::OptionalAmount &Amt,
   1455                                       unsigned type,
   1456                                       const char *startSpecifier,
   1457                                       unsigned specifierLen) {
   1458   const analyze_printf::PrintfConversionSpecifier &CS =
   1459     FS.getConversionSpecifier();
   1460   switch (Amt.getHowSpecified()) {
   1461   case analyze_printf::OptionalAmount::Constant:
   1462     S.Diag(getLocationOfByte(Amt.getStart()),
   1463         diag::warn_printf_nonsensical_optional_amount)
   1464       << type
   1465       << CS.toString()
   1466       << getSpecifierRange(startSpecifier, specifierLen)
   1467       << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
   1468           Amt.getConstantLength()));
   1469     break;
   1470 
   1471   default:
   1472     S.Diag(getLocationOfByte(Amt.getStart()),
   1473         diag::warn_printf_nonsensical_optional_amount)
   1474       << type
   1475       << CS.toString()
   1476       << getSpecifierRange(startSpecifier, specifierLen);
   1477     break;
   1478   }
   1479 }
   1480 
   1481 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   1482                                     const analyze_printf::OptionalFlag &flag,
   1483                                     const char *startSpecifier,
   1484                                     unsigned specifierLen) {
   1485   // Warn about pointless flag with a fixit removal.
   1486   const analyze_printf::PrintfConversionSpecifier &CS =
   1487     FS.getConversionSpecifier();
   1488   S.Diag(getLocationOfByte(flag.getPosition()),
   1489       diag::warn_printf_nonsensical_flag)
   1490     << flag.toString() << CS.toString()
   1491     << getSpecifierRange(startSpecifier, specifierLen)
   1492     << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
   1493 }
   1494 
   1495 void CheckPrintfHandler::HandleIgnoredFlag(
   1496                                 const analyze_printf::PrintfSpecifier &FS,
   1497                                 const analyze_printf::OptionalFlag &ignoredFlag,
   1498                                 const analyze_printf::OptionalFlag &flag,
   1499                                 const char *startSpecifier,
   1500                                 unsigned specifierLen) {
   1501   // Warn about ignored flag with a fixit removal.
   1502   S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
   1503       diag::warn_printf_ignored_flag)
   1504     << ignoredFlag.toString() << flag.toString()
   1505     << getSpecifierRange(startSpecifier, specifierLen)
   1506     << FixItHint::CreateRemoval(getSpecifierRange(
   1507         ignoredFlag.getPosition(), 1));
   1508 }
   1509 
   1510 bool
   1511 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
   1512                                             &FS,
   1513                                           const char *startSpecifier,
   1514                                           unsigned specifierLen) {
   1515 
   1516   using namespace analyze_format_string;
   1517   using namespace analyze_printf;
   1518   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
   1519 
   1520   if (FS.consumesDataArgument()) {
   1521     if (atFirstArg) {
   1522         atFirstArg = false;
   1523         usesPositionalArgs = FS.usesPositionalArg();
   1524     }
   1525     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   1526       // Cannot mix-and-match positional and non-positional arguments.
   1527       S.Diag(getLocationOfByte(CS.getStart()),
   1528              diag::warn_format_mix_positional_nonpositional_args)
   1529         << getSpecifierRange(startSpecifier, specifierLen);
   1530       return false;
   1531     }
   1532   }
   1533 
   1534   // First check if the field width, precision, and conversion specifier
   1535   // have matching data arguments.
   1536   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
   1537                     startSpecifier, specifierLen)) {
   1538     return false;
   1539   }
   1540 
   1541   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
   1542                     startSpecifier, specifierLen)) {
   1543     return false;
   1544   }
   1545 
   1546   if (!CS.consumesDataArgument()) {
   1547     // FIXME: Technically specifying a precision or field width here
   1548     // makes no sense.  Worth issuing a warning at some point.
   1549     return true;
   1550   }
   1551 
   1552   // Consume the argument.
   1553   unsigned argIndex = FS.getArgIndex();
   1554   if (argIndex < NumDataArgs) {
   1555     // The check to see if the argIndex is valid will come later.
   1556     // We set the bit here because we may exit early from this
   1557     // function if we encounter some other error.
   1558     CoveredArgs.set(argIndex);
   1559   }
   1560 
   1561   // Check for using an Objective-C specific conversion specifier
   1562   // in a non-ObjC literal.
   1563   if (!IsObjCLiteral && CS.isObjCArg()) {
   1564     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
   1565                                                   specifierLen);
   1566   }
   1567 
   1568   // Check for invalid use of field width
   1569   if (!FS.hasValidFieldWidth()) {
   1570     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
   1571         startSpecifier, specifierLen);
   1572   }
   1573 
   1574   // Check for invalid use of precision
   1575   if (!FS.hasValidPrecision()) {
   1576     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
   1577         startSpecifier, specifierLen);
   1578   }
   1579 
   1580   // Check each flag does not conflict with any other component.
   1581   if (!FS.hasValidThousandsGroupingPrefix())
   1582     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
   1583   if (!FS.hasValidLeadingZeros())
   1584     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
   1585   if (!FS.hasValidPlusPrefix())
   1586     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
   1587   if (!FS.hasValidSpacePrefix())
   1588     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
   1589   if (!FS.hasValidAlternativeForm())
   1590     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
   1591   if (!FS.hasValidLeftJustified())
   1592     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
   1593 
   1594   // Check that flags are not ignored by another flag
   1595   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
   1596     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
   1597         startSpecifier, specifierLen);
   1598   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
   1599     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
   1600             startSpecifier, specifierLen);
   1601 
   1602   // Check the length modifier is valid with the given conversion specifier.
   1603   const LengthModifier &LM = FS.getLengthModifier();
   1604   if (!FS.hasValidLengthModifier())
   1605     S.Diag(getLocationOfByte(LM.getStart()),
   1606         diag::warn_format_nonsensical_length)
   1607       << LM.toString() << CS.toString()
   1608       << getSpecifierRange(startSpecifier, specifierLen)
   1609       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
   1610           LM.getLength()));
   1611 
   1612   // Are we using '%n'?
   1613   if (CS.getKind() == ConversionSpecifier::nArg) {
   1614     // Issue a warning about this being a possible security issue.
   1615     S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
   1616       << getSpecifierRange(startSpecifier, specifierLen);
   1617     // Continue checking the other format specifiers.
   1618     return true;
   1619   }
   1620 
   1621   // The remaining checks depend on the data arguments.
   1622   if (HasVAListArg)
   1623     return true;
   1624 
   1625   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   1626     return false;
   1627 
   1628   // Now type check the data expression that matches the
   1629   // format specifier.
   1630   const Expr *Ex = getDataArg(argIndex);
   1631   const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
   1632   if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
   1633     // Check if we didn't match because of an implicit cast from a 'char'
   1634     // or 'short' to an 'int'.  This is done because printf is a varargs
   1635     // function.
   1636     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
   1637       if (ICE->getType() == S.Context.IntTy) {
   1638         // All further checking is done on the subexpression.
   1639         Ex = ICE->getSubExpr();
   1640         if (ATR.matchesType(S.Context, Ex->getType()))
   1641           return true;
   1642       }
   1643 
   1644     // We may be able to offer a FixItHint if it is a supported type.
   1645     PrintfSpecifier fixedFS = FS;
   1646     bool success = fixedFS.fixType(Ex->getType());
   1647 
   1648     if (success) {
   1649       // Get the fix string from the fixed format specifier
   1650       llvm::SmallString<128> buf;
   1651       llvm::raw_svector_ostream os(buf);
   1652       fixedFS.toString(os);
   1653 
   1654       // FIXME: getRepresentativeType() perhaps should return a string
   1655       // instead of a QualType to better handle when the representative
   1656       // type is 'wint_t' (which is defined in the system headers).
   1657       S.Diag(getLocationOfByte(CS.getStart()),
   1658           diag::warn_printf_conversion_argument_type_mismatch)
   1659         << ATR.getRepresentativeType(S.Context) << Ex->getType()
   1660         << getSpecifierRange(startSpecifier, specifierLen)
   1661         << Ex->getSourceRange()
   1662         << FixItHint::CreateReplacement(
   1663             getSpecifierRange(startSpecifier, specifierLen),
   1664             os.str());
   1665     }
   1666     else {
   1667       S.Diag(getLocationOfByte(CS.getStart()),
   1668              diag::warn_printf_conversion_argument_type_mismatch)
   1669         << ATR.getRepresentativeType(S.Context) << Ex->getType()
   1670         << getSpecifierRange(startSpecifier, specifierLen)
   1671         << Ex->getSourceRange();
   1672     }
   1673   }
   1674 
   1675   return true;
   1676 }
   1677 
   1678 //===--- CHECK: Scanf format string checking ------------------------------===//
   1679 
   1680 namespace {
   1681 class CheckScanfHandler : public CheckFormatHandler {
   1682 public:
   1683   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
   1684                     const Expr *origFormatExpr, unsigned firstDataArg,
   1685                     unsigned numDataArgs, bool isObjCLiteral,
   1686                     const char *beg, bool hasVAListArg,
   1687                     const CallExpr *theCall, unsigned formatIdx)
   1688   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   1689                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
   1690                        theCall, formatIdx) {}
   1691 
   1692   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
   1693                             const char *startSpecifier,
   1694                             unsigned specifierLen);
   1695 
   1696   bool HandleInvalidScanfConversionSpecifier(
   1697           const analyze_scanf::ScanfSpecifier &FS,
   1698           const char *startSpecifier,
   1699           unsigned specifierLen);
   1700 
   1701   void HandleIncompleteScanList(const char *start, const char *end);
   1702 };
   1703 }
   1704 
   1705 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
   1706                                                  const char *end) {
   1707   S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
   1708     << getSpecifierRange(start, end - start);
   1709 }
   1710 
   1711 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
   1712                                         const analyze_scanf::ScanfSpecifier &FS,
   1713                                         const char *startSpecifier,
   1714                                         unsigned specifierLen) {
   1715 
   1716   const analyze_scanf::ScanfConversionSpecifier &CS =
   1717     FS.getConversionSpecifier();
   1718 
   1719   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   1720                                           getLocationOfByte(CS.getStart()),
   1721                                           startSpecifier, specifierLen,
   1722                                           CS.getStart(), CS.getLength());
   1723 }
   1724 
   1725 bool CheckScanfHandler::HandleScanfSpecifier(
   1726                                        const analyze_scanf::ScanfSpecifier &FS,
   1727                                        const char *startSpecifier,
   1728                                        unsigned specifierLen) {
   1729 
   1730   using namespace analyze_scanf;
   1731   using namespace analyze_format_string;
   1732 
   1733   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
   1734 
   1735   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
   1736   // be used to decide if we are using positional arguments consistently.
   1737   if (FS.consumesDataArgument()) {
   1738     if (atFirstArg) {
   1739       atFirstArg = false;
   1740       usesPositionalArgs = FS.usesPositionalArg();
   1741     }
   1742     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   1743       // Cannot mix-and-match positional and non-positional arguments.
   1744       S.Diag(getLocationOfByte(CS.getStart()),
   1745              diag::warn_format_mix_positional_nonpositional_args)
   1746         << getSpecifierRange(startSpecifier, specifierLen);
   1747       return false;
   1748     }
   1749   }
   1750 
   1751   // Check if the field with is non-zero.
   1752   const OptionalAmount &Amt = FS.getFieldWidth();
   1753   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
   1754     if (Amt.getConstantAmount() == 0) {
   1755       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
   1756                                                    Amt.getConstantLength());
   1757       S.Diag(getLocationOfByte(Amt.getStart()),
   1758              diag::warn_scanf_nonzero_width)
   1759         << R << FixItHint::CreateRemoval(R);
   1760     }
   1761   }
   1762 
   1763   if (!FS.consumesDataArgument()) {
   1764     // FIXME: Technically specifying a precision or field width here
   1765     // makes no sense.  Worth issuing a warning at some point.
   1766     return true;
   1767   }
   1768 
   1769   // Consume the argument.
   1770   unsigned argIndex = FS.getArgIndex();
   1771   if (argIndex < NumDataArgs) {
   1772       // The check to see if the argIndex is valid will come later.
   1773       // We set the bit here because we may exit early from this
   1774       // function if we encounter some other error.
   1775     CoveredArgs.set(argIndex);
   1776   }
   1777 
   1778   // Check the length modifier is valid with the given conversion specifier.
   1779   const LengthModifier &LM = FS.getLengthModifier();
   1780   if (!FS.hasValidLengthModifier()) {
   1781     S.Diag(getLocationOfByte(LM.getStart()),
   1782            diag::warn_format_nonsensical_length)
   1783       << LM.toString() << CS.toString()
   1784       << getSpecifierRange(startSpecifier, specifierLen)
   1785       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
   1786                                                     LM.getLength()));
   1787   }
   1788 
   1789   // The remaining checks depend on the data arguments.
   1790   if (HasVAListArg)
   1791     return true;
   1792 
   1793   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   1794     return false;
   1795 
   1796   // FIXME: Check that the argument type matches the format specifier.
   1797 
   1798   return true;
   1799 }
   1800 
   1801 void Sema::CheckFormatString(const StringLiteral *FExpr,
   1802                              const Expr *OrigFormatExpr,
   1803                              const CallExpr *TheCall, bool HasVAListArg,
   1804                              unsigned format_idx, unsigned firstDataArg,
   1805                              bool isPrintf) {
   1806 
   1807   // CHECK: is the format string a wide literal?
   1808   if (FExpr->isWide()) {
   1809     Diag(FExpr->getLocStart(),
   1810          diag::warn_format_string_is_wide_literal)
   1811     << OrigFormatExpr->getSourceRange();
   1812     return;
   1813   }
   1814 
   1815   // Str - The format string.  NOTE: this is NOT null-terminated!
   1816   llvm::StringRef StrRef = FExpr->getString();
   1817   const char *Str = StrRef.data();
   1818   unsigned StrLen = StrRef.size();
   1819 
   1820   // CHECK: empty format string?
   1821   if (StrLen == 0) {
   1822     Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
   1823     << OrigFormatExpr->getSourceRange();
   1824     return;
   1825   }
   1826 
   1827   if (isPrintf) {
   1828     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
   1829                          TheCall->getNumArgs() - firstDataArg,
   1830                          isa<ObjCStringLiteral>(OrigFormatExpr), Str,
   1831                          HasVAListArg, TheCall, format_idx);
   1832 
   1833     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
   1834       H.DoneProcessing();
   1835   }
   1836   else {
   1837     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
   1838                         TheCall->getNumArgs() - firstDataArg,
   1839                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
   1840                         HasVAListArg, TheCall, format_idx);
   1841 
   1842     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
   1843       H.DoneProcessing();
   1844   }
   1845 }
   1846 
   1847 //===--- CHECK: Standard memory functions ---------------------------------===//
   1848 
   1849 /// \brief Determine whether the given type is a dynamic class type (e.g.,
   1850 /// whether it has a vtable).
   1851 static bool isDynamicClassType(QualType T) {
   1852   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   1853     if (CXXRecordDecl *Definition = Record->getDefinition())
   1854       if (Definition->isDynamicClass())
   1855         return true;
   1856 
   1857   return false;
   1858 }
   1859 
   1860 /// \brief If E is a sizeof expression, returns its argument expression,
   1861 /// otherwise returns NULL.
   1862 static const Expr *getSizeOfExprArg(const Expr* E) {
   1863   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   1864       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   1865     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
   1866       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
   1867 
   1868   return 0;
   1869 }
   1870 
   1871 /// \brief If E is a sizeof expression, returns its argument type.
   1872 static QualType getSizeOfArgType(const Expr* E) {
   1873   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   1874       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   1875     if (SizeOf->getKind() == clang::UETT_SizeOf)
   1876       return SizeOf->getTypeOfArgument();
   1877 
   1878   return QualType();
   1879 }
   1880 
   1881 /// \brief Check for dangerous or invalid arguments to memset().
   1882 ///
   1883 /// This issues warnings on known problematic, dangerous or unspecified
   1884 /// arguments to the standard 'memset', 'memcpy', and 'memmove' function calls.
   1885 ///
   1886 /// \param Call The call expression to diagnose.
   1887 void Sema::CheckMemsetcpymoveArguments(const CallExpr *Call,
   1888                                        CheckedMemoryFunction CMF,
   1889                                        IdentifierInfo *FnName) {
   1890   // It is possible to have a non-standard definition of memset.  Validate
   1891   // we have enough arguments, and if not, abort further checking.
   1892   if (Call->getNumArgs() < 3)
   1893     return;
   1894 
   1895   unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
   1896   const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
   1897 
   1898   // We have special checking when the length is a sizeof expression.
   1899   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
   1900   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
   1901   llvm::FoldingSetNodeID SizeOfArgID;
   1902 
   1903   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
   1904     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
   1905     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
   1906 
   1907     QualType DestTy = Dest->getType();
   1908     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
   1909       QualType PointeeTy = DestPtrTy->getPointeeType();
   1910 
   1911       // Never warn about void type pointers. This can be used to suppress
   1912       // false positives.
   1913       if (PointeeTy->isVoidType())
   1914         continue;
   1915 
   1916       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
   1917       // actually comparing the expressions for equality. Because computing the
   1918       // expression IDs can be expensive, we only do this if the diagnostic is
   1919       // enabled.
   1920       if (SizeOfArg &&
   1921           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
   1922                                    SizeOfArg->getExprLoc())) {
   1923         // We only compute IDs for expressions if the warning is enabled, and
   1924         // cache the sizeof arg's ID.
   1925         if (SizeOfArgID == llvm::FoldingSetNodeID())
   1926           SizeOfArg->Profile(SizeOfArgID, Context, true);
   1927         llvm::FoldingSetNodeID DestID;
   1928         Dest->Profile(DestID, Context, true);
   1929         if (DestID == SizeOfArgID) {
   1930           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
   1931           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
   1932             if (UnaryOp->getOpcode() == UO_AddrOf)
   1933               ActionIdx = 1; // If its an address-of operator, just remove it.
   1934           if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
   1935             ActionIdx = 2; // If the pointee's size is sizeof(char),
   1936                            // suggest an explicit length.
   1937           DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
   1938                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
   1939                                 << FnName << ArgIdx << ActionIdx
   1940                                 << Dest->getSourceRange()
   1941                                 << SizeOfArg->getSourceRange());
   1942           break;
   1943         }
   1944       }
   1945 
   1946       // Also check for cases where the sizeof argument is the exact same
   1947       // type as the memory argument, and where it points to a user-defined
   1948       // record type.
   1949       if (SizeOfArgTy != QualType()) {
   1950         if (PointeeTy->isRecordType() &&
   1951             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
   1952           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
   1953                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
   1954                                 << FnName << SizeOfArgTy << ArgIdx
   1955                                 << PointeeTy << Dest->getSourceRange()
   1956                                 << LenExpr->getSourceRange());
   1957           break;
   1958         }
   1959       }
   1960 
   1961       unsigned DiagID;
   1962 
   1963       // Always complain about dynamic classes.
   1964       if (isDynamicClassType(PointeeTy))
   1965         DiagID = diag::warn_dyn_class_memaccess;
   1966       else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
   1967         DiagID = diag::warn_arc_object_memaccess;
   1968       else
   1969         continue;
   1970 
   1971       DiagRuntimeBehavior(
   1972         Dest->getExprLoc(), Dest,
   1973         PDiag(DiagID)
   1974           << ArgIdx << FnName << PointeeTy
   1975           << Call->getCallee()->getSourceRange());
   1976 
   1977       DiagRuntimeBehavior(
   1978         Dest->getExprLoc(), Dest,
   1979         PDiag(diag::note_bad_memaccess_silence)
   1980           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
   1981       break;
   1982     }
   1983   }
   1984 }
   1985 
   1986 //===--- CHECK: Return Address of Stack Variable --------------------------===//
   1987 
   1988 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
   1989 static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
   1990 
   1991 /// CheckReturnStackAddr - Check if a return statement returns the address
   1992 ///   of a stack variable.
   1993 void
   1994 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
   1995                            SourceLocation ReturnLoc) {
   1996 
   1997   Expr *stackE = 0;
   1998   llvm::SmallVector<DeclRefExpr *, 8> refVars;
   1999 
   2000   // Perform checking for returned stack addresses, local blocks,
   2001   // label addresses or references to temporaries.
   2002   if (lhsType->isPointerType() ||
   2003       (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
   2004     stackE = EvalAddr(RetValExp, refVars);
   2005   } else if (lhsType->isReferenceType()) {
   2006     stackE = EvalVal(RetValExp, refVars);
   2007   }
   2008 
   2009   if (stackE == 0)
   2010     return; // Nothing suspicious was found.
   2011 
   2012   SourceLocation diagLoc;
   2013   SourceRange diagRange;
   2014   if (refVars.empty()) {
   2015     diagLoc = stackE->getLocStart();
   2016     diagRange = stackE->getSourceRange();
   2017   } else {
   2018     // We followed through a reference variable. 'stackE' contains the
   2019     // problematic expression but we will warn at the return statement pointing
   2020     // at the reference variable. We will later display the "trail" of
   2021     // reference variables using notes.
   2022     diagLoc = refVars[0]->getLocStart();
   2023     diagRange = refVars[0]->getSourceRange();
   2024   }
   2025 
   2026   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
   2027     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
   2028                                              : diag::warn_ret_stack_addr)
   2029      << DR->getDecl()->getDeclName() << diagRange;
   2030   } else if (isa<BlockExpr>(stackE)) { // local block.
   2031     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
   2032   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
   2033     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
   2034   } else { // local temporary.
   2035     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
   2036                                              : diag::warn_ret_local_temp_addr)
   2037      << diagRange;
   2038   }
   2039 
   2040   // Display the "trail" of reference variables that we followed until we
   2041   // found the problematic expression using notes.
   2042   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
   2043     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
   2044     // If this var binds to another reference var, show the range of the next
   2045     // var, otherwise the var binds to the problematic expression, in which case
   2046     // show the range of the expression.
   2047     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
   2048                                   : stackE->getSourceRange();
   2049     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
   2050       << VD->getDeclName() << range;
   2051   }
   2052 }
   2053 
   2054 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
   2055 ///  check if the expression in a return statement evaluates to an address
   2056 ///  to a location on the stack, a local block, an address of a label, or a
   2057 ///  reference to local temporary. The recursion is used to traverse the
   2058 ///  AST of the return expression, with recursion backtracking when we
   2059 ///  encounter a subexpression that (1) clearly does not lead to one of the
   2060 ///  above problematic expressions (2) is something we cannot determine leads to
   2061 ///  a problematic expression based on such local checking.
   2062 ///
   2063 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
   2064 ///  the expression that they point to. Such variables are added to the
   2065 ///  'refVars' vector so that we know what the reference variable "trail" was.
   2066 ///
   2067 ///  EvalAddr processes expressions that are pointers that are used as
   2068 ///  references (and not L-values).  EvalVal handles all other values.
   2069 ///  At the base case of the recursion is a check for the above problematic
   2070 ///  expressions.
   2071 ///
   2072 ///  This implementation handles:
   2073 ///
   2074 ///   * pointer-to-pointer casts
   2075 ///   * implicit conversions from array references to pointers
   2076 ///   * taking the address of fields
   2077 ///   * arbitrary interplay between "&" and "*" operators
   2078 ///   * pointer arithmetic from an address of a stack variable
   2079 ///   * taking the address of an array element where the array is on the stack
   2080 static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
   2081   if (E->isTypeDependent())
   2082       return NULL;
   2083 
   2084   // We should only be called for evaluating pointer expressions.
   2085   assert((E->getType()->isAnyPointerType() ||
   2086           E->getType()->isBlockPointerType() ||
   2087           E->getType()->isObjCQualifiedIdType()) &&
   2088          "EvalAddr only works on pointers");
   2089 
   2090   E = E->IgnoreParens();
   2091 
   2092   // Our "symbolic interpreter" is just a dispatch off the currently
   2093   // viewed AST node.  We then recursively traverse the AST by calling
   2094   // EvalAddr and EvalVal appropriately.
   2095   switch (E->getStmtClass()) {
   2096   case Stmt::DeclRefExprClass: {
   2097     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   2098 
   2099     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
   2100       // If this is a reference variable, follow through to the expression that
   2101       // it points to.
   2102       if (V->hasLocalStorage() &&
   2103           V->getType()->isReferenceType() && V->hasInit()) {
   2104         // Add the reference variable to the "trail".
   2105         refVars.push_back(DR);
   2106         return EvalAddr(V->getInit(), refVars);
   2107       }
   2108 
   2109     return NULL;
   2110   }
   2111 
   2112   case Stmt::UnaryOperatorClass: {
   2113     // The only unary operator that make sense to handle here
   2114     // is AddrOf.  All others don't make sense as pointers.
   2115     UnaryOperator *U = cast<UnaryOperator>(E);
   2116 
   2117     if (U->getOpcode() == UO_AddrOf)
   2118       return EvalVal(U->getSubExpr(), refVars);
   2119     else
   2120       return NULL;
   2121   }
   2122 
   2123   case Stmt::BinaryOperatorClass: {
   2124     // Handle pointer arithmetic.  All other binary operators are not valid
   2125     // in this context.
   2126     BinaryOperator *B = cast<BinaryOperator>(E);
   2127     BinaryOperatorKind op = B->getOpcode();
   2128 
   2129     if (op != BO_Add && op != BO_Sub)
   2130       return NULL;
   2131 
   2132     Expr *Base = B->getLHS();
   2133 
   2134     // Determine which argument is the real pointer base.  It could be
   2135     // the RHS argument instead of the LHS.
   2136     if (!Base->getType()->isPointerType()) Base = B->getRHS();
   2137 
   2138     assert (Base->getType()->isPointerType());
   2139     return EvalAddr(Base, refVars);
   2140   }
   2141 
   2142   // For conditional operators we need to see if either the LHS or RHS are
   2143   // valid DeclRefExpr*s.  If one of them is valid, we return it.
   2144   case Stmt::ConditionalOperatorClass: {
   2145     ConditionalOperator *C = cast<ConditionalOperator>(E);
   2146 
   2147     // Handle the GNU extension for missing LHS.
   2148     if (Expr *lhsExpr = C->getLHS()) {
   2149     // In C++, we can have a throw-expression, which has 'void' type.
   2150       if (!lhsExpr->getType()->isVoidType())
   2151         if (Expr* LHS = EvalAddr(lhsExpr, refVars))
   2152           return LHS;
   2153     }
   2154 
   2155     // In C++, we can have a throw-expression, which has 'void' type.
   2156     if (C->getRHS()->getType()->isVoidType())
   2157       return NULL;
   2158 
   2159     return EvalAddr(C->getRHS(), refVars);
   2160   }
   2161 
   2162   case Stmt::BlockExprClass:
   2163     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
   2164       return E; // local block.
   2165     return NULL;
   2166 
   2167   case Stmt::AddrLabelExprClass:
   2168     return E; // address of label.
   2169 
   2170   // For casts, we need to handle conversions from arrays to
   2171   // pointer values, and pointer-to-pointer conversions.
   2172   case Stmt::ImplicitCastExprClass:
   2173   case Stmt::CStyleCastExprClass:
   2174   case Stmt::CXXFunctionalCastExprClass:
   2175   case Stmt::ObjCBridgedCastExprClass: {
   2176     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
   2177     QualType T = SubExpr->getType();
   2178 
   2179     if (SubExpr->getType()->isPointerType() ||
   2180         SubExpr->getType()->isBlockPointerType() ||
   2181         SubExpr->getType()->isObjCQualifiedIdType())
   2182       return EvalAddr(SubExpr, refVars);
   2183     else if (T->isArrayType())
   2184       return EvalVal(SubExpr, refVars);
   2185     else
   2186       return 0;
   2187   }
   2188 
   2189   // C++ casts.  For dynamic casts, static casts, and const casts, we
   2190   // are always converting from a pointer-to-pointer, so we just blow
   2191   // through the cast.  In the case the dynamic cast doesn't fail (and
   2192   // return NULL), we take the conservative route and report cases
   2193   // where we return the address of a stack variable.  For Reinterpre
   2194   // FIXME: The comment about is wrong; we're not always converting
   2195   // from pointer to pointer. I'm guessing that this code should also
   2196   // handle references to objects.
   2197   case Stmt::CXXStaticCastExprClass:
   2198   case Stmt::CXXDynamicCastExprClass:
   2199   case Stmt::CXXConstCastExprClass:
   2200   case Stmt::CXXReinterpretCastExprClass: {
   2201       Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
   2202       if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
   2203         return EvalAddr(S, refVars);
   2204       else
   2205         return NULL;
   2206   }
   2207 
   2208   case Stmt::MaterializeTemporaryExprClass:
   2209     if (Expr *Result = EvalAddr(
   2210                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   2211                                 refVars))
   2212       return Result;
   2213 
   2214     return E;
   2215 
   2216   // Everything else: we simply don't reason about them.
   2217   default:
   2218     return NULL;
   2219   }
   2220 }
   2221 
   2222 
   2223 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
   2224 ///   See the comments for EvalAddr for more details.
   2225 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
   2226 do {
   2227   // We should only be called for evaluating non-pointer expressions, or
   2228   // expressions with a pointer type that are not used as references but instead
   2229   // are l-values (e.g., DeclRefExpr with a pointer type).
   2230 
   2231   // Our "symbolic interpreter" is just a dispatch off the currently
   2232   // viewed AST node.  We then recursively traverse the AST by calling
   2233   // EvalAddr and EvalVal appropriately.
   2234 
   2235   E = E->IgnoreParens();
   2236   switch (E->getStmtClass()) {
   2237   case Stmt::ImplicitCastExprClass: {
   2238     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
   2239     if (IE->getValueKind() == VK_LValue) {
   2240       E = IE->getSubExpr();
   2241       continue;
   2242     }
   2243     return NULL;
   2244   }
   2245 
   2246   case Stmt::DeclRefExprClass: {
   2247     // When we hit a DeclRefExpr we are looking at code that refers to a
   2248     // variable's name. If it's not a reference variable we check if it has
   2249     // local storage within the function, and if so, return the expression.
   2250     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   2251 
   2252     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
   2253       if (V->hasLocalStorage()) {
   2254         if (!V->getType()->isReferenceType())
   2255           return DR;
   2256 
   2257         // Reference variable, follow through to the expression that
   2258         // it points to.
   2259         if (V->hasInit()) {
   2260           // Add the reference variable to the "trail".
   2261           refVars.push_back(DR);
   2262           return EvalVal(V->getInit(), refVars);
   2263         }
   2264       }
   2265 
   2266     return NULL;
   2267   }
   2268 
   2269   case Stmt::UnaryOperatorClass: {
   2270     // The only unary operator that make sense to handle here
   2271     // is Deref.  All others don't resolve to a "name."  This includes
   2272     // handling all sorts of rvalues passed to a unary operator.
   2273     UnaryOperator *U = cast<UnaryOperator>(E);
   2274 
   2275     if (U->getOpcode() == UO_Deref)
   2276       return EvalAddr(U->getSubExpr(), refVars);
   2277 
   2278     return NULL;
   2279   }
   2280 
   2281   case Stmt::ArraySubscriptExprClass: {
   2282     // Array subscripts are potential references to data on the stack.  We
   2283     // retrieve the DeclRefExpr* for the array variable if it indeed
   2284     // has local storage.
   2285     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
   2286   }
   2287 
   2288   case Stmt::ConditionalOperatorClass: {
   2289     // For conditional operators we need to see if either the LHS or RHS are
   2290     // non-NULL Expr's.  If one is non-NULL, we return it.
   2291     ConditionalOperator *C = cast<ConditionalOperator>(E);
   2292 
   2293     // Handle the GNU extension for missing LHS.
   2294     if (Expr *lhsExpr = C->getLHS())
   2295       if (Expr *LHS = EvalVal(lhsExpr, refVars))
   2296         return LHS;
   2297 
   2298     return EvalVal(C->getRHS(), refVars);
   2299   }
   2300 
   2301   // Accesses to members are potential references to data on the stack.
   2302   case Stmt::MemberExprClass: {
   2303     MemberExpr *M = cast<MemberExpr>(E);
   2304 
   2305     // Check for indirect access.  We only want direct field accesses.
   2306     if (M->isArrow())
   2307       return NULL;
   2308 
   2309     // Check whether the member type is itself a reference, in which case
   2310     // we're not going to refer to the member, but to what the member refers to.
   2311     if (M->getMemberDecl()->getType()->isReferenceType())
   2312       return NULL;
   2313 
   2314     return EvalVal(M->getBase(), refVars);
   2315   }
   2316 
   2317   case Stmt::MaterializeTemporaryExprClass:
   2318     if (Expr *Result = EvalVal(
   2319                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   2320                                refVars))
   2321       return Result;
   2322 
   2323     return E;
   2324 
   2325   default:
   2326     // Check that we don't return or take the address of a reference to a
   2327     // temporary. This is only useful in C++.
   2328     if (!E->isTypeDependent() && E->isRValue())
   2329       return E;
   2330 
   2331     // Everything else: we simply don't reason about them.
   2332     return NULL;
   2333   }
   2334 } while (true);
   2335 }
   2336 
   2337 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
   2338 
   2339 /// Check for comparisons of floating point operands using != and ==.
   2340 /// Issue a warning if these are no self-comparisons, as they are not likely
   2341 /// to do what the programmer intended.
   2342 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
   2343   bool EmitWarning = true;
   2344 
   2345   Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
   2346   Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
   2347 
   2348   // Special case: check for x == x (which is OK).
   2349   // Do not emit warnings for such cases.
   2350   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
   2351     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
   2352       if (DRL->getDecl() == DRR->getDecl())
   2353         EmitWarning = false;
   2354 
   2355 
   2356   // Special case: check for comparisons against literals that can be exactly
   2357   //  represented by APFloat.  In such cases, do not emit a warning.  This
   2358   //  is a heuristic: often comparison against such literals are used to
   2359   //  detect if a value in a variable has not changed.  This clearly can
   2360   //  lead to false negatives.
   2361   if (EmitWarning) {
   2362     if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
   2363       if (FLL->isExact())
   2364         EmitWarning = false;
   2365     } else
   2366       if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
   2367         if (FLR->isExact())
   2368           EmitWarning = false;
   2369     }
   2370   }
   2371 
   2372   // Check for comparisons with builtin types.
   2373   if (EmitWarning)
   2374     if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
   2375       if (CL->isBuiltinCall(Context))
   2376         EmitWarning = false;
   2377 
   2378   if (EmitWarning)
   2379     if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
   2380       if (CR->isBuiltinCall(Context))
   2381         EmitWarning = false;
   2382 
   2383   // Emit the diagnostic.
   2384   if (EmitWarning)
   2385     Diag(loc, diag::warn_floatingpoint_eq)
   2386       << lex->getSourceRange() << rex->getSourceRange();
   2387 }
   2388 
   2389 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
   2390 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
   2391 
   2392 namespace {
   2393 
   2394 /// Structure recording the 'active' range of an integer-valued
   2395 /// expression.
   2396 struct IntRange {
   2397   /// The number of bits active in the int.
   2398   unsigned Width;
   2399 
   2400   /// True if the int is known not to have negative values.
   2401   bool NonNegative;
   2402 
   2403   IntRange(unsigned Width, bool NonNegative)
   2404     : Width(Width), NonNegative(NonNegative)
   2405   {}
   2406 
   2407   /// Returns the range of the bool type.
   2408   static IntRange forBoolType() {
   2409     return IntRange(1, true);
   2410   }
   2411 
   2412   /// Returns the range of an opaque value of the given integral type.
   2413   static IntRange forValueOfType(ASTContext &C, QualType T) {
   2414     return forValueOfCanonicalType(C,
   2415                           T->getCanonicalTypeInternal().getTypePtr());
   2416   }
   2417 
   2418   /// Returns the range of an opaque value of a canonical integral type.
   2419   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
   2420     assert(T->isCanonicalUnqualified());
   2421 
   2422     if (const VectorType *VT = dyn_cast<VectorType>(T))
   2423       T = VT->getElementType().getTypePtr();
   2424     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   2425       T = CT->getElementType().getTypePtr();
   2426 
   2427     // For enum types, use the known bit width of the enumerators.
   2428     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
   2429       EnumDecl *Enum = ET->getDecl();
   2430       if (!Enum->isDefinition())
   2431         return IntRange(C.getIntWidth(QualType(T, 0)), false);
   2432 
   2433       unsigned NumPositive = Enum->getNumPositiveBits();
   2434       unsigned NumNegative = Enum->getNumNegativeBits();
   2435 
   2436       return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
   2437     }
   2438 
   2439     const BuiltinType *BT = cast<BuiltinType>(T);
   2440     assert(BT->isInteger());
   2441 
   2442     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   2443   }
   2444 
   2445   /// Returns the "target" range of a canonical integral type, i.e.
   2446   /// the range of values expressible in the type.
   2447   ///
   2448   /// This matches forValueOfCanonicalType except that enums have the
   2449   /// full range of their type, not the range of their enumerators.
   2450   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
   2451     assert(T->isCanonicalUnqualified());
   2452 
   2453     if (const VectorType *VT = dyn_cast<VectorType>(T))
   2454       T = VT->getElementType().getTypePtr();
   2455     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   2456       T = CT->getElementType().getTypePtr();
   2457     if (const EnumType *ET = dyn_cast<EnumType>(T))
   2458       T = ET->getDecl()->getIntegerType().getTypePtr();
   2459 
   2460     const BuiltinType *BT = cast<BuiltinType>(T);
   2461     assert(BT->isInteger());
   2462 
   2463     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   2464   }
   2465 
   2466   /// Returns the supremum of two ranges: i.e. their conservative merge.
   2467   static IntRange join(IntRange L, IntRange R) {
   2468     return IntRange(std::max(L.Width, R.Width),
   2469                     L.NonNegative && R.NonNegative);
   2470   }
   2471 
   2472   /// Returns the infinum of two ranges: i.e. their aggressive merge.
   2473   static IntRange meet(IntRange L, IntRange R) {
   2474     return IntRange(std::min(L.Width, R.Width),
   2475                     L.NonNegative || R.NonNegative);
   2476   }
   2477 };
   2478 
   2479 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
   2480   if (value.isSigned() && value.isNegative())
   2481     return IntRange(value.getMinSignedBits(), false);
   2482 
   2483   if (value.getBitWidth() > MaxWidth)
   2484     value = value.trunc(MaxWidth);
   2485 
   2486   // isNonNegative() just checks the sign bit without considering
   2487   // signedness.
   2488   return IntRange(value.getActiveBits(), true);
   2489 }
   2490 
   2491 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
   2492                        unsigned MaxWidth) {
   2493   if (result.isInt())
   2494     return GetValueRange(C, result.getInt(), MaxWidth);
   2495 
   2496   if (result.isVector()) {
   2497     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
   2498     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
   2499       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
   2500       R = IntRange::join(R, El);
   2501     }
   2502     return R;
   2503   }
   2504 
   2505   if (result.isComplexInt()) {
   2506     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
   2507     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
   2508     return IntRange::join(R, I);
   2509   }
   2510 
   2511   // This can happen with lossless casts to intptr_t of "based" lvalues.
   2512   // Assume it might use arbitrary bits.
   2513   // FIXME: The only reason we need to pass the type in here is to get
   2514   // the sign right on this one case.  It would be nice if APValue
   2515   // preserved this.
   2516   assert(result.isLValue());
   2517   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
   2518 }
   2519 
   2520 /// Pseudo-evaluate the given integer expression, estimating the
   2521 /// range of values it might take.
   2522 ///
   2523 /// \param MaxWidth - the width to which the value will be truncated
   2524 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
   2525   E = E->IgnoreParens();
   2526 
   2527   // Try a full evaluation first.
   2528   Expr::EvalResult result;
   2529   if (E->Evaluate(result, C))
   2530     return GetValueRange(C, result.Val, E->getType(), MaxWidth);
   2531 
   2532   // I think we only want to look through implicit casts here; if the
   2533   // user has an explicit widening cast, we should treat the value as
   2534   // being of the new, wider type.
   2535   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   2536     if (CE->getCastKind() == CK_NoOp)
   2537       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
   2538 
   2539     IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
   2540 
   2541     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
   2542 
   2543     // Assume that non-integer casts can span the full range of the type.
   2544     if (!isIntegerCast)
   2545       return OutputTypeRange;
   2546 
   2547     IntRange SubRange
   2548       = GetExprRange(C, CE->getSubExpr(),
   2549                      std::min(MaxWidth, OutputTypeRange.Width));
   2550 
   2551     // Bail out if the subexpr's range is as wide as the cast type.
   2552     if (SubRange.Width >= OutputTypeRange.Width)
   2553       return OutputTypeRange;
   2554 
   2555     // Otherwise, we take the smaller width, and we're non-negative if
   2556     // either the output type or the subexpr is.
   2557     return IntRange(SubRange.Width,
   2558                     SubRange.NonNegative || OutputTypeRange.NonNegative);
   2559   }
   2560 
   2561   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   2562     // If we can fold the condition, just take that operand.
   2563     bool CondResult;
   2564     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
   2565       return GetExprRange(C, CondResult ? CO->getTrueExpr()
   2566                                         : CO->getFalseExpr(),
   2567                           MaxWidth);
   2568 
   2569     // Otherwise, conservatively merge.
   2570     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
   2571     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
   2572     return IntRange::join(L, R);
   2573   }
   2574 
   2575   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   2576     switch (BO->getOpcode()) {
   2577 
   2578     // Boolean-valued operations are single-bit and positive.
   2579     case BO_LAnd:
   2580     case BO_LOr:
   2581     case BO_LT:
   2582     case BO_GT:
   2583     case BO_LE:
   2584     case BO_GE:
   2585     case BO_EQ:
   2586     case BO_NE:
   2587       return IntRange::forBoolType();
   2588 
   2589     // The type of the assignments is the type of the LHS, so the RHS
   2590     // is not necessarily the same type.
   2591     case BO_MulAssign:
   2592     case BO_DivAssign:
   2593     case BO_RemAssign:
   2594     case BO_AddAssign:
   2595     case BO_SubAssign:
   2596     case BO_XorAssign:
   2597     case BO_OrAssign:
   2598       // TODO: bitfields?
   2599       return IntRange::forValueOfType(C, E->getType());
   2600 
   2601     // Simple assignments just pass through the RHS, which will have
   2602     // been coerced to the LHS type.
   2603     case BO_Assign:
   2604       // TODO: bitfields?
   2605       return GetExprRange(C, BO->getRHS(), MaxWidth);
   2606 
   2607     // Operations with opaque sources are black-listed.
   2608     case BO_PtrMemD:
   2609     case BO_PtrMemI:
   2610       return IntRange::forValueOfType(C, E->getType());
   2611 
   2612     // Bitwise-and uses the *infinum* of the two source ranges.
   2613     case BO_And:
   2614     case BO_AndAssign:
   2615       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
   2616                             GetExprRange(C, BO->getRHS(), MaxWidth));
   2617 
   2618     // Left shift gets black-listed based on a judgement call.
   2619     case BO_Shl:
   2620       // ...except that we want to treat '1 << (blah)' as logically
   2621       // positive.  It's an important idiom.
   2622       if (IntegerLiteral *I
   2623             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
   2624         if (I->getValue() == 1) {
   2625           IntRange R = IntRange::forValueOfType(C, E->getType());
   2626           return IntRange(R.Width, /*NonNegative*/ true);
   2627         }
   2628       }
   2629       // fallthrough
   2630 
   2631     case BO_ShlAssign:
   2632       return IntRange::forValueOfType(C, E->getType());
   2633 
   2634     // Right shift by a constant can narrow its left argument.
   2635     case BO_Shr:
   2636     case BO_ShrAssign: {
   2637       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   2638 
   2639       // If the shift amount is a positive constant, drop the width by
   2640       // that much.
   2641       llvm::APSInt shift;
   2642       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
   2643           shift.isNonNegative()) {
   2644         unsigned zext = shift.getZExtValue();
   2645         if (zext >= L.Width)
   2646           L.Width = (L.NonNegative ? 0 : 1);
   2647         else
   2648           L.Width -= zext;
   2649       }
   2650 
   2651       return L;
   2652     }
   2653 
   2654     // Comma acts as its right operand.
   2655     case BO_Comma:
   2656       return GetExprRange(C, BO->getRHS(), MaxWidth);
   2657 
   2658     // Black-list pointer subtractions.
   2659     case BO_Sub:
   2660       if (BO->getLHS()->getType()->isPointerType())
   2661         return IntRange::forValueOfType(C, E->getType());
   2662       break;
   2663 
   2664     // The width of a division result is mostly determined by the size
   2665     // of the LHS.
   2666     case BO_Div: {
   2667       // Don't 'pre-truncate' the operands.
   2668       unsigned opWidth = C.getIntWidth(E->getType());
   2669       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   2670 
   2671       // If the divisor is constant, use that.
   2672       llvm::APSInt divisor;
   2673       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
   2674         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
   2675         if (log2 >= L.Width)
   2676           L.Width = (L.NonNegative ? 0 : 1);
   2677         else
   2678           L.Width = std::min(L.Width - log2, MaxWidth);
   2679         return L;
   2680       }
   2681 
   2682       // Otherwise, just use the LHS's width.
   2683       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   2684       return IntRange(L.Width, L.NonNegative && R.NonNegative);
   2685     }
   2686 
   2687     // The result of a remainder can't be larger than the result of
   2688     // either side.
   2689     case BO_Rem: {
   2690       // Don't 'pre-truncate' the operands.
   2691       unsigned opWidth = C.getIntWidth(E->getType());
   2692       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   2693       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   2694 
   2695       IntRange meet = IntRange::meet(L, R);
   2696       meet.Width = std::min(meet.Width, MaxWidth);
   2697       return meet;
   2698     }
   2699 
   2700     // The default behavior is okay for these.
   2701     case BO_Mul:
   2702     case BO_Add:
   2703     case BO_Xor:
   2704     case BO_Or:
   2705       break;
   2706     }
   2707 
   2708     // The default case is to treat the operation as if it were closed
   2709     // on the narrowest type that encompasses both operands.
   2710     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   2711     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
   2712     return IntRange::join(L, R);
   2713   }
   2714 
   2715   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2716     switch (UO->getOpcode()) {
   2717     // Boolean-valued operations are white-listed.
   2718     case UO_LNot:
   2719       return IntRange::forBoolType();
   2720 
   2721     // Operations with opaque sources are black-listed.
   2722     case UO_Deref:
   2723     case UO_AddrOf: // should be impossible
   2724       return IntRange::forValueOfType(C, E->getType());
   2725 
   2726     default:
   2727       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
   2728     }
   2729   }
   2730 
   2731   if (dyn_cast<OffsetOfExpr>(E)) {
   2732     IntRange::forValueOfType(C, E->getType());
   2733   }
   2734 
   2735   FieldDecl *BitField = E->getBitField();
   2736   if (BitField) {
   2737     llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
   2738     unsigned BitWidth = BitWidthAP.getZExtValue();
   2739 
   2740     return IntRange(BitWidth,
   2741                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
   2742   }
   2743 
   2744   return IntRange::forValueOfType(C, E->getType());
   2745 }
   2746 
   2747 IntRange GetExprRange(ASTContext &C, Expr *E) {
   2748   return GetExprRange(C, E, C.getIntWidth(E->getType()));
   2749 }
   2750 
   2751 /// Checks whether the given value, which currently has the given
   2752 /// source semantics, has the same value when coerced through the
   2753 /// target semantics.
   2754 bool IsSameFloatAfterCast(const llvm::APFloat &value,
   2755                           const llvm::fltSemantics &Src,
   2756                           const llvm::fltSemantics &Tgt) {
   2757   llvm::APFloat truncated = value;
   2758 
   2759   bool ignored;
   2760   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
   2761   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
   2762 
   2763   return truncated.bitwiseIsEqual(value);
   2764 }
   2765 
   2766 /// Checks whether the given value, which currently has the given
   2767 /// source semantics, has the same value when coerced through the
   2768 /// target semantics.
   2769 ///
   2770 /// The value might be a vector of floats (or a complex number).
   2771 bool IsSameFloatAfterCast(const APValue &value,
   2772                           const llvm::fltSemantics &Src,
   2773                           const llvm::fltSemantics &Tgt) {
   2774   if (value.isFloat())
   2775     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
   2776 
   2777   if (value.isVector()) {
   2778     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
   2779       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
   2780         return false;
   2781     return true;
   2782   }
   2783 
   2784   assert(value.isComplexFloat());
   2785   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
   2786           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
   2787 }
   2788 
   2789 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
   2790 
   2791 static bool IsZero(Sema &S, Expr *E) {
   2792   // Suppress cases where we are comparing against an enum constant.
   2793   if (const DeclRefExpr *DR =
   2794       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
   2795     if (isa<EnumConstantDecl>(DR->getDecl()))
   2796       return false;
   2797 
   2798   // Suppress cases where the '0' value is expanded from a macro.
   2799   if (E->getLocStart().isMacroID())
   2800     return false;
   2801 
   2802   llvm::APSInt Value;
   2803   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
   2804 }
   2805 
   2806 static bool HasEnumType(Expr *E) {
   2807   // Strip off implicit integral promotions.
   2808   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2809     if (ICE->getCastKind() != CK_IntegralCast &&
   2810         ICE->getCastKind() != CK_NoOp)
   2811       break;
   2812     E = ICE->getSubExpr();
   2813   }
   2814 
   2815   return E->getType()->isEnumeralType();
   2816 }
   2817 
   2818 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
   2819   BinaryOperatorKind op = E->getOpcode();
   2820   if (E->isValueDependent())
   2821     return;
   2822 
   2823   if (op == BO_LT && IsZero(S, E->getRHS())) {
   2824     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   2825       << "< 0" << "false" << HasEnumType(E->getLHS())
   2826       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   2827   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
   2828     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   2829       << ">= 0" << "true" << HasEnumType(E->getLHS())
   2830       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   2831   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
   2832     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   2833       << "0 >" << "false" << HasEnumType(E->getRHS())
   2834       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   2835   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
   2836     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   2837       << "0 <=" << "true" << HasEnumType(E->getRHS())
   2838       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   2839   }
   2840 }
   2841 
   2842 /// Analyze the operands of the given comparison.  Implements the
   2843 /// fallback case from AnalyzeComparison.
   2844 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
   2845   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   2846   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   2847 }
   2848 
   2849 /// \brief Implements -Wsign-compare.
   2850 ///
   2851 /// \param lex the left-hand expression
   2852 /// \param rex the right-hand expression
   2853 /// \param OpLoc the location of the joining operator
   2854 /// \param BinOpc binary opcode or 0
   2855 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
   2856   // The type the comparison is being performed in.
   2857   QualType T = E->getLHS()->getType();
   2858   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
   2859          && "comparison with mismatched types");
   2860 
   2861   // We don't do anything special if this isn't an unsigned integral
   2862   // comparison:  we're only interested in integral comparisons, and
   2863   // signed comparisons only happen in cases we don't care to warn about.
   2864   //
   2865   // We also don't care about value-dependent expressions or expressions
   2866   // whose result is a constant.
   2867   if (!T->hasUnsignedIntegerRepresentation()
   2868       || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
   2869     return AnalyzeImpConvsInComparison(S, E);
   2870 
   2871   Expr *lex = E->getLHS()->IgnoreParenImpCasts();
   2872   Expr *rex = E->getRHS()->IgnoreParenImpCasts();
   2873 
   2874   // Check to see if one of the (unmodified) operands is of different
   2875   // signedness.
   2876   Expr *signedOperand, *unsignedOperand;
   2877   if (lex->getType()->hasSignedIntegerRepresentation()) {
   2878     assert(!rex->getType()->hasSignedIntegerRepresentation() &&
   2879            "unsigned comparison between two signed integer expressions?");
   2880     signedOperand = lex;
   2881     unsignedOperand = rex;
   2882   } else if (rex->getType()->hasSignedIntegerRepresentation()) {
   2883     signedOperand = rex;
   2884     unsignedOperand = lex;
   2885   } else {
   2886     CheckTrivialUnsignedComparison(S, E);
   2887     return AnalyzeImpConvsInComparison(S, E);
   2888   }
   2889 
   2890   // Otherwise, calculate the effective range of the signed operand.
   2891   IntRange signedRange = GetExprRange(S.Context, signedOperand);
   2892 
   2893   // Go ahead and analyze implicit conversions in the operands.  Note
   2894   // that we skip the implicit conversions on both sides.
   2895   AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
   2896   AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
   2897 
   2898   // If the signed range is non-negative, -Wsign-compare won't fire,
   2899   // but we should still check for comparisons which are always true
   2900   // or false.
   2901   if (signedRange.NonNegative)
   2902     return CheckTrivialUnsignedComparison(S, E);
   2903 
   2904   // For (in)equality comparisons, if the unsigned operand is a
   2905   // constant which cannot collide with a overflowed signed operand,
   2906   // then reinterpreting the signed operand as unsigned will not
   2907   // change the result of the comparison.
   2908   if (E->isEqualityOp()) {
   2909     unsigned comparisonWidth = S.Context.getIntWidth(T);
   2910     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
   2911 
   2912     // We should never be unable to prove that the unsigned operand is
   2913     // non-negative.
   2914     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
   2915 
   2916     if (unsignedRange.Width < comparisonWidth)
   2917       return;
   2918   }
   2919 
   2920   S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
   2921     << lex->getType() << rex->getType()
   2922     << lex->getSourceRange() << rex->getSourceRange();
   2923 }
   2924 
   2925 /// Analyzes an attempt to assign the given value to a bitfield.
   2926 ///
   2927 /// Returns true if there was something fishy about the attempt.
   2928 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
   2929                                SourceLocation InitLoc) {
   2930   assert(Bitfield->isBitField());
   2931   if (Bitfield->isInvalidDecl())
   2932     return false;
   2933 
   2934   // White-list bool bitfields.
   2935   if (Bitfield->getType()->isBooleanType())
   2936     return false;
   2937 
   2938   // Ignore value- or type-dependent expressions.
   2939   if (Bitfield->getBitWidth()->isValueDependent() ||
   2940       Bitfield->getBitWidth()->isTypeDependent() ||
   2941       Init->isValueDependent() ||
   2942       Init->isTypeDependent())
   2943     return false;
   2944 
   2945   Expr *OriginalInit = Init->IgnoreParenImpCasts();
   2946 
   2947   llvm::APSInt Width(32);
   2948   Expr::EvalResult InitValue;
   2949   if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
   2950       !OriginalInit->Evaluate(InitValue, S.Context) ||
   2951       !InitValue.Val.isInt())
   2952     return false;
   2953 
   2954   const llvm::APSInt &Value = InitValue.Val.getInt();
   2955   unsigned OriginalWidth = Value.getBitWidth();
   2956   unsigned FieldWidth = Width.getZExtValue();
   2957 
   2958   if (OriginalWidth <= FieldWidth)
   2959     return false;
   2960 
   2961   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
   2962 
   2963   // It's fairly common to write values into signed bitfields
   2964   // that, if sign-extended, would end up becoming a different
   2965   // value.  We don't want to warn about that.
   2966   if (Value.isSigned() && Value.isNegative())
   2967     TruncatedValue = TruncatedValue.sext(OriginalWidth);
   2968   else
   2969     TruncatedValue = TruncatedValue.zext(OriginalWidth);
   2970 
   2971   if (Value == TruncatedValue)
   2972     return false;
   2973 
   2974   std::string PrettyValue = Value.toString(10);
   2975   std::string PrettyTrunc = TruncatedValue.toString(10);
   2976 
   2977   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
   2978     << PrettyValue << PrettyTrunc << OriginalInit->getType()
   2979     << Init->getSourceRange();
   2980 
   2981   return true;
   2982 }
   2983 
   2984 /// Analyze the given simple or compound assignment for warning-worthy
   2985 /// operations.
   2986 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
   2987   // Just recurse on the LHS.
   2988   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   2989 
   2990   // We want to recurse on the RHS as normal unless we're assigning to
   2991   // a bitfield.
   2992   if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
   2993     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
   2994                                   E->getOperatorLoc())) {
   2995       // Recurse, ignoring any implicit conversions on the RHS.
   2996       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
   2997                                         E->getOperatorLoc());
   2998     }
   2999   }
   3000 
   3001   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   3002 }
   3003 
   3004 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   3005 void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
   3006                      SourceLocation CContext, unsigned diag) {
   3007   S.Diag(E->getExprLoc(), diag)
   3008     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
   3009 }
   3010 
   3011 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   3012 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
   3013                      unsigned diag) {
   3014   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
   3015 }
   3016 
   3017 /// Diagnose an implicit cast from a literal expression. Also attemps to supply
   3018 /// fixit hints when the cast wouldn't lose information to simply write the
   3019 /// expression with the expected type.
   3020 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
   3021                                     SourceLocation CContext) {
   3022   // Emit the primary warning first, then try to emit a fixit hint note if
   3023   // reasonable.
   3024   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
   3025     << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
   3026 
   3027   const llvm::APFloat &Value = FL->getValue();
   3028 
   3029   // Don't attempt to fix PPC double double literals.
   3030   if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
   3031     return;
   3032 
   3033   // Try to convert this exactly to an integer.
   3034   bool isExact = false;
   3035   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
   3036                             T->hasUnsignedIntegerRepresentation());
   3037   if (Value.convertToInteger(IntegerValue,
   3038                              llvm::APFloat::rmTowardZero, &isExact)
   3039       != llvm::APFloat::opOK || !isExact)
   3040     return;
   3041 
   3042   std::string LiteralValue = IntegerValue.toString(10);
   3043   S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
   3044     << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
   3045 }
   3046 
   3047 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
   3048   if (!Range.Width) return "0";
   3049 
   3050   llvm::APSInt ValueInRange = Value;
   3051   ValueInRange.setIsSigned(!Range.NonNegative);
   3052   ValueInRange = ValueInRange.trunc(Range.Width);
   3053   return ValueInRange.toString(10);
   3054 }
   3055 
   3056 static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
   3057   SourceManager &smgr = S.Context.getSourceManager();
   3058   return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
   3059 }
   3060 
   3061 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
   3062                              SourceLocation CC, bool *ICContext = 0) {
   3063   if (E->isTypeDependent() || E->isValueDependent()) return;
   3064 
   3065   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
   3066   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
   3067   if (Source == Target) return;
   3068   if (Target->isDependentType()) return;
   3069 
   3070   // If the conversion context location is invalid don't complain.
   3071   // We also don't want to emit a warning if the issue occurs from the
   3072   // instantiation of a system macro.  The problem is that 'getSpellingLoc()'
   3073   // is slow, so we delay this check as long as possible.  Once we detect
   3074   // we are in that scenario, we just return.
   3075   if (CC.isInvalid())
   3076     return;
   3077 
   3078   // Never diagnose implicit casts to bool.
   3079   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
   3080     return;
   3081 
   3082   // Strip vector types.
   3083   if (isa<VectorType>(Source)) {
   3084     if (!isa<VectorType>(Target)) {
   3085       if (isFromSystemMacro(S, CC))
   3086         return;
   3087       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
   3088     }
   3089 
   3090     // If the vector cast is cast between two vectors of the same size, it is
   3091     // a bitcast, not a conversion.
   3092     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
   3093       return;
   3094 
   3095     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
   3096     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
   3097   }
   3098 
   3099   // Strip complex types.
   3100   if (isa<ComplexType>(Source)) {
   3101     if (!isa<ComplexType>(Target)) {
   3102       if (isFromSystemMacro(S, CC))
   3103         return;
   3104 
   3105       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
   3106     }
   3107 
   3108     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
   3109     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
   3110   }
   3111 
   3112   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
   3113   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
   3114 
   3115   // If the source is floating point...
   3116   if (SourceBT && SourceBT->isFloatingPoint()) {
   3117     // ...and the target is floating point...
   3118     if (TargetBT && TargetBT->isFloatingPoint()) {
   3119       // ...then warn if we're dropping FP rank.
   3120 
   3121       // Builtin FP kinds are ordered by increasing FP rank.
   3122       if (SourceBT->getKind() > TargetBT->getKind()) {
   3123         // Don't warn about float constants that are precisely
   3124         // representable in the target type.
   3125         Expr::EvalResult result;
   3126         if (E->Evaluate(result, S.Context)) {
   3127           // Value might be a float, a float vector, or a float complex.
   3128           if (IsSameFloatAfterCast(result.Val,
   3129                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
   3130                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
   3131             return;
   3132         }
   3133 
   3134         if (isFromSystemMacro(S, CC))
   3135           return;
   3136 
   3137         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
   3138       }
   3139       return;
   3140     }
   3141 
   3142     // If the target is integral, always warn.
   3143     if ((TargetBT && TargetBT->isInteger())) {
   3144       if (isFromSystemMacro(S, CC))
   3145         return;
   3146 
   3147       Expr *InnerE = E->IgnoreParenImpCasts();
   3148       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
   3149         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
   3150       } else {
   3151         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
   3152       }
   3153     }
   3154 
   3155     return;
   3156   }
   3157 
   3158   if (!Source->isIntegerType() || !Target->isIntegerType())
   3159     return;
   3160 
   3161   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
   3162            == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
   3163     S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
   3164         << E->getSourceRange() << clang::SourceRange(CC);
   3165     return;
   3166   }
   3167 
   3168   IntRange SourceRange = GetExprRange(S.Context, E);
   3169   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
   3170 
   3171   if (SourceRange.Width > TargetRange.Width) {
   3172     // If the source is a constant, use a default-on diagnostic.
   3173     // TODO: this should happen for bitfield stores, too.
   3174     llvm::APSInt Value(32);
   3175     if (E->isIntegerConstantExpr(Value, S.Context)) {
   3176       if (isFromSystemMacro(S, CC))
   3177         return;
   3178 
   3179       std::string PrettySourceValue = Value.toString(10);
   3180       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
   3181 
   3182       S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
   3183         << PrettySourceValue << PrettyTargetValue
   3184         << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
   3185       return;
   3186     }
   3187 
   3188     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
   3189     if (isFromSystemMacro(S, CC))
   3190       return;
   3191 
   3192     if (SourceRange.Width == 64 && TargetRange.Width == 32)
   3193       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
   3194     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
   3195   }
   3196 
   3197   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
   3198       (!TargetRange.NonNegative && SourceRange.NonNegative &&
   3199        SourceRange.Width == TargetRange.Width)) {
   3200 
   3201     if (isFromSystemMacro(S, CC))
   3202       return;
   3203 
   3204     unsigned DiagID = diag::warn_impcast_integer_sign;
   3205 
   3206     // Traditionally, gcc has warned about this under -Wsign-compare.
   3207     // We also want to warn about it in -Wconversion.
   3208     // So if -Wconversion is off, use a completely identical diagnostic
   3209     // in the sign-compare group.
   3210     // The conditional-checking code will
   3211     if (ICContext) {
   3212       DiagID = diag::warn_impcast_integer_sign_conditional;
   3213       *ICContext = true;
   3214     }
   3215 
   3216     return DiagnoseImpCast(S, E, T, CC, DiagID);
   3217   }
   3218 
   3219   // Diagnose conversions between different enumeration types.
   3220   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
   3221   // type, to give us better diagnostics.
   3222   QualType SourceType = E->getType();
   3223   if (!S.getLangOptions().CPlusPlus) {
   3224     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   3225       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
   3226         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
   3227         SourceType = S.Context.getTypeDeclType(Enum);
   3228         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
   3229       }
   3230   }
   3231 
   3232   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
   3233     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
   3234       if ((SourceEnum->getDecl()->getIdentifier() ||
   3235            SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
   3236           (TargetEnum->getDecl()->getIdentifier() ||
   3237            TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
   3238           SourceEnum != TargetEnum) {
   3239         if (isFromSystemMacro(S, CC))
   3240           return;
   3241 
   3242         return DiagnoseImpCast(S, E, SourceType, T, CC,
   3243                                diag::warn_impcast_different_enum_types);
   3244       }
   3245 
   3246   return;
   3247 }
   3248 
   3249 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
   3250 
   3251 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
   3252                              SourceLocation CC, bool &ICContext) {
   3253   E = E->IgnoreParenImpCasts();
   3254 
   3255   if (isa<ConditionalOperator>(E))
   3256     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
   3257 
   3258   AnalyzeImplicitConversions(S, E, CC);
   3259   if (E->getType() != T)
   3260     return CheckImplicitConversion(S, E, T, CC, &ICContext);
   3261   return;
   3262 }
   3263 
   3264 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
   3265   SourceLocation CC = E->getQuestionLoc();
   3266 
   3267   AnalyzeImplicitConversions(S, E->getCond(), CC);
   3268 
   3269   bool Suspicious = false;
   3270   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
   3271   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
   3272 
   3273   // If -Wconversion would have warned about either of the candidates
   3274   // for a signedness conversion to the context type...
   3275   if (!Suspicious) return;
   3276 
   3277   // ...but it's currently ignored...
   3278   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
   3279                                  CC))
   3280     return;
   3281 
   3282   // ...and -Wsign-compare isn't...
   3283   if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
   3284     return;
   3285 
   3286   // ...then check whether it would have warned about either of the
   3287   // candidates for a signedness conversion to the condition type.
   3288   if (E->getType() != T) {
   3289     Suspicious = false;
   3290     CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
   3291                             E->getType(), CC, &Suspicious);
   3292     if (!Suspicious)
   3293       CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
   3294                               E->getType(), CC, &Suspicious);
   3295     if (!Suspicious)
   3296       return;
   3297   }
   3298 
   3299   // If so, emit a diagnostic under -Wsign-compare.
   3300   Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
   3301   Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
   3302   S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
   3303     << lex->getType() << rex->getType()
   3304     << lex->getSourceRange() << rex->getSourceRange();
   3305 }
   3306 
   3307 /// AnalyzeImplicitConversions - Find and report any interesting
   3308 /// implicit conversions in the given expression.  There are a couple
   3309 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
   3310 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
   3311   QualType T = OrigE->getType();
   3312   Expr *E = OrigE->IgnoreParenImpCasts();
   3313 
   3314   // For conditional operators, we analyze the arguments as if they
   3315   // were being fed directly into the output.
   3316   if (isa<ConditionalOperator>(E)) {
   3317     ConditionalOperator *CO = cast<ConditionalOperator>(E);
   3318     CheckConditionalOperator(S, CO, T);
   3319     return;
   3320   }
   3321 
   3322   // Go ahead and check any implicit conversions we might have skipped.
   3323   // The non-canonical typecheck is just an optimization;
   3324   // CheckImplicitConversion will filter out dead implicit conversions.
   3325   if (E->getType() != T)
   3326     CheckImplicitConversion(S, E, T, CC);
   3327 
   3328   // Now continue drilling into this expression.
   3329 
   3330   // Skip past explicit casts.
   3331   if (isa<ExplicitCastExpr>(E)) {
   3332     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
   3333     return AnalyzeImplicitConversions(S, E, CC);
   3334   }
   3335 
   3336   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   3337     // Do a somewhat different check with comparison operators.
   3338     if (BO->isComparisonOp())
   3339       return AnalyzeComparison(S, BO);
   3340 
   3341     // And with assignments and compound assignments.
   3342     if (BO->isAssignmentOp())
   3343       return AnalyzeAssignment(S, BO);
   3344   }
   3345 
   3346   // These break the otherwise-useful invariant below.  Fortunately,
   3347   // we don't really need to recurse into them, because any internal
   3348   // expressions should have been analyzed already when they were
   3349   // built into statements.
   3350   if (isa<StmtExpr>(E)) return;
   3351 
   3352   // Don't descend into unevaluated contexts.
   3353   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
   3354 
   3355   // Now just recurse over the expression's children.
   3356   CC = E->getExprLoc();
   3357   for (Stmt::child_range I = E->children(); I; ++I)
   3358     AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
   3359 }
   3360 
   3361 } // end anonymous namespace
   3362 
   3363 /// Diagnoses "dangerous" implicit conversions within the given
   3364 /// expression (which is a full expression).  Implements -Wconversion
   3365 /// and -Wsign-compare.
   3366 ///
   3367 /// \param CC the "context" location of the implicit conversion, i.e.
   3368 ///   the most location of the syntactic entity requiring the implicit
   3369 ///   conversion
   3370 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
   3371   // Don't diagnose in unevaluated contexts.
   3372   if (ExprEvalContexts.back().Context == Sema::Unevaluated)
   3373     return;
   3374 
   3375   // Don't diagnose for value- or type-dependent expressions.
   3376   if (E->isTypeDependent() || E->isValueDependent())
   3377     return;
   3378 
   3379   // This is not the right CC for (e.g.) a variable initialization.
   3380   AnalyzeImplicitConversions(*this, E, CC);
   3381 }
   3382 
   3383 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
   3384                                        FieldDecl *BitField,
   3385                                        Expr *Init) {
   3386   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
   3387 }
   3388 
   3389 /// CheckParmsForFunctionDef - Check that the parameters of the given
   3390 /// function are appropriate for the definition of a function. This
   3391 /// takes care of any checks that cannot be performed on the
   3392 /// declaration itself, e.g., that the types of each of the function
   3393 /// parameters are complete.
   3394 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
   3395                                     bool CheckParameterNames) {
   3396   bool HasInvalidParm = false;
   3397   for (; P != PEnd; ++P) {
   3398     ParmVarDecl *Param = *P;
   3399 
   3400     // C99 6.7.5.3p4: the parameters in a parameter type list in a
   3401     // function declarator that is part of a function definition of
   3402     // that function shall not have incomplete type.
   3403     //
   3404     // This is also C++ [dcl.fct]p6.
   3405     if (!Param->isInvalidDecl() &&
   3406         RequireCompleteType(Param->getLocation(), Param->getType(),
   3407                                diag::err_typecheck_decl_incomplete_type)) {
   3408       Param->setInvalidDecl();
   3409       HasInvalidParm = true;
   3410     }
   3411 
   3412     // C99 6.9.1p5: If the declarator includes a parameter type list, the
   3413     // declaration of each parameter shall include an identifier.
   3414     if (CheckParameterNames &&
   3415         Param->getIdentifier() == 0 &&
   3416         !Param->isImplicit() &&
   3417         !getLangOptions().CPlusPlus)
   3418       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   3419 
   3420     // C99 6.7.5.3p12:
   3421     //   If the function declarator is not part of a definition of that
   3422     //   function, parameters may have incomplete type and may use the [*]
   3423     //   notation in their sequences of declarator specifiers to specify
   3424     //   variable length array types.
   3425     QualType PType = Param->getOriginalType();
   3426     if (const ArrayType *AT = Context.getAsArrayType(PType)) {
   3427       if (AT->getSizeModifier() == ArrayType::Star) {
   3428         // FIXME: This diagnosic should point the the '[*]' if source-location
   3429         // information is added for it.
   3430         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
   3431       }
   3432     }
   3433   }
   3434 
   3435   return HasInvalidParm;
   3436 }
   3437 
   3438 /// CheckCastAlign - Implements -Wcast-align, which warns when a
   3439 /// pointer cast increases the alignment requirements.
   3440 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
   3441   // This is actually a lot of work to potentially be doing on every
   3442   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
   3443   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
   3444                                           TRange.getBegin())
   3445         == Diagnostic::Ignored)
   3446     return;
   3447 
   3448   // Ignore dependent types.
   3449   if (T->isDependentType() || Op->getType()->isDependentType())
   3450     return;
   3451 
   3452   // Require that the destination be a pointer type.
   3453   const PointerType *DestPtr = T->getAs<PointerType>();
   3454   if (!DestPtr) return;
   3455 
   3456   // If the destination has alignment 1, we're done.
   3457   QualType DestPointee = DestPtr->getPointeeType();
   3458   if (DestPointee->isIncompleteType()) return;
   3459   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
   3460   if (DestAlign.isOne()) return;
   3461 
   3462   // Require that the source be a pointer type.
   3463   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
   3464   if (!SrcPtr) return;
   3465   QualType SrcPointee = SrcPtr->getPointeeType();
   3466 
   3467   // Whitelist casts from cv void*.  We already implicitly
   3468   // whitelisted casts to cv void*, since they have alignment 1.
   3469   // Also whitelist casts involving incomplete types, which implicitly
   3470   // includes 'void'.
   3471   if (SrcPointee->isIncompleteType()) return;
   3472 
   3473   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
   3474   if (SrcAlign >= DestAlign) return;
   3475 
   3476   Diag(TRange.getBegin(), diag::warn_cast_align)
   3477     << Op->getType() << T
   3478     << static_cast<unsigned>(SrcAlign.getQuantity())
   3479     << static_cast<unsigned>(DestAlign.getQuantity())
   3480     << TRange << Op->getSourceRange();
   3481 }
   3482 
   3483 static void CheckArrayAccess_Check(Sema &S,
   3484                                    const clang::ArraySubscriptExpr *E) {
   3485   const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
   3486   const ConstantArrayType *ArrayTy =
   3487     S.Context.getAsConstantArrayType(BaseExpr->getType());
   3488   if (!ArrayTy)
   3489     return;
   3490 
   3491   const Expr *IndexExpr = E->getIdx();
   3492   if (IndexExpr->isValueDependent())
   3493     return;
   3494   llvm::APSInt index;
   3495   if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
   3496     return;
   3497 
   3498   if (index.isUnsigned() || !index.isNegative()) {
   3499     llvm::APInt size = ArrayTy->getSize();
   3500     if (!size.isStrictlyPositive())
   3501       return;
   3502     if (size.getBitWidth() > index.getBitWidth())
   3503       index = index.sext(size.getBitWidth());
   3504     else if (size.getBitWidth() < index.getBitWidth())
   3505       size = size.sext(index.getBitWidth());
   3506 
   3507     if (index.slt(size))
   3508       return;
   3509 
   3510     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
   3511                           S.PDiag(diag::warn_array_index_exceeds_bounds)
   3512                             << index.toString(10, true)
   3513                             << size.toString(10, true)
   3514                             << IndexExpr->getSourceRange());
   3515   } else {
   3516     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
   3517                           S.PDiag(diag::warn_array_index_precedes_bounds)
   3518                             << index.toString(10, true)
   3519                             << IndexExpr->getSourceRange());
   3520   }
   3521 
   3522   const NamedDecl *ND = NULL;
   3523   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
   3524     ND = dyn_cast<NamedDecl>(DRE->getDecl());
   3525   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
   3526     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
   3527   if (ND)
   3528     S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
   3529                           S.PDiag(diag::note_array_index_out_of_bounds)
   3530                             << ND->getDeclName());
   3531 }
   3532 
   3533 void Sema::CheckArrayAccess(const Expr *expr) {
   3534   while (true) {
   3535     expr = expr->IgnoreParens();
   3536     switch (expr->getStmtClass()) {
   3537       case Stmt::ArraySubscriptExprClass:
   3538         CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
   3539         return;
   3540       case Stmt::ConditionalOperatorClass: {
   3541         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
   3542         if (const Expr *lhs = cond->getLHS())
   3543           CheckArrayAccess(lhs);
   3544         if (const Expr *rhs = cond->getRHS())
   3545           CheckArrayAccess(rhs);
   3546         return;
   3547       }
   3548       default:
   3549         return;
   3550     }
   3551   }
   3552 }
   3553 
   3554 //===--- CHECK: Objective-C retain cycles ----------------------------------//
   3555 
   3556 namespace {
   3557   struct RetainCycleOwner {
   3558     RetainCycleOwner() : Variable(0), Indirect(false) {}
   3559     VarDecl *Variable;
   3560     SourceRange Range;
   3561     SourceLocation Loc;
   3562     bool Indirect;
   3563 
   3564     void setLocsFrom(Expr *e) {
   3565       Loc = e->getExprLoc();
   3566       Range = e->getSourceRange();
   3567     }
   3568   };
   3569 }
   3570 
   3571 /// Consider whether capturing the given variable can possibly lead to
   3572 /// a retain cycle.
   3573 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
   3574   // In ARC, it's captured strongly iff the variable has __strong
   3575   // lifetime.  In MRR, it's captured strongly if the variable is
   3576   // __block and has an appropriate type.
   3577   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   3578     return false;
   3579 
   3580   owner.Variable = var;
   3581   owner.setLocsFrom(ref);
   3582   return true;
   3583 }
   3584 
   3585 static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
   3586   while (true) {
   3587     e = e->IgnoreParens();
   3588     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
   3589       switch (cast->getCastKind()) {
   3590       case CK_BitCast:
   3591       case CK_LValueBitCast:
   3592       case CK_LValueToRValue:
   3593       case CK_ObjCReclaimReturnedObject:
   3594         e = cast->getSubExpr();
   3595         continue;
   3596 
   3597       case CK_GetObjCProperty: {
   3598         // Bail out if this isn't a strong explicit property.
   3599         const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
   3600         if (pre->isImplicitProperty()) return false;
   3601         ObjCPropertyDecl *property = pre->getExplicitProperty();
   3602         if (!(property->getPropertyAttributes() &
   3603               (ObjCPropertyDecl::OBJC_PR_retain |
   3604                ObjCPropertyDecl::OBJC_PR_copy |
   3605                ObjCPropertyDecl::OBJC_PR_strong)) &&
   3606             !(property->getPropertyIvarDecl() &&
   3607               property->getPropertyIvarDecl()->getType()
   3608                 .getObjCLifetime() == Qualifiers::OCL_Strong))
   3609           return false;
   3610 
   3611         owner.Indirect = true;
   3612         e = const_cast<Expr*>(pre->getBase());
   3613         continue;
   3614       }
   3615 
   3616       default:
   3617         return false;
   3618       }
   3619     }
   3620 
   3621     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
   3622       ObjCIvarDecl *ivar = ref->getDecl();
   3623       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   3624         return false;
   3625 
   3626       // Try to find a retain cycle in the base.
   3627       if (!findRetainCycleOwner(ref->getBase(), owner))
   3628         return false;
   3629 
   3630       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
   3631       owner.Indirect = true;
   3632       return true;
   3633     }
   3634 
   3635     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
   3636       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
   3637       if (!var) return false;
   3638       return considerVariable(var, ref, owner);
   3639     }
   3640 
   3641     if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
   3642       owner.Variable = ref->getDecl();
   3643       owner.setLocsFrom(ref);
   3644       return true;
   3645     }
   3646 
   3647     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
   3648       if (member->isArrow()) return false;
   3649 
   3650       // Don't count this as an indirect ownership.
   3651       e = member->getBase();
   3652       continue;
   3653     }
   3654 
   3655     // Array ivars?
   3656 
   3657     return false;
   3658   }
   3659 }
   3660 
   3661 namespace {
   3662   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
   3663     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
   3664       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
   3665         Variable(variable), Capturer(0) {}
   3666 
   3667     VarDecl *Variable;
   3668     Expr *Capturer;
   3669 
   3670     void VisitDeclRefExpr(DeclRefExpr *ref) {
   3671       if (ref->getDecl() == Variable && !Capturer)
   3672         Capturer = ref;
   3673     }
   3674 
   3675     void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
   3676       if (ref->getDecl() == Variable && !Capturer)
   3677         Capturer = ref;
   3678     }
   3679 
   3680     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
   3681       if (Capturer) return;
   3682       Visit(ref->getBase());
   3683       if (Capturer && ref->isFreeIvar())
   3684         Capturer = ref;
   3685     }
   3686 
   3687     void VisitBlockExpr(BlockExpr *block) {
   3688       // Look inside nested blocks
   3689       if (block->getBlockDecl()->capturesVariable(Variable))
   3690         Visit(block->getBlockDecl()->getBody());
   3691     }
   3692   };
   3693 }
   3694 
   3695 /// Check whether the given argument is a block which captures a
   3696 /// variable.
   3697 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
   3698   assert(owner.Variable && owner.Loc.isValid());
   3699 
   3700   e = e->IgnoreParenCasts();
   3701   BlockExpr *block = dyn_cast<BlockExpr>(e);
   3702   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
   3703     return 0;
   3704 
   3705   FindCaptureVisitor visitor(S.Context, owner.Variable);
   3706   visitor.Visit(block->getBlockDecl()->getBody());
   3707   return visitor.Capturer;
   3708 }
   3709 
   3710 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
   3711                                 RetainCycleOwner &owner) {
   3712   assert(capturer);
   3713   assert(owner.Variable && owner.Loc.isValid());
   3714 
   3715   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
   3716     << owner.Variable << capturer->getSourceRange();
   3717   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
   3718     << owner.Indirect << owner.Range;
   3719 }
   3720 
   3721 /// Check for a keyword selector that starts with the word 'add' or
   3722 /// 'set'.
   3723 static bool isSetterLikeSelector(Selector sel) {
   3724   if (sel.isUnarySelector()) return false;
   3725 
   3726   llvm::StringRef str = sel.getNameForSlot(0);
   3727   while (!str.empty() && str.front() == '_') str = str.substr(1);
   3728   if (str.startswith("set") || str.startswith("add"))
   3729     str = str.substr(3);
   3730   else
   3731     return false;
   3732 
   3733   if (str.empty()) return true;
   3734   return !islower(str.front());
   3735 }
   3736 
   3737 /// Check a message send to see if it's likely to cause a retain cycle.
   3738 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
   3739   // Only check instance methods whose selector looks like a setter.
   3740   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
   3741     return;
   3742 
   3743   // Try to find a variable that the receiver is strongly owned by.
   3744   RetainCycleOwner owner;
   3745   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
   3746     if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
   3747       return;
   3748   } else {
   3749     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
   3750     owner.Variable = getCurMethodDecl()->getSelfDecl();
   3751     owner.Loc = msg->getSuperLoc();
   3752     owner.Range = msg->getSuperLoc();
   3753   }
   3754 
   3755   // Check whether the receiver is captured by any of the arguments.
   3756   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
   3757     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
   3758       return diagnoseRetainCycle(*this, capturer, owner);
   3759 }
   3760 
   3761 /// Check a property assign to see if it's likely to cause a retain cycle.
   3762 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
   3763   RetainCycleOwner owner;
   3764   if (!findRetainCycleOwner(receiver, owner))
   3765     return;
   3766 
   3767   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
   3768     diagnoseRetainCycle(*this, capturer, owner);
   3769 }
   3770 
   3771 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
   3772                               QualType LHS, Expr *RHS) {
   3773   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
   3774   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
   3775     return false;
   3776   // strip off any implicit cast added to get to the one arc-specific
   3777   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   3778     if (cast->getCastKind() == CK_ObjCConsumeObject) {
   3779       Diag(Loc, diag::warn_arc_retained_assign)
   3780         << (LT == Qualifiers::OCL_ExplicitNone)
   3781         << RHS->getSourceRange();
   3782       return true;
   3783     }
   3784     RHS = cast->getSubExpr();
   3785   }
   3786   return false;
   3787 }
   3788 
   3789 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
   3790                               Expr *LHS, Expr *RHS) {
   3791   QualType LHSType = LHS->getType();
   3792   if (checkUnsafeAssigns(Loc, LHSType, RHS))
   3793     return;
   3794   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
   3795   // FIXME. Check for other life times.
   3796   if (LT != Qualifiers::OCL_None)
   3797     return;
   3798 
   3799   if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
   3800     if (PRE->isImplicitProperty())
   3801       return;
   3802     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
   3803     if (!PD)
   3804       return;
   3805 
   3806     unsigned Attributes = PD->getPropertyAttributes();
   3807     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
   3808       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   3809         if (cast->getCastKind() == CK_ObjCConsumeObject) {
   3810           Diag(Loc, diag::warn_arc_retained_property_assign)
   3811           << RHS->getSourceRange();
   3812           return;
   3813         }
   3814         RHS = cast->getSubExpr();
   3815       }
   3816   }
   3817 }
   3818