Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGObjCRuntime.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/StmtVisitor.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Intrinsics.h"
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 //===----------------------------------------------------------------------===//
     28 //                        Aggregate Expression Emitter
     29 //===----------------------------------------------------------------------===//
     30 
     31 namespace  {
     32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     33   CodeGenFunction &CGF;
     34   CGBuilderTy &Builder;
     35   AggValueSlot Dest;
     36   bool IgnoreResult;
     37 
     38   ReturnValueSlot getReturnValueSlot() const {
     39     // If the destination slot requires garbage collection, we can't
     40     // use the real return value slot, because we have to use the GC
     41     // API.
     42     if (Dest.requiresGCollection()) return ReturnValueSlot();
     43 
     44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
     45   }
     46 
     47   AggValueSlot EnsureSlot(QualType T) {
     48     if (!Dest.isIgnored()) return Dest;
     49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     50   }
     51 
     52 public:
     53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
     54                  bool ignore)
     55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
     56       IgnoreResult(ignore) {
     57   }
     58 
     59   //===--------------------------------------------------------------------===//
     60   //                               Utilities
     61   //===--------------------------------------------------------------------===//
     62 
     63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     64   /// represents a value lvalue, this method emits the address of the lvalue,
     65   /// then loads the result into DestPtr.
     66   void EmitAggLoadOfLValue(const Expr *E);
     67 
     68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
     70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
     71 
     72   void EmitGCMove(const Expr *E, RValue Src);
     73 
     74   bool TypeRequiresGCollection(QualType T);
     75 
     76   //===--------------------------------------------------------------------===//
     77   //                            Visitor Methods
     78   //===--------------------------------------------------------------------===//
     79 
     80   void VisitStmt(Stmt *S) {
     81     CGF.ErrorUnsupported(S, "aggregate expression");
     82   }
     83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
     84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
     85     Visit(GE->getResultExpr());
     86   }
     87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
     88   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
     89     return Visit(E->getReplacement());
     90   }
     91 
     92   // l-values.
     93   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
     94   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
     95   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
     96   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
     97   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
     98   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
     99     EmitAggLoadOfLValue(E);
    100   }
    101   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
    102     EmitAggLoadOfLValue(E);
    103   }
    104   void VisitPredefinedExpr(const PredefinedExpr *E) {
    105     EmitAggLoadOfLValue(E);
    106   }
    107 
    108   // Operators.
    109   void VisitCastExpr(CastExpr *E);
    110   void VisitCallExpr(const CallExpr *E);
    111   void VisitStmtExpr(const StmtExpr *E);
    112   void VisitBinaryOperator(const BinaryOperator *BO);
    113   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    114   void VisitBinAssign(const BinaryOperator *E);
    115   void VisitBinComma(const BinaryOperator *E);
    116 
    117   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    118   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    119     EmitAggLoadOfLValue(E);
    120   }
    121   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
    122 
    123   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    124   void VisitChooseExpr(const ChooseExpr *CE);
    125   void VisitInitListExpr(InitListExpr *E);
    126   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    127   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    128     Visit(DAE->getExpr());
    129   }
    130   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    131   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    132   void VisitExprWithCleanups(ExprWithCleanups *E);
    133   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    134   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    135   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    136   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    137 
    138   void VisitVAArgExpr(VAArgExpr *E);
    139 
    140   void EmitInitializationToLValue(Expr *E, LValue Address);
    141   void EmitNullInitializationToLValue(LValue Address);
    142   //  case Expr::ChooseExprClass:
    143   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    144 };
    145 }  // end anonymous namespace.
    146 
    147 //===----------------------------------------------------------------------===//
    148 //                                Utilities
    149 //===----------------------------------------------------------------------===//
    150 
    151 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    152 /// represents a value lvalue, this method emits the address of the lvalue,
    153 /// then loads the result into DestPtr.
    154 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    155   LValue LV = CGF.EmitLValue(E);
    156   EmitFinalDestCopy(E, LV);
    157 }
    158 
    159 /// \brief True if the given aggregate type requires special GC API calls.
    160 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    161   // Only record types have members that might require garbage collection.
    162   const RecordType *RecordTy = T->getAs<RecordType>();
    163   if (!RecordTy) return false;
    164 
    165   // Don't mess with non-trivial C++ types.
    166   RecordDecl *Record = RecordTy->getDecl();
    167   if (isa<CXXRecordDecl>(Record) &&
    168       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
    169        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    170     return false;
    171 
    172   // Check whether the type has an object member.
    173   return Record->hasObjectMember();
    174 }
    175 
    176 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
    177 ///
    178 /// The idea is that you do something like this:
    179 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    180 ///   EmitGCMove(E, Result);
    181 /// If GC doesn't interfere, this will cause the result to be emitted
    182 /// directly into the return value slot.  If GC does interfere, a final
    183 /// move will be performed.
    184 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
    185   if (Dest.requiresGCollection()) {
    186     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    187     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    188     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    189     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
    190                                                     Src.getAggregateAddr(),
    191                                                     SizeVal);
    192   }
    193 }
    194 
    195 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    196 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
    197   assert(Src.isAggregate() && "value must be aggregate value!");
    198 
    199   // If Dest is ignored, then we're evaluating an aggregate expression
    200   // in a context (like an expression statement) that doesn't care
    201   // about the result.  C says that an lvalue-to-rvalue conversion is
    202   // performed in these cases; C++ says that it is not.  In either
    203   // case, we don't actually need to do anything unless the value is
    204   // volatile.
    205   if (Dest.isIgnored()) {
    206     if (!Src.isVolatileQualified() ||
    207         CGF.CGM.getLangOptions().CPlusPlus ||
    208         (IgnoreResult && Ignore))
    209       return;
    210 
    211     // If the source is volatile, we must read from it; to do that, we need
    212     // some place to put it.
    213     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
    214   }
    215 
    216   if (Dest.requiresGCollection()) {
    217     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    218     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    219     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    220     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    221                                                       Dest.getAddr(),
    222                                                       Src.getAggregateAddr(),
    223                                                       SizeVal);
    224     return;
    225   }
    226   // If the result of the assignment is used, copy the LHS there also.
    227   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
    228   // from the source as well, as we can't eliminate it if either operand
    229   // is volatile, unless copy has volatile for both source and destination..
    230   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
    231                         Dest.isVolatile()|Src.isVolatileQualified());
    232 }
    233 
    234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
    236   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
    237 
    238   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
    239                                             Src.isVolatileQualified()),
    240                     Ignore);
    241 }
    242 
    243 //===----------------------------------------------------------------------===//
    244 //                            Visitor Methods
    245 //===----------------------------------------------------------------------===//
    246 
    247 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    248   Visit(E->GetTemporaryExpr());
    249 }
    250 
    251 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    252   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
    253 }
    254 
    255 void
    256 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    257   if (E->getType().isPODType(CGF.getContext())) {
    258     // For a POD type, just emit a load of the lvalue + a copy, because our
    259     // compound literal might alias the destination.
    260     // FIXME: This is a band-aid; the real problem appears to be in our handling
    261     // of assignments, where we store directly into the LHS without checking
    262     // whether anything in the RHS aliases.
    263     EmitAggLoadOfLValue(E);
    264     return;
    265   }
    266 
    267   AggValueSlot Slot = EnsureSlot(E->getType());
    268   CGF.EmitAggExpr(E->getInitializer(), Slot);
    269 }
    270 
    271 
    272 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    273   switch (E->getCastKind()) {
    274   case CK_Dynamic: {
    275     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    276     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
    277     // FIXME: Do we also need to handle property references here?
    278     if (LV.isSimple())
    279       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    280     else
    281       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    282 
    283     if (!Dest.isIgnored())
    284       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    285     break;
    286   }
    287 
    288   case CK_ToUnion: {
    289     if (Dest.isIgnored()) break;
    290 
    291     // GCC union extension
    292     QualType Ty = E->getSubExpr()->getType();
    293     QualType PtrTy = CGF.getContext().getPointerType(Ty);
    294     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
    295                                                  CGF.ConvertType(PtrTy));
    296     EmitInitializationToLValue(E->getSubExpr(),
    297                                CGF.MakeAddrLValue(CastPtr, Ty));
    298     break;
    299   }
    300 
    301   case CK_DerivedToBase:
    302   case CK_BaseToDerived:
    303   case CK_UncheckedDerivedToBase: {
    304     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
    305                 "should have been unpacked before we got here");
    306     break;
    307   }
    308 
    309   case CK_GetObjCProperty: {
    310     LValue LV = CGF.EmitLValue(E->getSubExpr());
    311     assert(LV.isPropertyRef());
    312     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
    313     EmitGCMove(E, RV);
    314     break;
    315   }
    316 
    317   case CK_LValueToRValue: // hope for downstream optimization
    318   case CK_NoOp:
    319   case CK_UserDefinedConversion:
    320   case CK_ConstructorConversion:
    321     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    322                                                    E->getType()) &&
    323            "Implicit cast types must be compatible");
    324     Visit(E->getSubExpr());
    325     break;
    326 
    327   case CK_LValueBitCast:
    328     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    329     break;
    330 
    331   case CK_Dependent:
    332   case CK_BitCast:
    333   case CK_ArrayToPointerDecay:
    334   case CK_FunctionToPointerDecay:
    335   case CK_NullToPointer:
    336   case CK_NullToMemberPointer:
    337   case CK_BaseToDerivedMemberPointer:
    338   case CK_DerivedToBaseMemberPointer:
    339   case CK_MemberPointerToBoolean:
    340   case CK_IntegralToPointer:
    341   case CK_PointerToIntegral:
    342   case CK_PointerToBoolean:
    343   case CK_ToVoid:
    344   case CK_VectorSplat:
    345   case CK_IntegralCast:
    346   case CK_IntegralToBoolean:
    347   case CK_IntegralToFloating:
    348   case CK_FloatingToIntegral:
    349   case CK_FloatingToBoolean:
    350   case CK_FloatingCast:
    351   case CK_AnyPointerToObjCPointerCast:
    352   case CK_AnyPointerToBlockPointerCast:
    353   case CK_ObjCObjectLValueCast:
    354   case CK_FloatingRealToComplex:
    355   case CK_FloatingComplexToReal:
    356   case CK_FloatingComplexToBoolean:
    357   case CK_FloatingComplexCast:
    358   case CK_FloatingComplexToIntegralComplex:
    359   case CK_IntegralRealToComplex:
    360   case CK_IntegralComplexToReal:
    361   case CK_IntegralComplexToBoolean:
    362   case CK_IntegralComplexCast:
    363   case CK_IntegralComplexToFloatingComplex:
    364   case CK_ObjCProduceObject:
    365   case CK_ObjCConsumeObject:
    366   case CK_ObjCReclaimReturnedObject:
    367     llvm_unreachable("cast kind invalid for aggregate types");
    368   }
    369 }
    370 
    371 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    372   if (E->getCallReturnType()->isReferenceType()) {
    373     EmitAggLoadOfLValue(E);
    374     return;
    375   }
    376 
    377   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    378   EmitGCMove(E, RV);
    379 }
    380 
    381 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    382   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    383   EmitGCMove(E, RV);
    384 }
    385 
    386 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
    387   llvm_unreachable("direct property access not surrounded by "
    388                    "lvalue-to-rvalue cast");
    389 }
    390 
    391 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    392   CGF.EmitIgnoredExpr(E->getLHS());
    393   Visit(E->getRHS());
    394 }
    395 
    396 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    397   CodeGenFunction::StmtExprEvaluation eval(CGF);
    398   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    399 }
    400 
    401 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    402   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    403     VisitPointerToDataMemberBinaryOperator(E);
    404   else
    405     CGF.ErrorUnsupported(E, "aggregate binary expression");
    406 }
    407 
    408 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    409                                                     const BinaryOperator *E) {
    410   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    411   EmitFinalDestCopy(E, LV);
    412 }
    413 
    414 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    415   // For an assignment to work, the value on the right has
    416   // to be compatible with the value on the left.
    417   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    418                                                  E->getRHS()->getType())
    419          && "Invalid assignment");
    420 
    421   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
    422     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
    423       if (VD->hasAttr<BlocksAttr>() &&
    424           E->getRHS()->HasSideEffects(CGF.getContext())) {
    425         // When __block variable on LHS, the RHS must be evaluated first
    426         // as it may change the 'forwarding' field via call to Block_copy.
    427         LValue RHS = CGF.EmitLValue(E->getRHS());
    428         LValue LHS = CGF.EmitLValue(E->getLHS());
    429         bool GCollection = false;
    430         if (CGF.getContext().getLangOptions().getGCMode())
    431           GCollection = TypeRequiresGCollection(E->getLHS()->getType());
    432         Dest = AggValueSlot::forLValue(LHS, true, GCollection);
    433         EmitFinalDestCopy(E, RHS, true);
    434         return;
    435       }
    436 
    437   LValue LHS = CGF.EmitLValue(E->getLHS());
    438 
    439   // We have to special case property setters, otherwise we must have
    440   // a simple lvalue (no aggregates inside vectors, bitfields).
    441   if (LHS.isPropertyRef()) {
    442     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
    443     QualType ArgType = RE->getSetterArgType();
    444     RValue Src;
    445     if (ArgType->isReferenceType())
    446       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
    447     else {
    448       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
    449       CGF.EmitAggExpr(E->getRHS(), Slot);
    450       Src = Slot.asRValue();
    451     }
    452     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
    453   } else {
    454     bool GCollection = false;
    455     if (CGF.getContext().getLangOptions().getGCMode())
    456       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
    457 
    458     // Codegen the RHS so that it stores directly into the LHS.
    459     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
    460                                                    GCollection);
    461     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
    462     EmitFinalDestCopy(E, LHS, true);
    463   }
    464 }
    465 
    466 void AggExprEmitter::
    467 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    468   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    469   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    470   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    471 
    472   // Bind the common expression if necessary.
    473   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    474 
    475   CodeGenFunction::ConditionalEvaluation eval(CGF);
    476   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
    477 
    478   // Save whether the destination's lifetime is externally managed.
    479   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
    480 
    481   eval.begin(CGF);
    482   CGF.EmitBlock(LHSBlock);
    483   Visit(E->getTrueExpr());
    484   eval.end(CGF);
    485 
    486   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    487   CGF.Builder.CreateBr(ContBlock);
    488 
    489   // If the result of an agg expression is unused, then the emission
    490   // of the LHS might need to create a destination slot.  That's fine
    491   // with us, and we can safely emit the RHS into the same slot, but
    492   // we shouldn't claim that its lifetime is externally managed.
    493   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
    494 
    495   eval.begin(CGF);
    496   CGF.EmitBlock(RHSBlock);
    497   Visit(E->getFalseExpr());
    498   eval.end(CGF);
    499 
    500   CGF.EmitBlock(ContBlock);
    501 }
    502 
    503 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    504   Visit(CE->getChosenSubExpr(CGF.getContext()));
    505 }
    506 
    507 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    508   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
    509   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
    510 
    511   if (!ArgPtr) {
    512     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    513     return;
    514   }
    515 
    516   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    517 }
    518 
    519 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    520   // Ensure that we have a slot, but if we already do, remember
    521   // whether its lifetime was externally managed.
    522   bool WasManaged = Dest.isLifetimeExternallyManaged();
    523   Dest = EnsureSlot(E->getType());
    524   Dest.setLifetimeExternallyManaged();
    525 
    526   Visit(E->getSubExpr());
    527 
    528   // Set up the temporary's destructor if its lifetime wasn't already
    529   // being managed.
    530   if (!WasManaged)
    531     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
    532 }
    533 
    534 void
    535 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    536   AggValueSlot Slot = EnsureSlot(E->getType());
    537   CGF.EmitCXXConstructExpr(E, Slot);
    538 }
    539 
    540 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
    541   CGF.EmitExprWithCleanups(E, Dest);
    542 }
    543 
    544 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    545   QualType T = E->getType();
    546   AggValueSlot Slot = EnsureSlot(T);
    547   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    548 }
    549 
    550 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    551   QualType T = E->getType();
    552   AggValueSlot Slot = EnsureSlot(T);
    553   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    554 }
    555 
    556 /// isSimpleZero - If emitting this value will obviously just cause a store of
    557 /// zero to memory, return true.  This can return false if uncertain, so it just
    558 /// handles simple cases.
    559 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
    560   E = E->IgnoreParens();
    561 
    562   // 0
    563   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    564     return IL->getValue() == 0;
    565   // +0.0
    566   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    567     return FL->getValue().isPosZero();
    568   // int()
    569   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
    570       CGF.getTypes().isZeroInitializable(E->getType()))
    571     return true;
    572   // (int*)0 - Null pointer expressions.
    573   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    574     return ICE->getCastKind() == CK_NullToPointer;
    575   // '\0'
    576   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    577     return CL->getValue() == 0;
    578 
    579   // Otherwise, hard case: conservatively return false.
    580   return false;
    581 }
    582 
    583 
    584 void
    585 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
    586   QualType type = LV.getType();
    587   // FIXME: Ignore result?
    588   // FIXME: Are initializers affected by volatile?
    589   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    590     // Storing "i32 0" to a zero'd memory location is a noop.
    591   } else if (isa<ImplicitValueInitExpr>(E)) {
    592     EmitNullInitializationToLValue(LV);
    593   } else if (type->isReferenceType()) {
    594     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    595     CGF.EmitStoreThroughLValue(RV, LV);
    596   } else if (type->isAnyComplexType()) {
    597     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
    598   } else if (CGF.hasAggregateLLVMType(type)) {
    599     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false,
    600                                                Dest.isZeroed()));
    601   } else if (LV.isSimple()) {
    602     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
    603   } else {
    604     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
    605   }
    606 }
    607 
    608 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
    609   QualType type = lv.getType();
    610 
    611   // If the destination slot is already zeroed out before the aggregate is
    612   // copied into it, we don't have to emit any zeros here.
    613   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
    614     return;
    615 
    616   if (!CGF.hasAggregateLLVMType(type)) {
    617     // For non-aggregates, we can store zero
    618     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
    619     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
    620   } else {
    621     // There's a potential optimization opportunity in combining
    622     // memsets; that would be easy for arrays, but relatively
    623     // difficult for structures with the current code.
    624     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
    625   }
    626 }
    627 
    628 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
    629 #if 0
    630   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
    631   // (Length of globals? Chunks of zeroed-out space?).
    632   //
    633   // If we can, prefer a copy from a global; this is a lot less code for long
    634   // globals, and it's easier for the current optimizers to analyze.
    635   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    636     llvm::GlobalVariable* GV =
    637     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
    638                              llvm::GlobalValue::InternalLinkage, C, "");
    639     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    640     return;
    641   }
    642 #endif
    643   if (E->hadArrayRangeDesignator())
    644     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    645 
    646   llvm::Value *DestPtr = Dest.getAddr();
    647 
    648   // Handle initialization of an array.
    649   if (E->getType()->isArrayType()) {
    650     llvm::PointerType *APType =
    651       cast<llvm::PointerType>(DestPtr->getType());
    652     llvm::ArrayType *AType =
    653       cast<llvm::ArrayType>(APType->getElementType());
    654 
    655     uint64_t NumInitElements = E->getNumInits();
    656 
    657     if (E->getNumInits() > 0) {
    658       QualType T1 = E->getType();
    659       QualType T2 = E->getInit(0)->getType();
    660       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
    661         EmitAggLoadOfLValue(E->getInit(0));
    662         return;
    663       }
    664     }
    665 
    666     uint64_t NumArrayElements = AType->getNumElements();
    667     assert(NumInitElements <= NumArrayElements);
    668 
    669     QualType elementType = E->getType().getCanonicalType();
    670     elementType = CGF.getContext().getQualifiedType(
    671                     cast<ArrayType>(elementType)->getElementType(),
    672                     elementType.getQualifiers() + Dest.getQualifiers());
    673 
    674     // DestPtr is an array*.  Construct an elementType* by drilling
    675     // down a level.
    676     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    677     llvm::Value *indices[] = { zero, zero };
    678     llvm::Value *begin =
    679       Builder.CreateInBoundsGEP(DestPtr, indices, indices+2, "arrayinit.begin");
    680 
    681     // Exception safety requires us to destroy all the
    682     // already-constructed members if an initializer throws.
    683     // For that, we'll need an EH cleanup.
    684     QualType::DestructionKind dtorKind = elementType.isDestructedType();
    685     llvm::AllocaInst *endOfInit = 0;
    686     EHScopeStack::stable_iterator cleanup;
    687     if (CGF.needsEHCleanup(dtorKind)) {
    688       // In principle we could tell the cleanup where we are more
    689       // directly, but the control flow can get so varied here that it
    690       // would actually be quite complex.  Therefore we go through an
    691       // alloca.
    692       endOfInit = CGF.CreateTempAlloca(begin->getType(),
    693                                        "arrayinit.endOfInit");
    694       Builder.CreateStore(begin, endOfInit);
    695       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    696                                            CGF.getDestroyer(dtorKind));
    697       cleanup = CGF.EHStack.stable_begin();
    698 
    699     // Otherwise, remember that we didn't need a cleanup.
    700     } else {
    701       dtorKind = QualType::DK_none;
    702     }
    703 
    704     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    705 
    706     // The 'current element to initialize'.  The invariants on this
    707     // variable are complicated.  Essentially, after each iteration of
    708     // the loop, it points to the last initialized element, except
    709     // that it points to the beginning of the array before any
    710     // elements have been initialized.
    711     llvm::Value *element = begin;
    712 
    713     // Emit the explicit initializers.
    714     for (uint64_t i = 0; i != NumInitElements; ++i) {
    715       // Advance to the next element.
    716       if (i > 0) {
    717         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    718 
    719         // Tell the cleanup that it needs to destroy up to this
    720         // element.  TODO: some of these stores can be trivially
    721         // observed to be unnecessary.
    722         if (endOfInit) Builder.CreateStore(element, endOfInit);
    723       }
    724 
    725       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
    726       EmitInitializationToLValue(E->getInit(i), elementLV);
    727     }
    728 
    729     // Check whether there's a non-trivial array-fill expression.
    730     // Note that this will be a CXXConstructExpr even if the element
    731     // type is an array (or array of array, etc.) of class type.
    732     Expr *filler = E->getArrayFiller();
    733     bool hasTrivialFiller = true;
    734     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    735       assert(cons->getConstructor()->isDefaultConstructor());
    736       hasTrivialFiller = cons->getConstructor()->isTrivial();
    737     }
    738 
    739     // Any remaining elements need to be zero-initialized, possibly
    740     // using the filler expression.  We can skip this if the we're
    741     // emitting to zeroed memory.
    742     if (NumInitElements != NumArrayElements &&
    743         !(Dest.isZeroed() && hasTrivialFiller &&
    744           CGF.getTypes().isZeroInitializable(elementType))) {
    745 
    746       // Use an actual loop.  This is basically
    747       //   do { *array++ = filler; } while (array != end);
    748 
    749       // Advance to the start of the rest of the array.
    750       if (NumInitElements) {
    751         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    752         if (endOfInit) Builder.CreateStore(element, endOfInit);
    753       }
    754 
    755       // Compute the end of the array.
    756       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    757                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    758                                                    "arrayinit.end");
    759 
    760       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    761       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    762 
    763       // Jump into the body.
    764       CGF.EmitBlock(bodyBB);
    765       llvm::PHINode *currentElement =
    766         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    767       currentElement->addIncoming(element, entryBB);
    768 
    769       // Emit the actual filler expression.
    770       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    771       if (filler)
    772         EmitInitializationToLValue(filler, elementLV);
    773       else
    774         EmitNullInitializationToLValue(elementLV);
    775 
    776       // Move on to the next element.
    777       llvm::Value *nextElement =
    778         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    779 
    780       // Tell the EH cleanup that we finished with the last element.
    781       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
    782 
    783       // Leave the loop if we're done.
    784       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    785                                                "arrayinit.done");
    786       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    787       Builder.CreateCondBr(done, endBB, bodyBB);
    788       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    789 
    790       CGF.EmitBlock(endBB);
    791     }
    792 
    793     // Leave the partial-array cleanup if we entered one.
    794     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup);
    795 
    796     return;
    797   }
    798 
    799   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
    800 
    801   // Do struct initialization; this code just sets each individual member
    802   // to the approprate value.  This makes bitfield support automatic;
    803   // the disadvantage is that the generated code is more difficult for
    804   // the optimizer, especially with bitfields.
    805   unsigned NumInitElements = E->getNumInits();
    806   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
    807 
    808   if (record->isUnion()) {
    809     // Only initialize one field of a union. The field itself is
    810     // specified by the initializer list.
    811     if (!E->getInitializedFieldInUnion()) {
    812       // Empty union; we have nothing to do.
    813 
    814 #ifndef NDEBUG
    815       // Make sure that it's really an empty and not a failure of
    816       // semantic analysis.
    817       for (RecordDecl::field_iterator Field = record->field_begin(),
    818                                    FieldEnd = record->field_end();
    819            Field != FieldEnd; ++Field)
    820         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
    821 #endif
    822       return;
    823     }
    824 
    825     // FIXME: volatility
    826     FieldDecl *Field = E->getInitializedFieldInUnion();
    827 
    828     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
    829     if (NumInitElements) {
    830       // Store the initializer into the field
    831       EmitInitializationToLValue(E->getInit(0), FieldLoc);
    832     } else {
    833       // Default-initialize to null.
    834       EmitNullInitializationToLValue(FieldLoc);
    835     }
    836 
    837     return;
    838   }
    839 
    840   // We'll need to enter cleanup scopes in case any of the member
    841   // initializers throw an exception.
    842   llvm::SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
    843 
    844   // Here we iterate over the fields; this makes it simpler to both
    845   // default-initialize fields and skip over unnamed fields.
    846   unsigned curInitIndex = 0;
    847   for (RecordDecl::field_iterator field = record->field_begin(),
    848                                fieldEnd = record->field_end();
    849        field != fieldEnd; ++field) {
    850     // We're done once we hit the flexible array member.
    851     if (field->getType()->isIncompleteArrayType())
    852       break;
    853 
    854     // Always skip anonymous bitfields.
    855     if (field->isUnnamedBitfield())
    856       continue;
    857 
    858     // We're done if we reach the end of the explicit initializers, we
    859     // have a zeroed object, and the rest of the fields are
    860     // zero-initializable.
    861     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
    862         CGF.getTypes().isZeroInitializable(E->getType()))
    863       break;
    864 
    865     // FIXME: volatility
    866     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
    867     // We never generate write-barries for initialized fields.
    868     LV.setNonGC(true);
    869 
    870     if (curInitIndex < NumInitElements) {
    871       // Store the initializer into the field.
    872       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
    873     } else {
    874       // We're out of initalizers; default-initialize to null
    875       EmitNullInitializationToLValue(LV);
    876     }
    877 
    878     // Push a destructor if necessary.
    879     // FIXME: if we have an array of structures, all explicitly
    880     // initialized, we can end up pushing a linear number of cleanups.
    881     bool pushedCleanup = false;
    882     if (QualType::DestructionKind dtorKind
    883           = field->getType().isDestructedType()) {
    884       assert(LV.isSimple());
    885       if (CGF.needsEHCleanup(dtorKind)) {
    886         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
    887                         CGF.getDestroyer(dtorKind), false);
    888         cleanups.push_back(CGF.EHStack.stable_begin());
    889         pushedCleanup = true;
    890       }
    891     }
    892 
    893     // If the GEP didn't get used because of a dead zero init or something
    894     // else, clean it up for -O0 builds and general tidiness.
    895     if (!pushedCleanup && LV.isSimple())
    896       if (llvm::GetElementPtrInst *GEP =
    897             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
    898         if (GEP->use_empty())
    899           GEP->eraseFromParent();
    900   }
    901 
    902   // Deactivate all the partial cleanups in reverse order, which
    903   // generally means popping them.
    904   for (unsigned i = cleanups.size(); i != 0; --i)
    905     CGF.DeactivateCleanupBlock(cleanups[i-1]);
    906 }
    907 
    908 //===----------------------------------------------------------------------===//
    909 //                        Entry Points into this File
    910 //===----------------------------------------------------------------------===//
    911 
    912 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
    913 /// non-zero bytes that will be stored when outputting the initializer for the
    914 /// specified initializer expression.
    915 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
    916   E = E->IgnoreParens();
    917 
    918   // 0 and 0.0 won't require any non-zero stores!
    919   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
    920 
    921   // If this is an initlist expr, sum up the size of sizes of the (present)
    922   // elements.  If this is something weird, assume the whole thing is non-zero.
    923   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
    924   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
    925     return CGF.getContext().getTypeSizeInChars(E->getType());
    926 
    927   // InitListExprs for structs have to be handled carefully.  If there are
    928   // reference members, we need to consider the size of the reference, not the
    929   // referencee.  InitListExprs for unions and arrays can't have references.
    930   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    931     if (!RT->isUnionType()) {
    932       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
    933       CharUnits NumNonZeroBytes = CharUnits::Zero();
    934 
    935       unsigned ILEElement = 0;
    936       for (RecordDecl::field_iterator Field = SD->field_begin(),
    937            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
    938         // We're done once we hit the flexible array member or run out of
    939         // InitListExpr elements.
    940         if (Field->getType()->isIncompleteArrayType() ||
    941             ILEElement == ILE->getNumInits())
    942           break;
    943         if (Field->isUnnamedBitfield())
    944           continue;
    945 
    946         const Expr *E = ILE->getInit(ILEElement++);
    947 
    948         // Reference values are always non-null and have the width of a pointer.
    949         if (Field->getType()->isReferenceType())
    950           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
    951               CGF.getContext().Target.getPointerWidth(0));
    952         else
    953           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
    954       }
    955 
    956       return NumNonZeroBytes;
    957     }
    958   }
    959 
    960 
    961   CharUnits NumNonZeroBytes = CharUnits::Zero();
    962   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
    963     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
    964   return NumNonZeroBytes;
    965 }
    966 
    967 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
    968 /// zeros in it, emit a memset and avoid storing the individual zeros.
    969 ///
    970 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
    971                                      CodeGenFunction &CGF) {
    972   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
    973   // volatile stores.
    974   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
    975 
    976   // C++ objects with a user-declared constructor don't need zero'ing.
    977   if (CGF.getContext().getLangOptions().CPlusPlus)
    978     if (const RecordType *RT = CGF.getContext()
    979                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
    980       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    981       if (RD->hasUserDeclaredConstructor())
    982         return;
    983     }
    984 
    985   // If the type is 16-bytes or smaller, prefer individual stores over memset.
    986   std::pair<CharUnits, CharUnits> TypeInfo =
    987     CGF.getContext().getTypeInfoInChars(E->getType());
    988   if (TypeInfo.first <= CharUnits::fromQuantity(16))
    989     return;
    990 
    991   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
    992   // we prefer to emit memset + individual stores for the rest.
    993   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
    994   if (NumNonZeroBytes*4 > TypeInfo.first)
    995     return;
    996 
    997   // Okay, it seems like a good idea to use an initial memset, emit the call.
    998   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
    999   CharUnits Align = TypeInfo.second;
   1000 
   1001   llvm::Value *Loc = Slot.getAddr();
   1002   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   1003 
   1004   Loc = CGF.Builder.CreateBitCast(Loc, BP);
   1005   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
   1006                            Align.getQuantity(), false);
   1007 
   1008   // Tell the AggExprEmitter that the slot is known zero.
   1009   Slot.setZeroed();
   1010 }
   1011 
   1012 
   1013 
   1014 
   1015 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1016 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1017 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1018 /// true, DestPtr cannot be 0.
   1019 ///
   1020 /// \param IsInitializer - true if this evaluation is initializing an
   1021 /// object whose lifetime is already being managed.
   1022 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
   1023                                   bool IgnoreResult) {
   1024   assert(E && hasAggregateLLVMType(E->getType()) &&
   1025          "Invalid aggregate expression to emit");
   1026   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
   1027          "slot has bits but no address");
   1028 
   1029   // Optimize the slot if possible.
   1030   CheckAggExprForMemSetUse(Slot, E, *this);
   1031 
   1032   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
   1033 }
   1034 
   1035 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1036   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
   1037   llvm::Value *Temp = CreateMemTemp(E->getType());
   1038   LValue LV = MakeAddrLValue(Temp, E->getType());
   1039   EmitAggExpr(E, AggValueSlot::forLValue(LV, false));
   1040   return LV;
   1041 }
   1042 
   1043 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
   1044                                         llvm::Value *SrcPtr, QualType Ty,
   1045                                         bool isVolatile) {
   1046   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1047 
   1048   if (getContext().getLangOptions().CPlusPlus) {
   1049     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1050       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1051       assert((Record->hasTrivialCopyConstructor() ||
   1052               Record->hasTrivialCopyAssignment()) &&
   1053              "Trying to aggregate-copy a type without a trivial copy "
   1054              "constructor or assignment operator");
   1055       // Ignore empty classes in C++.
   1056       if (Record->isEmpty())
   1057         return;
   1058     }
   1059   }
   1060 
   1061   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1062   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1063   // read from another object that overlaps in anyway the storage of the first
   1064   // object, then the overlap shall be exact and the two objects shall have
   1065   // qualified or unqualified versions of a compatible type."
   1066   //
   1067   // memcpy is not defined if the source and destination pointers are exactly
   1068   // equal, but other compilers do this optimization, and almost every memcpy
   1069   // implementation handles this case safely.  If there is a libc that does not
   1070   // safely handle this, we can add a target hook.
   1071 
   1072   // Get size and alignment info for this aggregate.
   1073   std::pair<CharUnits, CharUnits> TypeInfo =
   1074     getContext().getTypeInfoInChars(Ty);
   1075 
   1076   // FIXME: Handle variable sized types.
   1077 
   1078   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1079   // appear to be `extra' memory ops:
   1080   //
   1081   // volatile struct { int i; } a, b;
   1082   //
   1083   // int main() {
   1084   //   a = b;
   1085   //   a = b;
   1086   // }
   1087   //
   1088   // we need to use a different call here.  We use isVolatile to indicate when
   1089   // either the source or the destination is volatile.
   1090 
   1091   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
   1092   llvm::Type *DBP =
   1093     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
   1094   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
   1095 
   1096   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
   1097   llvm::Type *SBP =
   1098     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
   1099   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
   1100 
   1101   // Don't do any of the memmove_collectable tests if GC isn't set.
   1102   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
   1103     // fall through
   1104   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1105     RecordDecl *Record = RecordTy->getDecl();
   1106     if (Record->hasObjectMember()) {
   1107       CharUnits size = TypeInfo.first;
   1108       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1109       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1110       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1111                                                     SizeVal);
   1112       return;
   1113     }
   1114   } else if (Ty->isArrayType()) {
   1115     QualType BaseType = getContext().getBaseElementType(Ty);
   1116     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1117       if (RecordTy->getDecl()->hasObjectMember()) {
   1118         CharUnits size = TypeInfo.first;
   1119         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1120         llvm::Value *SizeVal =
   1121           llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1122         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1123                                                       SizeVal);
   1124         return;
   1125       }
   1126     }
   1127   }
   1128 
   1129   Builder.CreateMemCpy(DestPtr, SrcPtr,
   1130                        llvm::ConstantInt::get(IntPtrTy,
   1131                                               TypeInfo.first.getQuantity()),
   1132                        TypeInfo.second.getQuantity(), isVolatile);
   1133 }
   1134