Home | History | Annotate | Download | only in arm
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been
     34 // modified significantly by Google Inc.
     35 // Copyright 2011 the V8 project authors. All rights reserved.
     36 
     37 #include "v8.h"
     38 
     39 #if defined(V8_TARGET_ARCH_ARM)
     40 
     41 #include "arm/assembler-arm-inl.h"
     42 #include "serialize.h"
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 #ifdef DEBUG
     48 bool CpuFeatures::initialized_ = false;
     49 #endif
     50 unsigned CpuFeatures::supported_ = 0;
     51 unsigned CpuFeatures::found_by_runtime_probing_ = 0;
     52 
     53 
     54 #ifdef __arm__
     55 static uint64_t CpuFeaturesImpliedByCompiler() {
     56   uint64_t answer = 0;
     57 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
     58   answer |= 1u << ARMv7;
     59 #endif  // def CAN_USE_ARMV7_INSTRUCTIONS
     60   // If the compiler is allowed to use VFP then we can use VFP too in our code
     61   // generation even when generating snapshots.  This won't work for cross
     62   // compilation. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
     63 #if defined(__VFP_FP__) && !defined(__SOFTFP__)
     64   answer |= 1u << VFP3 | 1u << ARMv7;
     65 #endif  // defined(__VFP_FP__) && !defined(__SOFTFP__)
     66 #ifdef CAN_USE_VFP_INSTRUCTIONS
     67   answer |= 1u << VFP3 | 1u << ARMv7;
     68 #endif  // def CAN_USE_VFP_INSTRUCTIONS
     69   return answer;
     70 }
     71 #endif  // def __arm__
     72 
     73 
     74 void CpuFeatures::Probe() {
     75   ASSERT(!initialized_);
     76 #ifdef DEBUG
     77   initialized_ = true;
     78 #endif
     79 #ifndef __arm__
     80   // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
     81   // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
     82   if (FLAG_enable_vfp3) {
     83     supported_ |= 1u << VFP3 | 1u << ARMv7;
     84   }
     85   // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
     86   if (FLAG_enable_armv7) {
     87     supported_ |= 1u << ARMv7;
     88   }
     89 #else  // def __arm__
     90   if (Serializer::enabled()) {
     91     supported_ |= OS::CpuFeaturesImpliedByPlatform();
     92     supported_ |= CpuFeaturesImpliedByCompiler();
     93     return;  // No features if we might serialize.
     94   }
     95 
     96   if (OS::ArmCpuHasFeature(VFP3)) {
     97     // This implementation also sets the VFP flags if runtime
     98     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
     99     // 0406B, page A1-6.
    100     supported_ |= 1u << VFP3 | 1u << ARMv7;
    101     found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7;
    102   }
    103 
    104   if (OS::ArmCpuHasFeature(ARMv7)) {
    105     supported_ |= 1u << ARMv7;
    106     found_by_runtime_probing_ |= 1u << ARMv7;
    107   }
    108 #endif
    109 }
    110 
    111 
    112 // -----------------------------------------------------------------------------
    113 // Implementation of RelocInfo
    114 
    115 const int RelocInfo::kApplyMask = 0;
    116 
    117 
    118 bool RelocInfo::IsCodedSpecially() {
    119   // The deserializer needs to know whether a pointer is specially coded.  Being
    120   // specially coded on ARM means that it is a movw/movt instruction.  We don't
    121   // generate those yet.
    122   return false;
    123 }
    124 
    125 
    126 
    127 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
    128   // Patch the code at the current address with the supplied instructions.
    129   Instr* pc = reinterpret_cast<Instr*>(pc_);
    130   Instr* instr = reinterpret_cast<Instr*>(instructions);
    131   for (int i = 0; i < instruction_count; i++) {
    132     *(pc + i) = *(instr + i);
    133   }
    134 
    135   // Indicate that code has changed.
    136   CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
    137 }
    138 
    139 
    140 // Patch the code at the current PC with a call to the target address.
    141 // Additional guard instructions can be added if required.
    142 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
    143   // Patch the code at the current address with a call to the target.
    144   UNIMPLEMENTED();
    145 }
    146 
    147 
    148 // -----------------------------------------------------------------------------
    149 // Implementation of Operand and MemOperand
    150 // See assembler-arm-inl.h for inlined constructors
    151 
    152 Operand::Operand(Handle<Object> handle) {
    153   rm_ = no_reg;
    154   // Verify all Objects referred by code are NOT in new space.
    155   Object* obj = *handle;
    156   ASSERT(!HEAP->InNewSpace(obj));
    157   if (obj->IsHeapObject()) {
    158     imm32_ = reinterpret_cast<intptr_t>(handle.location());
    159     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    160   } else {
    161     // no relocation needed
    162     imm32_ =  reinterpret_cast<intptr_t>(obj);
    163     rmode_ = RelocInfo::NONE;
    164   }
    165 }
    166 
    167 
    168 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
    169   ASSERT(is_uint5(shift_imm));
    170   ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
    171   rm_ = rm;
    172   rs_ = no_reg;
    173   shift_op_ = shift_op;
    174   shift_imm_ = shift_imm & 31;
    175   if (shift_op == RRX) {
    176     // encoded as ROR with shift_imm == 0
    177     ASSERT(shift_imm == 0);
    178     shift_op_ = ROR;
    179     shift_imm_ = 0;
    180   }
    181 }
    182 
    183 
    184 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
    185   ASSERT(shift_op != RRX);
    186   rm_ = rm;
    187   rs_ = no_reg;
    188   shift_op_ = shift_op;
    189   rs_ = rs;
    190 }
    191 
    192 
    193 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
    194   rn_ = rn;
    195   rm_ = no_reg;
    196   offset_ = offset;
    197   am_ = am;
    198 }
    199 
    200 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
    201   rn_ = rn;
    202   rm_ = rm;
    203   shift_op_ = LSL;
    204   shift_imm_ = 0;
    205   am_ = am;
    206 }
    207 
    208 
    209 MemOperand::MemOperand(Register rn, Register rm,
    210                        ShiftOp shift_op, int shift_imm, AddrMode am) {
    211   ASSERT(is_uint5(shift_imm));
    212   rn_ = rn;
    213   rm_ = rm;
    214   shift_op_ = shift_op;
    215   shift_imm_ = shift_imm & 31;
    216   am_ = am;
    217 }
    218 
    219 
    220 // -----------------------------------------------------------------------------
    221 // Specific instructions, constants, and masks.
    222 
    223 // add(sp, sp, 4) instruction (aka Pop())
    224 const Instr kPopInstruction =
    225     al | PostIndex | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
    226 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    227 // register r is not encoded.
    228 const Instr kPushRegPattern =
    229     al | B26 | 4 | NegPreIndex | sp.code() * B16;
    230 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    231 // register r is not encoded.
    232 const Instr kPopRegPattern =
    233     al | B26 | L | 4 | PostIndex | sp.code() * B16;
    234 // mov lr, pc
    235 const Instr kMovLrPc = al | MOV | pc.code() | lr.code() * B12;
    236 // ldr rd, [pc, #offset]
    237 const Instr kLdrPCMask = kCondMask | 15 * B24 | 7 * B20 | 15 * B16;
    238 const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16;
    239 // blxcc rm
    240 const Instr kBlxRegMask =
    241     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
    242 const Instr kBlxRegPattern =
    243     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
    244 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
    245 const Instr kMovMvnPattern = 0xd * B21;
    246 const Instr kMovMvnFlip = B22;
    247 const Instr kMovLeaveCCMask = 0xdff * B16;
    248 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
    249 const Instr kMovwMask = 0xff * B20;
    250 const Instr kMovwPattern = 0x30 * B20;
    251 const Instr kMovwLeaveCCFlip = 0x5 * B21;
    252 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
    253 const Instr kCmpCmnPattern = 0x15 * B20;
    254 const Instr kCmpCmnFlip = B21;
    255 const Instr kAddSubFlip = 0x6 * B21;
    256 const Instr kAndBicFlip = 0xe * B21;
    257 
    258 // A mask for the Rd register for push, pop, ldr, str instructions.
    259 const Instr kLdrRegFpOffsetPattern =
    260     al | B26 | L | Offset | fp.code() * B16;
    261 const Instr kStrRegFpOffsetPattern =
    262     al | B26 | Offset | fp.code() * B16;
    263 const Instr kLdrRegFpNegOffsetPattern =
    264     al | B26 | L | NegOffset | fp.code() * B16;
    265 const Instr kStrRegFpNegOffsetPattern =
    266     al | B26 | NegOffset | fp.code() * B16;
    267 const Instr kLdrStrInstrTypeMask = 0xffff0000;
    268 const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
    269 const Instr kLdrStrOffsetMask = 0x00000fff;
    270 
    271 
    272 // Spare buffer.
    273 static const int kMinimalBufferSize = 4*KB;
    274 
    275 
    276 Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size)
    277     : AssemblerBase(arg_isolate),
    278       positions_recorder_(this),
    279       allow_peephole_optimization_(false),
    280       emit_debug_code_(FLAG_debug_code) {
    281   allow_peephole_optimization_ = FLAG_peephole_optimization;
    282   if (buffer == NULL) {
    283     // Do our own buffer management.
    284     if (buffer_size <= kMinimalBufferSize) {
    285       buffer_size = kMinimalBufferSize;
    286 
    287       if (isolate()->assembler_spare_buffer() != NULL) {
    288         buffer = isolate()->assembler_spare_buffer();
    289         isolate()->set_assembler_spare_buffer(NULL);
    290       }
    291     }
    292     if (buffer == NULL) {
    293       buffer_ = NewArray<byte>(buffer_size);
    294     } else {
    295       buffer_ = static_cast<byte*>(buffer);
    296     }
    297     buffer_size_ = buffer_size;
    298     own_buffer_ = true;
    299 
    300   } else {
    301     // Use externally provided buffer instead.
    302     ASSERT(buffer_size > 0);
    303     buffer_ = static_cast<byte*>(buffer);
    304     buffer_size_ = buffer_size;
    305     own_buffer_ = false;
    306   }
    307 
    308   // Setup buffer pointers.
    309   ASSERT(buffer_ != NULL);
    310   pc_ = buffer_;
    311   reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
    312   num_prinfo_ = 0;
    313   next_buffer_check_ = 0;
    314   const_pool_blocked_nesting_ = 0;
    315   no_const_pool_before_ = 0;
    316   last_const_pool_end_ = 0;
    317   last_bound_pos_ = 0;
    318 }
    319 
    320 
    321 Assembler::~Assembler() {
    322   ASSERT(const_pool_blocked_nesting_ == 0);
    323   if (own_buffer_) {
    324     if (isolate()->assembler_spare_buffer() == NULL &&
    325         buffer_size_ == kMinimalBufferSize) {
    326       isolate()->set_assembler_spare_buffer(buffer_);
    327     } else {
    328       DeleteArray(buffer_);
    329     }
    330   }
    331 }
    332 
    333 
    334 void Assembler::GetCode(CodeDesc* desc) {
    335   // Emit constant pool if necessary.
    336   CheckConstPool(true, false);
    337   ASSERT(num_prinfo_ == 0);
    338 
    339   // Setup code descriptor.
    340   desc->buffer = buffer_;
    341   desc->buffer_size = buffer_size_;
    342   desc->instr_size = pc_offset();
    343   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    344 }
    345 
    346 
    347 void Assembler::Align(int m) {
    348   ASSERT(m >= 4 && IsPowerOf2(m));
    349   while ((pc_offset() & (m - 1)) != 0) {
    350     nop();
    351   }
    352 }
    353 
    354 
    355 void Assembler::CodeTargetAlign() {
    356   // Preferred alignment of jump targets on some ARM chips.
    357   Align(8);
    358 }
    359 
    360 
    361 Condition Assembler::GetCondition(Instr instr) {
    362   return Instruction::ConditionField(instr);
    363 }
    364 
    365 
    366 bool Assembler::IsBranch(Instr instr) {
    367   return (instr & (B27 | B25)) == (B27 | B25);
    368 }
    369 
    370 
    371 int Assembler::GetBranchOffset(Instr instr) {
    372   ASSERT(IsBranch(instr));
    373   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
    374   // with 4 to get the offset in bytes.
    375   return ((instr & kImm24Mask) << 8) >> 6;
    376 }
    377 
    378 
    379 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
    380   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
    381 }
    382 
    383 
    384 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
    385   ASSERT(IsLdrRegisterImmediate(instr));
    386   bool positive = (instr & B23) == B23;
    387   int offset = instr & kOff12Mask;  // Zero extended offset.
    388   return positive ? offset : -offset;
    389 }
    390 
    391 
    392 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
    393   ASSERT(IsLdrRegisterImmediate(instr));
    394   bool positive = offset >= 0;
    395   if (!positive) offset = -offset;
    396   ASSERT(is_uint12(offset));
    397   // Set bit indicating whether the offset should be added.
    398   instr = (instr & ~B23) | (positive ? B23 : 0);
    399   // Set the actual offset.
    400   return (instr & ~kOff12Mask) | offset;
    401 }
    402 
    403 
    404 bool Assembler::IsStrRegisterImmediate(Instr instr) {
    405   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
    406 }
    407 
    408 
    409 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
    410   ASSERT(IsStrRegisterImmediate(instr));
    411   bool positive = offset >= 0;
    412   if (!positive) offset = -offset;
    413   ASSERT(is_uint12(offset));
    414   // Set bit indicating whether the offset should be added.
    415   instr = (instr & ~B23) | (positive ? B23 : 0);
    416   // Set the actual offset.
    417   return (instr & ~kOff12Mask) | offset;
    418 }
    419 
    420 
    421 bool Assembler::IsAddRegisterImmediate(Instr instr) {
    422   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
    423 }
    424 
    425 
    426 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
    427   ASSERT(IsAddRegisterImmediate(instr));
    428   ASSERT(offset >= 0);
    429   ASSERT(is_uint12(offset));
    430   // Set the offset.
    431   return (instr & ~kOff12Mask) | offset;
    432 }
    433 
    434 
    435 Register Assembler::GetRd(Instr instr) {
    436   Register reg;
    437   reg.code_ = Instruction::RdValue(instr);
    438   return reg;
    439 }
    440 
    441 
    442 Register Assembler::GetRn(Instr instr) {
    443   Register reg;
    444   reg.code_ = Instruction::RnValue(instr);
    445   return reg;
    446 }
    447 
    448 
    449 Register Assembler::GetRm(Instr instr) {
    450   Register reg;
    451   reg.code_ = Instruction::RmValue(instr);
    452   return reg;
    453 }
    454 
    455 
    456 bool Assembler::IsPush(Instr instr) {
    457   return ((instr & ~kRdMask) == kPushRegPattern);
    458 }
    459 
    460 
    461 bool Assembler::IsPop(Instr instr) {
    462   return ((instr & ~kRdMask) == kPopRegPattern);
    463 }
    464 
    465 
    466 bool Assembler::IsStrRegFpOffset(Instr instr) {
    467   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
    468 }
    469 
    470 
    471 bool Assembler::IsLdrRegFpOffset(Instr instr) {
    472   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
    473 }
    474 
    475 
    476 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
    477   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
    478 }
    479 
    480 
    481 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
    482   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
    483 }
    484 
    485 
    486 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
    487   // Check the instruction is indeed a
    488   // ldr<cond> <Rd>, [pc +/- offset_12].
    489   return (instr & (kLdrPCMask & ~kCondMask)) == 0x051f0000;
    490 }
    491 
    492 
    493 bool Assembler::IsTstImmediate(Instr instr) {
    494   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    495       (I | TST | S);
    496 }
    497 
    498 
    499 bool Assembler::IsCmpRegister(Instr instr) {
    500   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
    501       (CMP | S);
    502 }
    503 
    504 
    505 bool Assembler::IsCmpImmediate(Instr instr) {
    506   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    507       (I | CMP | S);
    508 }
    509 
    510 
    511 Register Assembler::GetCmpImmediateRegister(Instr instr) {
    512   ASSERT(IsCmpImmediate(instr));
    513   return GetRn(instr);
    514 }
    515 
    516 
    517 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
    518   ASSERT(IsCmpImmediate(instr));
    519   return instr & kOff12Mask;
    520 }
    521 
    522 // Labels refer to positions in the (to be) generated code.
    523 // There are bound, linked, and unused labels.
    524 //
    525 // Bound labels refer to known positions in the already
    526 // generated code. pos() is the position the label refers to.
    527 //
    528 // Linked labels refer to unknown positions in the code
    529 // to be generated; pos() is the position of the last
    530 // instruction using the label.
    531 
    532 
    533 // The link chain is terminated by a negative code position (must be aligned)
    534 const int kEndOfChain = -4;
    535 
    536 
    537 int Assembler::target_at(int pos)  {
    538   Instr instr = instr_at(pos);
    539   if ((instr & ~kImm24Mask) == 0) {
    540     // Emitted label constant, not part of a branch.
    541     return instr - (Code::kHeaderSize - kHeapObjectTag);
    542   }
    543   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    544   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
    545   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
    546       ((instr & B24) != 0)) {
    547     // blx uses bit 24 to encode bit 2 of imm26
    548     imm26 += 2;
    549   }
    550   return pos + kPcLoadDelta + imm26;
    551 }
    552 
    553 
    554 void Assembler::target_at_put(int pos, int target_pos) {
    555   Instr instr = instr_at(pos);
    556   if ((instr & ~kImm24Mask) == 0) {
    557     ASSERT(target_pos == kEndOfChain || target_pos >= 0);
    558     // Emitted label constant, not part of a branch.
    559     // Make label relative to Code* of generated Code object.
    560     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
    561     return;
    562   }
    563   int imm26 = target_pos - (pos + kPcLoadDelta);
    564   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    565   if (Instruction::ConditionField(instr) == kSpecialCondition) {
    566     // blx uses bit 24 to encode bit 2 of imm26
    567     ASSERT((imm26 & 1) == 0);
    568     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
    569   } else {
    570     ASSERT((imm26 & 3) == 0);
    571     instr &= ~kImm24Mask;
    572   }
    573   int imm24 = imm26 >> 2;
    574   ASSERT(is_int24(imm24));
    575   instr_at_put(pos, instr | (imm24 & kImm24Mask));
    576 }
    577 
    578 
    579 void Assembler::print(Label* L) {
    580   if (L->is_unused()) {
    581     PrintF("unused label\n");
    582   } else if (L->is_bound()) {
    583     PrintF("bound label to %d\n", L->pos());
    584   } else if (L->is_linked()) {
    585     Label l = *L;
    586     PrintF("unbound label");
    587     while (l.is_linked()) {
    588       PrintF("@ %d ", l.pos());
    589       Instr instr = instr_at(l.pos());
    590       if ((instr & ~kImm24Mask) == 0) {
    591         PrintF("value\n");
    592       } else {
    593         ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
    594         Condition cond = Instruction::ConditionField(instr);
    595         const char* b;
    596         const char* c;
    597         if (cond == kSpecialCondition) {
    598           b = "blx";
    599           c = "";
    600         } else {
    601           if ((instr & B24) != 0)
    602             b = "bl";
    603           else
    604             b = "b";
    605 
    606           switch (cond) {
    607             case eq: c = "eq"; break;
    608             case ne: c = "ne"; break;
    609             case hs: c = "hs"; break;
    610             case lo: c = "lo"; break;
    611             case mi: c = "mi"; break;
    612             case pl: c = "pl"; break;
    613             case vs: c = "vs"; break;
    614             case vc: c = "vc"; break;
    615             case hi: c = "hi"; break;
    616             case ls: c = "ls"; break;
    617             case ge: c = "ge"; break;
    618             case lt: c = "lt"; break;
    619             case gt: c = "gt"; break;
    620             case le: c = "le"; break;
    621             case al: c = ""; break;
    622             default:
    623               c = "";
    624               UNREACHABLE();
    625           }
    626         }
    627         PrintF("%s%s\n", b, c);
    628       }
    629       next(&l);
    630     }
    631   } else {
    632     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
    633   }
    634 }
    635 
    636 
    637 void Assembler::bind_to(Label* L, int pos) {
    638   ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
    639   while (L->is_linked()) {
    640     int fixup_pos = L->pos();
    641     next(L);  // call next before overwriting link with target at fixup_pos
    642     target_at_put(fixup_pos, pos);
    643   }
    644   L->bind_to(pos);
    645 
    646   // Keep track of the last bound label so we don't eliminate any instructions
    647   // before a bound label.
    648   if (pos > last_bound_pos_)
    649     last_bound_pos_ = pos;
    650 }
    651 
    652 
    653 void Assembler::link_to(Label* L, Label* appendix) {
    654   if (appendix->is_linked()) {
    655     if (L->is_linked()) {
    656       // Append appendix to L's list.
    657       int fixup_pos;
    658       int link = L->pos();
    659       do {
    660         fixup_pos = link;
    661         link = target_at(fixup_pos);
    662       } while (link > 0);
    663       ASSERT(link == kEndOfChain);
    664       target_at_put(fixup_pos, appendix->pos());
    665     } else {
    666       // L is empty, simply use appendix.
    667       *L = *appendix;
    668     }
    669   }
    670   appendix->Unuse();  // appendix should not be used anymore
    671 }
    672 
    673 
    674 void Assembler::bind(Label* L) {
    675   ASSERT(!L->is_bound());  // label can only be bound once
    676   bind_to(L, pc_offset());
    677 }
    678 
    679 
    680 void Assembler::next(Label* L) {
    681   ASSERT(L->is_linked());
    682   int link = target_at(L->pos());
    683   if (link > 0) {
    684     L->link_to(link);
    685   } else {
    686     ASSERT(link == kEndOfChain);
    687     L->Unuse();
    688   }
    689 }
    690 
    691 
    692 static Instr EncodeMovwImmediate(uint32_t immediate) {
    693   ASSERT(immediate < 0x10000);
    694   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
    695 }
    696 
    697 
    698 // Low-level code emission routines depending on the addressing mode.
    699 // If this returns true then you have to use the rotate_imm and immed_8
    700 // that it returns, because it may have already changed the instruction
    701 // to match them!
    702 static bool fits_shifter(uint32_t imm32,
    703                          uint32_t* rotate_imm,
    704                          uint32_t* immed_8,
    705                          Instr* instr) {
    706   // imm32 must be unsigned.
    707   for (int rot = 0; rot < 16; rot++) {
    708     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    709     if ((imm8 <= 0xff)) {
    710       *rotate_imm = rot;
    711       *immed_8 = imm8;
    712       return true;
    713     }
    714   }
    715   // If the opcode is one with a complementary version and the complementary
    716   // immediate fits, change the opcode.
    717   if (instr != NULL) {
    718     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
    719       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    720         *instr ^= kMovMvnFlip;
    721         return true;
    722       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
    723         if (CpuFeatures::IsSupported(ARMv7)) {
    724           if (imm32 < 0x10000) {
    725             *instr ^= kMovwLeaveCCFlip;
    726             *instr |= EncodeMovwImmediate(imm32);
    727             *rotate_imm = *immed_8 = 0;  // Not used for movw.
    728             return true;
    729           }
    730         }
    731       }
    732     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
    733       if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
    734         *instr ^= kCmpCmnFlip;
    735         return true;
    736       }
    737     } else {
    738       Instr alu_insn = (*instr & kALUMask);
    739       if (alu_insn == ADD ||
    740           alu_insn == SUB) {
    741         if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
    742           *instr ^= kAddSubFlip;
    743           return true;
    744         }
    745       } else if (alu_insn == AND ||
    746                  alu_insn == BIC) {
    747         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    748           *instr ^= kAndBicFlip;
    749           return true;
    750         }
    751       }
    752     }
    753   }
    754   return false;
    755 }
    756 
    757 
    758 // We have to use the temporary register for things that can be relocated even
    759 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
    760 // space.  There is no guarantee that the relocated location can be similarly
    761 // encoded.
    762 bool Operand::must_use_constant_pool() const {
    763   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
    764 #ifdef DEBUG
    765     if (!Serializer::enabled()) {
    766       Serializer::TooLateToEnableNow();
    767     }
    768 #endif  // def DEBUG
    769     return Serializer::enabled();
    770   } else if (rmode_ == RelocInfo::NONE) {
    771     return false;
    772   }
    773   return true;
    774 }
    775 
    776 
    777 bool Operand::is_single_instruction(Instr instr) const {
    778   if (rm_.is_valid()) return true;
    779   uint32_t dummy1, dummy2;
    780   if (must_use_constant_pool() ||
    781       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
    782     // The immediate operand cannot be encoded as a shifter operand, or use of
    783     // constant pool is required. For a mov instruction not setting the
    784     // condition code additional instruction conventions can be used.
    785     if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
    786       if (must_use_constant_pool() ||
    787           !CpuFeatures::IsSupported(ARMv7)) {
    788         // mov instruction will be an ldr from constant pool (one instruction).
    789         return true;
    790       } else {
    791         // mov instruction will be a mov or movw followed by movt (two
    792         // instructions).
    793         return false;
    794       }
    795     } else {
    796       // If this is not a mov or mvn instruction there will always an additional
    797       // instructions - either mov or ldr. The mov might actually be two
    798       // instructions mov or movw followed by movt so including the actual
    799       // instruction two or three instructions will be generated.
    800       return false;
    801     }
    802   } else {
    803     // No use of constant pool and the immediate operand can be encoded as a
    804     // shifter operand.
    805     return true;
    806   }
    807 }
    808 
    809 
    810 void Assembler::addrmod1(Instr instr,
    811                          Register rn,
    812                          Register rd,
    813                          const Operand& x) {
    814   CheckBuffer();
    815   ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
    816   if (!x.rm_.is_valid()) {
    817     // Immediate.
    818     uint32_t rotate_imm;
    819     uint32_t immed_8;
    820     if (x.must_use_constant_pool() ||
    821         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
    822       // The immediate operand cannot be encoded as a shifter operand, so load
    823       // it first to register ip and change the original instruction to use ip.
    824       // However, if the original instruction is a 'mov rd, x' (not setting the
    825       // condition code), then replace it with a 'ldr rd, [pc]'.
    826       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
    827       Condition cond = Instruction::ConditionField(instr);
    828       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
    829         if (x.must_use_constant_pool() ||
    830             !CpuFeatures::IsSupported(ARMv7)) {
    831           RecordRelocInfo(x.rmode_, x.imm32_);
    832           ldr(rd, MemOperand(pc, 0), cond);
    833         } else {
    834           // Will probably use movw, will certainly not use constant pool.
    835           mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
    836           movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
    837         }
    838       } else {
    839         // If this is not a mov or mvn instruction we may still be able to avoid
    840         // a constant pool entry by using mvn or movw.
    841         if (!x.must_use_constant_pool() &&
    842             (instr & kMovMvnMask) != kMovMvnPattern) {
    843           mov(ip, x, LeaveCC, cond);
    844         } else {
    845           RecordRelocInfo(x.rmode_, x.imm32_);
    846           ldr(ip, MemOperand(pc, 0), cond);
    847         }
    848         addrmod1(instr, rn, rd, Operand(ip));
    849       }
    850       return;
    851     }
    852     instr |= I | rotate_imm*B8 | immed_8;
    853   } else if (!x.rs_.is_valid()) {
    854     // Immediate shift.
    855     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
    856   } else {
    857     // Register shift.
    858     ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
    859     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
    860   }
    861   emit(instr | rn.code()*B16 | rd.code()*B12);
    862   if (rn.is(pc) || x.rm_.is(pc)) {
    863     // Block constant pool emission for one instruction after reading pc.
    864     BlockConstPoolBefore(pc_offset() + kInstrSize);
    865   }
    866 }
    867 
    868 
    869 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
    870   ASSERT((instr & ~(kCondMask | B | L)) == B26);
    871   int am = x.am_;
    872   if (!x.rm_.is_valid()) {
    873     // Immediate offset.
    874     int offset_12 = x.offset_;
    875     if (offset_12 < 0) {
    876       offset_12 = -offset_12;
    877       am ^= U;
    878     }
    879     if (!is_uint12(offset_12)) {
    880       // Immediate offset cannot be encoded, load it first to register ip
    881       // rn (and rd in a load) should never be ip, or will be trashed.
    882       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    883       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
    884       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
    885       return;
    886     }
    887     ASSERT(offset_12 >= 0);  // no masking needed
    888     instr |= offset_12;
    889   } else {
    890     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
    891     // register offset the constructors make sure than both shift_imm_
    892     // and shift_op_ are initialized.
    893     ASSERT(!x.rm_.is(pc));
    894     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
    895   }
    896   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    897   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
    898 }
    899 
    900 
    901 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
    902   ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
    903   ASSERT(x.rn_.is_valid());
    904   int am = x.am_;
    905   if (!x.rm_.is_valid()) {
    906     // Immediate offset.
    907     int offset_8 = x.offset_;
    908     if (offset_8 < 0) {
    909       offset_8 = -offset_8;
    910       am ^= U;
    911     }
    912     if (!is_uint8(offset_8)) {
    913       // Immediate offset cannot be encoded, load it first to register ip
    914       // rn (and rd in a load) should never be ip, or will be trashed.
    915       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    916       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
    917       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    918       return;
    919     }
    920     ASSERT(offset_8 >= 0);  // no masking needed
    921     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
    922   } else if (x.shift_imm_ != 0) {
    923     // Scaled register offset not supported, load index first
    924     // rn (and rd in a load) should never be ip, or will be trashed.
    925     ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    926     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
    927         Instruction::ConditionField(instr));
    928     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    929     return;
    930   } else {
    931     // Register offset.
    932     ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
    933     instr |= x.rm_.code();
    934   }
    935   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    936   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
    937 }
    938 
    939 
    940 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
    941   ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
    942   ASSERT(rl != 0);
    943   ASSERT(!rn.is(pc));
    944   emit(instr | rn.code()*B16 | rl);
    945 }
    946 
    947 
    948 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
    949   // Unindexed addressing is not encoded by this function.
    950   ASSERT_EQ((B27 | B26),
    951             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
    952   ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
    953   int am = x.am_;
    954   int offset_8 = x.offset_;
    955   ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
    956   offset_8 >>= 2;
    957   if (offset_8 < 0) {
    958     offset_8 = -offset_8;
    959     am ^= U;
    960   }
    961   ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
    962   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    963 
    964   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
    965   if ((am & P) == 0)
    966     am |= W;
    967 
    968   ASSERT(offset_8 >= 0);  // no masking needed
    969   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
    970 }
    971 
    972 
    973 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
    974   int target_pos;
    975   if (L->is_bound()) {
    976     target_pos = L->pos();
    977   } else {
    978     if (L->is_linked()) {
    979       target_pos = L->pos();  // L's link
    980     } else {
    981       target_pos = kEndOfChain;
    982     }
    983     L->link_to(pc_offset());
    984   }
    985 
    986   // Block the emission of the constant pool, since the branch instruction must
    987   // be emitted at the pc offset recorded by the label.
    988   BlockConstPoolBefore(pc_offset() + kInstrSize);
    989   return target_pos - (pc_offset() + kPcLoadDelta);
    990 }
    991 
    992 
    993 void Assembler::label_at_put(Label* L, int at_offset) {
    994   int target_pos;
    995   if (L->is_bound()) {
    996     target_pos = L->pos();
    997   } else {
    998     if (L->is_linked()) {
    999       target_pos = L->pos();  // L's link
   1000     } else {
   1001       target_pos = kEndOfChain;
   1002     }
   1003     L->link_to(at_offset);
   1004     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
   1005   }
   1006 }
   1007 
   1008 
   1009 // Branch instructions.
   1010 void Assembler::b(int branch_offset, Condition cond) {
   1011   ASSERT((branch_offset & 3) == 0);
   1012   int imm24 = branch_offset >> 2;
   1013   ASSERT(is_int24(imm24));
   1014   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
   1015 
   1016   if (cond == al) {
   1017     // Dead code is a good location to emit the constant pool.
   1018     CheckConstPool(false, false);
   1019   }
   1020 }
   1021 
   1022 
   1023 void Assembler::bl(int branch_offset, Condition cond) {
   1024   positions_recorder()->WriteRecordedPositions();
   1025   ASSERT((branch_offset & 3) == 0);
   1026   int imm24 = branch_offset >> 2;
   1027   ASSERT(is_int24(imm24));
   1028   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
   1029 }
   1030 
   1031 
   1032 void Assembler::blx(int branch_offset) {  // v5 and above
   1033   positions_recorder()->WriteRecordedPositions();
   1034   ASSERT((branch_offset & 1) == 0);
   1035   int h = ((branch_offset & 2) >> 1)*B24;
   1036   int imm24 = branch_offset >> 2;
   1037   ASSERT(is_int24(imm24));
   1038   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
   1039 }
   1040 
   1041 
   1042 void Assembler::blx(Register target, Condition cond) {  // v5 and above
   1043   positions_recorder()->WriteRecordedPositions();
   1044   ASSERT(!target.is(pc));
   1045   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
   1046 }
   1047 
   1048 
   1049 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
   1050   positions_recorder()->WriteRecordedPositions();
   1051   ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
   1052   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
   1053 }
   1054 
   1055 
   1056 // Data-processing instructions.
   1057 
   1058 void Assembler::and_(Register dst, Register src1, const Operand& src2,
   1059                      SBit s, Condition cond) {
   1060   addrmod1(cond | AND | s, src1, dst, src2);
   1061 }
   1062 
   1063 
   1064 void Assembler::eor(Register dst, Register src1, const Operand& src2,
   1065                     SBit s, Condition cond) {
   1066   addrmod1(cond | EOR | s, src1, dst, src2);
   1067 }
   1068 
   1069 
   1070 void Assembler::sub(Register dst, Register src1, const Operand& src2,
   1071                     SBit s, Condition cond) {
   1072   addrmod1(cond | SUB | s, src1, dst, src2);
   1073 }
   1074 
   1075 
   1076 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
   1077                     SBit s, Condition cond) {
   1078   addrmod1(cond | RSB | s, src1, dst, src2);
   1079 }
   1080 
   1081 
   1082 void Assembler::add(Register dst, Register src1, const Operand& src2,
   1083                     SBit s, Condition cond) {
   1084   addrmod1(cond | ADD | s, src1, dst, src2);
   1085 
   1086   // Eliminate pattern: push(r), pop()
   1087   //   str(src, MemOperand(sp, 4, NegPreIndex), al);
   1088   //   add(sp, sp, Operand(kPointerSize));
   1089   // Both instructions can be eliminated.
   1090   if (can_peephole_optimize(2) &&
   1091       // Pattern.
   1092       instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
   1093       (instr_at(pc_ - 2 * kInstrSize) & ~kRdMask) == kPushRegPattern) {
   1094     pc_ -= 2 * kInstrSize;
   1095     if (FLAG_print_peephole_optimization) {
   1096       PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
   1097     }
   1098   }
   1099 }
   1100 
   1101 
   1102 void Assembler::adc(Register dst, Register src1, const Operand& src2,
   1103                     SBit s, Condition cond) {
   1104   addrmod1(cond | ADC | s, src1, dst, src2);
   1105 }
   1106 
   1107 
   1108 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
   1109                     SBit s, Condition cond) {
   1110   addrmod1(cond | SBC | s, src1, dst, src2);
   1111 }
   1112 
   1113 
   1114 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
   1115                     SBit s, Condition cond) {
   1116   addrmod1(cond | RSC | s, src1, dst, src2);
   1117 }
   1118 
   1119 
   1120 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
   1121   addrmod1(cond | TST | S, src1, r0, src2);
   1122 }
   1123 
   1124 
   1125 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
   1126   addrmod1(cond | TEQ | S, src1, r0, src2);
   1127 }
   1128 
   1129 
   1130 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
   1131   addrmod1(cond | CMP | S, src1, r0, src2);
   1132 }
   1133 
   1134 
   1135 void Assembler::cmp_raw_immediate(
   1136     Register src, int raw_immediate, Condition cond) {
   1137   ASSERT(is_uint12(raw_immediate));
   1138   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
   1139 }
   1140 
   1141 
   1142 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
   1143   addrmod1(cond | CMN | S, src1, r0, src2);
   1144 }
   1145 
   1146 
   1147 void Assembler::orr(Register dst, Register src1, const Operand& src2,
   1148                     SBit s, Condition cond) {
   1149   addrmod1(cond | ORR | s, src1, dst, src2);
   1150 }
   1151 
   1152 
   1153 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
   1154   if (dst.is(pc)) {
   1155     positions_recorder()->WriteRecordedPositions();
   1156   }
   1157   // Don't allow nop instructions in the form mov rn, rn to be generated using
   1158   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
   1159   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
   1160   ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
   1161   addrmod1(cond | MOV | s, r0, dst, src);
   1162 }
   1163 
   1164 
   1165 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
   1166   ASSERT(immediate < 0x10000);
   1167   mov(reg, Operand(immediate), LeaveCC, cond);
   1168 }
   1169 
   1170 
   1171 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
   1172   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1173 }
   1174 
   1175 
   1176 void Assembler::bic(Register dst, Register src1, const Operand& src2,
   1177                     SBit s, Condition cond) {
   1178   addrmod1(cond | BIC | s, src1, dst, src2);
   1179 }
   1180 
   1181 
   1182 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
   1183   addrmod1(cond | MVN | s, r0, dst, src);
   1184 }
   1185 
   1186 
   1187 // Multiply instructions.
   1188 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
   1189                     SBit s, Condition cond) {
   1190   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1191   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
   1192        src2.code()*B8 | B7 | B4 | src1.code());
   1193 }
   1194 
   1195 
   1196 void Assembler::mul(Register dst, Register src1, Register src2,
   1197                     SBit s, Condition cond) {
   1198   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1199   // dst goes in bits 16-19 for this instruction!
   1200   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
   1201 }
   1202 
   1203 
   1204 void Assembler::smlal(Register dstL,
   1205                       Register dstH,
   1206                       Register src1,
   1207                       Register src2,
   1208                       SBit s,
   1209                       Condition cond) {
   1210   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1211   ASSERT(!dstL.is(dstH));
   1212   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1213        src2.code()*B8 | B7 | B4 | src1.code());
   1214 }
   1215 
   1216 
   1217 void Assembler::smull(Register dstL,
   1218                       Register dstH,
   1219                       Register src1,
   1220                       Register src2,
   1221                       SBit s,
   1222                       Condition cond) {
   1223   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1224   ASSERT(!dstL.is(dstH));
   1225   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
   1226        src2.code()*B8 | B7 | B4 | src1.code());
   1227 }
   1228 
   1229 
   1230 void Assembler::umlal(Register dstL,
   1231                       Register dstH,
   1232                       Register src1,
   1233                       Register src2,
   1234                       SBit s,
   1235                       Condition cond) {
   1236   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1237   ASSERT(!dstL.is(dstH));
   1238   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1239        src2.code()*B8 | B7 | B4 | src1.code());
   1240 }
   1241 
   1242 
   1243 void Assembler::umull(Register dstL,
   1244                       Register dstH,
   1245                       Register src1,
   1246                       Register src2,
   1247                       SBit s,
   1248                       Condition cond) {
   1249   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1250   ASSERT(!dstL.is(dstH));
   1251   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
   1252        src2.code()*B8 | B7 | B4 | src1.code());
   1253 }
   1254 
   1255 
   1256 // Miscellaneous arithmetic instructions.
   1257 void Assembler::clz(Register dst, Register src, Condition cond) {
   1258   // v5 and above.
   1259   ASSERT(!dst.is(pc) && !src.is(pc));
   1260   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
   1261        15*B8 | CLZ | src.code());
   1262 }
   1263 
   1264 
   1265 // Saturating instructions.
   1266 
   1267 // Unsigned saturate.
   1268 void Assembler::usat(Register dst,
   1269                      int satpos,
   1270                      const Operand& src,
   1271                      Condition cond) {
   1272   // v6 and above.
   1273   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1274   ASSERT(!dst.is(pc) && !src.rm_.is(pc));
   1275   ASSERT((satpos >= 0) && (satpos <= 31));
   1276   ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
   1277   ASSERT(src.rs_.is(no_reg));
   1278 
   1279   int sh = 0;
   1280   if (src.shift_op_ == ASR) {
   1281       sh = 1;
   1282   }
   1283 
   1284   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
   1285        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
   1286 }
   1287 
   1288 
   1289 // Bitfield manipulation instructions.
   1290 
   1291 // Unsigned bit field extract.
   1292 // Extracts #width adjacent bits from position #lsb in a register, and
   1293 // writes them to the low bits of a destination register.
   1294 //   ubfx dst, src, #lsb, #width
   1295 void Assembler::ubfx(Register dst,
   1296                      Register src,
   1297                      int lsb,
   1298                      int width,
   1299                      Condition cond) {
   1300   // v7 and above.
   1301   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1302   ASSERT(!dst.is(pc) && !src.is(pc));
   1303   ASSERT((lsb >= 0) && (lsb <= 31));
   1304   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1305   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1306        lsb*B7 | B6 | B4 | src.code());
   1307 }
   1308 
   1309 
   1310 // Signed bit field extract.
   1311 // Extracts #width adjacent bits from position #lsb in a register, and
   1312 // writes them to the low bits of a destination register. The extracted
   1313 // value is sign extended to fill the destination register.
   1314 //   sbfx dst, src, #lsb, #width
   1315 void Assembler::sbfx(Register dst,
   1316                      Register src,
   1317                      int lsb,
   1318                      int width,
   1319                      Condition cond) {
   1320   // v7 and above.
   1321   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1322   ASSERT(!dst.is(pc) && !src.is(pc));
   1323   ASSERT((lsb >= 0) && (lsb <= 31));
   1324   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1325   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1326        lsb*B7 | B6 | B4 | src.code());
   1327 }
   1328 
   1329 
   1330 // Bit field clear.
   1331 // Sets #width adjacent bits at position #lsb in the destination register
   1332 // to zero, preserving the value of the other bits.
   1333 //   bfc dst, #lsb, #width
   1334 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
   1335   // v7 and above.
   1336   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1337   ASSERT(!dst.is(pc));
   1338   ASSERT((lsb >= 0) && (lsb <= 31));
   1339   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1340   int msb = lsb + width - 1;
   1341   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
   1342 }
   1343 
   1344 
   1345 // Bit field insert.
   1346 // Inserts #width adjacent bits from the low bits of the source register
   1347 // into position #lsb of the destination register.
   1348 //   bfi dst, src, #lsb, #width
   1349 void Assembler::bfi(Register dst,
   1350                     Register src,
   1351                     int lsb,
   1352                     int width,
   1353                     Condition cond) {
   1354   // v7 and above.
   1355   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1356   ASSERT(!dst.is(pc) && !src.is(pc));
   1357   ASSERT((lsb >= 0) && (lsb <= 31));
   1358   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1359   int msb = lsb + width - 1;
   1360   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
   1361        src.code());
   1362 }
   1363 
   1364 
   1365 // Status register access instructions.
   1366 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
   1367   ASSERT(!dst.is(pc));
   1368   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
   1369 }
   1370 
   1371 
   1372 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
   1373                     Condition cond) {
   1374   ASSERT(fields >= B16 && fields < B20);  // at least one field set
   1375   Instr instr;
   1376   if (!src.rm_.is_valid()) {
   1377     // Immediate.
   1378     uint32_t rotate_imm;
   1379     uint32_t immed_8;
   1380     if (src.must_use_constant_pool() ||
   1381         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
   1382       // Immediate operand cannot be encoded, load it first to register ip.
   1383       RecordRelocInfo(src.rmode_, src.imm32_);
   1384       ldr(ip, MemOperand(pc, 0), cond);
   1385       msr(fields, Operand(ip), cond);
   1386       return;
   1387     }
   1388     instr = I | rotate_imm*B8 | immed_8;
   1389   } else {
   1390     ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
   1391     instr = src.rm_.code();
   1392   }
   1393   emit(cond | instr | B24 | B21 | fields | 15*B12);
   1394 }
   1395 
   1396 
   1397 // Load/Store instructions.
   1398 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
   1399   if (dst.is(pc)) {
   1400     positions_recorder()->WriteRecordedPositions();
   1401   }
   1402   addrmod2(cond | B26 | L, dst, src);
   1403 
   1404   // Eliminate pattern: push(ry), pop(rx)
   1405   //   str(ry, MemOperand(sp, 4, NegPreIndex), al)
   1406   //   ldr(rx, MemOperand(sp, 4, PostIndex), al)
   1407   // Both instructions can be eliminated if ry = rx.
   1408   // If ry != rx, a register copy from ry to rx is inserted
   1409   // after eliminating the push and the pop instructions.
   1410   if (can_peephole_optimize(2)) {
   1411     Instr push_instr = instr_at(pc_ - 2 * kInstrSize);
   1412     Instr pop_instr = instr_at(pc_ - 1 * kInstrSize);
   1413 
   1414     if (IsPush(push_instr) && IsPop(pop_instr)) {
   1415       if (Instruction::RdValue(pop_instr) != Instruction::RdValue(push_instr)) {
   1416         // For consecutive push and pop on different registers,
   1417         // we delete both the push & pop and insert a register move.
   1418         // push ry, pop rx --> mov rx, ry
   1419         Register reg_pushed, reg_popped;
   1420         reg_pushed = GetRd(push_instr);
   1421         reg_popped = GetRd(pop_instr);
   1422         pc_ -= 2 * kInstrSize;
   1423         // Insert a mov instruction, which is better than a pair of push & pop
   1424         mov(reg_popped, reg_pushed);
   1425         if (FLAG_print_peephole_optimization) {
   1426           PrintF("%x push/pop (diff reg) replaced by a reg move\n",
   1427                  pc_offset());
   1428         }
   1429       } else {
   1430         // For consecutive push and pop on the same register,
   1431         // both the push and the pop can be deleted.
   1432         pc_ -= 2 * kInstrSize;
   1433         if (FLAG_print_peephole_optimization) {
   1434           PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
   1435         }
   1436       }
   1437     }
   1438   }
   1439 
   1440   if (can_peephole_optimize(2)) {
   1441     Instr str_instr = instr_at(pc_ - 2 * kInstrSize);
   1442     Instr ldr_instr = instr_at(pc_ - 1 * kInstrSize);
   1443 
   1444     if ((IsStrRegFpOffset(str_instr) &&
   1445          IsLdrRegFpOffset(ldr_instr)) ||
   1446        (IsStrRegFpNegOffset(str_instr) &&
   1447          IsLdrRegFpNegOffset(ldr_instr))) {
   1448       if ((ldr_instr & kLdrStrInstrArgumentMask) ==
   1449             (str_instr & kLdrStrInstrArgumentMask)) {
   1450         // Pattern: Ldr/str same fp+offset, same register.
   1451         //
   1452         // The following:
   1453         // str rx, [fp, #-12]
   1454         // ldr rx, [fp, #-12]
   1455         //
   1456         // Becomes:
   1457         // str rx, [fp, #-12]
   1458 
   1459         pc_ -= 1 * kInstrSize;
   1460         if (FLAG_print_peephole_optimization) {
   1461           PrintF("%x str/ldr (fp + same offset), same reg\n", pc_offset());
   1462         }
   1463       } else if ((ldr_instr & kLdrStrOffsetMask) ==
   1464                  (str_instr & kLdrStrOffsetMask)) {
   1465         // Pattern: Ldr/str same fp+offset, different register.
   1466         //
   1467         // The following:
   1468         // str rx, [fp, #-12]
   1469         // ldr ry, [fp, #-12]
   1470         //
   1471         // Becomes:
   1472         // str rx, [fp, #-12]
   1473         // mov ry, rx
   1474 
   1475         Register reg_stored, reg_loaded;
   1476         reg_stored = GetRd(str_instr);
   1477         reg_loaded = GetRd(ldr_instr);
   1478         pc_ -= 1 * kInstrSize;
   1479         // Insert a mov instruction, which is better than ldr.
   1480         mov(reg_loaded, reg_stored);
   1481         if (FLAG_print_peephole_optimization) {
   1482           PrintF("%x str/ldr (fp + same offset), diff reg \n", pc_offset());
   1483         }
   1484       }
   1485     }
   1486   }
   1487 
   1488   if (can_peephole_optimize(3)) {
   1489     Instr mem_write_instr = instr_at(pc_ - 3 * kInstrSize);
   1490     Instr ldr_instr = instr_at(pc_ - 2 * kInstrSize);
   1491     Instr mem_read_instr = instr_at(pc_ - 1 * kInstrSize);
   1492     if (IsPush(mem_write_instr) &&
   1493         IsPop(mem_read_instr)) {
   1494       if ((IsLdrRegFpOffset(ldr_instr) ||
   1495         IsLdrRegFpNegOffset(ldr_instr))) {
   1496         if (Instruction::RdValue(mem_write_instr) ==
   1497                                   Instruction::RdValue(mem_read_instr)) {
   1498           // Pattern: push & pop from/to same register,
   1499           // with a fp+offset ldr in between
   1500           //
   1501           // The following:
   1502           // str rx, [sp, #-4]!
   1503           // ldr rz, [fp, #-24]
   1504           // ldr rx, [sp], #+4
   1505           //
   1506           // Becomes:
   1507           // if(rx == rz)
   1508           //   delete all
   1509           // else
   1510           //   ldr rz, [fp, #-24]
   1511 
   1512           if (Instruction::RdValue(mem_write_instr) ==
   1513               Instruction::RdValue(ldr_instr)) {
   1514             pc_ -= 3 * kInstrSize;
   1515           } else {
   1516             pc_ -= 3 * kInstrSize;
   1517             // Reinsert back the ldr rz.
   1518             emit(ldr_instr);
   1519           }
   1520           if (FLAG_print_peephole_optimization) {
   1521             PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
   1522           }
   1523         } else {
   1524           // Pattern: push & pop from/to different registers
   1525           // with a fp+offset ldr in between
   1526           //
   1527           // The following:
   1528           // str rx, [sp, #-4]!
   1529           // ldr rz, [fp, #-24]
   1530           // ldr ry, [sp], #+4
   1531           //
   1532           // Becomes:
   1533           // if(ry == rz)
   1534           //   mov ry, rx;
   1535           // else if(rx != rz)
   1536           //   ldr rz, [fp, #-24]
   1537           //   mov ry, rx
   1538           // else if((ry != rz) || (rx == rz)) becomes:
   1539           //   mov ry, rx
   1540           //   ldr rz, [fp, #-24]
   1541 
   1542           Register reg_pushed, reg_popped;
   1543           if (Instruction::RdValue(mem_read_instr) ==
   1544               Instruction::RdValue(ldr_instr)) {
   1545             reg_pushed = GetRd(mem_write_instr);
   1546             reg_popped = GetRd(mem_read_instr);
   1547             pc_ -= 3 * kInstrSize;
   1548             mov(reg_popped, reg_pushed);
   1549           } else if (Instruction::RdValue(mem_write_instr) !=
   1550                      Instruction::RdValue(ldr_instr)) {
   1551             reg_pushed = GetRd(mem_write_instr);
   1552             reg_popped = GetRd(mem_read_instr);
   1553             pc_ -= 3 * kInstrSize;
   1554             emit(ldr_instr);
   1555             mov(reg_popped, reg_pushed);
   1556           } else if ((Instruction::RdValue(mem_read_instr) !=
   1557                       Instruction::RdValue(ldr_instr)) ||
   1558                      (Instruction::RdValue(mem_write_instr) ==
   1559                       Instruction::RdValue(ldr_instr))) {
   1560             reg_pushed = GetRd(mem_write_instr);
   1561             reg_popped = GetRd(mem_read_instr);
   1562             pc_ -= 3 * kInstrSize;
   1563             mov(reg_popped, reg_pushed);
   1564             emit(ldr_instr);
   1565           }
   1566           if (FLAG_print_peephole_optimization) {
   1567             PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
   1568           }
   1569         }
   1570       }
   1571     }
   1572   }
   1573 }
   1574 
   1575 
   1576 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
   1577   addrmod2(cond | B26, src, dst);
   1578 
   1579   // Eliminate pattern: pop(), push(r)
   1580   //     add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
   1581   // ->  str r, [sp, 0], al
   1582   if (can_peephole_optimize(2) &&
   1583      // Pattern.
   1584      instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
   1585      instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
   1586     pc_ -= 2 * kInstrSize;
   1587     emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
   1588     if (FLAG_print_peephole_optimization) {
   1589       PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
   1590     }
   1591   }
   1592 }
   1593 
   1594 
   1595 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
   1596   addrmod2(cond | B26 | B | L, dst, src);
   1597 }
   1598 
   1599 
   1600 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
   1601   addrmod2(cond | B26 | B, src, dst);
   1602 }
   1603 
   1604 
   1605 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
   1606   addrmod3(cond | L | B7 | H | B4, dst, src);
   1607 }
   1608 
   1609 
   1610 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
   1611   addrmod3(cond | B7 | H | B4, src, dst);
   1612 }
   1613 
   1614 
   1615 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
   1616   addrmod3(cond | L | B7 | S6 | B4, dst, src);
   1617 }
   1618 
   1619 
   1620 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
   1621   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
   1622 }
   1623 
   1624 
   1625 void Assembler::ldrd(Register dst1, Register dst2,
   1626                      const MemOperand& src, Condition cond) {
   1627   ASSERT(CpuFeatures::IsEnabled(ARMv7));
   1628   ASSERT(src.rm().is(no_reg));
   1629   ASSERT(!dst1.is(lr));  // r14.
   1630   ASSERT_EQ(0, dst1.code() % 2);
   1631   ASSERT_EQ(dst1.code() + 1, dst2.code());
   1632   addrmod3(cond | B7 | B6 | B4, dst1, src);
   1633 }
   1634 
   1635 
   1636 void Assembler::strd(Register src1, Register src2,
   1637                      const MemOperand& dst, Condition cond) {
   1638   ASSERT(dst.rm().is(no_reg));
   1639   ASSERT(!src1.is(lr));  // r14.
   1640   ASSERT_EQ(0, src1.code() % 2);
   1641   ASSERT_EQ(src1.code() + 1, src2.code());
   1642   ASSERT(CpuFeatures::IsEnabled(ARMv7));
   1643   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
   1644 }
   1645 
   1646 // Load/Store multiple instructions.
   1647 void Assembler::ldm(BlockAddrMode am,
   1648                     Register base,
   1649                     RegList dst,
   1650                     Condition cond) {
   1651   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
   1652   ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
   1653 
   1654   addrmod4(cond | B27 | am | L, base, dst);
   1655 
   1656   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
   1657   if (cond == al && (dst & pc.bit()) != 0) {
   1658     // There is a slight chance that the ldm instruction was actually a call,
   1659     // in which case it would be wrong to return into the constant pool; we
   1660     // recognize this case by checking if the emission of the pool was blocked
   1661     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
   1662     // the case, we emit a jump over the pool.
   1663     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
   1664   }
   1665 }
   1666 
   1667 
   1668 void Assembler::stm(BlockAddrMode am,
   1669                     Register base,
   1670                     RegList src,
   1671                     Condition cond) {
   1672   addrmod4(cond | B27 | am, base, src);
   1673 }
   1674 
   1675 
   1676 // Exception-generating instructions and debugging support.
   1677 // Stops with a non-negative code less than kNumOfWatchedStops support
   1678 // enabling/disabling and a counter feature. See simulator-arm.h .
   1679 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
   1680 #ifndef __arm__
   1681   ASSERT(code >= kDefaultStopCode);
   1682   // The Simulator will handle the stop instruction and get the message address.
   1683   // It expects to find the address just after the svc instruction.
   1684   BlockConstPoolFor(2);
   1685   if (code >= 0) {
   1686     svc(kStopCode + code, cond);
   1687   } else {
   1688     svc(kStopCode + kMaxStopCode, cond);
   1689   }
   1690   emit(reinterpret_cast<Instr>(msg));
   1691 #else  // def __arm__
   1692 #ifdef CAN_USE_ARMV5_INSTRUCTIONS
   1693   if (cond != al) {
   1694     Label skip;
   1695     b(&skip, NegateCondition(cond));
   1696     bkpt(0);
   1697     bind(&skip);
   1698   } else {
   1699     bkpt(0);
   1700   }
   1701 #else  // ndef CAN_USE_ARMV5_INSTRUCTIONS
   1702   svc(0x9f0001, cond);
   1703 #endif  // ndef CAN_USE_ARMV5_INSTRUCTIONS
   1704 #endif  // def __arm__
   1705 }
   1706 
   1707 
   1708 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
   1709   ASSERT(is_uint16(imm16));
   1710   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
   1711 }
   1712 
   1713 
   1714 void Assembler::svc(uint32_t imm24, Condition cond) {
   1715   ASSERT(is_uint24(imm24));
   1716   emit(cond | 15*B24 | imm24);
   1717 }
   1718 
   1719 
   1720 // Coprocessor instructions.
   1721 void Assembler::cdp(Coprocessor coproc,
   1722                     int opcode_1,
   1723                     CRegister crd,
   1724                     CRegister crn,
   1725                     CRegister crm,
   1726                     int opcode_2,
   1727                     Condition cond) {
   1728   ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
   1729   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
   1730        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
   1731 }
   1732 
   1733 
   1734 void Assembler::cdp2(Coprocessor coproc,
   1735                      int opcode_1,
   1736                      CRegister crd,
   1737                      CRegister crn,
   1738                      CRegister crm,
   1739                      int opcode_2) {  // v5 and above
   1740   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
   1741 }
   1742 
   1743 
   1744 void Assembler::mcr(Coprocessor coproc,
   1745                     int opcode_1,
   1746                     Register rd,
   1747                     CRegister crn,
   1748                     CRegister crm,
   1749                     int opcode_2,
   1750                     Condition cond) {
   1751   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   1752   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
   1753        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   1754 }
   1755 
   1756 
   1757 void Assembler::mcr2(Coprocessor coproc,
   1758                      int opcode_1,
   1759                      Register rd,
   1760                      CRegister crn,
   1761                      CRegister crm,
   1762                      int opcode_2) {  // v5 and above
   1763   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   1764 }
   1765 
   1766 
   1767 void Assembler::mrc(Coprocessor coproc,
   1768                     int opcode_1,
   1769                     Register rd,
   1770                     CRegister crn,
   1771                     CRegister crm,
   1772                     int opcode_2,
   1773                     Condition cond) {
   1774   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   1775   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
   1776        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   1777 }
   1778 
   1779 
   1780 void Assembler::mrc2(Coprocessor coproc,
   1781                      int opcode_1,
   1782                      Register rd,
   1783                      CRegister crn,
   1784                      CRegister crm,
   1785                      int opcode_2) {  // v5 and above
   1786   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   1787 }
   1788 
   1789 
   1790 void Assembler::ldc(Coprocessor coproc,
   1791                     CRegister crd,
   1792                     const MemOperand& src,
   1793                     LFlag l,
   1794                     Condition cond) {
   1795   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
   1796 }
   1797 
   1798 
   1799 void Assembler::ldc(Coprocessor coproc,
   1800                     CRegister crd,
   1801                     Register rn,
   1802                     int option,
   1803                     LFlag l,
   1804                     Condition cond) {
   1805   // Unindexed addressing.
   1806   ASSERT(is_uint8(option));
   1807   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
   1808        coproc*B8 | (option & 255));
   1809 }
   1810 
   1811 
   1812 void Assembler::ldc2(Coprocessor coproc,
   1813                      CRegister crd,
   1814                      const MemOperand& src,
   1815                      LFlag l) {  // v5 and above
   1816   ldc(coproc, crd, src, l, kSpecialCondition);
   1817 }
   1818 
   1819 
   1820 void Assembler::ldc2(Coprocessor coproc,
   1821                      CRegister crd,
   1822                      Register rn,
   1823                      int option,
   1824                      LFlag l) {  // v5 and above
   1825   ldc(coproc, crd, rn, option, l, kSpecialCondition);
   1826 }
   1827 
   1828 
   1829 // Support for VFP.
   1830 
   1831 void Assembler::vldr(const DwVfpRegister dst,
   1832                      const Register base,
   1833                      int offset,
   1834                      const Condition cond) {
   1835   // Ddst = MEM(Rbase + offset).
   1836   // Instruction details available in ARM DDI 0406A, A8-628.
   1837   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   1838   // Vdst(15-12) | 1011(11-8) | offset
   1839   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1840   int u = 1;
   1841   if (offset < 0) {
   1842     offset = -offset;
   1843     u = 0;
   1844   }
   1845 
   1846   ASSERT(offset >= 0);
   1847   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1848     emit(cond | u*B23 | 0xD1*B20 | base.code()*B16 | dst.code()*B12 |
   1849          0xB*B8 | ((offset / 4) & 255));
   1850   } else {
   1851     // Larger offsets must be handled by computing the correct address
   1852     // in the ip register.
   1853     ASSERT(!base.is(ip));
   1854     if (u == 1) {
   1855       add(ip, base, Operand(offset));
   1856     } else {
   1857       sub(ip, base, Operand(offset));
   1858     }
   1859     emit(cond | 0xD1*B20 | ip.code()*B16 | dst.code()*B12 | 0xB*B8);
   1860   }
   1861 }
   1862 
   1863 
   1864 void Assembler::vldr(const DwVfpRegister dst,
   1865                      const MemOperand& operand,
   1866                      const Condition cond) {
   1867   ASSERT(!operand.rm().is_valid());
   1868   ASSERT(operand.am_ == Offset);
   1869   vldr(dst, operand.rn(), operand.offset(), cond);
   1870 }
   1871 
   1872 
   1873 void Assembler::vldr(const SwVfpRegister dst,
   1874                      const Register base,
   1875                      int offset,
   1876                      const Condition cond) {
   1877   // Sdst = MEM(Rbase + offset).
   1878   // Instruction details available in ARM DDI 0406A, A8-628.
   1879   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   1880   // Vdst(15-12) | 1010(11-8) | offset
   1881   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1882   int u = 1;
   1883   if (offset < 0) {
   1884     offset = -offset;
   1885     u = 0;
   1886   }
   1887   int sd, d;
   1888   dst.split_code(&sd, &d);
   1889   ASSERT(offset >= 0);
   1890 
   1891   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1892   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
   1893        0xA*B8 | ((offset / 4) & 255));
   1894   } else {
   1895     // Larger offsets must be handled by computing the correct address
   1896     // in the ip register.
   1897     ASSERT(!base.is(ip));
   1898     if (u == 1) {
   1899       add(ip, base, Operand(offset));
   1900     } else {
   1901       sub(ip, base, Operand(offset));
   1902     }
   1903     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   1904   }
   1905 }
   1906 
   1907 
   1908 void Assembler::vldr(const SwVfpRegister dst,
   1909                      const MemOperand& operand,
   1910                      const Condition cond) {
   1911   ASSERT(!operand.rm().is_valid());
   1912   ASSERT(operand.am_ == Offset);
   1913   vldr(dst, operand.rn(), operand.offset(), cond);
   1914 }
   1915 
   1916 
   1917 void Assembler::vstr(const DwVfpRegister src,
   1918                      const Register base,
   1919                      int offset,
   1920                      const Condition cond) {
   1921   // MEM(Rbase + offset) = Dsrc.
   1922   // Instruction details available in ARM DDI 0406A, A8-786.
   1923   // cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
   1924   // Vsrc(15-12) | 1011(11-8) | (offset/4)
   1925   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1926   int u = 1;
   1927   if (offset < 0) {
   1928     offset = -offset;
   1929     u = 0;
   1930   }
   1931   ASSERT(offset >= 0);
   1932   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1933     emit(cond | u*B23 | 0xD0*B20 | base.code()*B16 | src.code()*B12 |
   1934          0xB*B8 | ((offset / 4) & 255));
   1935   } else {
   1936     // Larger offsets must be handled by computing the correct address
   1937     // in the ip register.
   1938     ASSERT(!base.is(ip));
   1939     if (u == 1) {
   1940       add(ip, base, Operand(offset));
   1941     } else {
   1942       sub(ip, base, Operand(offset));
   1943     }
   1944     emit(cond | 0xD0*B20 | ip.code()*B16 | src.code()*B12 | 0xB*B8);
   1945   }
   1946 }
   1947 
   1948 
   1949 void Assembler::vstr(const DwVfpRegister src,
   1950                      const MemOperand& operand,
   1951                      const Condition cond) {
   1952   ASSERT(!operand.rm().is_valid());
   1953   ASSERT(operand.am_ == Offset);
   1954   vstr(src, operand.rn(), operand.offset(), cond);
   1955 }
   1956 
   1957 
   1958 void Assembler::vstr(const SwVfpRegister src,
   1959                      const Register base,
   1960                      int offset,
   1961                      const Condition cond) {
   1962   // MEM(Rbase + offset) = SSrc.
   1963   // Instruction details available in ARM DDI 0406A, A8-786.
   1964   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
   1965   // Vdst(15-12) | 1010(11-8) | (offset/4)
   1966   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1967   int u = 1;
   1968   if (offset < 0) {
   1969     offset = -offset;
   1970     u = 0;
   1971   }
   1972   int sd, d;
   1973   src.split_code(&sd, &d);
   1974   ASSERT(offset >= 0);
   1975   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1976     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
   1977          0xA*B8 | ((offset / 4) & 255));
   1978   } else {
   1979     // Larger offsets must be handled by computing the correct address
   1980     // in the ip register.
   1981     ASSERT(!base.is(ip));
   1982     if (u == 1) {
   1983       add(ip, base, Operand(offset));
   1984     } else {
   1985       sub(ip, base, Operand(offset));
   1986     }
   1987     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   1988   }
   1989 }
   1990 
   1991 
   1992 void Assembler::vstr(const SwVfpRegister src,
   1993                      const MemOperand& operand,
   1994                      const Condition cond) {
   1995   ASSERT(!operand.rm().is_valid());
   1996   ASSERT(operand.am_ == Offset);
   1997   vldr(src, operand.rn(), operand.offset(), cond);
   1998 }
   1999 
   2000 
   2001 void  Assembler::vldm(BlockAddrMode am,
   2002                       Register base,
   2003                       DwVfpRegister first,
   2004                       DwVfpRegister last,
   2005                       Condition cond) {
   2006   // Instruction details available in ARM DDI 0406A, A8-626.
   2007   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2008   // first(15-12) | 1010(11-8) | (count * 2)
   2009   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2010   ASSERT_LE(first.code(), last.code());
   2011   ASSERT(am == ia || am == ia_w || am == db_w);
   2012   ASSERT(!base.is(pc));
   2013 
   2014   int sd, d;
   2015   first.split_code(&sd, &d);
   2016   int count = last.code() - first.code() + 1;
   2017   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2018        0xB*B8 | count*2);
   2019 }
   2020 
   2021 
   2022 void  Assembler::vstm(BlockAddrMode am,
   2023                       Register base,
   2024                       DwVfpRegister first,
   2025                       DwVfpRegister last,
   2026                       Condition cond) {
   2027   // Instruction details available in ARM DDI 0406A, A8-784.
   2028   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2029   // first(15-12) | 1011(11-8) | (count * 2)
   2030   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2031   ASSERT_LE(first.code(), last.code());
   2032   ASSERT(am == ia || am == ia_w || am == db_w);
   2033   ASSERT(!base.is(pc));
   2034 
   2035   int sd, d;
   2036   first.split_code(&sd, &d);
   2037   int count = last.code() - first.code() + 1;
   2038   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2039        0xB*B8 | count*2);
   2040 }
   2041 
   2042 void  Assembler::vldm(BlockAddrMode am,
   2043                       Register base,
   2044                       SwVfpRegister first,
   2045                       SwVfpRegister last,
   2046                       Condition cond) {
   2047   // Instruction details available in ARM DDI 0406A, A8-626.
   2048   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2049   // first(15-12) | 1010(11-8) | (count/2)
   2050   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2051   ASSERT_LE(first.code(), last.code());
   2052   ASSERT(am == ia || am == ia_w || am == db_w);
   2053   ASSERT(!base.is(pc));
   2054 
   2055   int sd, d;
   2056   first.split_code(&sd, &d);
   2057   int count = last.code() - first.code() + 1;
   2058   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2059        0xA*B8 | count);
   2060 }
   2061 
   2062 
   2063 void  Assembler::vstm(BlockAddrMode am,
   2064                       Register base,
   2065                       SwVfpRegister first,
   2066                       SwVfpRegister last,
   2067                       Condition cond) {
   2068   // Instruction details available in ARM DDI 0406A, A8-784.
   2069   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2070   // first(15-12) | 1011(11-8) | (count/2)
   2071   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2072   ASSERT_LE(first.code(), last.code());
   2073   ASSERT(am == ia || am == ia_w || am == db_w);
   2074   ASSERT(!base.is(pc));
   2075 
   2076   int sd, d;
   2077   first.split_code(&sd, &d);
   2078   int count = last.code() - first.code() + 1;
   2079   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2080        0xA*B8 | count);
   2081 }
   2082 
   2083 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
   2084   uint64_t i;
   2085   memcpy(&i, &d, 8);
   2086 
   2087   *lo = i & 0xffffffff;
   2088   *hi = i >> 32;
   2089 }
   2090 
   2091 // Only works for little endian floating point formats.
   2092 // We don't support VFP on the mixed endian floating point platform.
   2093 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
   2094   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2095 
   2096   // VMOV can accept an immediate of the form:
   2097   //
   2098   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
   2099   //
   2100   // The immediate is encoded using an 8-bit quantity, comprised of two
   2101   // 4-bit fields. For an 8-bit immediate of the form:
   2102   //
   2103   //  [abcdefgh]
   2104   //
   2105   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
   2106   // created of the form:
   2107   //
   2108   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
   2109   //      00000000,00000000,00000000,00000000]
   2110   //
   2111   // where B = ~b.
   2112   //
   2113 
   2114   uint32_t lo, hi;
   2115   DoubleAsTwoUInt32(d, &lo, &hi);
   2116 
   2117   // The most obvious constraint is the long block of zeroes.
   2118   if ((lo != 0) || ((hi & 0xffff) != 0)) {
   2119     return false;
   2120   }
   2121 
   2122   // Bits 62:55 must be all clear or all set.
   2123   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
   2124     return false;
   2125   }
   2126 
   2127   // Bit 63 must be NOT bit 62.
   2128   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
   2129     return false;
   2130   }
   2131 
   2132   // Create the encoded immediate in the form:
   2133   //  [00000000,0000abcd,00000000,0000efgh]
   2134   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
   2135   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
   2136   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
   2137 
   2138   return true;
   2139 }
   2140 
   2141 
   2142 void Assembler::vmov(const DwVfpRegister dst,
   2143                      double imm,
   2144                      const Condition cond) {
   2145   // Dd = immediate
   2146   // Instruction details available in ARM DDI 0406B, A8-640.
   2147   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2148 
   2149   uint32_t enc;
   2150   if (FitsVMOVDoubleImmediate(imm, &enc)) {
   2151     // The double can be encoded in the instruction.
   2152     emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
   2153   } else {
   2154     // Synthesise the double from ARM immediates. This could be implemented
   2155     // using vldr from a constant pool.
   2156     uint32_t lo, hi;
   2157     DoubleAsTwoUInt32(imm, &lo, &hi);
   2158 
   2159     if (lo == hi) {
   2160       // If the lo and hi parts of the double are equal, the literal is easier
   2161       // to create. This is the case with 0.0.
   2162       mov(ip, Operand(lo));
   2163       vmov(dst, ip, ip);
   2164     } else {
   2165       // Move the low part of the double into the lower of the corresponsing S
   2166       // registers of D register dst.
   2167       mov(ip, Operand(lo));
   2168       vmov(dst.low(), ip, cond);
   2169 
   2170       // Move the high part of the double into the higher of the corresponsing S
   2171       // registers of D register dst.
   2172       mov(ip, Operand(hi));
   2173       vmov(dst.high(), ip, cond);
   2174     }
   2175   }
   2176 }
   2177 
   2178 
   2179 void Assembler::vmov(const SwVfpRegister dst,
   2180                      const SwVfpRegister src,
   2181                      const Condition cond) {
   2182   // Sd = Sm
   2183   // Instruction details available in ARM DDI 0406B, A8-642.
   2184   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2185   int sd, d, sm, m;
   2186   dst.split_code(&sd, &d);
   2187   src.split_code(&sm, &m);
   2188   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
   2189 }
   2190 
   2191 
   2192 void Assembler::vmov(const DwVfpRegister dst,
   2193                      const DwVfpRegister src,
   2194                      const Condition cond) {
   2195   // Dd = Dm
   2196   // Instruction details available in ARM DDI 0406B, A8-642.
   2197   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2198   emit(cond | 0xE*B24 | 0xB*B20 |
   2199        dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
   2200 }
   2201 
   2202 
   2203 void Assembler::vmov(const DwVfpRegister dst,
   2204                      const Register src1,
   2205                      const Register src2,
   2206                      const Condition cond) {
   2207   // Dm = <Rt,Rt2>.
   2208   // Instruction details available in ARM DDI 0406A, A8-646.
   2209   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
   2210   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2211   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2212   ASSERT(!src1.is(pc) && !src2.is(pc));
   2213   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
   2214        src1.code()*B12 | 0xB*B8 | B4 | dst.code());
   2215 }
   2216 
   2217 
   2218 void Assembler::vmov(const Register dst1,
   2219                      const Register dst2,
   2220                      const DwVfpRegister src,
   2221                      const Condition cond) {
   2222   // <Rt,Rt2> = Dm.
   2223   // Instruction details available in ARM DDI 0406A, A8-646.
   2224   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
   2225   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2226   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2227   ASSERT(!dst1.is(pc) && !dst2.is(pc));
   2228   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
   2229        dst1.code()*B12 | 0xB*B8 | B4 | src.code());
   2230 }
   2231 
   2232 
   2233 void Assembler::vmov(const SwVfpRegister dst,
   2234                      const Register src,
   2235                      const Condition cond) {
   2236   // Sn = Rt.
   2237   // Instruction details available in ARM DDI 0406A, A8-642.
   2238   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
   2239   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2240   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2241   ASSERT(!src.is(pc));
   2242   int sn, n;
   2243   dst.split_code(&sn, &n);
   2244   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
   2245 }
   2246 
   2247 
   2248 void Assembler::vmov(const Register dst,
   2249                      const SwVfpRegister src,
   2250                      const Condition cond) {
   2251   // Rt = Sn.
   2252   // Instruction details available in ARM DDI 0406A, A8-642.
   2253   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
   2254   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2255   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2256   ASSERT(!dst.is(pc));
   2257   int sn, n;
   2258   src.split_code(&sn, &n);
   2259   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
   2260 }
   2261 
   2262 
   2263 // Type of data to read from or write to VFP register.
   2264 // Used as specifier in generic vcvt instruction.
   2265 enum VFPType { S32, U32, F32, F64 };
   2266 
   2267 
   2268 static bool IsSignedVFPType(VFPType type) {
   2269   switch (type) {
   2270     case S32:
   2271       return true;
   2272     case U32:
   2273       return false;
   2274     default:
   2275       UNREACHABLE();
   2276       return false;
   2277   }
   2278 }
   2279 
   2280 
   2281 static bool IsIntegerVFPType(VFPType type) {
   2282   switch (type) {
   2283     case S32:
   2284     case U32:
   2285       return true;
   2286     case F32:
   2287     case F64:
   2288       return false;
   2289     default:
   2290       UNREACHABLE();
   2291       return false;
   2292   }
   2293 }
   2294 
   2295 
   2296 static bool IsDoubleVFPType(VFPType type) {
   2297   switch (type) {
   2298     case F32:
   2299       return false;
   2300     case F64:
   2301       return true;
   2302     default:
   2303       UNREACHABLE();
   2304       return false;
   2305   }
   2306 }
   2307 
   2308 
   2309 // Split five bit reg_code based on size of reg_type.
   2310 //  32-bit register codes are Vm:M
   2311 //  64-bit register codes are M:Vm
   2312 // where Vm is four bits, and M is a single bit.
   2313 static void SplitRegCode(VFPType reg_type,
   2314                          int reg_code,
   2315                          int* vm,
   2316                          int* m) {
   2317   ASSERT((reg_code >= 0) && (reg_code <= 31));
   2318   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
   2319     // 32 bit type.
   2320     *m  = reg_code & 0x1;
   2321     *vm = reg_code >> 1;
   2322   } else {
   2323     // 64 bit type.
   2324     *m  = (reg_code & 0x10) >> 4;
   2325     *vm = reg_code & 0x0F;
   2326   }
   2327 }
   2328 
   2329 
   2330 // Encode vcvt.src_type.dst_type instruction.
   2331 static Instr EncodeVCVT(const VFPType dst_type,
   2332                         const int dst_code,
   2333                         const VFPType src_type,
   2334                         const int src_code,
   2335                         VFPConversionMode mode,
   2336                         const Condition cond) {
   2337   ASSERT(src_type != dst_type);
   2338   int D, Vd, M, Vm;
   2339   SplitRegCode(src_type, src_code, &Vm, &M);
   2340   SplitRegCode(dst_type, dst_code, &Vd, &D);
   2341 
   2342   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
   2343     // Conversion between IEEE floating point and 32-bit integer.
   2344     // Instruction details available in ARM DDI 0406B, A8.6.295.
   2345     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
   2346     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2347     ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
   2348 
   2349     int sz, opc2, op;
   2350 
   2351     if (IsIntegerVFPType(dst_type)) {
   2352       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
   2353       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2354       op = mode;
   2355     } else {
   2356       ASSERT(IsIntegerVFPType(src_type));
   2357       opc2 = 0x0;
   2358       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
   2359       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
   2360     }
   2361 
   2362     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
   2363             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
   2364   } else {
   2365     // Conversion between IEEE double and single precision.
   2366     // Instruction details available in ARM DDI 0406B, A8.6.298.
   2367     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
   2368     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2369     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2370     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
   2371             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
   2372   }
   2373 }
   2374 
   2375 
   2376 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2377                              const SwVfpRegister src,
   2378                              VFPConversionMode mode,
   2379                              const Condition cond) {
   2380   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2381   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
   2382 }
   2383 
   2384 
   2385 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
   2386                              const SwVfpRegister src,
   2387                              VFPConversionMode mode,
   2388                              const Condition cond) {
   2389   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2390   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
   2391 }
   2392 
   2393 
   2394 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
   2395                              const SwVfpRegister src,
   2396                              VFPConversionMode mode,
   2397                              const Condition cond) {
   2398   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2399   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
   2400 }
   2401 
   2402 
   2403 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
   2404                              const DwVfpRegister src,
   2405                              VFPConversionMode mode,
   2406                              const Condition cond) {
   2407   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2408   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
   2409 }
   2410 
   2411 
   2412 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
   2413                              const DwVfpRegister src,
   2414                              VFPConversionMode mode,
   2415                              const Condition cond) {
   2416   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2417   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
   2418 }
   2419 
   2420 
   2421 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
   2422                              const SwVfpRegister src,
   2423                              VFPConversionMode mode,
   2424                              const Condition cond) {
   2425   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2426   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
   2427 }
   2428 
   2429 
   2430 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
   2431                              const DwVfpRegister src,
   2432                              VFPConversionMode mode,
   2433                              const Condition cond) {
   2434   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2435   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
   2436 }
   2437 
   2438 
   2439 void Assembler::vneg(const DwVfpRegister dst,
   2440                      const DwVfpRegister src,
   2441                      const Condition cond) {
   2442   emit(cond | 0xE*B24 | 0xB*B20 | B16 | dst.code()*B12 |
   2443        0x5*B9 | B8 | B6 | src.code());
   2444 }
   2445 
   2446 
   2447 void Assembler::vabs(const DwVfpRegister dst,
   2448                      const DwVfpRegister src,
   2449                      const Condition cond) {
   2450   emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
   2451        0x5*B9 | B8 | 0x3*B6 | src.code());
   2452 }
   2453 
   2454 
   2455 void Assembler::vadd(const DwVfpRegister dst,
   2456                      const DwVfpRegister src1,
   2457                      const DwVfpRegister src2,
   2458                      const Condition cond) {
   2459   // Dd = vadd(Dn, Dm) double precision floating point addition.
   2460   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2461   // Instruction details available in ARM DDI 0406A, A8-536.
   2462   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
   2463   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2464   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2465   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
   2466        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2467 }
   2468 
   2469 
   2470 void Assembler::vsub(const DwVfpRegister dst,
   2471                      const DwVfpRegister src1,
   2472                      const DwVfpRegister src2,
   2473                      const Condition cond) {
   2474   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
   2475   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2476   // Instruction details available in ARM DDI 0406A, A8-784.
   2477   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
   2478   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
   2479   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2480   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
   2481        dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
   2482 }
   2483 
   2484 
   2485 void Assembler::vmul(const DwVfpRegister dst,
   2486                      const DwVfpRegister src1,
   2487                      const DwVfpRegister src2,
   2488                      const Condition cond) {
   2489   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
   2490   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2491   // Instruction details available in ARM DDI 0406A, A8-784.
   2492   // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
   2493   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2494   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2495   emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
   2496        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2497 }
   2498 
   2499 
   2500 void Assembler::vdiv(const DwVfpRegister dst,
   2501                      const DwVfpRegister src1,
   2502                      const DwVfpRegister src2,
   2503                      const Condition cond) {
   2504   // Dd = vdiv(Dn, Dm) double precision floating point division.
   2505   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2506   // Instruction details available in ARM DDI 0406A, A8-584.
   2507   // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
   2508   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2509   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2510   emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
   2511        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2512 }
   2513 
   2514 
   2515 void Assembler::vcmp(const DwVfpRegister src1,
   2516                      const DwVfpRegister src2,
   2517                      const Condition cond) {
   2518   // vcmp(Dd, Dm) double precision floating point comparison.
   2519   // Instruction details available in ARM DDI 0406A, A8-570.
   2520   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
   2521   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
   2522   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2523   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
   2524        src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
   2525 }
   2526 
   2527 
   2528 void Assembler::vcmp(const DwVfpRegister src1,
   2529                      const double src2,
   2530                      const Condition cond) {
   2531   // vcmp(Dd, Dm) double precision floating point comparison.
   2532   // Instruction details available in ARM DDI 0406A, A8-570.
   2533   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
   2534   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
   2535   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2536   ASSERT(src2 == 0.0);
   2537   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
   2538        src1.code()*B12 | 0x5*B9 | B8 | B6);
   2539 }
   2540 
   2541 
   2542 void Assembler::vmsr(Register dst, Condition cond) {
   2543   // Instruction details available in ARM DDI 0406A, A8-652.
   2544   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
   2545   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2546   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2547   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
   2548        dst.code()*B12 | 0xA*B8 | B4);
   2549 }
   2550 
   2551 
   2552 void Assembler::vmrs(Register dst, Condition cond) {
   2553   // Instruction details available in ARM DDI 0406A, A8-652.
   2554   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
   2555   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2556   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2557   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
   2558        dst.code()*B12 | 0xA*B8 | B4);
   2559 }
   2560 
   2561 
   2562 void Assembler::vsqrt(const DwVfpRegister dst,
   2563                       const DwVfpRegister src,
   2564                       const Condition cond) {
   2565   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
   2566   // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
   2567   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2568   emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
   2569        dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
   2570 }
   2571 
   2572 
   2573 // Pseudo instructions.
   2574 void Assembler::nop(int type) {
   2575   // This is mov rx, rx.
   2576   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
   2577   emit(al | 13*B21 | type*B12 | type);
   2578 }
   2579 
   2580 
   2581 bool Assembler::IsNop(Instr instr, int type) {
   2582   // Check for mov rx, rx where x = type.
   2583   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
   2584   return instr == (al | 13*B21 | type*B12 | type);
   2585 }
   2586 
   2587 
   2588 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
   2589   uint32_t dummy1;
   2590   uint32_t dummy2;
   2591   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
   2592 }
   2593 
   2594 
   2595 void Assembler::BlockConstPoolFor(int instructions) {
   2596   BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
   2597 }
   2598 
   2599 
   2600 // Debugging.
   2601 void Assembler::RecordJSReturn() {
   2602   positions_recorder()->WriteRecordedPositions();
   2603   CheckBuffer();
   2604   RecordRelocInfo(RelocInfo::JS_RETURN);
   2605 }
   2606 
   2607 
   2608 void Assembler::RecordDebugBreakSlot() {
   2609   positions_recorder()->WriteRecordedPositions();
   2610   CheckBuffer();
   2611   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
   2612 }
   2613 
   2614 
   2615 void Assembler::RecordComment(const char* msg) {
   2616   if (FLAG_code_comments) {
   2617     CheckBuffer();
   2618     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
   2619   }
   2620 }
   2621 
   2622 
   2623 void Assembler::GrowBuffer() {
   2624   if (!own_buffer_) FATAL("external code buffer is too small");
   2625 
   2626   // Compute new buffer size.
   2627   CodeDesc desc;  // the new buffer
   2628   if (buffer_size_ < 4*KB) {
   2629     desc.buffer_size = 4*KB;
   2630   } else if (buffer_size_ < 1*MB) {
   2631     desc.buffer_size = 2*buffer_size_;
   2632   } else {
   2633     desc.buffer_size = buffer_size_ + 1*MB;
   2634   }
   2635   CHECK_GT(desc.buffer_size, 0);  // no overflow
   2636 
   2637   // Setup new buffer.
   2638   desc.buffer = NewArray<byte>(desc.buffer_size);
   2639 
   2640   desc.instr_size = pc_offset();
   2641   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
   2642 
   2643   // Copy the data.
   2644   int pc_delta = desc.buffer - buffer_;
   2645   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   2646   memmove(desc.buffer, buffer_, desc.instr_size);
   2647   memmove(reloc_info_writer.pos() + rc_delta,
   2648           reloc_info_writer.pos(), desc.reloc_size);
   2649 
   2650   // Switch buffers.
   2651   DeleteArray(buffer_);
   2652   buffer_ = desc.buffer;
   2653   buffer_size_ = desc.buffer_size;
   2654   pc_ += pc_delta;
   2655   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2656                                reloc_info_writer.last_pc() + pc_delta);
   2657 
   2658   // None of our relocation types are pc relative pointing outside the code
   2659   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   2660   // to relocate any emitted relocation entries.
   2661 
   2662   // Relocate pending relocation entries.
   2663   for (int i = 0; i < num_prinfo_; i++) {
   2664     RelocInfo& rinfo = prinfo_[i];
   2665     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   2666            rinfo.rmode() != RelocInfo::POSITION);
   2667     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
   2668       rinfo.set_pc(rinfo.pc() + pc_delta);
   2669     }
   2670   }
   2671 }
   2672 
   2673 
   2674 void Assembler::db(uint8_t data) {
   2675   // No relocation info should be pending while using db. db is used
   2676   // to write pure data with no pointers and the constant pool should
   2677   // be emitted before using db.
   2678   ASSERT(num_prinfo_ == 0);
   2679   CheckBuffer();
   2680   *reinterpret_cast<uint8_t*>(pc_) = data;
   2681   pc_ += sizeof(uint8_t);
   2682 }
   2683 
   2684 
   2685 void Assembler::dd(uint32_t data) {
   2686   // No relocation info should be pending while using dd. dd is used
   2687   // to write pure data with no pointers and the constant pool should
   2688   // be emitted before using dd.
   2689   ASSERT(num_prinfo_ == 0);
   2690   CheckBuffer();
   2691   *reinterpret_cast<uint32_t*>(pc_) = data;
   2692   pc_ += sizeof(uint32_t);
   2693 }
   2694 
   2695 
   2696 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2697   RelocInfo rinfo(pc_, rmode, data);  // we do not try to reuse pool constants
   2698   if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
   2699     // Adjust code for new modes.
   2700     ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
   2701            || RelocInfo::IsJSReturn(rmode)
   2702            || RelocInfo::IsComment(rmode)
   2703            || RelocInfo::IsPosition(rmode));
   2704     // These modes do not need an entry in the constant pool.
   2705   } else {
   2706     ASSERT(num_prinfo_ < kMaxNumPRInfo);
   2707     prinfo_[num_prinfo_++] = rinfo;
   2708     // Make sure the constant pool is not emitted in place of the next
   2709     // instruction for which we just recorded relocation info.
   2710     BlockConstPoolBefore(pc_offset() + kInstrSize);
   2711   }
   2712   if (rinfo.rmode() != RelocInfo::NONE) {
   2713     // Don't record external references unless the heap will be serialized.
   2714     if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
   2715 #ifdef DEBUG
   2716       if (!Serializer::enabled()) {
   2717         Serializer::TooLateToEnableNow();
   2718       }
   2719 #endif
   2720       if (!Serializer::enabled() && !emit_debug_code()) {
   2721         return;
   2722       }
   2723     }
   2724     ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   2725     reloc_info_writer.Write(&rinfo);
   2726   }
   2727 }
   2728 
   2729 
   2730 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   2731   // Calculate the offset of the next check. It will be overwritten
   2732   // when a const pool is generated or when const pools are being
   2733   // blocked for a specific range.
   2734   next_buffer_check_ = pc_offset() + kCheckConstInterval;
   2735 
   2736   // There is nothing to do if there are no pending relocation info entries.
   2737   if (num_prinfo_ == 0) return;
   2738 
   2739   // We emit a constant pool at regular intervals of about kDistBetweenPools
   2740   // or when requested by parameter force_emit (e.g. after each function).
   2741   // We prefer not to emit a jump unless the max distance is reached or if we
   2742   // are running low on slots, which can happen if a lot of constants are being
   2743   // emitted (e.g. --debug-code and many static references).
   2744   int dist = pc_offset() - last_const_pool_end_;
   2745   if (!force_emit && dist < kMaxDistBetweenPools &&
   2746       (require_jump || dist < kDistBetweenPools) &&
   2747       // TODO(1236125): Cleanup the "magic" number below. We know that
   2748       // the code generation will test every kCheckConstIntervalInst.
   2749       // Thus we are safe as long as we generate less than 7 constant
   2750       // entries per instruction.
   2751       (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
   2752     return;
   2753   }
   2754 
   2755   // If we did not return by now, we need to emit the constant pool soon.
   2756 
   2757   // However, some small sequences of instructions must not be broken up by the
   2758   // insertion of a constant pool; such sequences are protected by setting
   2759   // either const_pool_blocked_nesting_ or no_const_pool_before_, which are
   2760   // both checked here. Also, recursive calls to CheckConstPool are blocked by
   2761   // no_const_pool_before_.
   2762   if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) {
   2763     // Emission is currently blocked; make sure we try again as soon as
   2764     // possible.
   2765     if (const_pool_blocked_nesting_ > 0) {
   2766       next_buffer_check_ = pc_offset() + kInstrSize;
   2767     } else {
   2768       next_buffer_check_ = no_const_pool_before_;
   2769     }
   2770 
   2771     // Something is wrong if emission is forced and blocked at the same time.
   2772     ASSERT(!force_emit);
   2773     return;
   2774   }
   2775 
   2776   int jump_instr = require_jump ? kInstrSize : 0;
   2777 
   2778   // Check that the code buffer is large enough before emitting the constant
   2779   // pool and relocation information (include the jump over the pool and the
   2780   // constant pool marker).
   2781   int max_needed_space =
   2782       jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
   2783   while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
   2784 
   2785   // Block recursive calls to CheckConstPool.
   2786   BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
   2787                        num_prinfo_*kInstrSize);
   2788   // Don't bother to check for the emit calls below.
   2789   next_buffer_check_ = no_const_pool_before_;
   2790 
   2791   // Emit jump over constant pool if necessary.
   2792   Label after_pool;
   2793   if (require_jump) b(&after_pool);
   2794 
   2795   RecordComment("[ Constant Pool");
   2796 
   2797   // Put down constant pool marker "Undefined instruction" as specified by
   2798   // A5.6 (ARMv7) Instruction set encoding.
   2799   emit(kConstantPoolMarker | num_prinfo_);
   2800 
   2801   // Emit constant pool entries.
   2802   for (int i = 0; i < num_prinfo_; i++) {
   2803     RelocInfo& rinfo = prinfo_[i];
   2804     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   2805            rinfo.rmode() != RelocInfo::POSITION &&
   2806            rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
   2807     Instr instr = instr_at(rinfo.pc());
   2808 
   2809     // Instruction to patch must be a ldr/str [pc, #offset].
   2810     // P and U set, B and W clear, Rn == pc, offset12 still 0.
   2811     ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | kOff12Mask)) ==
   2812            (2*B25 | P | U | pc.code()*B16));
   2813     int delta = pc_ - rinfo.pc() - 8;
   2814     ASSERT(delta >= -4);  // instr could be ldr pc, [pc, #-4] followed by targ32
   2815     if (delta < 0) {
   2816       instr &= ~U;
   2817       delta = -delta;
   2818     }
   2819     ASSERT(is_uint12(delta));
   2820     instr_at_put(rinfo.pc(), instr + delta);
   2821     emit(rinfo.data());
   2822   }
   2823   num_prinfo_ = 0;
   2824   last_const_pool_end_ = pc_offset();
   2825 
   2826   RecordComment("]");
   2827 
   2828   if (after_pool.is_linked()) {
   2829     bind(&after_pool);
   2830   }
   2831 
   2832   // Since a constant pool was just emitted, move the check offset forward by
   2833   // the standard interval.
   2834   next_buffer_check_ = pc_offset() + kCheckConstInterval;
   2835 }
   2836 
   2837 
   2838 } }  // namespace v8::internal
   2839 
   2840 #endif  // V8_TARGET_ARCH_ARM
   2841