1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the target-independent ELF writer. This file writes out 11 // the ELF file in the following order: 12 // 13 // #1. ELF Header 14 // #2. '.text' section 15 // #3. '.data' section 16 // #4. '.bss' section (conceptual position in file) 17 // ... 18 // #X. '.shstrtab' section 19 // #Y. Section Table 20 // 21 // The entries in the section table are laid out as: 22 // #0. Null entry [required] 23 // #1. ".text" entry - the program code 24 // #2. ".data" entry - global variables with initializers. [ if needed ] 25 // #3. ".bss" entry - global variables without initializers. [ if needed ] 26 // ... 27 // #N. ".shstrtab" entry - String table for the section names. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #define DEBUG_TYPE "elfwriter" 32 #include "ELF.h" 33 #include "ELFWriter.h" 34 #include "ELFCodeEmitter.h" 35 #include "llvm/Constants.h" 36 #include "llvm/Module.h" 37 #include "llvm/PassManager.h" 38 #include "llvm/DerivedTypes.h" 39 #include "llvm/CodeGen/BinaryObject.h" 40 #include "llvm/CodeGen/MachineCodeEmitter.h" 41 #include "llvm/CodeGen/ObjectCodeEmitter.h" 42 #include "llvm/CodeGen/MachineCodeEmitter.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/MC/MCContext.h" 45 #include "llvm/MC/MCSectionELF.h" 46 #include "llvm/MC/MCAsmInfo.h" 47 #include "llvm/Target/Mangler.h" 48 #include "llvm/Target/TargetAsmInfo.h" 49 #include "llvm/Target/TargetData.h" 50 #include "llvm/Target/TargetELFWriterInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/ADT/SmallString.h" 59 using namespace llvm; 60 61 char ELFWriter::ID = 0; 62 63 //===----------------------------------------------------------------------===// 64 // ELFWriter Implementation 65 //===----------------------------------------------------------------------===// 66 67 ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm) 68 : MachineFunctionPass(ID), O(o), TM(tm), 69 OutContext(*new MCContext(*TM.getMCAsmInfo(), *TM.getRegisterInfo(), 70 &TM.getTargetLowering()->getObjFileLowering(), 71 new TargetAsmInfo(tm))), 72 TLOF(TM.getTargetLowering()->getObjFileLowering()), 73 is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64), 74 isLittleEndian(TM.getTargetData()->isLittleEndian()), 75 ElfHdr(isLittleEndian, is64Bit) { 76 77 MAI = TM.getMCAsmInfo(); 78 TEW = TM.getELFWriterInfo(); 79 80 // Create the object code emitter object for this target. 81 ElfCE = new ELFCodeEmitter(*this); 82 83 // Initial number of sections 84 NumSections = 0; 85 } 86 87 ELFWriter::~ELFWriter() { 88 delete ElfCE; 89 delete &OutContext; 90 91 while(!SymbolList.empty()) { 92 delete SymbolList.back(); 93 SymbolList.pop_back(); 94 } 95 96 while(!PrivateSyms.empty()) { 97 delete PrivateSyms.back(); 98 PrivateSyms.pop_back(); 99 } 100 101 while(!SectionList.empty()) { 102 delete SectionList.back(); 103 SectionList.pop_back(); 104 } 105 106 // Release the name mangler object. 107 delete Mang; Mang = 0; 108 } 109 110 // doInitialization - Emit the file header and all of the global variables for 111 // the module to the ELF file. 112 bool ELFWriter::doInitialization(Module &M) { 113 // Initialize TargetLoweringObjectFile. 114 const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM); 115 116 Mang = new Mangler(OutContext, *TM.getTargetData()); 117 118 // ELF Header 119 // ---------- 120 // Fields e_shnum e_shstrndx are only known after all section have 121 // been emitted. They locations in the ouput buffer are recorded so 122 // to be patched up later. 123 // 124 // Note 125 // ---- 126 // emitWord method behaves differently for ELF32 and ELF64, writing 127 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types 128 129 ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0] 130 ElfHdr.emitByte('E'); // e_ident[EI_MAG1] 131 ElfHdr.emitByte('L'); // e_ident[EI_MAG2] 132 ElfHdr.emitByte('F'); // e_ident[EI_MAG3] 133 134 ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS] 135 ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA] 136 ElfHdr.emitByte(ELF::EV_CURRENT); // e_ident[EI_VERSION] 137 ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD] 138 139 ElfHdr.emitWord16(ELF::ET_REL); // e_type 140 ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target 141 ElfHdr.emitWord32(ELF::EV_CURRENT); // e_version 142 ElfHdr.emitWord(0); // e_entry, no entry point in .o file 143 ElfHdr.emitWord(0); // e_phoff, no program header for .o 144 ELFHdr_e_shoff_Offset = ElfHdr.size(); 145 ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes 146 ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants 147 ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size 148 ElfHdr.emitWord16(0); // e_phentsize = prog header entry size 149 ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0 150 151 // e_shentsize = Section header entry size 152 ElfHdr.emitWord16(TEW->getSHdrSize()); 153 154 // e_shnum = # of section header ents 155 ELFHdr_e_shnum_Offset = ElfHdr.size(); 156 ElfHdr.emitWord16(0); // Placeholder 157 158 // e_shstrndx = Section # of '.shstrtab' 159 ELFHdr_e_shstrndx_Offset = ElfHdr.size(); 160 ElfHdr.emitWord16(0); // Placeholder 161 162 // Add the null section, which is required to be first in the file. 163 getNullSection(); 164 165 // The first entry in the symtab is the null symbol and the second 166 // is a local symbol containing the module/file name 167 SymbolList.push_back(new ELFSym()); 168 SymbolList.push_back(ELFSym::getFileSym()); 169 170 return false; 171 } 172 173 // AddPendingGlobalSymbol - Add a global to be processed and to 174 // the global symbol lookup, use a zero index because the table 175 // index will be determined later. 176 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV, 177 bool AddToLookup /* = false */) { 178 PendingGlobals.insert(GV); 179 if (AddToLookup) 180 GblSymLookup[GV] = 0; 181 } 182 183 // AddPendingExternalSymbol - Add the external to be processed 184 // and to the external symbol lookup, use a zero index because 185 // the symbol table index will be determined later. 186 void ELFWriter::AddPendingExternalSymbol(const char *External) { 187 PendingExternals.insert(External); 188 ExtSymLookup[External] = 0; 189 } 190 191 ELFSection &ELFWriter::getDataSection() { 192 const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection(); 193 return getSection(Data->getSectionName(), Data->getType(), 194 Data->getFlags(), 4); 195 } 196 197 ELFSection &ELFWriter::getBSSSection() { 198 const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection(); 199 return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4); 200 } 201 202 // getCtorSection - Get the static constructor section 203 ELFSection &ELFWriter::getCtorSection() { 204 const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection(); 205 return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags()); 206 } 207 208 // getDtorSection - Get the static destructor section 209 ELFSection &ELFWriter::getDtorSection() { 210 const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection(); 211 return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags()); 212 } 213 214 // getTextSection - Get the text section for the specified function 215 ELFSection &ELFWriter::getTextSection(const Function *F) { 216 const MCSectionELF *Text = 217 (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM); 218 return getSection(Text->getSectionName(), Text->getType(), Text->getFlags()); 219 } 220 221 // getJumpTableSection - Get a read only section for constants when 222 // emitting jump tables. TODO: add PIC support 223 ELFSection &ELFWriter::getJumpTableSection() { 224 const MCSectionELF *JT = 225 (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly()); 226 return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(), 227 TM.getTargetData()->getPointerABIAlignment()); 228 } 229 230 // getConstantPoolSection - Get a constant pool section based on the machine 231 // constant pool entry type and relocation info. 232 ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) { 233 SectionKind Kind; 234 switch (CPE.getRelocationInfo()) { 235 default: llvm_unreachable("Unknown section kind"); 236 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 237 case 1: 238 Kind = SectionKind::getReadOnlyWithRelLocal(); 239 break; 240 case 0: 241 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 242 case 4: Kind = SectionKind::getMergeableConst4(); break; 243 case 8: Kind = SectionKind::getMergeableConst8(); break; 244 case 16: Kind = SectionKind::getMergeableConst16(); break; 245 default: Kind = SectionKind::getMergeableConst(); break; 246 } 247 } 248 249 const MCSectionELF *CPSect = 250 (const MCSectionELF *)TLOF.getSectionForConstant(Kind); 251 return getSection(CPSect->getSectionName(), CPSect->getType(), 252 CPSect->getFlags(), CPE.getAlignment()); 253 } 254 255 // getRelocSection - Return the relocation section of section 'S'. 'RelA' 256 // is true if the relocation section contains entries with addends. 257 ELFSection &ELFWriter::getRelocSection(ELFSection &S) { 258 unsigned SectionType = TEW->hasRelocationAddend() ? 259 ELF::SHT_RELA : ELF::SHT_REL; 260 261 std::string SectionName(".rel"); 262 if (TEW->hasRelocationAddend()) 263 SectionName.append("a"); 264 SectionName.append(S.getName()); 265 266 return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment()); 267 } 268 269 // getGlobalELFVisibility - Returns the ELF specific visibility type 270 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) { 271 switch (GV->getVisibility()) { 272 default: 273 llvm_unreachable("unknown visibility type"); 274 case GlobalValue::DefaultVisibility: 275 return ELF::STV_DEFAULT; 276 case GlobalValue::HiddenVisibility: 277 return ELF::STV_HIDDEN; 278 case GlobalValue::ProtectedVisibility: 279 return ELF::STV_PROTECTED; 280 } 281 return 0; 282 } 283 284 // getGlobalELFBinding - Returns the ELF specific binding type 285 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) { 286 if (GV->hasInternalLinkage()) 287 return ELF::STB_LOCAL; 288 289 if (GV->isWeakForLinker() && !GV->hasCommonLinkage()) 290 return ELF::STB_WEAK; 291 292 return ELF::STB_GLOBAL; 293 } 294 295 // getGlobalELFType - Returns the ELF specific type for a global 296 unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) { 297 if (GV->isDeclaration()) 298 return ELF::STT_NOTYPE; 299 300 if (isa<Function>(GV)) 301 return ELF::STT_FUNC; 302 303 return ELF::STT_OBJECT; 304 } 305 306 // IsELFUndefSym - True if the global value must be marked as a symbol 307 // which points to a SHN_UNDEF section. This means that the symbol has 308 // no definition on the module. 309 static bool IsELFUndefSym(const GlobalValue *GV) { 310 return GV->isDeclaration() || (isa<Function>(GV)); 311 } 312 313 // AddToSymbolList - Update the symbol lookup and If the symbol is 314 // private add it to PrivateSyms list, otherwise to SymbolList. 315 void ELFWriter::AddToSymbolList(ELFSym *GblSym) { 316 assert(GblSym->isGlobalValue() && "Symbol must be a global value"); 317 318 const GlobalValue *GV = GblSym->getGlobalValue(); 319 if (GV->hasPrivateLinkage()) { 320 // For a private symbols, keep track of the index inside 321 // the private list since it will never go to the symbol 322 // table and won't be patched up later. 323 PrivateSyms.push_back(GblSym); 324 GblSymLookup[GV] = PrivateSyms.size()-1; 325 } else { 326 // Non private symbol are left with zero indices until 327 // they are patched up during the symbol table emition 328 // (where the indicies are created). 329 SymbolList.push_back(GblSym); 330 GblSymLookup[GV] = 0; 331 } 332 } 333 334 /// HasCommonSymbols - True if this section holds common symbols, this is 335 /// indicated on the ELF object file by a symbol with SHN_COMMON section 336 /// header index. 337 static bool HasCommonSymbols(const MCSectionELF &S) { 338 // FIXME: this is wrong, a common symbol can be in .data for example. 339 if (StringRef(S.getSectionName()).startswith(".gnu.linkonce.")) 340 return true; 341 342 return false; 343 } 344 345 346 // EmitGlobal - Choose the right section for global and emit it 347 void ELFWriter::EmitGlobal(const GlobalValue *GV) { 348 349 // Check if the referenced symbol is already emitted 350 if (GblSymLookup.find(GV) != GblSymLookup.end()) 351 return; 352 353 // Handle ELF Bind, Visibility and Type for the current symbol 354 unsigned SymBind = getGlobalELFBinding(GV); 355 unsigned SymType = getGlobalELFType(GV); 356 bool IsUndefSym = IsELFUndefSym(GV); 357 358 ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind) 359 : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV)); 360 361 if (!IsUndefSym) { 362 assert(isa<GlobalVariable>(GV) && "GV not a global variable!"); 363 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 364 365 // Handle special llvm globals 366 if (EmitSpecialLLVMGlobal(GVar)) 367 return; 368 369 // Get the ELF section where this global belongs from TLOF 370 const MCSectionELF *S = 371 (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM); 372 ELFSection &ES = 373 getSection(S->getSectionName(), S->getType(), S->getFlags()); 374 SectionKind Kind = S->getKind(); 375 376 // The symbol align should update the section alignment if needed 377 const TargetData *TD = TM.getTargetData(); 378 unsigned Align = TD->getPreferredAlignment(GVar); 379 unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType()); 380 GblSym->Size = Size; 381 382 if (HasCommonSymbols(*S)) { // Symbol must go to a common section 383 GblSym->SectionIdx = ELF::SHN_COMMON; 384 385 // A new linkonce section is created for each global in the 386 // common section, the default alignment is 1 and the symbol 387 // value contains its alignment. 388 ES.Align = 1; 389 GblSym->Value = Align; 390 391 } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS. 392 GblSym->SectionIdx = ES.SectionIdx; 393 394 // Update the size with alignment and the next object can 395 // start in the right offset in the section 396 if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1); 397 ES.Align = std::max(ES.Align, Align); 398 399 // GblSym->Value should contain the virtual offset inside the section. 400 // Virtual because the BSS space is not allocated on ELF objects 401 GblSym->Value = ES.Size; 402 ES.Size += Size; 403 404 } else { // The symbol must go to some kind of data section 405 GblSym->SectionIdx = ES.SectionIdx; 406 407 // GblSym->Value should contain the symbol offset inside the section, 408 // and all symbols should start on their required alignment boundary 409 ES.Align = std::max(ES.Align, Align); 410 ES.emitAlignment(Align); 411 GblSym->Value = ES.size(); 412 413 // Emit the global to the data section 'ES' 414 EmitGlobalConstant(GVar->getInitializer(), ES); 415 } 416 } 417 418 AddToSymbolList(GblSym); 419 } 420 421 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 422 ELFSection &GblS) { 423 424 // Print the fields in successive locations. Pad to align if needed! 425 const TargetData *TD = TM.getTargetData(); 426 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 427 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 428 uint64_t sizeSoFar = 0; 429 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 430 const Constant* field = CVS->getOperand(i); 431 432 // Check if padding is needed and insert one or more 0s. 433 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 434 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 435 - cvsLayout->getElementOffset(i)) - fieldSize; 436 sizeSoFar += fieldSize + padSize; 437 438 // Now print the actual field value. 439 EmitGlobalConstant(field, GblS); 440 441 // Insert padding - this may include padding to increase the size of the 442 // current field up to the ABI size (if the struct is not packed) as well 443 // as padding to ensure that the next field starts at the right offset. 444 GblS.emitZeros(padSize); 445 } 446 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 447 "Layout of constant struct may be incorrect!"); 448 } 449 450 void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) { 451 const TargetData *TD = TM.getTargetData(); 452 unsigned Size = TD->getTypeAllocSize(CV->getType()); 453 454 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 455 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 456 EmitGlobalConstant(CVA->getOperand(i), GblS); 457 return; 458 } else if (isa<ConstantAggregateZero>(CV)) { 459 GblS.emitZeros(Size); 460 return; 461 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 462 EmitGlobalConstantStruct(CVS, GblS); 463 return; 464 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 465 APInt Val = CFP->getValueAPF().bitcastToAPInt(); 466 if (CFP->getType()->isDoubleTy()) 467 GblS.emitWord64(Val.getZExtValue()); 468 else if (CFP->getType()->isFloatTy()) 469 GblS.emitWord32(Val.getZExtValue()); 470 else if (CFP->getType()->isX86_FP80Ty()) { 471 unsigned PadSize = TD->getTypeAllocSize(CFP->getType())- 472 TD->getTypeStoreSize(CFP->getType()); 473 GblS.emitWordFP80(Val.getRawData(), PadSize); 474 } else if (CFP->getType()->isPPC_FP128Ty()) 475 llvm_unreachable("PPC_FP128Ty global emission not implemented"); 476 return; 477 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 478 if (Size == 1) 479 GblS.emitByte(CI->getZExtValue()); 480 else if (Size == 2) 481 GblS.emitWord16(CI->getZExtValue()); 482 else if (Size == 4) 483 GblS.emitWord32(CI->getZExtValue()); 484 else 485 EmitGlobalConstantLargeInt(CI, GblS); 486 return; 487 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 488 VectorType *PTy = CP->getType(); 489 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 490 EmitGlobalConstant(CP->getOperand(I), GblS); 491 return; 492 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 493 // Resolve a constant expression which returns a (Constant, Offset) 494 // pair. If 'Res.first' is a GlobalValue, emit a relocation with 495 // the offset 'Res.second', otherwise emit a global constant like 496 // it is always done for not contant expression types. 497 CstExprResTy Res = ResolveConstantExpr(CE); 498 const Constant *Op = Res.first; 499 500 if (isa<GlobalValue>(Op)) 501 EmitGlobalDataRelocation(cast<const GlobalValue>(Op), 502 TD->getTypeAllocSize(Op->getType()), 503 GblS, Res.second); 504 else 505 EmitGlobalConstant(Op, GblS); 506 507 return; 508 } else if (CV->getType()->getTypeID() == Type::PointerTyID) { 509 // Fill the data entry with zeros or emit a relocation entry 510 if (isa<ConstantPointerNull>(CV)) 511 GblS.emitZeros(Size); 512 else 513 EmitGlobalDataRelocation(cast<const GlobalValue>(CV), 514 Size, GblS); 515 return; 516 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 517 // This is a constant address for a global variable or function and 518 // therefore must be referenced using a relocation entry. 519 EmitGlobalDataRelocation(GV, Size, GblS); 520 return; 521 } 522 523 std::string msg; 524 raw_string_ostream ErrorMsg(msg); 525 ErrorMsg << "Constant unimp for type: " << *CV->getType(); 526 report_fatal_error(ErrorMsg.str()); 527 } 528 529 // ResolveConstantExpr - Resolve the constant expression until it stop 530 // yielding other constant expressions. 531 CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) { 532 const TargetData *TD = TM.getTargetData(); 533 534 // There ins't constant expression inside others anymore 535 if (!isa<ConstantExpr>(CV)) 536 return std::make_pair(CV, 0); 537 538 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 539 switch (CE->getOpcode()) { 540 case Instruction::BitCast: 541 return ResolveConstantExpr(CE->getOperand(0)); 542 543 case Instruction::GetElementPtr: { 544 const Constant *ptrVal = CE->getOperand(0); 545 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 546 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec); 547 return std::make_pair(ptrVal, Offset); 548 } 549 case Instruction::IntToPtr: { 550 Constant *Op = CE->getOperand(0); 551 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 552 false/*ZExt*/); 553 return ResolveConstantExpr(Op); 554 } 555 case Instruction::PtrToInt: { 556 Constant *Op = CE->getOperand(0); 557 Type *Ty = CE->getType(); 558 559 // We can emit the pointer value into this slot if the slot is an 560 // integer slot greater or equal to the size of the pointer. 561 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 562 return ResolveConstantExpr(Op); 563 564 llvm_unreachable("Integer size less then pointer size"); 565 } 566 case Instruction::Add: 567 case Instruction::Sub: { 568 // Only handle cases where there's a constant expression with GlobalValue 569 // as first operand and ConstantInt as second, which are the cases we can 570 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1 571 // 1) Instruction::Add => (global) + CstInt 572 // 2) Instruction::Sub => (global) + -CstInt 573 const Constant *Op0 = CE->getOperand(0); 574 const Constant *Op1 = CE->getOperand(1); 575 assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt"); 576 577 CstExprResTy Res = ResolveConstantExpr(Op0); 578 assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue"); 579 580 const APInt &RHS = cast<ConstantInt>(Op1)->getValue(); 581 switch (CE->getOpcode()) { 582 case Instruction::Add: 583 return std::make_pair(Res.first, RHS.getSExtValue()); 584 case Instruction::Sub: 585 return std::make_pair(Res.first, (-RHS).getSExtValue()); 586 } 587 } 588 } 589 590 report_fatal_error(CE->getOpcodeName() + 591 StringRef(": Unsupported ConstantExpr type")); 592 593 return std::make_pair(CV, 0); // silence warning 594 } 595 596 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size, 597 ELFSection &GblS, int64_t Offset) { 598 // Create the relocation entry for the global value 599 MachineRelocation MR = 600 MachineRelocation::getGV(GblS.getCurrentPCOffset(), 601 TEW->getAbsoluteLabelMachineRelTy(), 602 const_cast<GlobalValue*>(GV), 603 Offset); 604 605 // Fill the data entry with zeros 606 GblS.emitZeros(Size); 607 608 // Add the relocation entry for the current data section 609 GblS.addRelocation(MR); 610 } 611 612 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 613 ELFSection &S) { 614 const TargetData *TD = TM.getTargetData(); 615 unsigned BitWidth = CI->getBitWidth(); 616 assert(isPowerOf2_32(BitWidth) && 617 "Non-power-of-2-sized integers not handled!"); 618 619 const uint64_t *RawData = CI->getValue().getRawData(); 620 uint64_t Val = 0; 621 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 622 Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i]; 623 S.emitWord64(Val); 624 } 625 } 626 627 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 628 /// special global used by LLVM. If so, emit it and return true, otherwise 629 /// do nothing and return false. 630 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 631 if (GV->getName() == "llvm.used") 632 llvm_unreachable("not implemented yet"); 633 634 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 635 if (GV->getSection() == "llvm.metadata" || 636 GV->hasAvailableExternallyLinkage()) 637 return true; 638 639 if (!GV->hasAppendingLinkage()) return false; 640 641 assert(GV->hasInitializer() && "Not a special LLVM global!"); 642 643 const TargetData *TD = TM.getTargetData(); 644 unsigned Align = TD->getPointerPrefAlignment(); 645 if (GV->getName() == "llvm.global_ctors") { 646 ELFSection &Ctor = getCtorSection(); 647 Ctor.emitAlignment(Align); 648 EmitXXStructorList(GV->getInitializer(), Ctor); 649 return true; 650 } 651 652 if (GV->getName() == "llvm.global_dtors") { 653 ELFSection &Dtor = getDtorSection(); 654 Dtor.emitAlignment(Align); 655 EmitXXStructorList(GV->getInitializer(), Dtor); 656 return true; 657 } 658 659 return false; 660 } 661 662 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the 663 /// function pointers, ignoring the init priority. 664 void ELFWriter::EmitXXStructorList(const Constant *List, ELFSection &Xtor) { 665 // Should be an array of '{ i32, void ()* }' structs. The first value is the 666 // init priority, which we ignore. 667 if (List->isNullValue()) return; 668 const ConstantArray *InitList = cast<ConstantArray>(List); 669 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 670 if (InitList->getOperand(i)->isNullValue()) 671 continue; 672 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i)); 673 674 if (CS->getOperand(1)->isNullValue()) 675 continue; 676 677 // Emit the function pointer. 678 EmitGlobalConstant(CS->getOperand(1), Xtor); 679 } 680 } 681 682 bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { 683 // Nothing to do here, this is all done through the ElfCE object above. 684 return false; 685 } 686 687 /// doFinalization - Now that the module has been completely processed, emit 688 /// the ELF file to 'O'. 689 bool ELFWriter::doFinalization(Module &M) { 690 // Emit .data section placeholder 691 getDataSection(); 692 693 // Emit .bss section placeholder 694 getBSSSection(); 695 696 // Build and emit data, bss and "common" sections. 697 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 698 I != E; ++I) 699 EmitGlobal(I); 700 701 // Emit all pending globals 702 for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end(); 703 I != E; ++I) 704 EmitGlobal(*I); 705 706 // Emit all pending externals 707 for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end(); 708 I != E; ++I) 709 SymbolList.push_back(ELFSym::getExtSym(*I)); 710 711 // Emit a symbol for each section created until now, skip null section 712 for (unsigned i = 1, e = SectionList.size(); i < e; ++i) { 713 ELFSection &ES = *SectionList[i]; 714 ELFSym *SectionSym = ELFSym::getSectionSym(); 715 SectionSym->SectionIdx = ES.SectionIdx; 716 SymbolList.push_back(SectionSym); 717 ES.Sym = SymbolList.back(); 718 } 719 720 // Emit string table 721 EmitStringTable(M.getModuleIdentifier()); 722 723 // Emit the symbol table now, if non-empty. 724 EmitSymbolTable(); 725 726 // Emit the relocation sections. 727 EmitRelocations(); 728 729 // Emit the sections string table. 730 EmitSectionTableStringTable(); 731 732 // Dump the sections and section table to the .o file. 733 OutputSectionsAndSectionTable(); 734 735 return false; 736 } 737 738 // RelocateField - Patch relocatable field with 'Offset' in 'BO' 739 // using a 'Value' of known 'Size' 740 void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset, 741 int64_t Value, unsigned Size) { 742 if (Size == 32) 743 BO.fixWord32(Value, Offset); 744 else if (Size == 64) 745 BO.fixWord64(Value, Offset); 746 else 747 llvm_unreachable("don't know howto patch relocatable field"); 748 } 749 750 /// EmitRelocations - Emit relocations 751 void ELFWriter::EmitRelocations() { 752 753 // True if the target uses the relocation entry to hold the addend, 754 // otherwise the addend is written directly to the relocatable field. 755 bool HasRelA = TEW->hasRelocationAddend(); 756 757 // Create Relocation sections for each section which needs it. 758 for (unsigned i=0, e=SectionList.size(); i != e; ++i) { 759 ELFSection &S = *SectionList[i]; 760 761 // This section does not have relocations 762 if (!S.hasRelocations()) continue; 763 ELFSection &RelSec = getRelocSection(S); 764 765 // 'Link' - Section hdr idx of the associated symbol table 766 // 'Info' - Section hdr idx of the section to which the relocation applies 767 ELFSection &SymTab = getSymbolTableSection(); 768 RelSec.Link = SymTab.SectionIdx; 769 RelSec.Info = S.SectionIdx; 770 RelSec.EntSize = TEW->getRelocationEntrySize(); 771 772 // Get the relocations from Section 773 std::vector<MachineRelocation> Relos = S.getRelocations(); 774 for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(), 775 MRE = Relos.end(); MRI != MRE; ++MRI) { 776 MachineRelocation &MR = *MRI; 777 778 // Relocatable field offset from the section start 779 unsigned RelOffset = MR.getMachineCodeOffset(); 780 781 // Symbol index in the symbol table 782 unsigned SymIdx = 0; 783 784 // Target specific relocation field type and size 785 unsigned RelType = TEW->getRelocationType(MR.getRelocationType()); 786 unsigned RelTySize = TEW->getRelocationTySize(RelType); 787 int64_t Addend = 0; 788 789 // There are several machine relocations types, and each one of 790 // them needs a different approach to retrieve the symbol table index. 791 if (MR.isGlobalValue()) { 792 const GlobalValue *G = MR.getGlobalValue(); 793 int64_t GlobalOffset = MR.getConstantVal(); 794 SymIdx = GblSymLookup[G]; 795 if (G->hasPrivateLinkage()) { 796 // If the target uses a section offset in the relocation: 797 // SymIdx + Addend = section sym for global + section offset 798 unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx; 799 Addend = PrivateSyms[SymIdx]->Value + GlobalOffset; 800 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); 801 } else { 802 Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset); 803 } 804 } else if (MR.isExternalSymbol()) { 805 const char *ExtSym = MR.getExternalSymbol(); 806 SymIdx = ExtSymLookup[ExtSym]; 807 Addend = TEW->getDefaultAddendForRelTy(RelType); 808 } else { 809 // Get the symbol index for the section symbol 810 unsigned SectionIdx = MR.getConstantVal(); 811 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); 812 813 // The symbol offset inside the section 814 int64_t SymOffset = (int64_t)MR.getResultPointer(); 815 816 // For pc relative relocations where symbols are defined in the same 817 // section they are referenced, ignore the relocation entry and patch 818 // the relocatable field with the symbol offset directly. 819 if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) { 820 int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType); 821 RelocateField(S, RelOffset, Value, RelTySize); 822 continue; 823 } 824 825 Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset); 826 } 827 828 // The target without addend on the relocation symbol must be 829 // patched in the relocation place itself to contain the addend 830 // otherwise write zeros to make sure there is no garbage there 831 RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize); 832 833 // Get the relocation entry and emit to the relocation section 834 ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend); 835 EmitRelocation(RelSec, Rel, HasRelA); 836 } 837 } 838 } 839 840 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel' 841 void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, 842 bool HasRelA) { 843 RelSec.emitWord(Rel.getOffset()); 844 RelSec.emitWord(Rel.getInfo(is64Bit)); 845 if (HasRelA) 846 RelSec.emitWord(Rel.getAddend()); 847 } 848 849 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable' 850 void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) { 851 if (is64Bit) { 852 SymbolTable.emitWord32(Sym.NameIdx); 853 SymbolTable.emitByte(Sym.Info); 854 SymbolTable.emitByte(Sym.Other); 855 SymbolTable.emitWord16(Sym.SectionIdx); 856 SymbolTable.emitWord64(Sym.Value); 857 SymbolTable.emitWord64(Sym.Size); 858 } else { 859 SymbolTable.emitWord32(Sym.NameIdx); 860 SymbolTable.emitWord32(Sym.Value); 861 SymbolTable.emitWord32(Sym.Size); 862 SymbolTable.emitByte(Sym.Info); 863 SymbolTable.emitByte(Sym.Other); 864 SymbolTable.emitWord16(Sym.SectionIdx); 865 } 866 } 867 868 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab' 869 /// Section Header Table 870 void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab, 871 const ELFSection &SHdr) { 872 SHdrTab.emitWord32(SHdr.NameIdx); 873 SHdrTab.emitWord32(SHdr.Type); 874 if (is64Bit) { 875 SHdrTab.emitWord64(SHdr.Flags); 876 SHdrTab.emitWord(SHdr.Addr); 877 SHdrTab.emitWord(SHdr.Offset); 878 SHdrTab.emitWord64(SHdr.Size); 879 SHdrTab.emitWord32(SHdr.Link); 880 SHdrTab.emitWord32(SHdr.Info); 881 SHdrTab.emitWord64(SHdr.Align); 882 SHdrTab.emitWord64(SHdr.EntSize); 883 } else { 884 SHdrTab.emitWord32(SHdr.Flags); 885 SHdrTab.emitWord(SHdr.Addr); 886 SHdrTab.emitWord(SHdr.Offset); 887 SHdrTab.emitWord32(SHdr.Size); 888 SHdrTab.emitWord32(SHdr.Link); 889 SHdrTab.emitWord32(SHdr.Info); 890 SHdrTab.emitWord32(SHdr.Align); 891 SHdrTab.emitWord32(SHdr.EntSize); 892 } 893 } 894 895 /// EmitStringTable - If the current symbol table is non-empty, emit the string 896 /// table for it 897 void ELFWriter::EmitStringTable(const std::string &ModuleName) { 898 if (!SymbolList.size()) return; // Empty symbol table. 899 ELFSection &StrTab = getStringTableSection(); 900 901 // Set the zero'th symbol to a null byte, as required. 902 StrTab.emitByte(0); 903 904 // Walk on the symbol list and write symbol names into the string table. 905 unsigned Index = 1; 906 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { 907 ELFSym &Sym = *(*I); 908 909 std::string Name; 910 if (Sym.isGlobalValue()) { 911 SmallString<40> NameStr; 912 Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false); 913 Name.append(NameStr.begin(), NameStr.end()); 914 } else if (Sym.isExternalSym()) 915 Name.append(Sym.getExternalSymbol()); 916 else if (Sym.isFileType()) 917 Name.append(ModuleName); 918 919 if (Name.empty()) { 920 Sym.NameIdx = 0; 921 } else { 922 Sym.NameIdx = Index; 923 StrTab.emitString(Name); 924 925 // Keep track of the number of bytes emitted to this section. 926 Index += Name.size()+1; 927 } 928 } 929 assert(Index == StrTab.size()); 930 StrTab.Size = Index; 931 } 932 933 // SortSymbols - On the symbol table local symbols must come before 934 // all other symbols with non-local bindings. The return value is 935 // the position of the first non local symbol. 936 unsigned ELFWriter::SortSymbols() { 937 unsigned FirstNonLocalSymbol; 938 std::vector<ELFSym*> LocalSyms, OtherSyms; 939 940 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { 941 if ((*I)->isLocalBind()) 942 LocalSyms.push_back(*I); 943 else 944 OtherSyms.push_back(*I); 945 } 946 SymbolList.clear(); 947 FirstNonLocalSymbol = LocalSyms.size(); 948 949 for (unsigned i = 0; i < FirstNonLocalSymbol; ++i) 950 SymbolList.push_back(LocalSyms[i]); 951 952 for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I) 953 SymbolList.push_back(*I); 954 955 LocalSyms.clear(); 956 OtherSyms.clear(); 957 958 return FirstNonLocalSymbol; 959 } 960 961 /// EmitSymbolTable - Emit the symbol table itself. 962 void ELFWriter::EmitSymbolTable() { 963 if (!SymbolList.size()) return; // Empty symbol table. 964 965 // Now that we have emitted the string table and know the offset into the 966 // string table of each symbol, emit the symbol table itself. 967 ELFSection &SymTab = getSymbolTableSection(); 968 SymTab.Align = TEW->getPrefELFAlignment(); 969 970 // Section Index of .strtab. 971 SymTab.Link = getStringTableSection().SectionIdx; 972 973 // Size of each symtab entry. 974 SymTab.EntSize = TEW->getSymTabEntrySize(); 975 976 // Reorder the symbol table with local symbols first! 977 unsigned FirstNonLocalSymbol = SortSymbols(); 978 979 // Emit all the symbols to the symbol table. 980 for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) { 981 ELFSym &Sym = *SymbolList[i]; 982 983 // Emit symbol to the symbol table 984 EmitSymbol(SymTab, Sym); 985 986 // Record the symbol table index for each symbol 987 if (Sym.isGlobalValue()) 988 GblSymLookup[Sym.getGlobalValue()] = i; 989 else if (Sym.isExternalSym()) 990 ExtSymLookup[Sym.getExternalSymbol()] = i; 991 992 // Keep track on the symbol index into the symbol table 993 Sym.SymTabIdx = i; 994 } 995 996 // One greater than the symbol table index of the last local symbol 997 SymTab.Info = FirstNonLocalSymbol; 998 SymTab.Size = SymTab.size(); 999 } 1000 1001 /// EmitSectionTableStringTable - This method adds and emits a section for the 1002 /// ELF Section Table string table: the string table that holds all of the 1003 /// section names. 1004 void ELFWriter::EmitSectionTableStringTable() { 1005 // First step: add the section for the string table to the list of sections: 1006 ELFSection &SHStrTab = getSectionHeaderStringTableSection(); 1007 1008 // Now that we know which section number is the .shstrtab section, update the 1009 // e_shstrndx entry in the ELF header. 1010 ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset); 1011 1012 // Set the NameIdx of each section in the string table and emit the bytes for 1013 // the string table. 1014 unsigned Index = 0; 1015 1016 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { 1017 ELFSection &S = *(*I); 1018 // Set the index into the table. Note if we have lots of entries with 1019 // common suffixes, we could memoize them here if we cared. 1020 S.NameIdx = Index; 1021 SHStrTab.emitString(S.getName()); 1022 1023 // Keep track of the number of bytes emitted to this section. 1024 Index += S.getName().size()+1; 1025 } 1026 1027 // Set the size of .shstrtab now that we know what it is. 1028 assert(Index == SHStrTab.size()); 1029 SHStrTab.Size = Index; 1030 } 1031 1032 /// OutputSectionsAndSectionTable - Now that we have constructed the file header 1033 /// and all of the sections, emit these to the ostream destination and emit the 1034 /// SectionTable. 1035 void ELFWriter::OutputSectionsAndSectionTable() { 1036 // Pass #1: Compute the file offset for each section. 1037 size_t FileOff = ElfHdr.size(); // File header first. 1038 1039 // Adjust alignment of all section if needed, skip the null section. 1040 for (unsigned i=1, e=SectionList.size(); i < e; ++i) { 1041 ELFSection &ES = *SectionList[i]; 1042 if (!ES.size()) { 1043 ES.Offset = FileOff; 1044 continue; 1045 } 1046 1047 // Update Section size 1048 if (!ES.Size) 1049 ES.Size = ES.size(); 1050 1051 // Align FileOff to whatever the alignment restrictions of the section are. 1052 if (ES.Align) 1053 FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1); 1054 1055 ES.Offset = FileOff; 1056 FileOff += ES.Size; 1057 } 1058 1059 // Align Section Header. 1060 unsigned TableAlign = TEW->getPrefELFAlignment(); 1061 FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); 1062 1063 // Now that we know where all of the sections will be emitted, set the e_shnum 1064 // entry in the ELF header. 1065 ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset); 1066 1067 // Now that we know the offset in the file of the section table, update the 1068 // e_shoff address in the ELF header. 1069 ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset); 1070 1071 // Now that we know all of the data in the file header, emit it and all of the 1072 // sections! 1073 O.write((char *)&ElfHdr.getData()[0], ElfHdr.size()); 1074 FileOff = ElfHdr.size(); 1075 1076 // Section Header Table blob 1077 BinaryObject SHdrTable(isLittleEndian, is64Bit); 1078 1079 // Emit all of sections to the file and build the section header table. 1080 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { 1081 ELFSection &S = *(*I); 1082 DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName() 1083 << ", Size: " << S.Size << ", Offset: " << S.Offset 1084 << ", SectionData Size: " << S.size() << "\n"); 1085 1086 // Align FileOff to whatever the alignment restrictions of the section are. 1087 if (S.size()) { 1088 if (S.Align) { 1089 for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1); 1090 FileOff != NewFileOff; ++FileOff) 1091 O << (char)0xAB; 1092 } 1093 O.write((char *)&S.getData()[0], S.Size); 1094 FileOff += S.Size; 1095 } 1096 1097 EmitSectionHeader(SHdrTable, S); 1098 } 1099 1100 // Align output for the section table. 1101 for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); 1102 FileOff != NewFileOff; ++FileOff) 1103 O << (char)0xAB; 1104 1105 // Emit the section table itself. 1106 O.write((char *)&SHdrTable.getData()[0], SHdrTable.size()); 1107 } 1108