Home | History | Annotate | Download | only in CodeGen
      1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the target-independent ELF writer.  This file writes out
     11 // the ELF file in the following order:
     12 //
     13 //  #1. ELF Header
     14 //  #2. '.text' section
     15 //  #3. '.data' section
     16 //  #4. '.bss' section  (conceptual position in file)
     17 //  ...
     18 //  #X. '.shstrtab' section
     19 //  #Y. Section Table
     20 //
     21 // The entries in the section table are laid out as:
     22 //  #0. Null entry [required]
     23 //  #1. ".text" entry - the program code
     24 //  #2. ".data" entry - global variables with initializers.     [ if needed ]
     25 //  #3. ".bss" entry  - global variables without initializers.  [ if needed ]
     26 //  ...
     27 //  #N. ".shstrtab" entry - String table for the section names.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 
     31 #define DEBUG_TYPE "elfwriter"
     32 #include "ELF.h"
     33 #include "ELFWriter.h"
     34 #include "ELFCodeEmitter.h"
     35 #include "llvm/Constants.h"
     36 #include "llvm/Module.h"
     37 #include "llvm/PassManager.h"
     38 #include "llvm/DerivedTypes.h"
     39 #include "llvm/CodeGen/BinaryObject.h"
     40 #include "llvm/CodeGen/MachineCodeEmitter.h"
     41 #include "llvm/CodeGen/ObjectCodeEmitter.h"
     42 #include "llvm/CodeGen/MachineCodeEmitter.h"
     43 #include "llvm/CodeGen/MachineConstantPool.h"
     44 #include "llvm/MC/MCContext.h"
     45 #include "llvm/MC/MCSectionELF.h"
     46 #include "llvm/MC/MCAsmInfo.h"
     47 #include "llvm/Target/Mangler.h"
     48 #include "llvm/Target/TargetAsmInfo.h"
     49 #include "llvm/Target/TargetData.h"
     50 #include "llvm/Target/TargetELFWriterInfo.h"
     51 #include "llvm/Target/TargetLowering.h"
     52 #include "llvm/Target/TargetLoweringObjectFile.h"
     53 #include "llvm/Target/TargetMachine.h"
     54 #include "llvm/Target/TargetRegisterInfo.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/ErrorHandling.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include "llvm/ADT/SmallString.h"
     59 using namespace llvm;
     60 
     61 char ELFWriter::ID = 0;
     62 
     63 //===----------------------------------------------------------------------===//
     64 //                          ELFWriter Implementation
     65 //===----------------------------------------------------------------------===//
     66 
     67 ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
     68   : MachineFunctionPass(ID), O(o), TM(tm),
     69     OutContext(*new MCContext(*TM.getMCAsmInfo(), *TM.getRegisterInfo(),
     70                               &TM.getTargetLowering()->getObjFileLowering(),
     71                               new TargetAsmInfo(tm))),
     72     TLOF(TM.getTargetLowering()->getObjFileLowering()),
     73     is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
     74     isLittleEndian(TM.getTargetData()->isLittleEndian()),
     75     ElfHdr(isLittleEndian, is64Bit) {
     76 
     77   MAI = TM.getMCAsmInfo();
     78   TEW = TM.getELFWriterInfo();
     79 
     80   // Create the object code emitter object for this target.
     81   ElfCE = new ELFCodeEmitter(*this);
     82 
     83   // Initial number of sections
     84   NumSections = 0;
     85 }
     86 
     87 ELFWriter::~ELFWriter() {
     88   delete ElfCE;
     89   delete &OutContext;
     90 
     91   while(!SymbolList.empty()) {
     92     delete SymbolList.back();
     93     SymbolList.pop_back();
     94   }
     95 
     96   while(!PrivateSyms.empty()) {
     97     delete PrivateSyms.back();
     98     PrivateSyms.pop_back();
     99   }
    100 
    101   while(!SectionList.empty()) {
    102     delete SectionList.back();
    103     SectionList.pop_back();
    104   }
    105 
    106   // Release the name mangler object.
    107   delete Mang; Mang = 0;
    108 }
    109 
    110 // doInitialization - Emit the file header and all of the global variables for
    111 // the module to the ELF file.
    112 bool ELFWriter::doInitialization(Module &M) {
    113   // Initialize TargetLoweringObjectFile.
    114   const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
    115 
    116   Mang = new Mangler(OutContext, *TM.getTargetData());
    117 
    118   // ELF Header
    119   // ----------
    120   // Fields e_shnum e_shstrndx are only known after all section have
    121   // been emitted. They locations in the ouput buffer are recorded so
    122   // to be patched up later.
    123   //
    124   // Note
    125   // ----
    126   // emitWord method behaves differently for ELF32 and ELF64, writing
    127   // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
    128 
    129   ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
    130   ElfHdr.emitByte('E');  // e_ident[EI_MAG1]
    131   ElfHdr.emitByte('L');  // e_ident[EI_MAG2]
    132   ElfHdr.emitByte('F');  // e_ident[EI_MAG3]
    133 
    134   ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
    135   ElfHdr.emitByte(TEW->getEIData());  // e_ident[EI_DATA]
    136   ElfHdr.emitByte(ELF::EV_CURRENT);   // e_ident[EI_VERSION]
    137   ElfHdr.emitAlignment(16);           // e_ident[EI_NIDENT-EI_PAD]
    138 
    139   ElfHdr.emitWord16(ELF::ET_REL);        // e_type
    140   ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
    141   ElfHdr.emitWord32(ELF::EV_CURRENT);    // e_version
    142   ElfHdr.emitWord(0);                    // e_entry, no entry point in .o file
    143   ElfHdr.emitWord(0);                    // e_phoff, no program header for .o
    144   ELFHdr_e_shoff_Offset = ElfHdr.size();
    145   ElfHdr.emitWord(0);                    // e_shoff = sec hdr table off in bytes
    146   ElfHdr.emitWord32(TEW->getEFlags());   // e_flags = whatever the target wants
    147   ElfHdr.emitWord16(TEW->getHdrSize());  // e_ehsize = ELF header size
    148   ElfHdr.emitWord16(0);                  // e_phentsize = prog header entry size
    149   ElfHdr.emitWord16(0);                  // e_phnum = # prog header entries = 0
    150 
    151   // e_shentsize = Section header entry size
    152   ElfHdr.emitWord16(TEW->getSHdrSize());
    153 
    154   // e_shnum     = # of section header ents
    155   ELFHdr_e_shnum_Offset = ElfHdr.size();
    156   ElfHdr.emitWord16(0); // Placeholder
    157 
    158   // e_shstrndx  = Section # of '.shstrtab'
    159   ELFHdr_e_shstrndx_Offset = ElfHdr.size();
    160   ElfHdr.emitWord16(0); // Placeholder
    161 
    162   // Add the null section, which is required to be first in the file.
    163   getNullSection();
    164 
    165   // The first entry in the symtab is the null symbol and the second
    166   // is a local symbol containing the module/file name
    167   SymbolList.push_back(new ELFSym());
    168   SymbolList.push_back(ELFSym::getFileSym());
    169 
    170   return false;
    171 }
    172 
    173 // AddPendingGlobalSymbol - Add a global to be processed and to
    174 // the global symbol lookup, use a zero index because the table
    175 // index will be determined later.
    176 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV,
    177                                        bool AddToLookup /* = false */) {
    178   PendingGlobals.insert(GV);
    179   if (AddToLookup)
    180     GblSymLookup[GV] = 0;
    181 }
    182 
    183 // AddPendingExternalSymbol - Add the external to be processed
    184 // and to the external symbol lookup, use a zero index because
    185 // the symbol table index will be determined later.
    186 void ELFWriter::AddPendingExternalSymbol(const char *External) {
    187   PendingExternals.insert(External);
    188   ExtSymLookup[External] = 0;
    189 }
    190 
    191 ELFSection &ELFWriter::getDataSection() {
    192   const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
    193   return getSection(Data->getSectionName(), Data->getType(),
    194                     Data->getFlags(), 4);
    195 }
    196 
    197 ELFSection &ELFWriter::getBSSSection() {
    198   const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
    199   return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
    200 }
    201 
    202 // getCtorSection - Get the static constructor section
    203 ELFSection &ELFWriter::getCtorSection() {
    204   const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
    205   return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags());
    206 }
    207 
    208 // getDtorSection - Get the static destructor section
    209 ELFSection &ELFWriter::getDtorSection() {
    210   const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
    211   return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
    212 }
    213 
    214 // getTextSection - Get the text section for the specified function
    215 ELFSection &ELFWriter::getTextSection(const Function *F) {
    216   const MCSectionELF *Text =
    217     (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
    218   return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
    219 }
    220 
    221 // getJumpTableSection - Get a read only section for constants when
    222 // emitting jump tables. TODO: add PIC support
    223 ELFSection &ELFWriter::getJumpTableSection() {
    224   const MCSectionELF *JT =
    225     (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
    226   return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
    227                     TM.getTargetData()->getPointerABIAlignment());
    228 }
    229 
    230 // getConstantPoolSection - Get a constant pool section based on the machine
    231 // constant pool entry type and relocation info.
    232 ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
    233   SectionKind Kind;
    234   switch (CPE.getRelocationInfo()) {
    235   default: llvm_unreachable("Unknown section kind");
    236   case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
    237   case 1:
    238     Kind = SectionKind::getReadOnlyWithRelLocal();
    239     break;
    240   case 0:
    241     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
    242     case 4:  Kind = SectionKind::getMergeableConst4(); break;
    243     case 8:  Kind = SectionKind::getMergeableConst8(); break;
    244     case 16: Kind = SectionKind::getMergeableConst16(); break;
    245     default: Kind = SectionKind::getMergeableConst(); break;
    246     }
    247   }
    248 
    249   const MCSectionELF *CPSect =
    250     (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
    251   return getSection(CPSect->getSectionName(), CPSect->getType(),
    252                     CPSect->getFlags(), CPE.getAlignment());
    253 }
    254 
    255 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
    256 // is true if the relocation section contains entries with addends.
    257 ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
    258   unsigned SectionType = TEW->hasRelocationAddend() ?
    259                 ELF::SHT_RELA : ELF::SHT_REL;
    260 
    261   std::string SectionName(".rel");
    262   if (TEW->hasRelocationAddend())
    263     SectionName.append("a");
    264   SectionName.append(S.getName());
    265 
    266   return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
    267 }
    268 
    269 // getGlobalELFVisibility - Returns the ELF specific visibility type
    270 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
    271   switch (GV->getVisibility()) {
    272   default:
    273     llvm_unreachable("unknown visibility type");
    274   case GlobalValue::DefaultVisibility:
    275     return ELF::STV_DEFAULT;
    276   case GlobalValue::HiddenVisibility:
    277     return ELF::STV_HIDDEN;
    278   case GlobalValue::ProtectedVisibility:
    279     return ELF::STV_PROTECTED;
    280   }
    281   return 0;
    282 }
    283 
    284 // getGlobalELFBinding - Returns the ELF specific binding type
    285 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
    286   if (GV->hasInternalLinkage())
    287     return ELF::STB_LOCAL;
    288 
    289   if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
    290     return ELF::STB_WEAK;
    291 
    292   return ELF::STB_GLOBAL;
    293 }
    294 
    295 // getGlobalELFType - Returns the ELF specific type for a global
    296 unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
    297   if (GV->isDeclaration())
    298     return ELF::STT_NOTYPE;
    299 
    300   if (isa<Function>(GV))
    301     return ELF::STT_FUNC;
    302 
    303   return ELF::STT_OBJECT;
    304 }
    305 
    306 // IsELFUndefSym - True if the global value must be marked as a symbol
    307 // which points to a SHN_UNDEF section. This means that the symbol has
    308 // no definition on the module.
    309 static bool IsELFUndefSym(const GlobalValue *GV) {
    310   return GV->isDeclaration() || (isa<Function>(GV));
    311 }
    312 
    313 // AddToSymbolList - Update the symbol lookup and If the symbol is
    314 // private add it to PrivateSyms list, otherwise to SymbolList.
    315 void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
    316   assert(GblSym->isGlobalValue() && "Symbol must be a global value");
    317 
    318   const GlobalValue *GV = GblSym->getGlobalValue();
    319   if (GV->hasPrivateLinkage()) {
    320     // For a private symbols, keep track of the index inside
    321     // the private list since it will never go to the symbol
    322     // table and won't be patched up later.
    323     PrivateSyms.push_back(GblSym);
    324     GblSymLookup[GV] = PrivateSyms.size()-1;
    325   } else {
    326     // Non private symbol are left with zero indices until
    327     // they are patched up during the symbol table emition
    328     // (where the indicies are created).
    329     SymbolList.push_back(GblSym);
    330     GblSymLookup[GV] = 0;
    331   }
    332 }
    333 
    334 /// HasCommonSymbols - True if this section holds common symbols, this is
    335 /// indicated on the ELF object file by a symbol with SHN_COMMON section
    336 /// header index.
    337 static bool HasCommonSymbols(const MCSectionELF &S) {
    338   // FIXME: this is wrong, a common symbol can be in .data for example.
    339   if (StringRef(S.getSectionName()).startswith(".gnu.linkonce."))
    340     return true;
    341 
    342   return false;
    343 }
    344 
    345 
    346 // EmitGlobal - Choose the right section for global and emit it
    347 void ELFWriter::EmitGlobal(const GlobalValue *GV) {
    348 
    349   // Check if the referenced symbol is already emitted
    350   if (GblSymLookup.find(GV) != GblSymLookup.end())
    351     return;
    352 
    353   // Handle ELF Bind, Visibility and Type for the current symbol
    354   unsigned SymBind = getGlobalELFBinding(GV);
    355   unsigned SymType = getGlobalELFType(GV);
    356   bool IsUndefSym = IsELFUndefSym(GV);
    357 
    358   ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
    359     : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
    360 
    361   if (!IsUndefSym) {
    362     assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
    363     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
    364 
    365     // Handle special llvm globals
    366     if (EmitSpecialLLVMGlobal(GVar))
    367       return;
    368 
    369     // Get the ELF section where this global belongs from TLOF
    370     const MCSectionELF *S =
    371       (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
    372     ELFSection &ES =
    373       getSection(S->getSectionName(), S->getType(), S->getFlags());
    374     SectionKind Kind = S->getKind();
    375 
    376     // The symbol align should update the section alignment if needed
    377     const TargetData *TD = TM.getTargetData();
    378     unsigned Align = TD->getPreferredAlignment(GVar);
    379     unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
    380     GblSym->Size = Size;
    381 
    382     if (HasCommonSymbols(*S)) { // Symbol must go to a common section
    383       GblSym->SectionIdx = ELF::SHN_COMMON;
    384 
    385       // A new linkonce section is created for each global in the
    386       // common section, the default alignment is 1 and the symbol
    387       // value contains its alignment.
    388       ES.Align = 1;
    389       GblSym->Value = Align;
    390 
    391     } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
    392       GblSym->SectionIdx = ES.SectionIdx;
    393 
    394       // Update the size with alignment and the next object can
    395       // start in the right offset in the section
    396       if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
    397       ES.Align = std::max(ES.Align, Align);
    398 
    399       // GblSym->Value should contain the virtual offset inside the section.
    400       // Virtual because the BSS space is not allocated on ELF objects
    401       GblSym->Value = ES.Size;
    402       ES.Size += Size;
    403 
    404     } else { // The symbol must go to some kind of data section
    405       GblSym->SectionIdx = ES.SectionIdx;
    406 
    407       // GblSym->Value should contain the symbol offset inside the section,
    408       // and all symbols should start on their required alignment boundary
    409       ES.Align = std::max(ES.Align, Align);
    410       ES.emitAlignment(Align);
    411       GblSym->Value = ES.size();
    412 
    413       // Emit the global to the data section 'ES'
    414       EmitGlobalConstant(GVar->getInitializer(), ES);
    415     }
    416   }
    417 
    418   AddToSymbolList(GblSym);
    419 }
    420 
    421 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
    422                                          ELFSection &GblS) {
    423 
    424   // Print the fields in successive locations. Pad to align if needed!
    425   const TargetData *TD = TM.getTargetData();
    426   unsigned Size = TD->getTypeAllocSize(CVS->getType());
    427   const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
    428   uint64_t sizeSoFar = 0;
    429   for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
    430     const Constant* field = CVS->getOperand(i);
    431 
    432     // Check if padding is needed and insert one or more 0s.
    433     uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
    434     uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
    435                         - cvsLayout->getElementOffset(i)) - fieldSize;
    436     sizeSoFar += fieldSize + padSize;
    437 
    438     // Now print the actual field value.
    439     EmitGlobalConstant(field, GblS);
    440 
    441     // Insert padding - this may include padding to increase the size of the
    442     // current field up to the ABI size (if the struct is not packed) as well
    443     // as padding to ensure that the next field starts at the right offset.
    444     GblS.emitZeros(padSize);
    445   }
    446   assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
    447          "Layout of constant struct may be incorrect!");
    448 }
    449 
    450 void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
    451   const TargetData *TD = TM.getTargetData();
    452   unsigned Size = TD->getTypeAllocSize(CV->getType());
    453 
    454   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    455     for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
    456       EmitGlobalConstant(CVA->getOperand(i), GblS);
    457     return;
    458   } else if (isa<ConstantAggregateZero>(CV)) {
    459     GblS.emitZeros(Size);
    460     return;
    461   } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    462     EmitGlobalConstantStruct(CVS, GblS);
    463     return;
    464   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    465     APInt Val = CFP->getValueAPF().bitcastToAPInt();
    466     if (CFP->getType()->isDoubleTy())
    467       GblS.emitWord64(Val.getZExtValue());
    468     else if (CFP->getType()->isFloatTy())
    469       GblS.emitWord32(Val.getZExtValue());
    470     else if (CFP->getType()->isX86_FP80Ty()) {
    471       unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
    472                          TD->getTypeStoreSize(CFP->getType());
    473       GblS.emitWordFP80(Val.getRawData(), PadSize);
    474     } else if (CFP->getType()->isPPC_FP128Ty())
    475       llvm_unreachable("PPC_FP128Ty global emission not implemented");
    476     return;
    477   } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    478     if (Size == 1)
    479       GblS.emitByte(CI->getZExtValue());
    480     else if (Size == 2)
    481       GblS.emitWord16(CI->getZExtValue());
    482     else if (Size == 4)
    483       GblS.emitWord32(CI->getZExtValue());
    484     else
    485       EmitGlobalConstantLargeInt(CI, GblS);
    486     return;
    487   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    488     VectorType *PTy = CP->getType();
    489     for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
    490       EmitGlobalConstant(CP->getOperand(I), GblS);
    491     return;
    492   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    493     // Resolve a constant expression which returns a (Constant, Offset)
    494     // pair. If 'Res.first' is a GlobalValue, emit a relocation with
    495     // the offset 'Res.second', otherwise emit a global constant like
    496     // it is always done for not contant expression types.
    497     CstExprResTy Res = ResolveConstantExpr(CE);
    498     const Constant *Op = Res.first;
    499 
    500     if (isa<GlobalValue>(Op))
    501       EmitGlobalDataRelocation(cast<const GlobalValue>(Op),
    502                                TD->getTypeAllocSize(Op->getType()),
    503                                GblS, Res.second);
    504     else
    505       EmitGlobalConstant(Op, GblS);
    506 
    507     return;
    508   } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
    509     // Fill the data entry with zeros or emit a relocation entry
    510     if (isa<ConstantPointerNull>(CV))
    511       GblS.emitZeros(Size);
    512     else
    513       EmitGlobalDataRelocation(cast<const GlobalValue>(CV),
    514                                Size, GblS);
    515     return;
    516   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
    517     // This is a constant address for a global variable or function and
    518     // therefore must be referenced using a relocation entry.
    519     EmitGlobalDataRelocation(GV, Size, GblS);
    520     return;
    521   }
    522 
    523   std::string msg;
    524   raw_string_ostream ErrorMsg(msg);
    525   ErrorMsg << "Constant unimp for type: " << *CV->getType();
    526   report_fatal_error(ErrorMsg.str());
    527 }
    528 
    529 // ResolveConstantExpr - Resolve the constant expression until it stop
    530 // yielding other constant expressions.
    531 CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
    532   const TargetData *TD = TM.getTargetData();
    533 
    534   // There ins't constant expression inside others anymore
    535   if (!isa<ConstantExpr>(CV))
    536     return std::make_pair(CV, 0);
    537 
    538   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
    539   switch (CE->getOpcode()) {
    540   case Instruction::BitCast:
    541     return ResolveConstantExpr(CE->getOperand(0));
    542 
    543   case Instruction::GetElementPtr: {
    544     const Constant *ptrVal = CE->getOperand(0);
    545     SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
    546     int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec);
    547     return std::make_pair(ptrVal, Offset);
    548   }
    549   case Instruction::IntToPtr: {
    550     Constant *Op = CE->getOperand(0);
    551     Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
    552                                       false/*ZExt*/);
    553     return ResolveConstantExpr(Op);
    554   }
    555   case Instruction::PtrToInt: {
    556     Constant *Op = CE->getOperand(0);
    557     Type *Ty = CE->getType();
    558 
    559     // We can emit the pointer value into this slot if the slot is an
    560     // integer slot greater or equal to the size of the pointer.
    561     if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
    562       return ResolveConstantExpr(Op);
    563 
    564     llvm_unreachable("Integer size less then pointer size");
    565   }
    566   case Instruction::Add:
    567   case Instruction::Sub: {
    568     // Only handle cases where there's a constant expression with GlobalValue
    569     // as first operand and ConstantInt as second, which are the cases we can
    570     // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
    571     // 1)  Instruction::Add  => (global) + CstInt
    572     // 2)  Instruction::Sub  => (global) + -CstInt
    573     const Constant *Op0 = CE->getOperand(0);
    574     const Constant *Op1 = CE->getOperand(1);
    575     assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");
    576 
    577     CstExprResTy Res = ResolveConstantExpr(Op0);
    578     assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");
    579 
    580     const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
    581     switch (CE->getOpcode()) {
    582     case Instruction::Add:
    583       return std::make_pair(Res.first, RHS.getSExtValue());
    584     case Instruction::Sub:
    585       return std::make_pair(Res.first, (-RHS).getSExtValue());
    586     }
    587   }
    588   }
    589 
    590   report_fatal_error(CE->getOpcodeName() +
    591                      StringRef(": Unsupported ConstantExpr type"));
    592 
    593   return std::make_pair(CV, 0); // silence warning
    594 }
    595 
    596 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
    597                                          ELFSection &GblS, int64_t Offset) {
    598   // Create the relocation entry for the global value
    599   MachineRelocation MR =
    600     MachineRelocation::getGV(GblS.getCurrentPCOffset(),
    601                              TEW->getAbsoluteLabelMachineRelTy(),
    602                              const_cast<GlobalValue*>(GV),
    603                              Offset);
    604 
    605   // Fill the data entry with zeros
    606   GblS.emitZeros(Size);
    607 
    608   // Add the relocation entry for the current data section
    609   GblS.addRelocation(MR);
    610 }
    611 
    612 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
    613                                            ELFSection &S) {
    614   const TargetData *TD = TM.getTargetData();
    615   unsigned BitWidth = CI->getBitWidth();
    616   assert(isPowerOf2_32(BitWidth) &&
    617          "Non-power-of-2-sized integers not handled!");
    618 
    619   const uint64_t *RawData = CI->getValue().getRawData();
    620   uint64_t Val = 0;
    621   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
    622     Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
    623     S.emitWord64(Val);
    624   }
    625 }
    626 
    627 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
    628 /// special global used by LLVM.  If so, emit it and return true, otherwise
    629 /// do nothing and return false.
    630 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
    631   if (GV->getName() == "llvm.used")
    632     llvm_unreachable("not implemented yet");
    633 
    634   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
    635   if (GV->getSection() == "llvm.metadata" ||
    636       GV->hasAvailableExternallyLinkage())
    637     return true;
    638 
    639   if (!GV->hasAppendingLinkage()) return false;
    640 
    641   assert(GV->hasInitializer() && "Not a special LLVM global!");
    642 
    643   const TargetData *TD = TM.getTargetData();
    644   unsigned Align = TD->getPointerPrefAlignment();
    645   if (GV->getName() == "llvm.global_ctors") {
    646     ELFSection &Ctor = getCtorSection();
    647     Ctor.emitAlignment(Align);
    648     EmitXXStructorList(GV->getInitializer(), Ctor);
    649     return true;
    650   }
    651 
    652   if (GV->getName() == "llvm.global_dtors") {
    653     ELFSection &Dtor = getDtorSection();
    654     Dtor.emitAlignment(Align);
    655     EmitXXStructorList(GV->getInitializer(), Dtor);
    656     return true;
    657   }
    658 
    659   return false;
    660 }
    661 
    662 /// EmitXXStructorList - Emit the ctor or dtor list.  This just emits out the
    663 /// function pointers, ignoring the init priority.
    664 void ELFWriter::EmitXXStructorList(const Constant *List, ELFSection &Xtor) {
    665   // Should be an array of '{ i32, void ()* }' structs.  The first value is the
    666   // init priority, which we ignore.
    667   if (List->isNullValue()) return;
    668   const ConstantArray *InitList = cast<ConstantArray>(List);
    669   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
    670     if (InitList->getOperand(i)->isNullValue())
    671       continue;
    672     ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
    673 
    674     if (CS->getOperand(1)->isNullValue())
    675       continue;
    676 
    677     // Emit the function pointer.
    678     EmitGlobalConstant(CS->getOperand(1), Xtor);
    679   }
    680 }
    681 
    682 bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
    683   // Nothing to do here, this is all done through the ElfCE object above.
    684   return false;
    685 }
    686 
    687 /// doFinalization - Now that the module has been completely processed, emit
    688 /// the ELF file to 'O'.
    689 bool ELFWriter::doFinalization(Module &M) {
    690   // Emit .data section placeholder
    691   getDataSection();
    692 
    693   // Emit .bss section placeholder
    694   getBSSSection();
    695 
    696   // Build and emit data, bss and "common" sections.
    697   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    698        I != E; ++I)
    699     EmitGlobal(I);
    700 
    701   // Emit all pending globals
    702   for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
    703        I != E; ++I)
    704     EmitGlobal(*I);
    705 
    706   // Emit all pending externals
    707   for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
    708        I != E; ++I)
    709     SymbolList.push_back(ELFSym::getExtSym(*I));
    710 
    711   // Emit a symbol for each section created until now, skip null section
    712   for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
    713     ELFSection &ES = *SectionList[i];
    714     ELFSym *SectionSym = ELFSym::getSectionSym();
    715     SectionSym->SectionIdx = ES.SectionIdx;
    716     SymbolList.push_back(SectionSym);
    717     ES.Sym = SymbolList.back();
    718   }
    719 
    720   // Emit string table
    721   EmitStringTable(M.getModuleIdentifier());
    722 
    723   // Emit the symbol table now, if non-empty.
    724   EmitSymbolTable();
    725 
    726   // Emit the relocation sections.
    727   EmitRelocations();
    728 
    729   // Emit the sections string table.
    730   EmitSectionTableStringTable();
    731 
    732   // Dump the sections and section table to the .o file.
    733   OutputSectionsAndSectionTable();
    734 
    735   return false;
    736 }
    737 
    738 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
    739 // using a 'Value' of known 'Size'
    740 void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
    741                               int64_t Value, unsigned Size) {
    742   if (Size == 32)
    743     BO.fixWord32(Value, Offset);
    744   else if (Size == 64)
    745     BO.fixWord64(Value, Offset);
    746   else
    747     llvm_unreachable("don't know howto patch relocatable field");
    748 }
    749 
    750 /// EmitRelocations - Emit relocations
    751 void ELFWriter::EmitRelocations() {
    752 
    753   // True if the target uses the relocation entry to hold the addend,
    754   // otherwise the addend is written directly to the relocatable field.
    755   bool HasRelA = TEW->hasRelocationAddend();
    756 
    757   // Create Relocation sections for each section which needs it.
    758   for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
    759     ELFSection &S = *SectionList[i];
    760 
    761     // This section does not have relocations
    762     if (!S.hasRelocations()) continue;
    763     ELFSection &RelSec = getRelocSection(S);
    764 
    765     // 'Link' - Section hdr idx of the associated symbol table
    766     // 'Info' - Section hdr idx of the section to which the relocation applies
    767     ELFSection &SymTab = getSymbolTableSection();
    768     RelSec.Link = SymTab.SectionIdx;
    769     RelSec.Info = S.SectionIdx;
    770     RelSec.EntSize = TEW->getRelocationEntrySize();
    771 
    772     // Get the relocations from Section
    773     std::vector<MachineRelocation> Relos = S.getRelocations();
    774     for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
    775          MRE = Relos.end(); MRI != MRE; ++MRI) {
    776       MachineRelocation &MR = *MRI;
    777 
    778       // Relocatable field offset from the section start
    779       unsigned RelOffset = MR.getMachineCodeOffset();
    780 
    781       // Symbol index in the symbol table
    782       unsigned SymIdx = 0;
    783 
    784       // Target specific relocation field type and size
    785       unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
    786       unsigned RelTySize = TEW->getRelocationTySize(RelType);
    787       int64_t Addend = 0;
    788 
    789       // There are several machine relocations types, and each one of
    790       // them needs a different approach to retrieve the symbol table index.
    791       if (MR.isGlobalValue()) {
    792         const GlobalValue *G = MR.getGlobalValue();
    793         int64_t GlobalOffset = MR.getConstantVal();
    794         SymIdx = GblSymLookup[G];
    795         if (G->hasPrivateLinkage()) {
    796           // If the target uses a section offset in the relocation:
    797           // SymIdx + Addend = section sym for global + section offset
    798           unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
    799           Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
    800           SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
    801         } else {
    802           Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
    803         }
    804       } else if (MR.isExternalSymbol()) {
    805         const char *ExtSym = MR.getExternalSymbol();
    806         SymIdx = ExtSymLookup[ExtSym];
    807         Addend = TEW->getDefaultAddendForRelTy(RelType);
    808       } else {
    809         // Get the symbol index for the section symbol
    810         unsigned SectionIdx = MR.getConstantVal();
    811         SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
    812 
    813         // The symbol offset inside the section
    814         int64_t SymOffset = (int64_t)MR.getResultPointer();
    815 
    816         // For pc relative relocations where symbols are defined in the same
    817         // section they are referenced, ignore the relocation entry and patch
    818         // the relocatable field with the symbol offset directly.
    819         if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
    820           int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
    821           RelocateField(S, RelOffset, Value, RelTySize);
    822           continue;
    823         }
    824 
    825         Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
    826       }
    827 
    828       // The target without addend on the relocation symbol must be
    829       // patched in the relocation place itself to contain the addend
    830       // otherwise write zeros to make sure there is no garbage there
    831       RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
    832 
    833       // Get the relocation entry and emit to the relocation section
    834       ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
    835       EmitRelocation(RelSec, Rel, HasRelA);
    836     }
    837   }
    838 }
    839 
    840 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
    841 void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
    842                                bool HasRelA) {
    843   RelSec.emitWord(Rel.getOffset());
    844   RelSec.emitWord(Rel.getInfo(is64Bit));
    845   if (HasRelA)
    846     RelSec.emitWord(Rel.getAddend());
    847 }
    848 
    849 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
    850 void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
    851   if (is64Bit) {
    852     SymbolTable.emitWord32(Sym.NameIdx);
    853     SymbolTable.emitByte(Sym.Info);
    854     SymbolTable.emitByte(Sym.Other);
    855     SymbolTable.emitWord16(Sym.SectionIdx);
    856     SymbolTable.emitWord64(Sym.Value);
    857     SymbolTable.emitWord64(Sym.Size);
    858   } else {
    859     SymbolTable.emitWord32(Sym.NameIdx);
    860     SymbolTable.emitWord32(Sym.Value);
    861     SymbolTable.emitWord32(Sym.Size);
    862     SymbolTable.emitByte(Sym.Info);
    863     SymbolTable.emitByte(Sym.Other);
    864     SymbolTable.emitWord16(Sym.SectionIdx);
    865   }
    866 }
    867 
    868 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
    869 /// Section Header Table
    870 void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
    871                                   const ELFSection &SHdr) {
    872   SHdrTab.emitWord32(SHdr.NameIdx);
    873   SHdrTab.emitWord32(SHdr.Type);
    874   if (is64Bit) {
    875     SHdrTab.emitWord64(SHdr.Flags);
    876     SHdrTab.emitWord(SHdr.Addr);
    877     SHdrTab.emitWord(SHdr.Offset);
    878     SHdrTab.emitWord64(SHdr.Size);
    879     SHdrTab.emitWord32(SHdr.Link);
    880     SHdrTab.emitWord32(SHdr.Info);
    881     SHdrTab.emitWord64(SHdr.Align);
    882     SHdrTab.emitWord64(SHdr.EntSize);
    883   } else {
    884     SHdrTab.emitWord32(SHdr.Flags);
    885     SHdrTab.emitWord(SHdr.Addr);
    886     SHdrTab.emitWord(SHdr.Offset);
    887     SHdrTab.emitWord32(SHdr.Size);
    888     SHdrTab.emitWord32(SHdr.Link);
    889     SHdrTab.emitWord32(SHdr.Info);
    890     SHdrTab.emitWord32(SHdr.Align);
    891     SHdrTab.emitWord32(SHdr.EntSize);
    892   }
    893 }
    894 
    895 /// EmitStringTable - If the current symbol table is non-empty, emit the string
    896 /// table for it
    897 void ELFWriter::EmitStringTable(const std::string &ModuleName) {
    898   if (!SymbolList.size()) return;  // Empty symbol table.
    899   ELFSection &StrTab = getStringTableSection();
    900 
    901   // Set the zero'th symbol to a null byte, as required.
    902   StrTab.emitByte(0);
    903 
    904   // Walk on the symbol list and write symbol names into the string table.
    905   unsigned Index = 1;
    906   for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
    907     ELFSym &Sym = *(*I);
    908 
    909     std::string Name;
    910     if (Sym.isGlobalValue()) {
    911       SmallString<40> NameStr;
    912       Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false);
    913       Name.append(NameStr.begin(), NameStr.end());
    914     } else if (Sym.isExternalSym())
    915       Name.append(Sym.getExternalSymbol());
    916     else if (Sym.isFileType())
    917       Name.append(ModuleName);
    918 
    919     if (Name.empty()) {
    920       Sym.NameIdx = 0;
    921     } else {
    922       Sym.NameIdx = Index;
    923       StrTab.emitString(Name);
    924 
    925       // Keep track of the number of bytes emitted to this section.
    926       Index += Name.size()+1;
    927     }
    928   }
    929   assert(Index == StrTab.size());
    930   StrTab.Size = Index;
    931 }
    932 
    933 // SortSymbols - On the symbol table local symbols must come before
    934 // all other symbols with non-local bindings. The return value is
    935 // the position of the first non local symbol.
    936 unsigned ELFWriter::SortSymbols() {
    937   unsigned FirstNonLocalSymbol;
    938   std::vector<ELFSym*> LocalSyms, OtherSyms;
    939 
    940   for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
    941     if ((*I)->isLocalBind())
    942       LocalSyms.push_back(*I);
    943     else
    944       OtherSyms.push_back(*I);
    945   }
    946   SymbolList.clear();
    947   FirstNonLocalSymbol = LocalSyms.size();
    948 
    949   for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
    950     SymbolList.push_back(LocalSyms[i]);
    951 
    952   for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
    953     SymbolList.push_back(*I);
    954 
    955   LocalSyms.clear();
    956   OtherSyms.clear();
    957 
    958   return FirstNonLocalSymbol;
    959 }
    960 
    961 /// EmitSymbolTable - Emit the symbol table itself.
    962 void ELFWriter::EmitSymbolTable() {
    963   if (!SymbolList.size()) return;  // Empty symbol table.
    964 
    965   // Now that we have emitted the string table and know the offset into the
    966   // string table of each symbol, emit the symbol table itself.
    967   ELFSection &SymTab = getSymbolTableSection();
    968   SymTab.Align = TEW->getPrefELFAlignment();
    969 
    970   // Section Index of .strtab.
    971   SymTab.Link = getStringTableSection().SectionIdx;
    972 
    973   // Size of each symtab entry.
    974   SymTab.EntSize = TEW->getSymTabEntrySize();
    975 
    976   // Reorder the symbol table with local symbols first!
    977   unsigned FirstNonLocalSymbol = SortSymbols();
    978 
    979   // Emit all the symbols to the symbol table.
    980   for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
    981     ELFSym &Sym = *SymbolList[i];
    982 
    983     // Emit symbol to the symbol table
    984     EmitSymbol(SymTab, Sym);
    985 
    986     // Record the symbol table index for each symbol
    987     if (Sym.isGlobalValue())
    988       GblSymLookup[Sym.getGlobalValue()] = i;
    989     else if (Sym.isExternalSym())
    990       ExtSymLookup[Sym.getExternalSymbol()] = i;
    991 
    992     // Keep track on the symbol index into the symbol table
    993     Sym.SymTabIdx = i;
    994   }
    995 
    996   // One greater than the symbol table index of the last local symbol
    997   SymTab.Info = FirstNonLocalSymbol;
    998   SymTab.Size = SymTab.size();
    999 }
   1000 
   1001 /// EmitSectionTableStringTable - This method adds and emits a section for the
   1002 /// ELF Section Table string table: the string table that holds all of the
   1003 /// section names.
   1004 void ELFWriter::EmitSectionTableStringTable() {
   1005   // First step: add the section for the string table to the list of sections:
   1006   ELFSection &SHStrTab = getSectionHeaderStringTableSection();
   1007 
   1008   // Now that we know which section number is the .shstrtab section, update the
   1009   // e_shstrndx entry in the ELF header.
   1010   ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
   1011 
   1012   // Set the NameIdx of each section in the string table and emit the bytes for
   1013   // the string table.
   1014   unsigned Index = 0;
   1015 
   1016   for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
   1017     ELFSection &S = *(*I);
   1018     // Set the index into the table.  Note if we have lots of entries with
   1019     // common suffixes, we could memoize them here if we cared.
   1020     S.NameIdx = Index;
   1021     SHStrTab.emitString(S.getName());
   1022 
   1023     // Keep track of the number of bytes emitted to this section.
   1024     Index += S.getName().size()+1;
   1025   }
   1026 
   1027   // Set the size of .shstrtab now that we know what it is.
   1028   assert(Index == SHStrTab.size());
   1029   SHStrTab.Size = Index;
   1030 }
   1031 
   1032 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
   1033 /// and all of the sections, emit these to the ostream destination and emit the
   1034 /// SectionTable.
   1035 void ELFWriter::OutputSectionsAndSectionTable() {
   1036   // Pass #1: Compute the file offset for each section.
   1037   size_t FileOff = ElfHdr.size();   // File header first.
   1038 
   1039   // Adjust alignment of all section if needed, skip the null section.
   1040   for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
   1041     ELFSection &ES = *SectionList[i];
   1042     if (!ES.size()) {
   1043       ES.Offset = FileOff;
   1044       continue;
   1045     }
   1046 
   1047     // Update Section size
   1048     if (!ES.Size)
   1049       ES.Size = ES.size();
   1050 
   1051     // Align FileOff to whatever the alignment restrictions of the section are.
   1052     if (ES.Align)
   1053       FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
   1054 
   1055     ES.Offset = FileOff;
   1056     FileOff += ES.Size;
   1057   }
   1058 
   1059   // Align Section Header.
   1060   unsigned TableAlign = TEW->getPrefELFAlignment();
   1061   FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
   1062 
   1063   // Now that we know where all of the sections will be emitted, set the e_shnum
   1064   // entry in the ELF header.
   1065   ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
   1066 
   1067   // Now that we know the offset in the file of the section table, update the
   1068   // e_shoff address in the ELF header.
   1069   ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
   1070 
   1071   // Now that we know all of the data in the file header, emit it and all of the
   1072   // sections!
   1073   O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
   1074   FileOff = ElfHdr.size();
   1075 
   1076   // Section Header Table blob
   1077   BinaryObject SHdrTable(isLittleEndian, is64Bit);
   1078 
   1079   // Emit all of sections to the file and build the section header table.
   1080   for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
   1081     ELFSection &S = *(*I);
   1082     DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
   1083                  << ", Size: " << S.Size << ", Offset: " << S.Offset
   1084                  << ", SectionData Size: " << S.size() << "\n");
   1085 
   1086     // Align FileOff to whatever the alignment restrictions of the section are.
   1087     if (S.size()) {
   1088       if (S.Align)  {
   1089         for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
   1090              FileOff != NewFileOff; ++FileOff)
   1091           O << (char)0xAB;
   1092       }
   1093       O.write((char *)&S.getData()[0], S.Size);
   1094       FileOff += S.Size;
   1095     }
   1096 
   1097     EmitSectionHeader(SHdrTable, S);
   1098   }
   1099 
   1100   // Align output for the section table.
   1101   for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
   1102        FileOff != NewFileOff; ++FileOff)
   1103     O << (char)0xAB;
   1104 
   1105   // Emit the section table itself.
   1106   O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
   1107 }
   1108