1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 85 Visit(GE->getResultExpr()); 86 } 87 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 88 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 89 return Visit(E->getReplacement()); 90 } 91 92 // l-values. 93 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 94 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 95 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 96 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 97 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 98 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 99 EmitAggLoadOfLValue(E); 100 } 101 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 102 EmitAggLoadOfLValue(E); 103 } 104 void VisitPredefinedExpr(const PredefinedExpr *E) { 105 EmitAggLoadOfLValue(E); 106 } 107 108 // Operators. 109 void VisitCastExpr(CastExpr *E); 110 void VisitCallExpr(const CallExpr *E); 111 void VisitStmtExpr(const StmtExpr *E); 112 void VisitBinaryOperator(const BinaryOperator *BO); 113 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 114 void VisitBinAssign(const BinaryOperator *E); 115 void VisitBinComma(const BinaryOperator *E); 116 117 void VisitObjCMessageExpr(ObjCMessageExpr *E); 118 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 119 EmitAggLoadOfLValue(E); 120 } 121 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 122 123 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 124 void VisitChooseExpr(const ChooseExpr *CE); 125 void VisitInitListExpr(InitListExpr *E); 126 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 127 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 128 Visit(DAE->getExpr()); 129 } 130 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 131 void VisitCXXConstructExpr(const CXXConstructExpr *E); 132 void VisitExprWithCleanups(ExprWithCleanups *E); 133 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 134 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 135 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 136 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 137 138 void VisitVAArgExpr(VAArgExpr *E); 139 140 void EmitInitializationToLValue(Expr *E, LValue Address); 141 void EmitNullInitializationToLValue(LValue Address); 142 // case Expr::ChooseExprClass: 143 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 144 }; 145 } // end anonymous namespace. 146 147 //===----------------------------------------------------------------------===// 148 // Utilities 149 //===----------------------------------------------------------------------===// 150 151 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 152 /// represents a value lvalue, this method emits the address of the lvalue, 153 /// then loads the result into DestPtr. 154 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 155 LValue LV = CGF.EmitLValue(E); 156 EmitFinalDestCopy(E, LV); 157 } 158 159 /// \brief True if the given aggregate type requires special GC API calls. 160 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 161 // Only record types have members that might require garbage collection. 162 const RecordType *RecordTy = T->getAs<RecordType>(); 163 if (!RecordTy) return false; 164 165 // Don't mess with non-trivial C++ types. 166 RecordDecl *Record = RecordTy->getDecl(); 167 if (isa<CXXRecordDecl>(Record) && 168 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 169 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 170 return false; 171 172 // Check whether the type has an object member. 173 return Record->hasObjectMember(); 174 } 175 176 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 177 /// 178 /// The idea is that you do something like this: 179 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 180 /// EmitGCMove(E, Result); 181 /// If GC doesn't interfere, this will cause the result to be emitted 182 /// directly into the return value slot. If GC does interfere, a final 183 /// move will be performed. 184 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 185 if (Dest.requiresGCollection()) { 186 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 187 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 188 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 189 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 190 Src.getAggregateAddr(), 191 SizeVal); 192 } 193 } 194 195 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 196 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 197 assert(Src.isAggregate() && "value must be aggregate value!"); 198 199 // If Dest is ignored, then we're evaluating an aggregate expression 200 // in a context (like an expression statement) that doesn't care 201 // about the result. C says that an lvalue-to-rvalue conversion is 202 // performed in these cases; C++ says that it is not. In either 203 // case, we don't actually need to do anything unless the value is 204 // volatile. 205 if (Dest.isIgnored()) { 206 if (!Src.isVolatileQualified() || 207 CGF.CGM.getLangOptions().CPlusPlus || 208 (IgnoreResult && Ignore)) 209 return; 210 211 // If the source is volatile, we must read from it; to do that, we need 212 // some place to put it. 213 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 214 } 215 216 if (Dest.requiresGCollection()) { 217 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 218 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 219 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 220 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 221 Dest.getAddr(), 222 Src.getAggregateAddr(), 223 SizeVal); 224 return; 225 } 226 // If the result of the assignment is used, copy the LHS there also. 227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 228 // from the source as well, as we can't eliminate it if either operand 229 // is volatile, unless copy has volatile for both source and destination.. 230 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 231 Dest.isVolatile()|Src.isVolatileQualified()); 232 } 233 234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 236 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 237 238 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 239 Src.isVolatileQualified()), 240 Ignore); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Visitor Methods 245 //===----------------------------------------------------------------------===// 246 247 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 248 Visit(E->GetTemporaryExpr()); 249 } 250 251 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 252 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 253 } 254 255 void 256 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 257 if (E->getType().isPODType(CGF.getContext())) { 258 // For a POD type, just emit a load of the lvalue + a copy, because our 259 // compound literal might alias the destination. 260 // FIXME: This is a band-aid; the real problem appears to be in our handling 261 // of assignments, where we store directly into the LHS without checking 262 // whether anything in the RHS aliases. 263 EmitAggLoadOfLValue(E); 264 return; 265 } 266 267 AggValueSlot Slot = EnsureSlot(E->getType()); 268 CGF.EmitAggExpr(E->getInitializer(), Slot); 269 } 270 271 272 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 273 switch (E->getCastKind()) { 274 case CK_Dynamic: { 275 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 276 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 277 // FIXME: Do we also need to handle property references here? 278 if (LV.isSimple()) 279 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 280 else 281 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 282 283 if (!Dest.isIgnored()) 284 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 285 break; 286 } 287 288 case CK_ToUnion: { 289 if (Dest.isIgnored()) break; 290 291 // GCC union extension 292 QualType Ty = E->getSubExpr()->getType(); 293 QualType PtrTy = CGF.getContext().getPointerType(Ty); 294 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 295 CGF.ConvertType(PtrTy)); 296 EmitInitializationToLValue(E->getSubExpr(), 297 CGF.MakeAddrLValue(CastPtr, Ty)); 298 break; 299 } 300 301 case CK_DerivedToBase: 302 case CK_BaseToDerived: 303 case CK_UncheckedDerivedToBase: { 304 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 305 "should have been unpacked before we got here"); 306 break; 307 } 308 309 case CK_GetObjCProperty: { 310 LValue LV = CGF.EmitLValue(E->getSubExpr()); 311 assert(LV.isPropertyRef()); 312 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 313 EmitGCMove(E, RV); 314 break; 315 } 316 317 case CK_LValueToRValue: // hope for downstream optimization 318 case CK_NoOp: 319 case CK_UserDefinedConversion: 320 case CK_ConstructorConversion: 321 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 322 E->getType()) && 323 "Implicit cast types must be compatible"); 324 Visit(E->getSubExpr()); 325 break; 326 327 case CK_LValueBitCast: 328 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 329 break; 330 331 case CK_Dependent: 332 case CK_BitCast: 333 case CK_ArrayToPointerDecay: 334 case CK_FunctionToPointerDecay: 335 case CK_NullToPointer: 336 case CK_NullToMemberPointer: 337 case CK_BaseToDerivedMemberPointer: 338 case CK_DerivedToBaseMemberPointer: 339 case CK_MemberPointerToBoolean: 340 case CK_IntegralToPointer: 341 case CK_PointerToIntegral: 342 case CK_PointerToBoolean: 343 case CK_ToVoid: 344 case CK_VectorSplat: 345 case CK_IntegralCast: 346 case CK_IntegralToBoolean: 347 case CK_IntegralToFloating: 348 case CK_FloatingToIntegral: 349 case CK_FloatingToBoolean: 350 case CK_FloatingCast: 351 case CK_AnyPointerToObjCPointerCast: 352 case CK_AnyPointerToBlockPointerCast: 353 case CK_ObjCObjectLValueCast: 354 case CK_FloatingRealToComplex: 355 case CK_FloatingComplexToReal: 356 case CK_FloatingComplexToBoolean: 357 case CK_FloatingComplexCast: 358 case CK_FloatingComplexToIntegralComplex: 359 case CK_IntegralRealToComplex: 360 case CK_IntegralComplexToReal: 361 case CK_IntegralComplexToBoolean: 362 case CK_IntegralComplexCast: 363 case CK_IntegralComplexToFloatingComplex: 364 case CK_ObjCProduceObject: 365 case CK_ObjCConsumeObject: 366 case CK_ObjCReclaimReturnedObject: 367 llvm_unreachable("cast kind invalid for aggregate types"); 368 } 369 } 370 371 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 372 if (E->getCallReturnType()->isReferenceType()) { 373 EmitAggLoadOfLValue(E); 374 return; 375 } 376 377 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 378 EmitGCMove(E, RV); 379 } 380 381 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 382 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 383 EmitGCMove(E, RV); 384 } 385 386 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 387 llvm_unreachable("direct property access not surrounded by " 388 "lvalue-to-rvalue cast"); 389 } 390 391 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 392 CGF.EmitIgnoredExpr(E->getLHS()); 393 Visit(E->getRHS()); 394 } 395 396 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 397 CodeGenFunction::StmtExprEvaluation eval(CGF); 398 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 399 } 400 401 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 402 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 403 VisitPointerToDataMemberBinaryOperator(E); 404 else 405 CGF.ErrorUnsupported(E, "aggregate binary expression"); 406 } 407 408 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 409 const BinaryOperator *E) { 410 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 411 EmitFinalDestCopy(E, LV); 412 } 413 414 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 415 // For an assignment to work, the value on the right has 416 // to be compatible with the value on the left. 417 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 418 E->getRHS()->getType()) 419 && "Invalid assignment"); 420 421 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 422 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 423 if (VD->hasAttr<BlocksAttr>() && 424 E->getRHS()->HasSideEffects(CGF.getContext())) { 425 // When __block variable on LHS, the RHS must be evaluated first 426 // as it may change the 'forwarding' field via call to Block_copy. 427 LValue RHS = CGF.EmitLValue(E->getRHS()); 428 LValue LHS = CGF.EmitLValue(E->getLHS()); 429 bool GCollection = false; 430 if (CGF.getContext().getLangOptions().getGCMode()) 431 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 432 Dest = AggValueSlot::forLValue(LHS, true, GCollection); 433 EmitFinalDestCopy(E, RHS, true); 434 return; 435 } 436 437 LValue LHS = CGF.EmitLValue(E->getLHS()); 438 439 // We have to special case property setters, otherwise we must have 440 // a simple lvalue (no aggregates inside vectors, bitfields). 441 if (LHS.isPropertyRef()) { 442 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 443 QualType ArgType = RE->getSetterArgType(); 444 RValue Src; 445 if (ArgType->isReferenceType()) 446 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 447 else { 448 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 449 CGF.EmitAggExpr(E->getRHS(), Slot); 450 Src = Slot.asRValue(); 451 } 452 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 453 } else { 454 bool GCollection = false; 455 if (CGF.getContext().getLangOptions().getGCMode()) 456 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 457 458 // Codegen the RHS so that it stores directly into the LHS. 459 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 460 GCollection); 461 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 462 EmitFinalDestCopy(E, LHS, true); 463 } 464 } 465 466 void AggExprEmitter:: 467 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 468 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 469 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 470 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 471 472 // Bind the common expression if necessary. 473 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 474 475 CodeGenFunction::ConditionalEvaluation eval(CGF); 476 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 477 478 // Save whether the destination's lifetime is externally managed. 479 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 480 481 eval.begin(CGF); 482 CGF.EmitBlock(LHSBlock); 483 Visit(E->getTrueExpr()); 484 eval.end(CGF); 485 486 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 487 CGF.Builder.CreateBr(ContBlock); 488 489 // If the result of an agg expression is unused, then the emission 490 // of the LHS might need to create a destination slot. That's fine 491 // with us, and we can safely emit the RHS into the same slot, but 492 // we shouldn't claim that its lifetime is externally managed. 493 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 494 495 eval.begin(CGF); 496 CGF.EmitBlock(RHSBlock); 497 Visit(E->getFalseExpr()); 498 eval.end(CGF); 499 500 CGF.EmitBlock(ContBlock); 501 } 502 503 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 504 Visit(CE->getChosenSubExpr(CGF.getContext())); 505 } 506 507 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 508 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 509 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 510 511 if (!ArgPtr) { 512 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 513 return; 514 } 515 516 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 517 } 518 519 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 520 // Ensure that we have a slot, but if we already do, remember 521 // whether its lifetime was externally managed. 522 bool WasManaged = Dest.isLifetimeExternallyManaged(); 523 Dest = EnsureSlot(E->getType()); 524 Dest.setLifetimeExternallyManaged(); 525 526 Visit(E->getSubExpr()); 527 528 // Set up the temporary's destructor if its lifetime wasn't already 529 // being managed. 530 if (!WasManaged) 531 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 532 } 533 534 void 535 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 536 AggValueSlot Slot = EnsureSlot(E->getType()); 537 CGF.EmitCXXConstructExpr(E, Slot); 538 } 539 540 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 541 CGF.EmitExprWithCleanups(E, Dest); 542 } 543 544 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 545 QualType T = E->getType(); 546 AggValueSlot Slot = EnsureSlot(T); 547 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 548 } 549 550 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 551 QualType T = E->getType(); 552 AggValueSlot Slot = EnsureSlot(T); 553 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 554 } 555 556 /// isSimpleZero - If emitting this value will obviously just cause a store of 557 /// zero to memory, return true. This can return false if uncertain, so it just 558 /// handles simple cases. 559 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 560 E = E->IgnoreParens(); 561 562 // 0 563 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 564 return IL->getValue() == 0; 565 // +0.0 566 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 567 return FL->getValue().isPosZero(); 568 // int() 569 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 570 CGF.getTypes().isZeroInitializable(E->getType())) 571 return true; 572 // (int*)0 - Null pointer expressions. 573 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 574 return ICE->getCastKind() == CK_NullToPointer; 575 // '\0' 576 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 577 return CL->getValue() == 0; 578 579 // Otherwise, hard case: conservatively return false. 580 return false; 581 } 582 583 584 void 585 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 586 QualType type = LV.getType(); 587 // FIXME: Ignore result? 588 // FIXME: Are initializers affected by volatile? 589 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 590 // Storing "i32 0" to a zero'd memory location is a noop. 591 } else if (isa<ImplicitValueInitExpr>(E)) { 592 EmitNullInitializationToLValue(LV); 593 } else if (type->isReferenceType()) { 594 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 595 CGF.EmitStoreThroughLValue(RV, LV); 596 } else if (type->isAnyComplexType()) { 597 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 598 } else if (CGF.hasAggregateLLVMType(type)) { 599 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false, 600 Dest.isZeroed())); 601 } else if (LV.isSimple()) { 602 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 603 } else { 604 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 605 } 606 } 607 608 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 609 QualType type = lv.getType(); 610 611 // If the destination slot is already zeroed out before the aggregate is 612 // copied into it, we don't have to emit any zeros here. 613 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 614 return; 615 616 if (!CGF.hasAggregateLLVMType(type)) { 617 // For non-aggregates, we can store zero 618 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 619 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 620 } else { 621 // There's a potential optimization opportunity in combining 622 // memsets; that would be easy for arrays, but relatively 623 // difficult for structures with the current code. 624 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 625 } 626 } 627 628 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 629 #if 0 630 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 631 // (Length of globals? Chunks of zeroed-out space?). 632 // 633 // If we can, prefer a copy from a global; this is a lot less code for long 634 // globals, and it's easier for the current optimizers to analyze. 635 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 636 llvm::GlobalVariable* GV = 637 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 638 llvm::GlobalValue::InternalLinkage, C, ""); 639 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 640 return; 641 } 642 #endif 643 if (E->hadArrayRangeDesignator()) 644 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 645 646 llvm::Value *DestPtr = Dest.getAddr(); 647 648 // Handle initialization of an array. 649 if (E->getType()->isArrayType()) { 650 llvm::PointerType *APType = 651 cast<llvm::PointerType>(DestPtr->getType()); 652 llvm::ArrayType *AType = 653 cast<llvm::ArrayType>(APType->getElementType()); 654 655 uint64_t NumInitElements = E->getNumInits(); 656 657 if (E->getNumInits() > 0) { 658 QualType T1 = E->getType(); 659 QualType T2 = E->getInit(0)->getType(); 660 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 661 EmitAggLoadOfLValue(E->getInit(0)); 662 return; 663 } 664 } 665 666 uint64_t NumArrayElements = AType->getNumElements(); 667 assert(NumInitElements <= NumArrayElements); 668 669 QualType elementType = E->getType().getCanonicalType(); 670 elementType = CGF.getContext().getQualifiedType( 671 cast<ArrayType>(elementType)->getElementType(), 672 elementType.getQualifiers() + Dest.getQualifiers()); 673 674 // DestPtr is an array*. Construct an elementType* by drilling 675 // down a level. 676 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 677 llvm::Value *indices[] = { zero, zero }; 678 llvm::Value *begin = 679 Builder.CreateInBoundsGEP(DestPtr, indices, indices+2, "arrayinit.begin"); 680 681 // Exception safety requires us to destroy all the 682 // already-constructed members if an initializer throws. 683 // For that, we'll need an EH cleanup. 684 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 685 llvm::AllocaInst *endOfInit = 0; 686 EHScopeStack::stable_iterator cleanup; 687 if (CGF.needsEHCleanup(dtorKind)) { 688 // In principle we could tell the cleanup where we are more 689 // directly, but the control flow can get so varied here that it 690 // would actually be quite complex. Therefore we go through an 691 // alloca. 692 endOfInit = CGF.CreateTempAlloca(begin->getType(), 693 "arrayinit.endOfInit"); 694 Builder.CreateStore(begin, endOfInit); 695 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 696 CGF.getDestroyer(dtorKind)); 697 cleanup = CGF.EHStack.stable_begin(); 698 699 // Otherwise, remember that we didn't need a cleanup. 700 } else { 701 dtorKind = QualType::DK_none; 702 } 703 704 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 705 706 // The 'current element to initialize'. The invariants on this 707 // variable are complicated. Essentially, after each iteration of 708 // the loop, it points to the last initialized element, except 709 // that it points to the beginning of the array before any 710 // elements have been initialized. 711 llvm::Value *element = begin; 712 713 // Emit the explicit initializers. 714 for (uint64_t i = 0; i != NumInitElements; ++i) { 715 // Advance to the next element. 716 if (i > 0) { 717 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 718 719 // Tell the cleanup that it needs to destroy up to this 720 // element. TODO: some of these stores can be trivially 721 // observed to be unnecessary. 722 if (endOfInit) Builder.CreateStore(element, endOfInit); 723 } 724 725 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 726 EmitInitializationToLValue(E->getInit(i), elementLV); 727 } 728 729 // Check whether there's a non-trivial array-fill expression. 730 // Note that this will be a CXXConstructExpr even if the element 731 // type is an array (or array of array, etc.) of class type. 732 Expr *filler = E->getArrayFiller(); 733 bool hasTrivialFiller = true; 734 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 735 assert(cons->getConstructor()->isDefaultConstructor()); 736 hasTrivialFiller = cons->getConstructor()->isTrivial(); 737 } 738 739 // Any remaining elements need to be zero-initialized, possibly 740 // using the filler expression. We can skip this if the we're 741 // emitting to zeroed memory. 742 if (NumInitElements != NumArrayElements && 743 !(Dest.isZeroed() && hasTrivialFiller && 744 CGF.getTypes().isZeroInitializable(elementType))) { 745 746 // Use an actual loop. This is basically 747 // do { *array++ = filler; } while (array != end); 748 749 // Advance to the start of the rest of the array. 750 if (NumInitElements) { 751 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 752 if (endOfInit) Builder.CreateStore(element, endOfInit); 753 } 754 755 // Compute the end of the array. 756 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 757 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 758 "arrayinit.end"); 759 760 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 761 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 762 763 // Jump into the body. 764 CGF.EmitBlock(bodyBB); 765 llvm::PHINode *currentElement = 766 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 767 currentElement->addIncoming(element, entryBB); 768 769 // Emit the actual filler expression. 770 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 771 if (filler) 772 EmitInitializationToLValue(filler, elementLV); 773 else 774 EmitNullInitializationToLValue(elementLV); 775 776 // Move on to the next element. 777 llvm::Value *nextElement = 778 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 779 780 // Tell the EH cleanup that we finished with the last element. 781 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 782 783 // Leave the loop if we're done. 784 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 785 "arrayinit.done"); 786 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 787 Builder.CreateCondBr(done, endBB, bodyBB); 788 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 789 790 CGF.EmitBlock(endBB); 791 } 792 793 // Leave the partial-array cleanup if we entered one. 794 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup); 795 796 return; 797 } 798 799 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 800 801 // Do struct initialization; this code just sets each individual member 802 // to the approprate value. This makes bitfield support automatic; 803 // the disadvantage is that the generated code is more difficult for 804 // the optimizer, especially with bitfields. 805 unsigned NumInitElements = E->getNumInits(); 806 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 807 808 if (record->isUnion()) { 809 // Only initialize one field of a union. The field itself is 810 // specified by the initializer list. 811 if (!E->getInitializedFieldInUnion()) { 812 // Empty union; we have nothing to do. 813 814 #ifndef NDEBUG 815 // Make sure that it's really an empty and not a failure of 816 // semantic analysis. 817 for (RecordDecl::field_iterator Field = record->field_begin(), 818 FieldEnd = record->field_end(); 819 Field != FieldEnd; ++Field) 820 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 821 #endif 822 return; 823 } 824 825 // FIXME: volatility 826 FieldDecl *Field = E->getInitializedFieldInUnion(); 827 828 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 829 if (NumInitElements) { 830 // Store the initializer into the field 831 EmitInitializationToLValue(E->getInit(0), FieldLoc); 832 } else { 833 // Default-initialize to null. 834 EmitNullInitializationToLValue(FieldLoc); 835 } 836 837 return; 838 } 839 840 // We'll need to enter cleanup scopes in case any of the member 841 // initializers throw an exception. 842 llvm::SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 843 844 // Here we iterate over the fields; this makes it simpler to both 845 // default-initialize fields and skip over unnamed fields. 846 unsigned curInitIndex = 0; 847 for (RecordDecl::field_iterator field = record->field_begin(), 848 fieldEnd = record->field_end(); 849 field != fieldEnd; ++field) { 850 // We're done once we hit the flexible array member. 851 if (field->getType()->isIncompleteArrayType()) 852 break; 853 854 // Always skip anonymous bitfields. 855 if (field->isUnnamedBitfield()) 856 continue; 857 858 // We're done if we reach the end of the explicit initializers, we 859 // have a zeroed object, and the rest of the fields are 860 // zero-initializable. 861 if (curInitIndex == NumInitElements && Dest.isZeroed() && 862 CGF.getTypes().isZeroInitializable(E->getType())) 863 break; 864 865 // FIXME: volatility 866 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 867 // We never generate write-barries for initialized fields. 868 LV.setNonGC(true); 869 870 if (curInitIndex < NumInitElements) { 871 // Store the initializer into the field. 872 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 873 } else { 874 // We're out of initalizers; default-initialize to null 875 EmitNullInitializationToLValue(LV); 876 } 877 878 // Push a destructor if necessary. 879 // FIXME: if we have an array of structures, all explicitly 880 // initialized, we can end up pushing a linear number of cleanups. 881 bool pushedCleanup = false; 882 if (QualType::DestructionKind dtorKind 883 = field->getType().isDestructedType()) { 884 assert(LV.isSimple()); 885 if (CGF.needsEHCleanup(dtorKind)) { 886 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 887 CGF.getDestroyer(dtorKind), false); 888 cleanups.push_back(CGF.EHStack.stable_begin()); 889 pushedCleanup = true; 890 } 891 } 892 893 // If the GEP didn't get used because of a dead zero init or something 894 // else, clean it up for -O0 builds and general tidiness. 895 if (!pushedCleanup && LV.isSimple()) 896 if (llvm::GetElementPtrInst *GEP = 897 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 898 if (GEP->use_empty()) 899 GEP->eraseFromParent(); 900 } 901 902 // Deactivate all the partial cleanups in reverse order, which 903 // generally means popping them. 904 for (unsigned i = cleanups.size(); i != 0; --i) 905 CGF.DeactivateCleanupBlock(cleanups[i-1]); 906 } 907 908 //===----------------------------------------------------------------------===// 909 // Entry Points into this File 910 //===----------------------------------------------------------------------===// 911 912 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 913 /// non-zero bytes that will be stored when outputting the initializer for the 914 /// specified initializer expression. 915 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 916 E = E->IgnoreParens(); 917 918 // 0 and 0.0 won't require any non-zero stores! 919 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 920 921 // If this is an initlist expr, sum up the size of sizes of the (present) 922 // elements. If this is something weird, assume the whole thing is non-zero. 923 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 924 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 925 return CGF.getContext().getTypeSizeInChars(E->getType()); 926 927 // InitListExprs for structs have to be handled carefully. If there are 928 // reference members, we need to consider the size of the reference, not the 929 // referencee. InitListExprs for unions and arrays can't have references. 930 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 931 if (!RT->isUnionType()) { 932 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 933 CharUnits NumNonZeroBytes = CharUnits::Zero(); 934 935 unsigned ILEElement = 0; 936 for (RecordDecl::field_iterator Field = SD->field_begin(), 937 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 938 // We're done once we hit the flexible array member or run out of 939 // InitListExpr elements. 940 if (Field->getType()->isIncompleteArrayType() || 941 ILEElement == ILE->getNumInits()) 942 break; 943 if (Field->isUnnamedBitfield()) 944 continue; 945 946 const Expr *E = ILE->getInit(ILEElement++); 947 948 // Reference values are always non-null and have the width of a pointer. 949 if (Field->getType()->isReferenceType()) 950 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 951 CGF.getContext().Target.getPointerWidth(0)); 952 else 953 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 954 } 955 956 return NumNonZeroBytes; 957 } 958 } 959 960 961 CharUnits NumNonZeroBytes = CharUnits::Zero(); 962 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 963 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 964 return NumNonZeroBytes; 965 } 966 967 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 968 /// zeros in it, emit a memset and avoid storing the individual zeros. 969 /// 970 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 971 CodeGenFunction &CGF) { 972 // If the slot is already known to be zeroed, nothing to do. Don't mess with 973 // volatile stores. 974 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 975 976 // C++ objects with a user-declared constructor don't need zero'ing. 977 if (CGF.getContext().getLangOptions().CPlusPlus) 978 if (const RecordType *RT = CGF.getContext() 979 .getBaseElementType(E->getType())->getAs<RecordType>()) { 980 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 981 if (RD->hasUserDeclaredConstructor()) 982 return; 983 } 984 985 // If the type is 16-bytes or smaller, prefer individual stores over memset. 986 std::pair<CharUnits, CharUnits> TypeInfo = 987 CGF.getContext().getTypeInfoInChars(E->getType()); 988 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 989 return; 990 991 // Check to see if over 3/4 of the initializer are known to be zero. If so, 992 // we prefer to emit memset + individual stores for the rest. 993 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 994 if (NumNonZeroBytes*4 > TypeInfo.first) 995 return; 996 997 // Okay, it seems like a good idea to use an initial memset, emit the call. 998 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 999 CharUnits Align = TypeInfo.second; 1000 1001 llvm::Value *Loc = Slot.getAddr(); 1002 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1003 1004 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1005 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1006 Align.getQuantity(), false); 1007 1008 // Tell the AggExprEmitter that the slot is known zero. 1009 Slot.setZeroed(); 1010 } 1011 1012 1013 1014 1015 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1016 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1017 /// the value of the aggregate expression is not needed. If VolatileDest is 1018 /// true, DestPtr cannot be 0. 1019 /// 1020 /// \param IsInitializer - true if this evaluation is initializing an 1021 /// object whose lifetime is already being managed. 1022 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1023 bool IgnoreResult) { 1024 assert(E && hasAggregateLLVMType(E->getType()) && 1025 "Invalid aggregate expression to emit"); 1026 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1027 "slot has bits but no address"); 1028 1029 // Optimize the slot if possible. 1030 CheckAggExprForMemSetUse(Slot, E, *this); 1031 1032 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1033 } 1034 1035 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1036 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1037 llvm::Value *Temp = CreateMemTemp(E->getType()); 1038 LValue LV = MakeAddrLValue(Temp, E->getType()); 1039 EmitAggExpr(E, AggValueSlot::forLValue(LV, false)); 1040 return LV; 1041 } 1042 1043 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1044 llvm::Value *SrcPtr, QualType Ty, 1045 bool isVolatile) { 1046 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1047 1048 if (getContext().getLangOptions().CPlusPlus) { 1049 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1050 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1051 assert((Record->hasTrivialCopyConstructor() || 1052 Record->hasTrivialCopyAssignment()) && 1053 "Trying to aggregate-copy a type without a trivial copy " 1054 "constructor or assignment operator"); 1055 // Ignore empty classes in C++. 1056 if (Record->isEmpty()) 1057 return; 1058 } 1059 } 1060 1061 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1062 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1063 // read from another object that overlaps in anyway the storage of the first 1064 // object, then the overlap shall be exact and the two objects shall have 1065 // qualified or unqualified versions of a compatible type." 1066 // 1067 // memcpy is not defined if the source and destination pointers are exactly 1068 // equal, but other compilers do this optimization, and almost every memcpy 1069 // implementation handles this case safely. If there is a libc that does not 1070 // safely handle this, we can add a target hook. 1071 1072 // Get size and alignment info for this aggregate. 1073 std::pair<CharUnits, CharUnits> TypeInfo = 1074 getContext().getTypeInfoInChars(Ty); 1075 1076 // FIXME: Handle variable sized types. 1077 1078 // FIXME: If we have a volatile struct, the optimizer can remove what might 1079 // appear to be `extra' memory ops: 1080 // 1081 // volatile struct { int i; } a, b; 1082 // 1083 // int main() { 1084 // a = b; 1085 // a = b; 1086 // } 1087 // 1088 // we need to use a different call here. We use isVolatile to indicate when 1089 // either the source or the destination is volatile. 1090 1091 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1092 llvm::Type *DBP = 1093 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1094 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 1095 1096 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1097 llvm::Type *SBP = 1098 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1099 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 1100 1101 // Don't do any of the memmove_collectable tests if GC isn't set. 1102 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 1103 // fall through 1104 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1105 RecordDecl *Record = RecordTy->getDecl(); 1106 if (Record->hasObjectMember()) { 1107 CharUnits size = TypeInfo.first; 1108 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1109 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1110 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1111 SizeVal); 1112 return; 1113 } 1114 } else if (Ty->isArrayType()) { 1115 QualType BaseType = getContext().getBaseElementType(Ty); 1116 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1117 if (RecordTy->getDecl()->hasObjectMember()) { 1118 CharUnits size = TypeInfo.first; 1119 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1120 llvm::Value *SizeVal = 1121 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1122 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1123 SizeVal); 1124 return; 1125 } 1126 } 1127 } 1128 1129 Builder.CreateMemCpy(DestPtr, SrcPtr, 1130 llvm::ConstantInt::get(IntPtrTy, 1131 TypeInfo.first.getQuantity()), 1132 TypeInfo.second.getQuantity(), isVolatile); 1133 } 1134