1 //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides Sema routines for C++ overloading. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Lookup.h" 16 #include "clang/Sema/Initialization.h" 17 #include "clang/Sema/Template.h" 18 #include "clang/Sema/TemplateDeduction.h" 19 #include "clang/Basic/Diagnostic.h" 20 #include "clang/Lex/Preprocessor.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/CXXInheritance.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include <algorithm> 33 34 namespace clang { 35 using namespace sema; 36 37 /// A convenience routine for creating a decayed reference to a 38 /// function. 39 static ExprResult 40 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 41 SourceLocation Loc = SourceLocation(), 42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 43 ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(), 44 VK_LValue, Loc, LocInfo)); 45 E = S.DefaultFunctionArrayConversion(E.take()); 46 if (E.isInvalid()) 47 return ExprError(); 48 return move(E); 49 } 50 51 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 52 bool InOverloadResolution, 53 StandardConversionSequence &SCS, 54 bool CStyle, 55 bool AllowObjCWritebackConversion); 56 57 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 58 QualType &ToType, 59 bool InOverloadResolution, 60 StandardConversionSequence &SCS, 61 bool CStyle); 62 static OverloadingResult 63 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 64 UserDefinedConversionSequence& User, 65 OverloadCandidateSet& Conversions, 66 bool AllowExplicit); 67 68 69 static ImplicitConversionSequence::CompareKind 70 CompareStandardConversionSequences(Sema &S, 71 const StandardConversionSequence& SCS1, 72 const StandardConversionSequence& SCS2); 73 74 static ImplicitConversionSequence::CompareKind 75 CompareQualificationConversions(Sema &S, 76 const StandardConversionSequence& SCS1, 77 const StandardConversionSequence& SCS2); 78 79 static ImplicitConversionSequence::CompareKind 80 CompareDerivedToBaseConversions(Sema &S, 81 const StandardConversionSequence& SCS1, 82 const StandardConversionSequence& SCS2); 83 84 85 86 /// GetConversionCategory - Retrieve the implicit conversion 87 /// category corresponding to the given implicit conversion kind. 88 ImplicitConversionCategory 89 GetConversionCategory(ImplicitConversionKind Kind) { 90 static const ImplicitConversionCategory 91 Category[(int)ICK_Num_Conversion_Kinds] = { 92 ICC_Identity, 93 ICC_Lvalue_Transformation, 94 ICC_Lvalue_Transformation, 95 ICC_Lvalue_Transformation, 96 ICC_Identity, 97 ICC_Qualification_Adjustment, 98 ICC_Promotion, 99 ICC_Promotion, 100 ICC_Promotion, 101 ICC_Conversion, 102 ICC_Conversion, 103 ICC_Conversion, 104 ICC_Conversion, 105 ICC_Conversion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion 114 }; 115 return Category[(int)Kind]; 116 } 117 118 /// GetConversionRank - Retrieve the implicit conversion rank 119 /// corresponding to the given implicit conversion kind. 120 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 121 static const ImplicitConversionRank 122 Rank[(int)ICK_Num_Conversion_Kinds] = { 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Promotion, 130 ICR_Promotion, 131 ICR_Promotion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Complex_Real_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Writeback_Conversion 147 }; 148 return Rank[(int)Kind]; 149 } 150 151 /// GetImplicitConversionName - Return the name of this kind of 152 /// implicit conversion. 153 const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 154 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 155 "No conversion", 156 "Lvalue-to-rvalue", 157 "Array-to-pointer", 158 "Function-to-pointer", 159 "Noreturn adjustment", 160 "Qualification", 161 "Integral promotion", 162 "Floating point promotion", 163 "Complex promotion", 164 "Integral conversion", 165 "Floating conversion", 166 "Complex conversion", 167 "Floating-integral conversion", 168 "Pointer conversion", 169 "Pointer-to-member conversion", 170 "Boolean conversion", 171 "Compatible-types conversion", 172 "Derived-to-base conversion", 173 "Vector conversion", 174 "Vector splat", 175 "Complex-real conversion", 176 "Block Pointer conversion", 177 "Transparent Union Conversion" 178 "Writeback conversion" 179 }; 180 return Name[Kind]; 181 } 182 183 /// StandardConversionSequence - Set the standard conversion 184 /// sequence to the identity conversion. 185 void StandardConversionSequence::setAsIdentityConversion() { 186 First = ICK_Identity; 187 Second = ICK_Identity; 188 Third = ICK_Identity; 189 DeprecatedStringLiteralToCharPtr = false; 190 QualificationIncludesObjCLifetime = false; 191 ReferenceBinding = false; 192 DirectBinding = false; 193 IsLvalueReference = true; 194 BindsToFunctionLvalue = false; 195 BindsToRvalue = false; 196 BindsImplicitObjectArgumentWithoutRefQualifier = false; 197 ObjCLifetimeConversionBinding = false; 198 CopyConstructor = 0; 199 } 200 201 /// getRank - Retrieve the rank of this standard conversion sequence 202 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 203 /// implicit conversions. 204 ImplicitConversionRank StandardConversionSequence::getRank() const { 205 ImplicitConversionRank Rank = ICR_Exact_Match; 206 if (GetConversionRank(First) > Rank) 207 Rank = GetConversionRank(First); 208 if (GetConversionRank(Second) > Rank) 209 Rank = GetConversionRank(Second); 210 if (GetConversionRank(Third) > Rank) 211 Rank = GetConversionRank(Third); 212 return Rank; 213 } 214 215 /// isPointerConversionToBool - Determines whether this conversion is 216 /// a conversion of a pointer or pointer-to-member to bool. This is 217 /// used as part of the ranking of standard conversion sequences 218 /// (C++ 13.3.3.2p4). 219 bool StandardConversionSequence::isPointerConversionToBool() const { 220 // Note that FromType has not necessarily been transformed by the 221 // array-to-pointer or function-to-pointer implicit conversions, so 222 // check for their presence as well as checking whether FromType is 223 // a pointer. 224 if (getToType(1)->isBooleanType() && 225 (getFromType()->isPointerType() || 226 getFromType()->isObjCObjectPointerType() || 227 getFromType()->isBlockPointerType() || 228 getFromType()->isNullPtrType() || 229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 230 return true; 231 232 return false; 233 } 234 235 /// isPointerConversionToVoidPointer - Determines whether this 236 /// conversion is a conversion of a pointer to a void pointer. This is 237 /// used as part of the ranking of standard conversion sequences (C++ 238 /// 13.3.3.2p4). 239 bool 240 StandardConversionSequence:: 241 isPointerConversionToVoidPointer(ASTContext& Context) const { 242 QualType FromType = getFromType(); 243 QualType ToType = getToType(1); 244 245 // Note that FromType has not necessarily been transformed by the 246 // array-to-pointer implicit conversion, so check for its presence 247 // and redo the conversion to get a pointer. 248 if (First == ICK_Array_To_Pointer) 249 FromType = Context.getArrayDecayedType(FromType); 250 251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 253 return ToPtrType->getPointeeType()->isVoidType(); 254 255 return false; 256 } 257 258 /// DebugPrint - Print this standard conversion sequence to standard 259 /// error. Useful for debugging overloading issues. 260 void StandardConversionSequence::DebugPrint() const { 261 llvm::raw_ostream &OS = llvm::errs(); 262 bool PrintedSomething = false; 263 if (First != ICK_Identity) { 264 OS << GetImplicitConversionName(First); 265 PrintedSomething = true; 266 } 267 268 if (Second != ICK_Identity) { 269 if (PrintedSomething) { 270 OS << " -> "; 271 } 272 OS << GetImplicitConversionName(Second); 273 274 if (CopyConstructor) { 275 OS << " (by copy constructor)"; 276 } else if (DirectBinding) { 277 OS << " (direct reference binding)"; 278 } else if (ReferenceBinding) { 279 OS << " (reference binding)"; 280 } 281 PrintedSomething = true; 282 } 283 284 if (Third != ICK_Identity) { 285 if (PrintedSomething) { 286 OS << " -> "; 287 } 288 OS << GetImplicitConversionName(Third); 289 PrintedSomething = true; 290 } 291 292 if (!PrintedSomething) { 293 OS << "No conversions required"; 294 } 295 } 296 297 /// DebugPrint - Print this user-defined conversion sequence to standard 298 /// error. Useful for debugging overloading issues. 299 void UserDefinedConversionSequence::DebugPrint() const { 300 llvm::raw_ostream &OS = llvm::errs(); 301 if (Before.First || Before.Second || Before.Third) { 302 Before.DebugPrint(); 303 OS << " -> "; 304 } 305 OS << '\'' << ConversionFunction << '\''; 306 if (After.First || After.Second || After.Third) { 307 OS << " -> "; 308 After.DebugPrint(); 309 } 310 } 311 312 /// DebugPrint - Print this implicit conversion sequence to standard 313 /// error. Useful for debugging overloading issues. 314 void ImplicitConversionSequence::DebugPrint() const { 315 llvm::raw_ostream &OS = llvm::errs(); 316 switch (ConversionKind) { 317 case StandardConversion: 318 OS << "Standard conversion: "; 319 Standard.DebugPrint(); 320 break; 321 case UserDefinedConversion: 322 OS << "User-defined conversion: "; 323 UserDefined.DebugPrint(); 324 break; 325 case EllipsisConversion: 326 OS << "Ellipsis conversion"; 327 break; 328 case AmbiguousConversion: 329 OS << "Ambiguous conversion"; 330 break; 331 case BadConversion: 332 OS << "Bad conversion"; 333 break; 334 } 335 336 OS << "\n"; 337 } 338 339 void AmbiguousConversionSequence::construct() { 340 new (&conversions()) ConversionSet(); 341 } 342 343 void AmbiguousConversionSequence::destruct() { 344 conversions().~ConversionSet(); 345 } 346 347 void 348 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 349 FromTypePtr = O.FromTypePtr; 350 ToTypePtr = O.ToTypePtr; 351 new (&conversions()) ConversionSet(O.conversions()); 352 } 353 354 namespace { 355 // Structure used by OverloadCandidate::DeductionFailureInfo to store 356 // template parameter and template argument information. 357 struct DFIParamWithArguments { 358 TemplateParameter Param; 359 TemplateArgument FirstArg; 360 TemplateArgument SecondArg; 361 }; 362 } 363 364 /// \brief Convert from Sema's representation of template deduction information 365 /// to the form used in overload-candidate information. 366 OverloadCandidate::DeductionFailureInfo 367 static MakeDeductionFailureInfo(ASTContext &Context, 368 Sema::TemplateDeductionResult TDK, 369 TemplateDeductionInfo &Info) { 370 OverloadCandidate::DeductionFailureInfo Result; 371 Result.Result = static_cast<unsigned>(TDK); 372 Result.Data = 0; 373 switch (TDK) { 374 case Sema::TDK_Success: 375 case Sema::TDK_InstantiationDepth: 376 case Sema::TDK_TooManyArguments: 377 case Sema::TDK_TooFewArguments: 378 break; 379 380 case Sema::TDK_Incomplete: 381 case Sema::TDK_InvalidExplicitArguments: 382 Result.Data = Info.Param.getOpaqueValue(); 383 break; 384 385 case Sema::TDK_Inconsistent: 386 case Sema::TDK_Underqualified: { 387 // FIXME: Should allocate from normal heap so that we can free this later. 388 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 389 Saved->Param = Info.Param; 390 Saved->FirstArg = Info.FirstArg; 391 Saved->SecondArg = Info.SecondArg; 392 Result.Data = Saved; 393 break; 394 } 395 396 case Sema::TDK_SubstitutionFailure: 397 Result.Data = Info.take(); 398 break; 399 400 case Sema::TDK_NonDeducedMismatch: 401 case Sema::TDK_FailedOverloadResolution: 402 break; 403 } 404 405 return Result; 406 } 407 408 void OverloadCandidate::DeductionFailureInfo::Destroy() { 409 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 410 case Sema::TDK_Success: 411 case Sema::TDK_InstantiationDepth: 412 case Sema::TDK_Incomplete: 413 case Sema::TDK_TooManyArguments: 414 case Sema::TDK_TooFewArguments: 415 case Sema::TDK_InvalidExplicitArguments: 416 break; 417 418 case Sema::TDK_Inconsistent: 419 case Sema::TDK_Underqualified: 420 // FIXME: Destroy the data? 421 Data = 0; 422 break; 423 424 case Sema::TDK_SubstitutionFailure: 425 // FIXME: Destroy the template arugment list? 426 Data = 0; 427 break; 428 429 // Unhandled 430 case Sema::TDK_NonDeducedMismatch: 431 case Sema::TDK_FailedOverloadResolution: 432 break; 433 } 434 } 435 436 TemplateParameter 437 OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 438 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 439 case Sema::TDK_Success: 440 case Sema::TDK_InstantiationDepth: 441 case Sema::TDK_TooManyArguments: 442 case Sema::TDK_TooFewArguments: 443 case Sema::TDK_SubstitutionFailure: 444 return TemplateParameter(); 445 446 case Sema::TDK_Incomplete: 447 case Sema::TDK_InvalidExplicitArguments: 448 return TemplateParameter::getFromOpaqueValue(Data); 449 450 case Sema::TDK_Inconsistent: 451 case Sema::TDK_Underqualified: 452 return static_cast<DFIParamWithArguments*>(Data)->Param; 453 454 // Unhandled 455 case Sema::TDK_NonDeducedMismatch: 456 case Sema::TDK_FailedOverloadResolution: 457 break; 458 } 459 460 return TemplateParameter(); 461 } 462 463 TemplateArgumentList * 464 OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 465 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 466 case Sema::TDK_Success: 467 case Sema::TDK_InstantiationDepth: 468 case Sema::TDK_TooManyArguments: 469 case Sema::TDK_TooFewArguments: 470 case Sema::TDK_Incomplete: 471 case Sema::TDK_InvalidExplicitArguments: 472 case Sema::TDK_Inconsistent: 473 case Sema::TDK_Underqualified: 474 return 0; 475 476 case Sema::TDK_SubstitutionFailure: 477 return static_cast<TemplateArgumentList*>(Data); 478 479 // Unhandled 480 case Sema::TDK_NonDeducedMismatch: 481 case Sema::TDK_FailedOverloadResolution: 482 break; 483 } 484 485 return 0; 486 } 487 488 const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 489 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 490 case Sema::TDK_Success: 491 case Sema::TDK_InstantiationDepth: 492 case Sema::TDK_Incomplete: 493 case Sema::TDK_TooManyArguments: 494 case Sema::TDK_TooFewArguments: 495 case Sema::TDK_InvalidExplicitArguments: 496 case Sema::TDK_SubstitutionFailure: 497 return 0; 498 499 case Sema::TDK_Inconsistent: 500 case Sema::TDK_Underqualified: 501 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 502 503 // Unhandled 504 case Sema::TDK_NonDeducedMismatch: 505 case Sema::TDK_FailedOverloadResolution: 506 break; 507 } 508 509 return 0; 510 } 511 512 const TemplateArgument * 513 OverloadCandidate::DeductionFailureInfo::getSecondArg() { 514 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 515 case Sema::TDK_Success: 516 case Sema::TDK_InstantiationDepth: 517 case Sema::TDK_Incomplete: 518 case Sema::TDK_TooManyArguments: 519 case Sema::TDK_TooFewArguments: 520 case Sema::TDK_InvalidExplicitArguments: 521 case Sema::TDK_SubstitutionFailure: 522 return 0; 523 524 case Sema::TDK_Inconsistent: 525 case Sema::TDK_Underqualified: 526 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 527 528 // Unhandled 529 case Sema::TDK_NonDeducedMismatch: 530 case Sema::TDK_FailedOverloadResolution: 531 break; 532 } 533 534 return 0; 535 } 536 537 void OverloadCandidateSet::clear() { 538 inherited::clear(); 539 Functions.clear(); 540 } 541 542 // IsOverload - Determine whether the given New declaration is an 543 // overload of the declarations in Old. This routine returns false if 544 // New and Old cannot be overloaded, e.g., if New has the same 545 // signature as some function in Old (C++ 1.3.10) or if the Old 546 // declarations aren't functions (or function templates) at all. When 547 // it does return false, MatchedDecl will point to the decl that New 548 // cannot be overloaded with. This decl may be a UsingShadowDecl on 549 // top of the underlying declaration. 550 // 551 // Example: Given the following input: 552 // 553 // void f(int, float); // #1 554 // void f(int, int); // #2 555 // int f(int, int); // #3 556 // 557 // When we process #1, there is no previous declaration of "f", 558 // so IsOverload will not be used. 559 // 560 // When we process #2, Old contains only the FunctionDecl for #1. By 561 // comparing the parameter types, we see that #1 and #2 are overloaded 562 // (since they have different signatures), so this routine returns 563 // false; MatchedDecl is unchanged. 564 // 565 // When we process #3, Old is an overload set containing #1 and #2. We 566 // compare the signatures of #3 to #1 (they're overloaded, so we do 567 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are 568 // identical (return types of functions are not part of the 569 // signature), IsOverload returns false and MatchedDecl will be set to 570 // point to the FunctionDecl for #2. 571 // 572 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 573 // into a class by a using declaration. The rules for whether to hide 574 // shadow declarations ignore some properties which otherwise figure 575 // into a function template's signature. 576 Sema::OverloadKind 577 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 578 NamedDecl *&Match, bool NewIsUsingDecl) { 579 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 580 I != E; ++I) { 581 NamedDecl *OldD = *I; 582 583 bool OldIsUsingDecl = false; 584 if (isa<UsingShadowDecl>(OldD)) { 585 OldIsUsingDecl = true; 586 587 // We can always introduce two using declarations into the same 588 // context, even if they have identical signatures. 589 if (NewIsUsingDecl) continue; 590 591 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 592 } 593 594 // If either declaration was introduced by a using declaration, 595 // we'll need to use slightly different rules for matching. 596 // Essentially, these rules are the normal rules, except that 597 // function templates hide function templates with different 598 // return types or template parameter lists. 599 bool UseMemberUsingDeclRules = 600 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 601 602 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 603 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 604 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 605 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 606 continue; 607 } 608 609 Match = *I; 610 return Ovl_Match; 611 } 612 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 613 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 614 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 615 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 616 continue; 617 } 618 619 Match = *I; 620 return Ovl_Match; 621 } 622 } else if (isa<UsingDecl>(OldD)) { 623 // We can overload with these, which can show up when doing 624 // redeclaration checks for UsingDecls. 625 assert(Old.getLookupKind() == LookupUsingDeclName); 626 } else if (isa<TagDecl>(OldD)) { 627 // We can always overload with tags by hiding them. 628 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 629 // Optimistically assume that an unresolved using decl will 630 // overload; if it doesn't, we'll have to diagnose during 631 // template instantiation. 632 } else { 633 // (C++ 13p1): 634 // Only function declarations can be overloaded; object and type 635 // declarations cannot be overloaded. 636 Match = *I; 637 return Ovl_NonFunction; 638 } 639 } 640 641 return Ovl_Overload; 642 } 643 644 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 645 bool UseUsingDeclRules) { 646 // If both of the functions are extern "C", then they are not 647 // overloads. 648 if (Old->isExternC() && New->isExternC()) 649 return false; 650 651 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 652 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 653 654 // C++ [temp.fct]p2: 655 // A function template can be overloaded with other function templates 656 // and with normal (non-template) functions. 657 if ((OldTemplate == 0) != (NewTemplate == 0)) 658 return true; 659 660 // Is the function New an overload of the function Old? 661 QualType OldQType = Context.getCanonicalType(Old->getType()); 662 QualType NewQType = Context.getCanonicalType(New->getType()); 663 664 // Compare the signatures (C++ 1.3.10) of the two functions to 665 // determine whether they are overloads. If we find any mismatch 666 // in the signature, they are overloads. 667 668 // If either of these functions is a K&R-style function (no 669 // prototype), then we consider them to have matching signatures. 670 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 671 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 672 return false; 673 674 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 675 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 676 677 // The signature of a function includes the types of its 678 // parameters (C++ 1.3.10), which includes the presence or absence 679 // of the ellipsis; see C++ DR 357). 680 if (OldQType != NewQType && 681 (OldType->getNumArgs() != NewType->getNumArgs() || 682 OldType->isVariadic() != NewType->isVariadic() || 683 !FunctionArgTypesAreEqual(OldType, NewType))) 684 return true; 685 686 // C++ [temp.over.link]p4: 687 // The signature of a function template consists of its function 688 // signature, its return type and its template parameter list. The names 689 // of the template parameters are significant only for establishing the 690 // relationship between the template parameters and the rest of the 691 // signature. 692 // 693 // We check the return type and template parameter lists for function 694 // templates first; the remaining checks follow. 695 // 696 // However, we don't consider either of these when deciding whether 697 // a member introduced by a shadow declaration is hidden. 698 if (!UseUsingDeclRules && NewTemplate && 699 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 700 OldTemplate->getTemplateParameters(), 701 false, TPL_TemplateMatch) || 702 OldType->getResultType() != NewType->getResultType())) 703 return true; 704 705 // If the function is a class member, its signature includes the 706 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 707 // 708 // As part of this, also check whether one of the member functions 709 // is static, in which case they are not overloads (C++ 710 // 13.1p2). While not part of the definition of the signature, 711 // this check is important to determine whether these functions 712 // can be overloaded. 713 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 714 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 715 if (OldMethod && NewMethod && 716 !OldMethod->isStatic() && !NewMethod->isStatic() && 717 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 718 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 719 if (!UseUsingDeclRules && 720 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 721 (OldMethod->getRefQualifier() == RQ_None || 722 NewMethod->getRefQualifier() == RQ_None)) { 723 // C++0x [over.load]p2: 724 // - Member function declarations with the same name and the same 725 // parameter-type-list as well as member function template 726 // declarations with the same name, the same parameter-type-list, and 727 // the same template parameter lists cannot be overloaded if any of 728 // them, but not all, have a ref-qualifier (8.3.5). 729 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 730 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 731 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 732 } 733 734 return true; 735 } 736 737 // The signatures match; this is not an overload. 738 return false; 739 } 740 741 /// \brief Checks availability of the function depending on the current 742 /// function context. Inside an unavailable function, unavailability is ignored. 743 /// 744 /// \returns true if \arg FD is unavailable and current context is inside 745 /// an available function, false otherwise. 746 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 747 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 748 } 749 750 /// TryImplicitConversion - Attempt to perform an implicit conversion 751 /// from the given expression (Expr) to the given type (ToType). This 752 /// function returns an implicit conversion sequence that can be used 753 /// to perform the initialization. Given 754 /// 755 /// void f(float f); 756 /// void g(int i) { f(i); } 757 /// 758 /// this routine would produce an implicit conversion sequence to 759 /// describe the initialization of f from i, which will be a standard 760 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 761 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 762 // 763 /// Note that this routine only determines how the conversion can be 764 /// performed; it does not actually perform the conversion. As such, 765 /// it will not produce any diagnostics if no conversion is available, 766 /// but will instead return an implicit conversion sequence of kind 767 /// "BadConversion". 768 /// 769 /// If @p SuppressUserConversions, then user-defined conversions are 770 /// not permitted. 771 /// If @p AllowExplicit, then explicit user-defined conversions are 772 /// permitted. 773 /// 774 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 775 /// writeback conversion, which allows __autoreleasing id* parameters to 776 /// be initialized with __strong id* or __weak id* arguments. 777 static ImplicitConversionSequence 778 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 779 bool SuppressUserConversions, 780 bool AllowExplicit, 781 bool InOverloadResolution, 782 bool CStyle, 783 bool AllowObjCWritebackConversion) { 784 ImplicitConversionSequence ICS; 785 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 786 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 787 ICS.setStandard(); 788 return ICS; 789 } 790 791 if (!S.getLangOptions().CPlusPlus) { 792 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 793 return ICS; 794 } 795 796 // C++ [over.ics.user]p4: 797 // A conversion of an expression of class type to the same class 798 // type is given Exact Match rank, and a conversion of an 799 // expression of class type to a base class of that type is 800 // given Conversion rank, in spite of the fact that a copy/move 801 // constructor (i.e., a user-defined conversion function) is 802 // called for those cases. 803 QualType FromType = From->getType(); 804 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 805 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 806 S.IsDerivedFrom(FromType, ToType))) { 807 ICS.setStandard(); 808 ICS.Standard.setAsIdentityConversion(); 809 ICS.Standard.setFromType(FromType); 810 ICS.Standard.setAllToTypes(ToType); 811 812 // We don't actually check at this point whether there is a valid 813 // copy/move constructor, since overloading just assumes that it 814 // exists. When we actually perform initialization, we'll find the 815 // appropriate constructor to copy the returned object, if needed. 816 ICS.Standard.CopyConstructor = 0; 817 818 // Determine whether this is considered a derived-to-base conversion. 819 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 820 ICS.Standard.Second = ICK_Derived_To_Base; 821 822 return ICS; 823 } 824 825 if (SuppressUserConversions) { 826 // We're not in the case above, so there is no conversion that 827 // we can perform. 828 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 829 return ICS; 830 } 831 832 // Attempt user-defined conversion. 833 OverloadCandidateSet Conversions(From->getExprLoc()); 834 OverloadingResult UserDefResult 835 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 836 AllowExplicit); 837 838 if (UserDefResult == OR_Success) { 839 ICS.setUserDefined(); 840 // C++ [over.ics.user]p4: 841 // A conversion of an expression of class type to the same class 842 // type is given Exact Match rank, and a conversion of an 843 // expression of class type to a base class of that type is 844 // given Conversion rank, in spite of the fact that a copy 845 // constructor (i.e., a user-defined conversion function) is 846 // called for those cases. 847 if (CXXConstructorDecl *Constructor 848 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 849 QualType FromCanon 850 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 851 QualType ToCanon 852 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 853 if (Constructor->isCopyConstructor() && 854 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 855 // Turn this into a "standard" conversion sequence, so that it 856 // gets ranked with standard conversion sequences. 857 ICS.setStandard(); 858 ICS.Standard.setAsIdentityConversion(); 859 ICS.Standard.setFromType(From->getType()); 860 ICS.Standard.setAllToTypes(ToType); 861 ICS.Standard.CopyConstructor = Constructor; 862 if (ToCanon != FromCanon) 863 ICS.Standard.Second = ICK_Derived_To_Base; 864 } 865 } 866 867 // C++ [over.best.ics]p4: 868 // However, when considering the argument of a user-defined 869 // conversion function that is a candidate by 13.3.1.3 when 870 // invoked for the copying of the temporary in the second step 871 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 872 // 13.3.1.6 in all cases, only standard conversion sequences and 873 // ellipsis conversion sequences are allowed. 874 if (SuppressUserConversions && ICS.isUserDefined()) { 875 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 876 } 877 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 878 ICS.setAmbiguous(); 879 ICS.Ambiguous.setFromType(From->getType()); 880 ICS.Ambiguous.setToType(ToType); 881 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 882 Cand != Conversions.end(); ++Cand) 883 if (Cand->Viable) 884 ICS.Ambiguous.addConversion(Cand->Function); 885 } else { 886 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 887 } 888 889 return ICS; 890 } 891 892 ImplicitConversionSequence 893 Sema::TryImplicitConversion(Expr *From, QualType ToType, 894 bool SuppressUserConversions, 895 bool AllowExplicit, 896 bool InOverloadResolution, 897 bool CStyle, 898 bool AllowObjCWritebackConversion) { 899 return clang::TryImplicitConversion(*this, From, ToType, 900 SuppressUserConversions, AllowExplicit, 901 InOverloadResolution, CStyle, 902 AllowObjCWritebackConversion); 903 } 904 905 /// PerformImplicitConversion - Perform an implicit conversion of the 906 /// expression From to the type ToType. Returns the 907 /// converted expression. Flavor is the kind of conversion we're 908 /// performing, used in the error message. If @p AllowExplicit, 909 /// explicit user-defined conversions are permitted. 910 ExprResult 911 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 912 AssignmentAction Action, bool AllowExplicit) { 913 ImplicitConversionSequence ICS; 914 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 915 } 916 917 ExprResult 918 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 919 AssignmentAction Action, bool AllowExplicit, 920 ImplicitConversionSequence& ICS) { 921 // Objective-C ARC: Determine whether we will allow the writeback conversion. 922 bool AllowObjCWritebackConversion 923 = getLangOptions().ObjCAutoRefCount && 924 (Action == AA_Passing || Action == AA_Sending); 925 926 927 ICS = clang::TryImplicitConversion(*this, From, ToType, 928 /*SuppressUserConversions=*/false, 929 AllowExplicit, 930 /*InOverloadResolution=*/false, 931 /*CStyle=*/false, 932 AllowObjCWritebackConversion); 933 return PerformImplicitConversion(From, ToType, ICS, Action); 934 } 935 936 /// \brief Determine whether the conversion from FromType to ToType is a valid 937 /// conversion that strips "noreturn" off the nested function type. 938 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 939 QualType &ResultTy) { 940 if (Context.hasSameUnqualifiedType(FromType, ToType)) 941 return false; 942 943 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 944 // where F adds one of the following at most once: 945 // - a pointer 946 // - a member pointer 947 // - a block pointer 948 CanQualType CanTo = Context.getCanonicalType(ToType); 949 CanQualType CanFrom = Context.getCanonicalType(FromType); 950 Type::TypeClass TyClass = CanTo->getTypeClass(); 951 if (TyClass != CanFrom->getTypeClass()) return false; 952 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 953 if (TyClass == Type::Pointer) { 954 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 955 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 956 } else if (TyClass == Type::BlockPointer) { 957 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 958 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 959 } else if (TyClass == Type::MemberPointer) { 960 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 961 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 962 } else { 963 return false; 964 } 965 966 TyClass = CanTo->getTypeClass(); 967 if (TyClass != CanFrom->getTypeClass()) return false; 968 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 969 return false; 970 } 971 972 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 973 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 974 if (!EInfo.getNoReturn()) return false; 975 976 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 977 assert(QualType(FromFn, 0).isCanonical()); 978 if (QualType(FromFn, 0) != CanTo) return false; 979 980 ResultTy = ToType; 981 return true; 982 } 983 984 /// \brief Determine whether the conversion from FromType to ToType is a valid 985 /// vector conversion. 986 /// 987 /// \param ICK Will be set to the vector conversion kind, if this is a vector 988 /// conversion. 989 static bool IsVectorConversion(ASTContext &Context, QualType FromType, 990 QualType ToType, ImplicitConversionKind &ICK) { 991 // We need at least one of these types to be a vector type to have a vector 992 // conversion. 993 if (!ToType->isVectorType() && !FromType->isVectorType()) 994 return false; 995 996 // Identical types require no conversions. 997 if (Context.hasSameUnqualifiedType(FromType, ToType)) 998 return false; 999 1000 // There are no conversions between extended vector types, only identity. 1001 if (ToType->isExtVectorType()) { 1002 // There are no conversions between extended vector types other than the 1003 // identity conversion. 1004 if (FromType->isExtVectorType()) 1005 return false; 1006 1007 // Vector splat from any arithmetic type to a vector. 1008 if (FromType->isArithmeticType()) { 1009 ICK = ICK_Vector_Splat; 1010 return true; 1011 } 1012 } 1013 1014 // We can perform the conversion between vector types in the following cases: 1015 // 1)vector types are equivalent AltiVec and GCC vector types 1016 // 2)lax vector conversions are permitted and the vector types are of the 1017 // same size 1018 if (ToType->isVectorType() && FromType->isVectorType()) { 1019 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1020 (Context.getLangOptions().LaxVectorConversions && 1021 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1022 ICK = ICK_Vector_Conversion; 1023 return true; 1024 } 1025 } 1026 1027 return false; 1028 } 1029 1030 /// IsStandardConversion - Determines whether there is a standard 1031 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1032 /// expression From to the type ToType. Standard conversion sequences 1033 /// only consider non-class types; for conversions that involve class 1034 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1035 /// contain the standard conversion sequence required to perform this 1036 /// conversion and this routine will return true. Otherwise, this 1037 /// routine will return false and the value of SCS is unspecified. 1038 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1039 bool InOverloadResolution, 1040 StandardConversionSequence &SCS, 1041 bool CStyle, 1042 bool AllowObjCWritebackConversion) { 1043 QualType FromType = From->getType(); 1044 1045 // Standard conversions (C++ [conv]) 1046 SCS.setAsIdentityConversion(); 1047 SCS.DeprecatedStringLiteralToCharPtr = false; 1048 SCS.IncompatibleObjC = false; 1049 SCS.setFromType(FromType); 1050 SCS.CopyConstructor = 0; 1051 1052 // There are no standard conversions for class types in C++, so 1053 // abort early. When overloading in C, however, we do permit 1054 if (FromType->isRecordType() || ToType->isRecordType()) { 1055 if (S.getLangOptions().CPlusPlus) 1056 return false; 1057 1058 // When we're overloading in C, we allow, as standard conversions, 1059 } 1060 1061 // The first conversion can be an lvalue-to-rvalue conversion, 1062 // array-to-pointer conversion, or function-to-pointer conversion 1063 // (C++ 4p1). 1064 1065 if (FromType == S.Context.OverloadTy) { 1066 DeclAccessPair AccessPair; 1067 if (FunctionDecl *Fn 1068 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1069 AccessPair)) { 1070 // We were able to resolve the address of the overloaded function, 1071 // so we can convert to the type of that function. 1072 FromType = Fn->getType(); 1073 1074 // we can sometimes resolve &foo<int> regardless of ToType, so check 1075 // if the type matches (identity) or we are converting to bool 1076 if (!S.Context.hasSameUnqualifiedType( 1077 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1078 QualType resultTy; 1079 // if the function type matches except for [[noreturn]], it's ok 1080 if (!S.IsNoReturnConversion(FromType, 1081 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1082 // otherwise, only a boolean conversion is standard 1083 if (!ToType->isBooleanType()) 1084 return false; 1085 } 1086 1087 // Check if the "from" expression is taking the address of an overloaded 1088 // function and recompute the FromType accordingly. Take advantage of the 1089 // fact that non-static member functions *must* have such an address-of 1090 // expression. 1091 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1092 if (Method && !Method->isStatic()) { 1093 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1094 "Non-unary operator on non-static member address"); 1095 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1096 == UO_AddrOf && 1097 "Non-address-of operator on non-static member address"); 1098 const Type *ClassType 1099 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1100 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1101 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1102 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1103 UO_AddrOf && 1104 "Non-address-of operator for overloaded function expression"); 1105 FromType = S.Context.getPointerType(FromType); 1106 } 1107 1108 // Check that we've computed the proper type after overload resolution. 1109 assert(S.Context.hasSameType( 1110 FromType, 1111 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1112 } else { 1113 return false; 1114 } 1115 } 1116 // Lvalue-to-rvalue conversion (C++ 4.1): 1117 // An lvalue (3.10) of a non-function, non-array type T can be 1118 // converted to an rvalue. 1119 bool argIsLValue = From->isLValue(); 1120 if (argIsLValue && 1121 !FromType->isFunctionType() && !FromType->isArrayType() && 1122 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1123 SCS.First = ICK_Lvalue_To_Rvalue; 1124 1125 // If T is a non-class type, the type of the rvalue is the 1126 // cv-unqualified version of T. Otherwise, the type of the rvalue 1127 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1128 // just strip the qualifiers because they don't matter. 1129 FromType = FromType.getUnqualifiedType(); 1130 } else if (FromType->isArrayType()) { 1131 // Array-to-pointer conversion (C++ 4.2) 1132 SCS.First = ICK_Array_To_Pointer; 1133 1134 // An lvalue or rvalue of type "array of N T" or "array of unknown 1135 // bound of T" can be converted to an rvalue of type "pointer to 1136 // T" (C++ 4.2p1). 1137 FromType = S.Context.getArrayDecayedType(FromType); 1138 1139 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1140 // This conversion is deprecated. (C++ D.4). 1141 SCS.DeprecatedStringLiteralToCharPtr = true; 1142 1143 // For the purpose of ranking in overload resolution 1144 // (13.3.3.1.1), this conversion is considered an 1145 // array-to-pointer conversion followed by a qualification 1146 // conversion (4.4). (C++ 4.2p2) 1147 SCS.Second = ICK_Identity; 1148 SCS.Third = ICK_Qualification; 1149 SCS.QualificationIncludesObjCLifetime = false; 1150 SCS.setAllToTypes(FromType); 1151 return true; 1152 } 1153 } else if (FromType->isFunctionType() && argIsLValue) { 1154 // Function-to-pointer conversion (C++ 4.3). 1155 SCS.First = ICK_Function_To_Pointer; 1156 1157 // An lvalue of function type T can be converted to an rvalue of 1158 // type "pointer to T." The result is a pointer to the 1159 // function. (C++ 4.3p1). 1160 FromType = S.Context.getPointerType(FromType); 1161 } else { 1162 // We don't require any conversions for the first step. 1163 SCS.First = ICK_Identity; 1164 } 1165 SCS.setToType(0, FromType); 1166 1167 // The second conversion can be an integral promotion, floating 1168 // point promotion, integral conversion, floating point conversion, 1169 // floating-integral conversion, pointer conversion, 1170 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1171 // For overloading in C, this can also be a "compatible-type" 1172 // conversion. 1173 bool IncompatibleObjC = false; 1174 ImplicitConversionKind SecondICK = ICK_Identity; 1175 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1176 // The unqualified versions of the types are the same: there's no 1177 // conversion to do. 1178 SCS.Second = ICK_Identity; 1179 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1180 // Integral promotion (C++ 4.5). 1181 SCS.Second = ICK_Integral_Promotion; 1182 FromType = ToType.getUnqualifiedType(); 1183 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1184 // Floating point promotion (C++ 4.6). 1185 SCS.Second = ICK_Floating_Promotion; 1186 FromType = ToType.getUnqualifiedType(); 1187 } else if (S.IsComplexPromotion(FromType, ToType)) { 1188 // Complex promotion (Clang extension) 1189 SCS.Second = ICK_Complex_Promotion; 1190 FromType = ToType.getUnqualifiedType(); 1191 } else if (ToType->isBooleanType() && 1192 (FromType->isArithmeticType() || 1193 FromType->isAnyPointerType() || 1194 FromType->isBlockPointerType() || 1195 FromType->isMemberPointerType() || 1196 FromType->isNullPtrType())) { 1197 // Boolean conversions (C++ 4.12). 1198 SCS.Second = ICK_Boolean_Conversion; 1199 FromType = S.Context.BoolTy; 1200 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1201 ToType->isIntegralType(S.Context)) { 1202 // Integral conversions (C++ 4.7). 1203 SCS.Second = ICK_Integral_Conversion; 1204 FromType = ToType.getUnqualifiedType(); 1205 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1206 // Complex conversions (C99 6.3.1.6) 1207 SCS.Second = ICK_Complex_Conversion; 1208 FromType = ToType.getUnqualifiedType(); 1209 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1210 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1211 // Complex-real conversions (C99 6.3.1.7) 1212 SCS.Second = ICK_Complex_Real; 1213 FromType = ToType.getUnqualifiedType(); 1214 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1215 // Floating point conversions (C++ 4.8). 1216 SCS.Second = ICK_Floating_Conversion; 1217 FromType = ToType.getUnqualifiedType(); 1218 } else if ((FromType->isRealFloatingType() && 1219 ToType->isIntegralType(S.Context)) || 1220 (FromType->isIntegralOrUnscopedEnumerationType() && 1221 ToType->isRealFloatingType())) { 1222 // Floating-integral conversions (C++ 4.9). 1223 SCS.Second = ICK_Floating_Integral; 1224 FromType = ToType.getUnqualifiedType(); 1225 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1226 SCS.Second = ICK_Block_Pointer_Conversion; 1227 } else if (AllowObjCWritebackConversion && 1228 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1229 SCS.Second = ICK_Writeback_Conversion; 1230 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1231 FromType, IncompatibleObjC)) { 1232 // Pointer conversions (C++ 4.10). 1233 SCS.Second = ICK_Pointer_Conversion; 1234 SCS.IncompatibleObjC = IncompatibleObjC; 1235 FromType = FromType.getUnqualifiedType(); 1236 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1237 InOverloadResolution, FromType)) { 1238 // Pointer to member conversions (4.11). 1239 SCS.Second = ICK_Pointer_Member; 1240 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1241 SCS.Second = SecondICK; 1242 FromType = ToType.getUnqualifiedType(); 1243 } else if (!S.getLangOptions().CPlusPlus && 1244 S.Context.typesAreCompatible(ToType, FromType)) { 1245 // Compatible conversions (Clang extension for C function overloading) 1246 SCS.Second = ICK_Compatible_Conversion; 1247 FromType = ToType.getUnqualifiedType(); 1248 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1249 // Treat a conversion that strips "noreturn" as an identity conversion. 1250 SCS.Second = ICK_NoReturn_Adjustment; 1251 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1252 InOverloadResolution, 1253 SCS, CStyle)) { 1254 SCS.Second = ICK_TransparentUnionConversion; 1255 FromType = ToType; 1256 } else { 1257 // No second conversion required. 1258 SCS.Second = ICK_Identity; 1259 } 1260 SCS.setToType(1, FromType); 1261 1262 QualType CanonFrom; 1263 QualType CanonTo; 1264 // The third conversion can be a qualification conversion (C++ 4p1). 1265 bool ObjCLifetimeConversion; 1266 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1267 ObjCLifetimeConversion)) { 1268 SCS.Third = ICK_Qualification; 1269 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1270 FromType = ToType; 1271 CanonFrom = S.Context.getCanonicalType(FromType); 1272 CanonTo = S.Context.getCanonicalType(ToType); 1273 } else { 1274 // No conversion required 1275 SCS.Third = ICK_Identity; 1276 1277 // C++ [over.best.ics]p6: 1278 // [...] Any difference in top-level cv-qualification is 1279 // subsumed by the initialization itself and does not constitute 1280 // a conversion. [...] 1281 CanonFrom = S.Context.getCanonicalType(FromType); 1282 CanonTo = S.Context.getCanonicalType(ToType); 1283 if (CanonFrom.getLocalUnqualifiedType() 1284 == CanonTo.getLocalUnqualifiedType() && 1285 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1286 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1287 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1288 FromType = ToType; 1289 CanonFrom = CanonTo; 1290 } 1291 } 1292 SCS.setToType(2, FromType); 1293 1294 // If we have not converted the argument type to the parameter type, 1295 // this is a bad conversion sequence. 1296 if (CanonFrom != CanonTo) 1297 return false; 1298 1299 return true; 1300 } 1301 1302 static bool 1303 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1304 QualType &ToType, 1305 bool InOverloadResolution, 1306 StandardConversionSequence &SCS, 1307 bool CStyle) { 1308 1309 const RecordType *UT = ToType->getAsUnionType(); 1310 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1311 return false; 1312 // The field to initialize within the transparent union. 1313 RecordDecl *UD = UT->getDecl(); 1314 // It's compatible if the expression matches any of the fields. 1315 for (RecordDecl::field_iterator it = UD->field_begin(), 1316 itend = UD->field_end(); 1317 it != itend; ++it) { 1318 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1319 CStyle, /*ObjCWritebackConversion=*/false)) { 1320 ToType = it->getType(); 1321 return true; 1322 } 1323 } 1324 return false; 1325 } 1326 1327 /// IsIntegralPromotion - Determines whether the conversion from the 1328 /// expression From (whose potentially-adjusted type is FromType) to 1329 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 1330 /// sets PromotedType to the promoted type. 1331 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1332 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1333 // All integers are built-in. 1334 if (!To) { 1335 return false; 1336 } 1337 1338 // An rvalue of type char, signed char, unsigned char, short int, or 1339 // unsigned short int can be converted to an rvalue of type int if 1340 // int can represent all the values of the source type; otherwise, 1341 // the source rvalue can be converted to an rvalue of type unsigned 1342 // int (C++ 4.5p1). 1343 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1344 !FromType->isEnumeralType()) { 1345 if (// We can promote any signed, promotable integer type to an int 1346 (FromType->isSignedIntegerType() || 1347 // We can promote any unsigned integer type whose size is 1348 // less than int to an int. 1349 (!FromType->isSignedIntegerType() && 1350 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1351 return To->getKind() == BuiltinType::Int; 1352 } 1353 1354 return To->getKind() == BuiltinType::UInt; 1355 } 1356 1357 // C++0x [conv.prom]p3: 1358 // A prvalue of an unscoped enumeration type whose underlying type is not 1359 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1360 // following types that can represent all the values of the enumeration 1361 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1362 // unsigned int, long int, unsigned long int, long long int, or unsigned 1363 // long long int. If none of the types in that list can represent all the 1364 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1365 // type can be converted to an rvalue a prvalue of the extended integer type 1366 // with lowest integer conversion rank (4.13) greater than the rank of long 1367 // long in which all the values of the enumeration can be represented. If 1368 // there are two such extended types, the signed one is chosen. 1369 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1370 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1371 // provided for a scoped enumeration. 1372 if (FromEnumType->getDecl()->isScoped()) 1373 return false; 1374 1375 // We have already pre-calculated the promotion type, so this is trivial. 1376 if (ToType->isIntegerType() && 1377 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1378 return Context.hasSameUnqualifiedType(ToType, 1379 FromEnumType->getDecl()->getPromotionType()); 1380 } 1381 1382 // C++0x [conv.prom]p2: 1383 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1384 // to an rvalue a prvalue of the first of the following types that can 1385 // represent all the values of its underlying type: int, unsigned int, 1386 // long int, unsigned long int, long long int, or unsigned long long int. 1387 // If none of the types in that list can represent all the values of its 1388 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1389 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1390 // type. 1391 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1392 ToType->isIntegerType()) { 1393 // Determine whether the type we're converting from is signed or 1394 // unsigned. 1395 bool FromIsSigned; 1396 uint64_t FromSize = Context.getTypeSize(FromType); 1397 1398 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1399 FromIsSigned = true; 1400 1401 // The types we'll try to promote to, in the appropriate 1402 // order. Try each of these types. 1403 QualType PromoteTypes[6] = { 1404 Context.IntTy, Context.UnsignedIntTy, 1405 Context.LongTy, Context.UnsignedLongTy , 1406 Context.LongLongTy, Context.UnsignedLongLongTy 1407 }; 1408 for (int Idx = 0; Idx < 6; ++Idx) { 1409 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1410 if (FromSize < ToSize || 1411 (FromSize == ToSize && 1412 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1413 // We found the type that we can promote to. If this is the 1414 // type we wanted, we have a promotion. Otherwise, no 1415 // promotion. 1416 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1417 } 1418 } 1419 } 1420 1421 // An rvalue for an integral bit-field (9.6) can be converted to an 1422 // rvalue of type int if int can represent all the values of the 1423 // bit-field; otherwise, it can be converted to unsigned int if 1424 // unsigned int can represent all the values of the bit-field. If 1425 // the bit-field is larger yet, no integral promotion applies to 1426 // it. If the bit-field has an enumerated type, it is treated as any 1427 // other value of that type for promotion purposes (C++ 4.5p3). 1428 // FIXME: We should delay checking of bit-fields until we actually perform the 1429 // conversion. 1430 using llvm::APSInt; 1431 if (From) 1432 if (FieldDecl *MemberDecl = From->getBitField()) { 1433 APSInt BitWidth; 1434 if (FromType->isIntegralType(Context) && 1435 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1436 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1437 ToSize = Context.getTypeSize(ToType); 1438 1439 // Are we promoting to an int from a bitfield that fits in an int? 1440 if (BitWidth < ToSize || 1441 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1442 return To->getKind() == BuiltinType::Int; 1443 } 1444 1445 // Are we promoting to an unsigned int from an unsigned bitfield 1446 // that fits into an unsigned int? 1447 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1448 return To->getKind() == BuiltinType::UInt; 1449 } 1450 1451 return false; 1452 } 1453 } 1454 1455 // An rvalue of type bool can be converted to an rvalue of type int, 1456 // with false becoming zero and true becoming one (C++ 4.5p4). 1457 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1458 return true; 1459 } 1460 1461 return false; 1462 } 1463 1464 /// IsFloatingPointPromotion - Determines whether the conversion from 1465 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1466 /// returns true and sets PromotedType to the promoted type. 1467 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1468 /// An rvalue of type float can be converted to an rvalue of type 1469 /// double. (C++ 4.6p1). 1470 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1471 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1472 if (FromBuiltin->getKind() == BuiltinType::Float && 1473 ToBuiltin->getKind() == BuiltinType::Double) 1474 return true; 1475 1476 // C99 6.3.1.5p1: 1477 // When a float is promoted to double or long double, or a 1478 // double is promoted to long double [...]. 1479 if (!getLangOptions().CPlusPlus && 1480 (FromBuiltin->getKind() == BuiltinType::Float || 1481 FromBuiltin->getKind() == BuiltinType::Double) && 1482 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1483 return true; 1484 } 1485 1486 return false; 1487 } 1488 1489 /// \brief Determine if a conversion is a complex promotion. 1490 /// 1491 /// A complex promotion is defined as a complex -> complex conversion 1492 /// where the conversion between the underlying real types is a 1493 /// floating-point or integral promotion. 1494 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1495 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1496 if (!FromComplex) 1497 return false; 1498 1499 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1500 if (!ToComplex) 1501 return false; 1502 1503 return IsFloatingPointPromotion(FromComplex->getElementType(), 1504 ToComplex->getElementType()) || 1505 IsIntegralPromotion(0, FromComplex->getElementType(), 1506 ToComplex->getElementType()); 1507 } 1508 1509 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1510 /// the pointer type FromPtr to a pointer to type ToPointee, with the 1511 /// same type qualifiers as FromPtr has on its pointee type. ToType, 1512 /// if non-empty, will be a pointer to ToType that may or may not have 1513 /// the right set of qualifiers on its pointee. 1514 /// 1515 static QualType 1516 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1517 QualType ToPointee, QualType ToType, 1518 ASTContext &Context, 1519 bool StripObjCLifetime = false) { 1520 assert((FromPtr->getTypeClass() == Type::Pointer || 1521 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1522 "Invalid similarly-qualified pointer type"); 1523 1524 /// Conversions to 'id' subsume cv-qualifier conversions. 1525 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1526 return ToType.getUnqualifiedType(); 1527 1528 QualType CanonFromPointee 1529 = Context.getCanonicalType(FromPtr->getPointeeType()); 1530 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1531 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1532 1533 if (StripObjCLifetime) 1534 Quals.removeObjCLifetime(); 1535 1536 // Exact qualifier match -> return the pointer type we're converting to. 1537 if (CanonToPointee.getLocalQualifiers() == Quals) { 1538 // ToType is exactly what we need. Return it. 1539 if (!ToType.isNull()) 1540 return ToType.getUnqualifiedType(); 1541 1542 // Build a pointer to ToPointee. It has the right qualifiers 1543 // already. 1544 if (isa<ObjCObjectPointerType>(ToType)) 1545 return Context.getObjCObjectPointerType(ToPointee); 1546 return Context.getPointerType(ToPointee); 1547 } 1548 1549 // Just build a canonical type that has the right qualifiers. 1550 QualType QualifiedCanonToPointee 1551 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1552 1553 if (isa<ObjCObjectPointerType>(ToType)) 1554 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1555 return Context.getPointerType(QualifiedCanonToPointee); 1556 } 1557 1558 static bool isNullPointerConstantForConversion(Expr *Expr, 1559 bool InOverloadResolution, 1560 ASTContext &Context) { 1561 // Handle value-dependent integral null pointer constants correctly. 1562 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1563 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1564 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1565 return !InOverloadResolution; 1566 1567 return Expr->isNullPointerConstant(Context, 1568 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1569 : Expr::NPC_ValueDependentIsNull); 1570 } 1571 1572 /// IsPointerConversion - Determines whether the conversion of the 1573 /// expression From, which has the (possibly adjusted) type FromType, 1574 /// can be converted to the type ToType via a pointer conversion (C++ 1575 /// 4.10). If so, returns true and places the converted type (that 1576 /// might differ from ToType in its cv-qualifiers at some level) into 1577 /// ConvertedType. 1578 /// 1579 /// This routine also supports conversions to and from block pointers 1580 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 1581 /// pointers to interfaces. FIXME: Once we've determined the 1582 /// appropriate overloading rules for Objective-C, we may want to 1583 /// split the Objective-C checks into a different routine; however, 1584 /// GCC seems to consider all of these conversions to be pointer 1585 /// conversions, so for now they live here. IncompatibleObjC will be 1586 /// set if the conversion is an allowed Objective-C conversion that 1587 /// should result in a warning. 1588 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1589 bool InOverloadResolution, 1590 QualType& ConvertedType, 1591 bool &IncompatibleObjC) { 1592 IncompatibleObjC = false; 1593 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1594 IncompatibleObjC)) 1595 return true; 1596 1597 // Conversion from a null pointer constant to any Objective-C pointer type. 1598 if (ToType->isObjCObjectPointerType() && 1599 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1600 ConvertedType = ToType; 1601 return true; 1602 } 1603 1604 // Blocks: Block pointers can be converted to void*. 1605 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1606 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1607 ConvertedType = ToType; 1608 return true; 1609 } 1610 // Blocks: A null pointer constant can be converted to a block 1611 // pointer type. 1612 if (ToType->isBlockPointerType() && 1613 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1614 ConvertedType = ToType; 1615 return true; 1616 } 1617 1618 // If the left-hand-side is nullptr_t, the right side can be a null 1619 // pointer constant. 1620 if (ToType->isNullPtrType() && 1621 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1622 ConvertedType = ToType; 1623 return true; 1624 } 1625 1626 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1627 if (!ToTypePtr) 1628 return false; 1629 1630 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1631 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1632 ConvertedType = ToType; 1633 return true; 1634 } 1635 1636 // Beyond this point, both types need to be pointers 1637 // , including objective-c pointers. 1638 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1639 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1640 !getLangOptions().ObjCAutoRefCount) { 1641 ConvertedType = BuildSimilarlyQualifiedPointerType( 1642 FromType->getAs<ObjCObjectPointerType>(), 1643 ToPointeeType, 1644 ToType, Context); 1645 return true; 1646 } 1647 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1648 if (!FromTypePtr) 1649 return false; 1650 1651 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1652 1653 // If the unqualified pointee types are the same, this can't be a 1654 // pointer conversion, so don't do all of the work below. 1655 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1656 return false; 1657 1658 // An rvalue of type "pointer to cv T," where T is an object type, 1659 // can be converted to an rvalue of type "pointer to cv void" (C++ 1660 // 4.10p2). 1661 if (FromPointeeType->isIncompleteOrObjectType() && 1662 ToPointeeType->isVoidType()) { 1663 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1664 ToPointeeType, 1665 ToType, Context, 1666 /*StripObjCLifetime=*/true); 1667 return true; 1668 } 1669 1670 // MSVC allows implicit function to void* type conversion. 1671 if (getLangOptions().Microsoft && FromPointeeType->isFunctionType() && 1672 ToPointeeType->isVoidType()) { 1673 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1674 ToPointeeType, 1675 ToType, Context); 1676 return true; 1677 } 1678 1679 // When we're overloading in C, we allow a special kind of pointer 1680 // conversion for compatible-but-not-identical pointee types. 1681 if (!getLangOptions().CPlusPlus && 1682 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1683 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1684 ToPointeeType, 1685 ToType, Context); 1686 return true; 1687 } 1688 1689 // C++ [conv.ptr]p3: 1690 // 1691 // An rvalue of type "pointer to cv D," where D is a class type, 1692 // can be converted to an rvalue of type "pointer to cv B," where 1693 // B is a base class (clause 10) of D. If B is an inaccessible 1694 // (clause 11) or ambiguous (10.2) base class of D, a program that 1695 // necessitates this conversion is ill-formed. The result of the 1696 // conversion is a pointer to the base class sub-object of the 1697 // derived class object. The null pointer value is converted to 1698 // the null pointer value of the destination type. 1699 // 1700 // Note that we do not check for ambiguity or inaccessibility 1701 // here. That is handled by CheckPointerConversion. 1702 if (getLangOptions().CPlusPlus && 1703 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1704 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1705 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1706 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1707 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1708 ToPointeeType, 1709 ToType, Context); 1710 return true; 1711 } 1712 1713 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 1714 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 1715 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1716 ToPointeeType, 1717 ToType, Context); 1718 return true; 1719 } 1720 1721 return false; 1722 } 1723 1724 /// \brief Adopt the given qualifiers for the given type. 1725 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 1726 Qualifiers TQs = T.getQualifiers(); 1727 1728 // Check whether qualifiers already match. 1729 if (TQs == Qs) 1730 return T; 1731 1732 if (Qs.compatiblyIncludes(TQs)) 1733 return Context.getQualifiedType(T, Qs); 1734 1735 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 1736 } 1737 1738 /// isObjCPointerConversion - Determines whether this is an 1739 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1740 /// with the same arguments and return values. 1741 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1742 QualType& ConvertedType, 1743 bool &IncompatibleObjC) { 1744 if (!getLangOptions().ObjC1) 1745 return false; 1746 1747 // The set of qualifiers on the type we're converting from. 1748 Qualifiers FromQualifiers = FromType.getQualifiers(); 1749 1750 // First, we handle all conversions on ObjC object pointer types. 1751 const ObjCObjectPointerType* ToObjCPtr = 1752 ToType->getAs<ObjCObjectPointerType>(); 1753 const ObjCObjectPointerType *FromObjCPtr = 1754 FromType->getAs<ObjCObjectPointerType>(); 1755 1756 if (ToObjCPtr && FromObjCPtr) { 1757 // If the pointee types are the same (ignoring qualifications), 1758 // then this is not a pointer conversion. 1759 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1760 FromObjCPtr->getPointeeType())) 1761 return false; 1762 1763 // Check for compatible 1764 // Objective C++: We're able to convert between "id" or "Class" and a 1765 // pointer to any interface (in both directions). 1766 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1767 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1768 return true; 1769 } 1770 // Conversions with Objective-C's id<...>. 1771 if ((FromObjCPtr->isObjCQualifiedIdType() || 1772 ToObjCPtr->isObjCQualifiedIdType()) && 1773 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1774 /*compare=*/false)) { 1775 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1776 return true; 1777 } 1778 // Objective C++: We're able to convert from a pointer to an 1779 // interface to a pointer to a different interface. 1780 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1781 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1782 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1783 if (getLangOptions().CPlusPlus && LHS && RHS && 1784 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1785 FromObjCPtr->getPointeeType())) 1786 return false; 1787 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1788 ToObjCPtr->getPointeeType(), 1789 ToType, Context); 1790 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1791 return true; 1792 } 1793 1794 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1795 // Okay: this is some kind of implicit downcast of Objective-C 1796 // interfaces, which is permitted. However, we're going to 1797 // complain about it. 1798 IncompatibleObjC = true; 1799 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1800 ToObjCPtr->getPointeeType(), 1801 ToType, Context); 1802 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1803 return true; 1804 } 1805 } 1806 // Beyond this point, both types need to be C pointers or block pointers. 1807 QualType ToPointeeType; 1808 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1809 ToPointeeType = ToCPtr->getPointeeType(); 1810 else if (const BlockPointerType *ToBlockPtr = 1811 ToType->getAs<BlockPointerType>()) { 1812 // Objective C++: We're able to convert from a pointer to any object 1813 // to a block pointer type. 1814 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1815 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1816 return true; 1817 } 1818 ToPointeeType = ToBlockPtr->getPointeeType(); 1819 } 1820 else if (FromType->getAs<BlockPointerType>() && 1821 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1822 // Objective C++: We're able to convert from a block pointer type to a 1823 // pointer to any object. 1824 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1825 return true; 1826 } 1827 else 1828 return false; 1829 1830 QualType FromPointeeType; 1831 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1832 FromPointeeType = FromCPtr->getPointeeType(); 1833 else if (const BlockPointerType *FromBlockPtr = 1834 FromType->getAs<BlockPointerType>()) 1835 FromPointeeType = FromBlockPtr->getPointeeType(); 1836 else 1837 return false; 1838 1839 // If we have pointers to pointers, recursively check whether this 1840 // is an Objective-C conversion. 1841 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1842 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1843 IncompatibleObjC)) { 1844 // We always complain about this conversion. 1845 IncompatibleObjC = true; 1846 ConvertedType = Context.getPointerType(ConvertedType); 1847 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1848 return true; 1849 } 1850 // Allow conversion of pointee being objective-c pointer to another one; 1851 // as in I* to id. 1852 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1853 ToPointeeType->getAs<ObjCObjectPointerType>() && 1854 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1855 IncompatibleObjC)) { 1856 1857 ConvertedType = Context.getPointerType(ConvertedType); 1858 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1859 return true; 1860 } 1861 1862 // If we have pointers to functions or blocks, check whether the only 1863 // differences in the argument and result types are in Objective-C 1864 // pointer conversions. If so, we permit the conversion (but 1865 // complain about it). 1866 const FunctionProtoType *FromFunctionType 1867 = FromPointeeType->getAs<FunctionProtoType>(); 1868 const FunctionProtoType *ToFunctionType 1869 = ToPointeeType->getAs<FunctionProtoType>(); 1870 if (FromFunctionType && ToFunctionType) { 1871 // If the function types are exactly the same, this isn't an 1872 // Objective-C pointer conversion. 1873 if (Context.getCanonicalType(FromPointeeType) 1874 == Context.getCanonicalType(ToPointeeType)) 1875 return false; 1876 1877 // Perform the quick checks that will tell us whether these 1878 // function types are obviously different. 1879 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1880 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1881 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1882 return false; 1883 1884 bool HasObjCConversion = false; 1885 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1886 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1887 // Okay, the types match exactly. Nothing to do. 1888 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1889 ToFunctionType->getResultType(), 1890 ConvertedType, IncompatibleObjC)) { 1891 // Okay, we have an Objective-C pointer conversion. 1892 HasObjCConversion = true; 1893 } else { 1894 // Function types are too different. Abort. 1895 return false; 1896 } 1897 1898 // Check argument types. 1899 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1900 ArgIdx != NumArgs; ++ArgIdx) { 1901 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1902 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1903 if (Context.getCanonicalType(FromArgType) 1904 == Context.getCanonicalType(ToArgType)) { 1905 // Okay, the types match exactly. Nothing to do. 1906 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1907 ConvertedType, IncompatibleObjC)) { 1908 // Okay, we have an Objective-C pointer conversion. 1909 HasObjCConversion = true; 1910 } else { 1911 // Argument types are too different. Abort. 1912 return false; 1913 } 1914 } 1915 1916 if (HasObjCConversion) { 1917 // We had an Objective-C conversion. Allow this pointer 1918 // conversion, but complain about it. 1919 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1920 IncompatibleObjC = true; 1921 return true; 1922 } 1923 } 1924 1925 return false; 1926 } 1927 1928 /// \brief Determine whether this is an Objective-C writeback conversion, 1929 /// used for parameter passing when performing automatic reference counting. 1930 /// 1931 /// \param FromType The type we're converting form. 1932 /// 1933 /// \param ToType The type we're converting to. 1934 /// 1935 /// \param ConvertedType The type that will be produced after applying 1936 /// this conversion. 1937 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 1938 QualType &ConvertedType) { 1939 if (!getLangOptions().ObjCAutoRefCount || 1940 Context.hasSameUnqualifiedType(FromType, ToType)) 1941 return false; 1942 1943 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 1944 QualType ToPointee; 1945 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 1946 ToPointee = ToPointer->getPointeeType(); 1947 else 1948 return false; 1949 1950 Qualifiers ToQuals = ToPointee.getQualifiers(); 1951 if (!ToPointee->isObjCLifetimeType() || 1952 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 1953 !ToQuals.withoutObjCGLifetime().empty()) 1954 return false; 1955 1956 // Argument must be a pointer to __strong to __weak. 1957 QualType FromPointee; 1958 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 1959 FromPointee = FromPointer->getPointeeType(); 1960 else 1961 return false; 1962 1963 Qualifiers FromQuals = FromPointee.getQualifiers(); 1964 if (!FromPointee->isObjCLifetimeType() || 1965 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 1966 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 1967 return false; 1968 1969 // Make sure that we have compatible qualifiers. 1970 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 1971 if (!ToQuals.compatiblyIncludes(FromQuals)) 1972 return false; 1973 1974 // Remove qualifiers from the pointee type we're converting from; they 1975 // aren't used in the compatibility check belong, and we'll be adding back 1976 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 1977 FromPointee = FromPointee.getUnqualifiedType(); 1978 1979 // The unqualified form of the pointee types must be compatible. 1980 ToPointee = ToPointee.getUnqualifiedType(); 1981 bool IncompatibleObjC; 1982 if (Context.typesAreCompatible(FromPointee, ToPointee)) 1983 FromPointee = ToPointee; 1984 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 1985 IncompatibleObjC)) 1986 return false; 1987 1988 /// \brief Construct the type we're converting to, which is a pointer to 1989 /// __autoreleasing pointee. 1990 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 1991 ConvertedType = Context.getPointerType(FromPointee); 1992 return true; 1993 } 1994 1995 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 1996 QualType& ConvertedType) { 1997 QualType ToPointeeType; 1998 if (const BlockPointerType *ToBlockPtr = 1999 ToType->getAs<BlockPointerType>()) 2000 ToPointeeType = ToBlockPtr->getPointeeType(); 2001 else 2002 return false; 2003 2004 QualType FromPointeeType; 2005 if (const BlockPointerType *FromBlockPtr = 2006 FromType->getAs<BlockPointerType>()) 2007 FromPointeeType = FromBlockPtr->getPointeeType(); 2008 else 2009 return false; 2010 // We have pointer to blocks, check whether the only 2011 // differences in the argument and result types are in Objective-C 2012 // pointer conversions. If so, we permit the conversion. 2013 2014 const FunctionProtoType *FromFunctionType 2015 = FromPointeeType->getAs<FunctionProtoType>(); 2016 const FunctionProtoType *ToFunctionType 2017 = ToPointeeType->getAs<FunctionProtoType>(); 2018 2019 if (!FromFunctionType || !ToFunctionType) 2020 return false; 2021 2022 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2023 return true; 2024 2025 // Perform the quick checks that will tell us whether these 2026 // function types are obviously different. 2027 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2028 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2029 return false; 2030 2031 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2032 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2033 if (FromEInfo != ToEInfo) 2034 return false; 2035 2036 bool IncompatibleObjC = false; 2037 if (Context.hasSameType(FromFunctionType->getResultType(), 2038 ToFunctionType->getResultType())) { 2039 // Okay, the types match exactly. Nothing to do. 2040 } else { 2041 QualType RHS = FromFunctionType->getResultType(); 2042 QualType LHS = ToFunctionType->getResultType(); 2043 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 2044 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2045 LHS = LHS.getUnqualifiedType(); 2046 2047 if (Context.hasSameType(RHS,LHS)) { 2048 // OK exact match. 2049 } else if (isObjCPointerConversion(RHS, LHS, 2050 ConvertedType, IncompatibleObjC)) { 2051 if (IncompatibleObjC) 2052 return false; 2053 // Okay, we have an Objective-C pointer conversion. 2054 } 2055 else 2056 return false; 2057 } 2058 2059 // Check argument types. 2060 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2061 ArgIdx != NumArgs; ++ArgIdx) { 2062 IncompatibleObjC = false; 2063 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2064 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2065 if (Context.hasSameType(FromArgType, ToArgType)) { 2066 // Okay, the types match exactly. Nothing to do. 2067 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2068 ConvertedType, IncompatibleObjC)) { 2069 if (IncompatibleObjC) 2070 return false; 2071 // Okay, we have an Objective-C pointer conversion. 2072 } else 2073 // Argument types are too different. Abort. 2074 return false; 2075 } 2076 ConvertedType = ToType; 2077 return true; 2078 } 2079 2080 /// FunctionArgTypesAreEqual - This routine checks two function proto types 2081 /// for equlity of their argument types. Caller has already checked that 2082 /// they have same number of arguments. This routine assumes that Objective-C 2083 /// pointer types which only differ in their protocol qualifiers are equal. 2084 bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2085 const FunctionProtoType *NewType) { 2086 if (!getLangOptions().ObjC1) 2087 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 2088 NewType->arg_type_begin()); 2089 2090 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2091 N = NewType->arg_type_begin(), 2092 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2093 QualType ToType = (*O); 2094 QualType FromType = (*N); 2095 if (ToType != FromType) { 2096 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2097 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2098 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2099 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2100 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2101 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2102 continue; 2103 } 2104 else if (const ObjCObjectPointerType *PTTo = 2105 ToType->getAs<ObjCObjectPointerType>()) { 2106 if (const ObjCObjectPointerType *PTFr = 2107 FromType->getAs<ObjCObjectPointerType>()) 2108 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 2109 continue; 2110 } 2111 return false; 2112 } 2113 } 2114 return true; 2115 } 2116 2117 /// CheckPointerConversion - Check the pointer conversion from the 2118 /// expression From to the type ToType. This routine checks for 2119 /// ambiguous or inaccessible derived-to-base pointer 2120 /// conversions for which IsPointerConversion has already returned 2121 /// true. It returns true and produces a diagnostic if there was an 2122 /// error, or returns false otherwise. 2123 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2124 CastKind &Kind, 2125 CXXCastPath& BasePath, 2126 bool IgnoreBaseAccess) { 2127 QualType FromType = From->getType(); 2128 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2129 2130 Kind = CK_BitCast; 2131 2132 if (!IsCStyleOrFunctionalCast && 2133 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && 2134 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2135 DiagRuntimeBehavior(From->getExprLoc(), From, 2136 PDiag(diag::warn_impcast_bool_to_null_pointer) 2137 << ToType << From->getSourceRange()); 2138 2139 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 2140 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2141 QualType FromPointeeType = FromPtrType->getPointeeType(), 2142 ToPointeeType = ToPtrType->getPointeeType(); 2143 2144 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2145 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2146 // We must have a derived-to-base conversion. Check an 2147 // ambiguous or inaccessible conversion. 2148 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2149 From->getExprLoc(), 2150 From->getSourceRange(), &BasePath, 2151 IgnoreBaseAccess)) 2152 return true; 2153 2154 // The conversion was successful. 2155 Kind = CK_DerivedToBase; 2156 } 2157 } 2158 if (const ObjCObjectPointerType *FromPtrType = 2159 FromType->getAs<ObjCObjectPointerType>()) { 2160 if (const ObjCObjectPointerType *ToPtrType = 2161 ToType->getAs<ObjCObjectPointerType>()) { 2162 // Objective-C++ conversions are always okay. 2163 // FIXME: We should have a different class of conversions for the 2164 // Objective-C++ implicit conversions. 2165 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2166 return false; 2167 } 2168 } 2169 2170 // We shouldn't fall into this case unless it's valid for other 2171 // reasons. 2172 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2173 Kind = CK_NullToPointer; 2174 2175 return false; 2176 } 2177 2178 /// IsMemberPointerConversion - Determines whether the conversion of the 2179 /// expression From, which has the (possibly adjusted) type FromType, can be 2180 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 2181 /// If so, returns true and places the converted type (that might differ from 2182 /// ToType in its cv-qualifiers at some level) into ConvertedType. 2183 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2184 QualType ToType, 2185 bool InOverloadResolution, 2186 QualType &ConvertedType) { 2187 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2188 if (!ToTypePtr) 2189 return false; 2190 2191 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2192 if (From->isNullPointerConstant(Context, 2193 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2194 : Expr::NPC_ValueDependentIsNull)) { 2195 ConvertedType = ToType; 2196 return true; 2197 } 2198 2199 // Otherwise, both types have to be member pointers. 2200 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2201 if (!FromTypePtr) 2202 return false; 2203 2204 // A pointer to member of B can be converted to a pointer to member of D, 2205 // where D is derived from B (C++ 4.11p2). 2206 QualType FromClass(FromTypePtr->getClass(), 0); 2207 QualType ToClass(ToTypePtr->getClass(), 0); 2208 2209 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2210 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2211 IsDerivedFrom(ToClass, FromClass)) { 2212 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2213 ToClass.getTypePtr()); 2214 return true; 2215 } 2216 2217 return false; 2218 } 2219 2220 /// CheckMemberPointerConversion - Check the member pointer conversion from the 2221 /// expression From to the type ToType. This routine checks for ambiguous or 2222 /// virtual or inaccessible base-to-derived member pointer conversions 2223 /// for which IsMemberPointerConversion has already returned true. It returns 2224 /// true and produces a diagnostic if there was an error, or returns false 2225 /// otherwise. 2226 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2227 CastKind &Kind, 2228 CXXCastPath &BasePath, 2229 bool IgnoreBaseAccess) { 2230 QualType FromType = From->getType(); 2231 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2232 if (!FromPtrType) { 2233 // This must be a null pointer to member pointer conversion 2234 assert(From->isNullPointerConstant(Context, 2235 Expr::NPC_ValueDependentIsNull) && 2236 "Expr must be null pointer constant!"); 2237 Kind = CK_NullToMemberPointer; 2238 return false; 2239 } 2240 2241 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2242 assert(ToPtrType && "No member pointer cast has a target type " 2243 "that is not a member pointer."); 2244 2245 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2246 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2247 2248 // FIXME: What about dependent types? 2249 assert(FromClass->isRecordType() && "Pointer into non-class."); 2250 assert(ToClass->isRecordType() && "Pointer into non-class."); 2251 2252 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2253 /*DetectVirtual=*/true); 2254 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2255 assert(DerivationOkay && 2256 "Should not have been called if derivation isn't OK."); 2257 (void)DerivationOkay; 2258 2259 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2260 getUnqualifiedType())) { 2261 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2262 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2263 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2264 return true; 2265 } 2266 2267 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2268 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2269 << FromClass << ToClass << QualType(VBase, 0) 2270 << From->getSourceRange(); 2271 return true; 2272 } 2273 2274 if (!IgnoreBaseAccess) 2275 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2276 Paths.front(), 2277 diag::err_downcast_from_inaccessible_base); 2278 2279 // Must be a base to derived member conversion. 2280 BuildBasePathArray(Paths, BasePath); 2281 Kind = CK_BaseToDerivedMemberPointer; 2282 return false; 2283 } 2284 2285 /// IsQualificationConversion - Determines whether the conversion from 2286 /// an rvalue of type FromType to ToType is a qualification conversion 2287 /// (C++ 4.4). 2288 /// 2289 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2290 /// when the qualification conversion involves a change in the Objective-C 2291 /// object lifetime. 2292 bool 2293 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2294 bool CStyle, bool &ObjCLifetimeConversion) { 2295 FromType = Context.getCanonicalType(FromType); 2296 ToType = Context.getCanonicalType(ToType); 2297 ObjCLifetimeConversion = false; 2298 2299 // If FromType and ToType are the same type, this is not a 2300 // qualification conversion. 2301 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2302 return false; 2303 2304 // (C++ 4.4p4): 2305 // A conversion can add cv-qualifiers at levels other than the first 2306 // in multi-level pointers, subject to the following rules: [...] 2307 bool PreviousToQualsIncludeConst = true; 2308 bool UnwrappedAnyPointer = false; 2309 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2310 // Within each iteration of the loop, we check the qualifiers to 2311 // determine if this still looks like a qualification 2312 // conversion. Then, if all is well, we unwrap one more level of 2313 // pointers or pointers-to-members and do it all again 2314 // until there are no more pointers or pointers-to-members left to 2315 // unwrap. 2316 UnwrappedAnyPointer = true; 2317 2318 Qualifiers FromQuals = FromType.getQualifiers(); 2319 Qualifiers ToQuals = ToType.getQualifiers(); 2320 2321 // Objective-C ARC: 2322 // Check Objective-C lifetime conversions. 2323 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2324 UnwrappedAnyPointer) { 2325 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2326 ObjCLifetimeConversion = true; 2327 FromQuals.removeObjCLifetime(); 2328 ToQuals.removeObjCLifetime(); 2329 } else { 2330 // Qualification conversions cannot cast between different 2331 // Objective-C lifetime qualifiers. 2332 return false; 2333 } 2334 } 2335 2336 // Allow addition/removal of GC attributes but not changing GC attributes. 2337 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2338 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2339 FromQuals.removeObjCGCAttr(); 2340 ToQuals.removeObjCGCAttr(); 2341 } 2342 2343 // -- for every j > 0, if const is in cv 1,j then const is in cv 2344 // 2,j, and similarly for volatile. 2345 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2346 return false; 2347 2348 // -- if the cv 1,j and cv 2,j are different, then const is in 2349 // every cv for 0 < k < j. 2350 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2351 && !PreviousToQualsIncludeConst) 2352 return false; 2353 2354 // Keep track of whether all prior cv-qualifiers in the "to" type 2355 // include const. 2356 PreviousToQualsIncludeConst 2357 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2358 } 2359 2360 // We are left with FromType and ToType being the pointee types 2361 // after unwrapping the original FromType and ToType the same number 2362 // of types. If we unwrapped any pointers, and if FromType and 2363 // ToType have the same unqualified type (since we checked 2364 // qualifiers above), then this is a qualification conversion. 2365 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2366 } 2367 2368 /// Determines whether there is a user-defined conversion sequence 2369 /// (C++ [over.ics.user]) that converts expression From to the type 2370 /// ToType. If such a conversion exists, User will contain the 2371 /// user-defined conversion sequence that performs such a conversion 2372 /// and this routine will return true. Otherwise, this routine returns 2373 /// false and User is unspecified. 2374 /// 2375 /// \param AllowExplicit true if the conversion should consider C++0x 2376 /// "explicit" conversion functions as well as non-explicit conversion 2377 /// functions (C++0x [class.conv.fct]p2). 2378 static OverloadingResult 2379 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2380 UserDefinedConversionSequence& User, 2381 OverloadCandidateSet& CandidateSet, 2382 bool AllowExplicit) { 2383 // Whether we will only visit constructors. 2384 bool ConstructorsOnly = false; 2385 2386 // If the type we are conversion to is a class type, enumerate its 2387 // constructors. 2388 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2389 // C++ [over.match.ctor]p1: 2390 // When objects of class type are direct-initialized (8.5), or 2391 // copy-initialized from an expression of the same or a 2392 // derived class type (8.5), overload resolution selects the 2393 // constructor. [...] For copy-initialization, the candidate 2394 // functions are all the converting constructors (12.3.1) of 2395 // that class. The argument list is the expression-list within 2396 // the parentheses of the initializer. 2397 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2398 (From->getType()->getAs<RecordType>() && 2399 S.IsDerivedFrom(From->getType(), ToType))) 2400 ConstructorsOnly = true; 2401 2402 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); 2403 // RequireCompleteType may have returned true due to some invalid decl 2404 // during template instantiation, but ToType may be complete enough now 2405 // to try to recover. 2406 if (ToType->isIncompleteType()) { 2407 // We're not going to find any constructors. 2408 } else if (CXXRecordDecl *ToRecordDecl 2409 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2410 DeclContext::lookup_iterator Con, ConEnd; 2411 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2412 Con != ConEnd; ++Con) { 2413 NamedDecl *D = *Con; 2414 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2415 2416 // Find the constructor (which may be a template). 2417 CXXConstructorDecl *Constructor = 0; 2418 FunctionTemplateDecl *ConstructorTmpl 2419 = dyn_cast<FunctionTemplateDecl>(D); 2420 if (ConstructorTmpl) 2421 Constructor 2422 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2423 else 2424 Constructor = cast<CXXConstructorDecl>(D); 2425 2426 if (!Constructor->isInvalidDecl() && 2427 Constructor->isConvertingConstructor(AllowExplicit)) { 2428 if (ConstructorTmpl) 2429 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2430 /*ExplicitArgs*/ 0, 2431 &From, 1, CandidateSet, 2432 /*SuppressUserConversions=*/ 2433 !ConstructorsOnly); 2434 else 2435 // Allow one user-defined conversion when user specifies a 2436 // From->ToType conversion via an static cast (c-style, etc). 2437 S.AddOverloadCandidate(Constructor, FoundDecl, 2438 &From, 1, CandidateSet, 2439 /*SuppressUserConversions=*/ 2440 !ConstructorsOnly); 2441 } 2442 } 2443 } 2444 } 2445 2446 // Enumerate conversion functions, if we're allowed to. 2447 if (ConstructorsOnly) { 2448 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2449 S.PDiag(0) << From->getSourceRange())) { 2450 // No conversion functions from incomplete types. 2451 } else if (const RecordType *FromRecordType 2452 = From->getType()->getAs<RecordType>()) { 2453 if (CXXRecordDecl *FromRecordDecl 2454 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2455 // Add all of the conversion functions as candidates. 2456 const UnresolvedSetImpl *Conversions 2457 = FromRecordDecl->getVisibleConversionFunctions(); 2458 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2459 E = Conversions->end(); I != E; ++I) { 2460 DeclAccessPair FoundDecl = I.getPair(); 2461 NamedDecl *D = FoundDecl.getDecl(); 2462 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2463 if (isa<UsingShadowDecl>(D)) 2464 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2465 2466 CXXConversionDecl *Conv; 2467 FunctionTemplateDecl *ConvTemplate; 2468 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2469 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2470 else 2471 Conv = cast<CXXConversionDecl>(D); 2472 2473 if (AllowExplicit || !Conv->isExplicit()) { 2474 if (ConvTemplate) 2475 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2476 ActingContext, From, ToType, 2477 CandidateSet); 2478 else 2479 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2480 From, ToType, CandidateSet); 2481 } 2482 } 2483 } 2484 } 2485 2486 OverloadCandidateSet::iterator Best; 2487 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2488 case OR_Success: 2489 // Record the standard conversion we used and the conversion function. 2490 if (CXXConstructorDecl *Constructor 2491 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2492 S.MarkDeclarationReferenced(From->getLocStart(), Constructor); 2493 2494 // C++ [over.ics.user]p1: 2495 // If the user-defined conversion is specified by a 2496 // constructor (12.3.1), the initial standard conversion 2497 // sequence converts the source type to the type required by 2498 // the argument of the constructor. 2499 // 2500 QualType ThisType = Constructor->getThisType(S.Context); 2501 if (Best->Conversions[0].isEllipsis()) 2502 User.EllipsisConversion = true; 2503 else { 2504 User.Before = Best->Conversions[0].Standard; 2505 User.EllipsisConversion = false; 2506 } 2507 User.ConversionFunction = Constructor; 2508 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2509 User.After.setAsIdentityConversion(); 2510 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2511 User.After.setAllToTypes(ToType); 2512 return OR_Success; 2513 } else if (CXXConversionDecl *Conversion 2514 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2515 S.MarkDeclarationReferenced(From->getLocStart(), Conversion); 2516 2517 // C++ [over.ics.user]p1: 2518 // 2519 // [...] If the user-defined conversion is specified by a 2520 // conversion function (12.3.2), the initial standard 2521 // conversion sequence converts the source type to the 2522 // implicit object parameter of the conversion function. 2523 User.Before = Best->Conversions[0].Standard; 2524 User.ConversionFunction = Conversion; 2525 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2526 User.EllipsisConversion = false; 2527 2528 // C++ [over.ics.user]p2: 2529 // The second standard conversion sequence converts the 2530 // result of the user-defined conversion to the target type 2531 // for the sequence. Since an implicit conversion sequence 2532 // is an initialization, the special rules for 2533 // initialization by user-defined conversion apply when 2534 // selecting the best user-defined conversion for a 2535 // user-defined conversion sequence (see 13.3.3 and 2536 // 13.3.3.1). 2537 User.After = Best->FinalConversion; 2538 return OR_Success; 2539 } else { 2540 llvm_unreachable("Not a constructor or conversion function?"); 2541 return OR_No_Viable_Function; 2542 } 2543 2544 case OR_No_Viable_Function: 2545 return OR_No_Viable_Function; 2546 case OR_Deleted: 2547 // No conversion here! We're done. 2548 return OR_Deleted; 2549 2550 case OR_Ambiguous: 2551 return OR_Ambiguous; 2552 } 2553 2554 return OR_No_Viable_Function; 2555 } 2556 2557 bool 2558 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2559 ImplicitConversionSequence ICS; 2560 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2561 OverloadingResult OvResult = 2562 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2563 CandidateSet, false); 2564 if (OvResult == OR_Ambiguous) 2565 Diag(From->getSourceRange().getBegin(), 2566 diag::err_typecheck_ambiguous_condition) 2567 << From->getType() << ToType << From->getSourceRange(); 2568 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2569 Diag(From->getSourceRange().getBegin(), 2570 diag::err_typecheck_nonviable_condition) 2571 << From->getType() << ToType << From->getSourceRange(); 2572 else 2573 return false; 2574 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2575 return true; 2576 } 2577 2578 /// CompareImplicitConversionSequences - Compare two implicit 2579 /// conversion sequences to determine whether one is better than the 2580 /// other or if they are indistinguishable (C++ 13.3.3.2). 2581 static ImplicitConversionSequence::CompareKind 2582 CompareImplicitConversionSequences(Sema &S, 2583 const ImplicitConversionSequence& ICS1, 2584 const ImplicitConversionSequence& ICS2) 2585 { 2586 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2587 // conversion sequences (as defined in 13.3.3.1) 2588 // -- a standard conversion sequence (13.3.3.1.1) is a better 2589 // conversion sequence than a user-defined conversion sequence or 2590 // an ellipsis conversion sequence, and 2591 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2592 // conversion sequence than an ellipsis conversion sequence 2593 // (13.3.3.1.3). 2594 // 2595 // C++0x [over.best.ics]p10: 2596 // For the purpose of ranking implicit conversion sequences as 2597 // described in 13.3.3.2, the ambiguous conversion sequence is 2598 // treated as a user-defined sequence that is indistinguishable 2599 // from any other user-defined conversion sequence. 2600 if (ICS1.getKindRank() < ICS2.getKindRank()) 2601 return ImplicitConversionSequence::Better; 2602 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2603 return ImplicitConversionSequence::Worse; 2604 2605 // The following checks require both conversion sequences to be of 2606 // the same kind. 2607 if (ICS1.getKind() != ICS2.getKind()) 2608 return ImplicitConversionSequence::Indistinguishable; 2609 2610 // Two implicit conversion sequences of the same form are 2611 // indistinguishable conversion sequences unless one of the 2612 // following rules apply: (C++ 13.3.3.2p3): 2613 if (ICS1.isStandard()) 2614 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2615 else if (ICS1.isUserDefined()) { 2616 // User-defined conversion sequence U1 is a better conversion 2617 // sequence than another user-defined conversion sequence U2 if 2618 // they contain the same user-defined conversion function or 2619 // constructor and if the second standard conversion sequence of 2620 // U1 is better than the second standard conversion sequence of 2621 // U2 (C++ 13.3.3.2p3). 2622 if (ICS1.UserDefined.ConversionFunction == 2623 ICS2.UserDefined.ConversionFunction) 2624 return CompareStandardConversionSequences(S, 2625 ICS1.UserDefined.After, 2626 ICS2.UserDefined.After); 2627 } 2628 2629 return ImplicitConversionSequence::Indistinguishable; 2630 } 2631 2632 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2633 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2634 Qualifiers Quals; 2635 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2636 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2637 } 2638 2639 return Context.hasSameUnqualifiedType(T1, T2); 2640 } 2641 2642 // Per 13.3.3.2p3, compare the given standard conversion sequences to 2643 // determine if one is a proper subset of the other. 2644 static ImplicitConversionSequence::CompareKind 2645 compareStandardConversionSubsets(ASTContext &Context, 2646 const StandardConversionSequence& SCS1, 2647 const StandardConversionSequence& SCS2) { 2648 ImplicitConversionSequence::CompareKind Result 2649 = ImplicitConversionSequence::Indistinguishable; 2650 2651 // the identity conversion sequence is considered to be a subsequence of 2652 // any non-identity conversion sequence 2653 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2654 return ImplicitConversionSequence::Better; 2655 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2656 return ImplicitConversionSequence::Worse; 2657 2658 if (SCS1.Second != SCS2.Second) { 2659 if (SCS1.Second == ICK_Identity) 2660 Result = ImplicitConversionSequence::Better; 2661 else if (SCS2.Second == ICK_Identity) 2662 Result = ImplicitConversionSequence::Worse; 2663 else 2664 return ImplicitConversionSequence::Indistinguishable; 2665 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2666 return ImplicitConversionSequence::Indistinguishable; 2667 2668 if (SCS1.Third == SCS2.Third) { 2669 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2670 : ImplicitConversionSequence::Indistinguishable; 2671 } 2672 2673 if (SCS1.Third == ICK_Identity) 2674 return Result == ImplicitConversionSequence::Worse 2675 ? ImplicitConversionSequence::Indistinguishable 2676 : ImplicitConversionSequence::Better; 2677 2678 if (SCS2.Third == ICK_Identity) 2679 return Result == ImplicitConversionSequence::Better 2680 ? ImplicitConversionSequence::Indistinguishable 2681 : ImplicitConversionSequence::Worse; 2682 2683 return ImplicitConversionSequence::Indistinguishable; 2684 } 2685 2686 /// \brief Determine whether one of the given reference bindings is better 2687 /// than the other based on what kind of bindings they are. 2688 static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2689 const StandardConversionSequence &SCS2) { 2690 // C++0x [over.ics.rank]p3b4: 2691 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2692 // implicit object parameter of a non-static member function declared 2693 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2694 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2695 // lvalue reference to a function lvalue and S2 binds an rvalue 2696 // reference*. 2697 // 2698 // FIXME: Rvalue references. We're going rogue with the above edits, 2699 // because the semantics in the current C++0x working paper (N3225 at the 2700 // time of this writing) break the standard definition of std::forward 2701 // and std::reference_wrapper when dealing with references to functions. 2702 // Proposed wording changes submitted to CWG for consideration. 2703 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2704 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2705 return false; 2706 2707 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2708 SCS2.IsLvalueReference) || 2709 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2710 !SCS2.IsLvalueReference); 2711 } 2712 2713 /// CompareStandardConversionSequences - Compare two standard 2714 /// conversion sequences to determine whether one is better than the 2715 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 2716 static ImplicitConversionSequence::CompareKind 2717 CompareStandardConversionSequences(Sema &S, 2718 const StandardConversionSequence& SCS1, 2719 const StandardConversionSequence& SCS2) 2720 { 2721 // Standard conversion sequence S1 is a better conversion sequence 2722 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2723 2724 // -- S1 is a proper subsequence of S2 (comparing the conversion 2725 // sequences in the canonical form defined by 13.3.3.1.1, 2726 // excluding any Lvalue Transformation; the identity conversion 2727 // sequence is considered to be a subsequence of any 2728 // non-identity conversion sequence) or, if not that, 2729 if (ImplicitConversionSequence::CompareKind CK 2730 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2731 return CK; 2732 2733 // -- the rank of S1 is better than the rank of S2 (by the rules 2734 // defined below), or, if not that, 2735 ImplicitConversionRank Rank1 = SCS1.getRank(); 2736 ImplicitConversionRank Rank2 = SCS2.getRank(); 2737 if (Rank1 < Rank2) 2738 return ImplicitConversionSequence::Better; 2739 else if (Rank2 < Rank1) 2740 return ImplicitConversionSequence::Worse; 2741 2742 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2743 // are indistinguishable unless one of the following rules 2744 // applies: 2745 2746 // A conversion that is not a conversion of a pointer, or 2747 // pointer to member, to bool is better than another conversion 2748 // that is such a conversion. 2749 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2750 return SCS2.isPointerConversionToBool() 2751 ? ImplicitConversionSequence::Better 2752 : ImplicitConversionSequence::Worse; 2753 2754 // C++ [over.ics.rank]p4b2: 2755 // 2756 // If class B is derived directly or indirectly from class A, 2757 // conversion of B* to A* is better than conversion of B* to 2758 // void*, and conversion of A* to void* is better than conversion 2759 // of B* to void*. 2760 bool SCS1ConvertsToVoid 2761 = SCS1.isPointerConversionToVoidPointer(S.Context); 2762 bool SCS2ConvertsToVoid 2763 = SCS2.isPointerConversionToVoidPointer(S.Context); 2764 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2765 // Exactly one of the conversion sequences is a conversion to 2766 // a void pointer; it's the worse conversion. 2767 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2768 : ImplicitConversionSequence::Worse; 2769 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2770 // Neither conversion sequence converts to a void pointer; compare 2771 // their derived-to-base conversions. 2772 if (ImplicitConversionSequence::CompareKind DerivedCK 2773 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2774 return DerivedCK; 2775 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 2776 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 2777 // Both conversion sequences are conversions to void 2778 // pointers. Compare the source types to determine if there's an 2779 // inheritance relationship in their sources. 2780 QualType FromType1 = SCS1.getFromType(); 2781 QualType FromType2 = SCS2.getFromType(); 2782 2783 // Adjust the types we're converting from via the array-to-pointer 2784 // conversion, if we need to. 2785 if (SCS1.First == ICK_Array_To_Pointer) 2786 FromType1 = S.Context.getArrayDecayedType(FromType1); 2787 if (SCS2.First == ICK_Array_To_Pointer) 2788 FromType2 = S.Context.getArrayDecayedType(FromType2); 2789 2790 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 2791 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 2792 2793 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2794 return ImplicitConversionSequence::Better; 2795 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2796 return ImplicitConversionSequence::Worse; 2797 2798 // Objective-C++: If one interface is more specific than the 2799 // other, it is the better one. 2800 const ObjCObjectPointerType* FromObjCPtr1 2801 = FromType1->getAs<ObjCObjectPointerType>(); 2802 const ObjCObjectPointerType* FromObjCPtr2 2803 = FromType2->getAs<ObjCObjectPointerType>(); 2804 if (FromObjCPtr1 && FromObjCPtr2) { 2805 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 2806 FromObjCPtr2); 2807 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 2808 FromObjCPtr1); 2809 if (AssignLeft != AssignRight) { 2810 return AssignLeft? ImplicitConversionSequence::Better 2811 : ImplicitConversionSequence::Worse; 2812 } 2813 } 2814 } 2815 2816 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2817 // bullet 3). 2818 if (ImplicitConversionSequence::CompareKind QualCK 2819 = CompareQualificationConversions(S, SCS1, SCS2)) 2820 return QualCK; 2821 2822 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2823 // Check for a better reference binding based on the kind of bindings. 2824 if (isBetterReferenceBindingKind(SCS1, SCS2)) 2825 return ImplicitConversionSequence::Better; 2826 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 2827 return ImplicitConversionSequence::Worse; 2828 2829 // C++ [over.ics.rank]p3b4: 2830 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2831 // which the references refer are the same type except for 2832 // top-level cv-qualifiers, and the type to which the reference 2833 // initialized by S2 refers is more cv-qualified than the type 2834 // to which the reference initialized by S1 refers. 2835 QualType T1 = SCS1.getToType(2); 2836 QualType T2 = SCS2.getToType(2); 2837 T1 = S.Context.getCanonicalType(T1); 2838 T2 = S.Context.getCanonicalType(T2); 2839 Qualifiers T1Quals, T2Quals; 2840 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2841 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2842 if (UnqualT1 == UnqualT2) { 2843 // Objective-C++ ARC: If the references refer to objects with different 2844 // lifetimes, prefer bindings that don't change lifetime. 2845 if (SCS1.ObjCLifetimeConversionBinding != 2846 SCS2.ObjCLifetimeConversionBinding) { 2847 return SCS1.ObjCLifetimeConversionBinding 2848 ? ImplicitConversionSequence::Worse 2849 : ImplicitConversionSequence::Better; 2850 } 2851 2852 // If the type is an array type, promote the element qualifiers to the 2853 // type for comparison. 2854 if (isa<ArrayType>(T1) && T1Quals) 2855 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2856 if (isa<ArrayType>(T2) && T2Quals) 2857 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2858 if (T2.isMoreQualifiedThan(T1)) 2859 return ImplicitConversionSequence::Better; 2860 else if (T1.isMoreQualifiedThan(T2)) 2861 return ImplicitConversionSequence::Worse; 2862 } 2863 } 2864 2865 return ImplicitConversionSequence::Indistinguishable; 2866 } 2867 2868 /// CompareQualificationConversions - Compares two standard conversion 2869 /// sequences to determine whether they can be ranked based on their 2870 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2871 ImplicitConversionSequence::CompareKind 2872 CompareQualificationConversions(Sema &S, 2873 const StandardConversionSequence& SCS1, 2874 const StandardConversionSequence& SCS2) { 2875 // C++ 13.3.3.2p3: 2876 // -- S1 and S2 differ only in their qualification conversion and 2877 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2878 // cv-qualification signature of type T1 is a proper subset of 2879 // the cv-qualification signature of type T2, and S1 is not the 2880 // deprecated string literal array-to-pointer conversion (4.2). 2881 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2882 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2883 return ImplicitConversionSequence::Indistinguishable; 2884 2885 // FIXME: the example in the standard doesn't use a qualification 2886 // conversion (!) 2887 QualType T1 = SCS1.getToType(2); 2888 QualType T2 = SCS2.getToType(2); 2889 T1 = S.Context.getCanonicalType(T1); 2890 T2 = S.Context.getCanonicalType(T2); 2891 Qualifiers T1Quals, T2Quals; 2892 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2893 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2894 2895 // If the types are the same, we won't learn anything by unwrapped 2896 // them. 2897 if (UnqualT1 == UnqualT2) 2898 return ImplicitConversionSequence::Indistinguishable; 2899 2900 // If the type is an array type, promote the element qualifiers to the type 2901 // for comparison. 2902 if (isa<ArrayType>(T1) && T1Quals) 2903 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2904 if (isa<ArrayType>(T2) && T2Quals) 2905 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2906 2907 ImplicitConversionSequence::CompareKind Result 2908 = ImplicitConversionSequence::Indistinguishable; 2909 2910 // Objective-C++ ARC: 2911 // Prefer qualification conversions not involving a change in lifetime 2912 // to qualification conversions that do not change lifetime. 2913 if (SCS1.QualificationIncludesObjCLifetime != 2914 SCS2.QualificationIncludesObjCLifetime) { 2915 Result = SCS1.QualificationIncludesObjCLifetime 2916 ? ImplicitConversionSequence::Worse 2917 : ImplicitConversionSequence::Better; 2918 } 2919 2920 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2921 // Within each iteration of the loop, we check the qualifiers to 2922 // determine if this still looks like a qualification 2923 // conversion. Then, if all is well, we unwrap one more level of 2924 // pointers or pointers-to-members and do it all again 2925 // until there are no more pointers or pointers-to-members left 2926 // to unwrap. This essentially mimics what 2927 // IsQualificationConversion does, but here we're checking for a 2928 // strict subset of qualifiers. 2929 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2930 // The qualifiers are the same, so this doesn't tell us anything 2931 // about how the sequences rank. 2932 ; 2933 else if (T2.isMoreQualifiedThan(T1)) { 2934 // T1 has fewer qualifiers, so it could be the better sequence. 2935 if (Result == ImplicitConversionSequence::Worse) 2936 // Neither has qualifiers that are a subset of the other's 2937 // qualifiers. 2938 return ImplicitConversionSequence::Indistinguishable; 2939 2940 Result = ImplicitConversionSequence::Better; 2941 } else if (T1.isMoreQualifiedThan(T2)) { 2942 // T2 has fewer qualifiers, so it could be the better sequence. 2943 if (Result == ImplicitConversionSequence::Better) 2944 // Neither has qualifiers that are a subset of the other's 2945 // qualifiers. 2946 return ImplicitConversionSequence::Indistinguishable; 2947 2948 Result = ImplicitConversionSequence::Worse; 2949 } else { 2950 // Qualifiers are disjoint. 2951 return ImplicitConversionSequence::Indistinguishable; 2952 } 2953 2954 // If the types after this point are equivalent, we're done. 2955 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2956 break; 2957 } 2958 2959 // Check that the winning standard conversion sequence isn't using 2960 // the deprecated string literal array to pointer conversion. 2961 switch (Result) { 2962 case ImplicitConversionSequence::Better: 2963 if (SCS1.DeprecatedStringLiteralToCharPtr) 2964 Result = ImplicitConversionSequence::Indistinguishable; 2965 break; 2966 2967 case ImplicitConversionSequence::Indistinguishable: 2968 break; 2969 2970 case ImplicitConversionSequence::Worse: 2971 if (SCS2.DeprecatedStringLiteralToCharPtr) 2972 Result = ImplicitConversionSequence::Indistinguishable; 2973 break; 2974 } 2975 2976 return Result; 2977 } 2978 2979 /// CompareDerivedToBaseConversions - Compares two standard conversion 2980 /// sequences to determine whether they can be ranked based on their 2981 /// various kinds of derived-to-base conversions (C++ 2982 /// [over.ics.rank]p4b3). As part of these checks, we also look at 2983 /// conversions between Objective-C interface types. 2984 ImplicitConversionSequence::CompareKind 2985 CompareDerivedToBaseConversions(Sema &S, 2986 const StandardConversionSequence& SCS1, 2987 const StandardConversionSequence& SCS2) { 2988 QualType FromType1 = SCS1.getFromType(); 2989 QualType ToType1 = SCS1.getToType(1); 2990 QualType FromType2 = SCS2.getFromType(); 2991 QualType ToType2 = SCS2.getToType(1); 2992 2993 // Adjust the types we're converting from via the array-to-pointer 2994 // conversion, if we need to. 2995 if (SCS1.First == ICK_Array_To_Pointer) 2996 FromType1 = S.Context.getArrayDecayedType(FromType1); 2997 if (SCS2.First == ICK_Array_To_Pointer) 2998 FromType2 = S.Context.getArrayDecayedType(FromType2); 2999 3000 // Canonicalize all of the types. 3001 FromType1 = S.Context.getCanonicalType(FromType1); 3002 ToType1 = S.Context.getCanonicalType(ToType1); 3003 FromType2 = S.Context.getCanonicalType(FromType2); 3004 ToType2 = S.Context.getCanonicalType(ToType2); 3005 3006 // C++ [over.ics.rank]p4b3: 3007 // 3008 // If class B is derived directly or indirectly from class A and 3009 // class C is derived directly or indirectly from B, 3010 // 3011 // Compare based on pointer conversions. 3012 if (SCS1.Second == ICK_Pointer_Conversion && 3013 SCS2.Second == ICK_Pointer_Conversion && 3014 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3015 FromType1->isPointerType() && FromType2->isPointerType() && 3016 ToType1->isPointerType() && ToType2->isPointerType()) { 3017 QualType FromPointee1 3018 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3019 QualType ToPointee1 3020 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3021 QualType FromPointee2 3022 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3023 QualType ToPointee2 3024 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3025 3026 // -- conversion of C* to B* is better than conversion of C* to A*, 3027 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3028 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3029 return ImplicitConversionSequence::Better; 3030 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3031 return ImplicitConversionSequence::Worse; 3032 } 3033 3034 // -- conversion of B* to A* is better than conversion of C* to A*, 3035 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3036 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3037 return ImplicitConversionSequence::Better; 3038 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3039 return ImplicitConversionSequence::Worse; 3040 } 3041 } else if (SCS1.Second == ICK_Pointer_Conversion && 3042 SCS2.Second == ICK_Pointer_Conversion) { 3043 const ObjCObjectPointerType *FromPtr1 3044 = FromType1->getAs<ObjCObjectPointerType>(); 3045 const ObjCObjectPointerType *FromPtr2 3046 = FromType2->getAs<ObjCObjectPointerType>(); 3047 const ObjCObjectPointerType *ToPtr1 3048 = ToType1->getAs<ObjCObjectPointerType>(); 3049 const ObjCObjectPointerType *ToPtr2 3050 = ToType2->getAs<ObjCObjectPointerType>(); 3051 3052 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3053 // Apply the same conversion ranking rules for Objective-C pointer types 3054 // that we do for C++ pointers to class types. However, we employ the 3055 // Objective-C pseudo-subtyping relationship used for assignment of 3056 // Objective-C pointer types. 3057 bool FromAssignLeft 3058 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3059 bool FromAssignRight 3060 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3061 bool ToAssignLeft 3062 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3063 bool ToAssignRight 3064 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3065 3066 // A conversion to an a non-id object pointer type or qualified 'id' 3067 // type is better than a conversion to 'id'. 3068 if (ToPtr1->isObjCIdType() && 3069 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3070 return ImplicitConversionSequence::Worse; 3071 if (ToPtr2->isObjCIdType() && 3072 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3073 return ImplicitConversionSequence::Better; 3074 3075 // A conversion to a non-id object pointer type is better than a 3076 // conversion to a qualified 'id' type 3077 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3078 return ImplicitConversionSequence::Worse; 3079 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3080 return ImplicitConversionSequence::Better; 3081 3082 // A conversion to an a non-Class object pointer type or qualified 'Class' 3083 // type is better than a conversion to 'Class'. 3084 if (ToPtr1->isObjCClassType() && 3085 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3086 return ImplicitConversionSequence::Worse; 3087 if (ToPtr2->isObjCClassType() && 3088 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3089 return ImplicitConversionSequence::Better; 3090 3091 // A conversion to a non-Class object pointer type is better than a 3092 // conversion to a qualified 'Class' type. 3093 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3094 return ImplicitConversionSequence::Worse; 3095 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3096 return ImplicitConversionSequence::Better; 3097 3098 // -- "conversion of C* to B* is better than conversion of C* to A*," 3099 if (S.Context.hasSameType(FromType1, FromType2) && 3100 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3101 (ToAssignLeft != ToAssignRight)) 3102 return ToAssignLeft? ImplicitConversionSequence::Worse 3103 : ImplicitConversionSequence::Better; 3104 3105 // -- "conversion of B* to A* is better than conversion of C* to A*," 3106 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3107 (FromAssignLeft != FromAssignRight)) 3108 return FromAssignLeft? ImplicitConversionSequence::Better 3109 : ImplicitConversionSequence::Worse; 3110 } 3111 } 3112 3113 // Ranking of member-pointer types. 3114 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3115 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3116 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3117 const MemberPointerType * FromMemPointer1 = 3118 FromType1->getAs<MemberPointerType>(); 3119 const MemberPointerType * ToMemPointer1 = 3120 ToType1->getAs<MemberPointerType>(); 3121 const MemberPointerType * FromMemPointer2 = 3122 FromType2->getAs<MemberPointerType>(); 3123 const MemberPointerType * ToMemPointer2 = 3124 ToType2->getAs<MemberPointerType>(); 3125 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3126 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3127 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3128 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3129 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3130 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3131 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3132 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3133 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3134 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3135 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3136 return ImplicitConversionSequence::Worse; 3137 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3138 return ImplicitConversionSequence::Better; 3139 } 3140 // conversion of B::* to C::* is better than conversion of A::* to C::* 3141 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3142 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3143 return ImplicitConversionSequence::Better; 3144 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3145 return ImplicitConversionSequence::Worse; 3146 } 3147 } 3148 3149 if (SCS1.Second == ICK_Derived_To_Base) { 3150 // -- conversion of C to B is better than conversion of C to A, 3151 // -- binding of an expression of type C to a reference of type 3152 // B& is better than binding an expression of type C to a 3153 // reference of type A&, 3154 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3155 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3156 if (S.IsDerivedFrom(ToType1, ToType2)) 3157 return ImplicitConversionSequence::Better; 3158 else if (S.IsDerivedFrom(ToType2, ToType1)) 3159 return ImplicitConversionSequence::Worse; 3160 } 3161 3162 // -- conversion of B to A is better than conversion of C to A. 3163 // -- binding of an expression of type B to a reference of type 3164 // A& is better than binding an expression of type C to a 3165 // reference of type A&, 3166 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3167 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3168 if (S.IsDerivedFrom(FromType2, FromType1)) 3169 return ImplicitConversionSequence::Better; 3170 else if (S.IsDerivedFrom(FromType1, FromType2)) 3171 return ImplicitConversionSequence::Worse; 3172 } 3173 } 3174 3175 return ImplicitConversionSequence::Indistinguishable; 3176 } 3177 3178 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 3179 /// determine whether they are reference-related, 3180 /// reference-compatible, reference-compatible with added 3181 /// qualification, or incompatible, for use in C++ initialization by 3182 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3183 /// type, and the first type (T1) is the pointee type of the reference 3184 /// type being initialized. 3185 Sema::ReferenceCompareResult 3186 Sema::CompareReferenceRelationship(SourceLocation Loc, 3187 QualType OrigT1, QualType OrigT2, 3188 bool &DerivedToBase, 3189 bool &ObjCConversion, 3190 bool &ObjCLifetimeConversion) { 3191 assert(!OrigT1->isReferenceType() && 3192 "T1 must be the pointee type of the reference type"); 3193 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3194 3195 QualType T1 = Context.getCanonicalType(OrigT1); 3196 QualType T2 = Context.getCanonicalType(OrigT2); 3197 Qualifiers T1Quals, T2Quals; 3198 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3199 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3200 3201 // C++ [dcl.init.ref]p4: 3202 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3203 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3204 // T1 is a base class of T2. 3205 DerivedToBase = false; 3206 ObjCConversion = false; 3207 ObjCLifetimeConversion = false; 3208 if (UnqualT1 == UnqualT2) { 3209 // Nothing to do. 3210 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 3211 IsDerivedFrom(UnqualT2, UnqualT1)) 3212 DerivedToBase = true; 3213 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3214 UnqualT2->isObjCObjectOrInterfaceType() && 3215 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3216 ObjCConversion = true; 3217 else 3218 return Ref_Incompatible; 3219 3220 // At this point, we know that T1 and T2 are reference-related (at 3221 // least). 3222 3223 // If the type is an array type, promote the element qualifiers to the type 3224 // for comparison. 3225 if (isa<ArrayType>(T1) && T1Quals) 3226 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3227 if (isa<ArrayType>(T2) && T2Quals) 3228 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3229 3230 // C++ [dcl.init.ref]p4: 3231 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3232 // reference-related to T2 and cv1 is the same cv-qualification 3233 // as, or greater cv-qualification than, cv2. For purposes of 3234 // overload resolution, cases for which cv1 is greater 3235 // cv-qualification than cv2 are identified as 3236 // reference-compatible with added qualification (see 13.3.3.2). 3237 // 3238 // Note that we also require equivalence of Objective-C GC and address-space 3239 // qualifiers when performing these computations, so that e.g., an int in 3240 // address space 1 is not reference-compatible with an int in address 3241 // space 2. 3242 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3243 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3244 T1Quals.removeObjCLifetime(); 3245 T2Quals.removeObjCLifetime(); 3246 ObjCLifetimeConversion = true; 3247 } 3248 3249 if (T1Quals == T2Quals) 3250 return Ref_Compatible; 3251 else if (T1Quals.compatiblyIncludes(T2Quals)) 3252 return Ref_Compatible_With_Added_Qualification; 3253 else 3254 return Ref_Related; 3255 } 3256 3257 /// \brief Look for a user-defined conversion to an value reference-compatible 3258 /// with DeclType. Return true if something definite is found. 3259 static bool 3260 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3261 QualType DeclType, SourceLocation DeclLoc, 3262 Expr *Init, QualType T2, bool AllowRvalues, 3263 bool AllowExplicit) { 3264 assert(T2->isRecordType() && "Can only find conversions of record types."); 3265 CXXRecordDecl *T2RecordDecl 3266 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3267 3268 OverloadCandidateSet CandidateSet(DeclLoc); 3269 const UnresolvedSetImpl *Conversions 3270 = T2RecordDecl->getVisibleConversionFunctions(); 3271 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3272 E = Conversions->end(); I != E; ++I) { 3273 NamedDecl *D = *I; 3274 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3275 if (isa<UsingShadowDecl>(D)) 3276 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3277 3278 FunctionTemplateDecl *ConvTemplate 3279 = dyn_cast<FunctionTemplateDecl>(D); 3280 CXXConversionDecl *Conv; 3281 if (ConvTemplate) 3282 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3283 else 3284 Conv = cast<CXXConversionDecl>(D); 3285 3286 // If this is an explicit conversion, and we're not allowed to consider 3287 // explicit conversions, skip it. 3288 if (!AllowExplicit && Conv->isExplicit()) 3289 continue; 3290 3291 if (AllowRvalues) { 3292 bool DerivedToBase = false; 3293 bool ObjCConversion = false; 3294 bool ObjCLifetimeConversion = false; 3295 if (!ConvTemplate && 3296 S.CompareReferenceRelationship( 3297 DeclLoc, 3298 Conv->getConversionType().getNonReferenceType() 3299 .getUnqualifiedType(), 3300 DeclType.getNonReferenceType().getUnqualifiedType(), 3301 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 3302 Sema::Ref_Incompatible) 3303 continue; 3304 } else { 3305 // If the conversion function doesn't return a reference type, 3306 // it can't be considered for this conversion. An rvalue reference 3307 // is only acceptable if its referencee is a function type. 3308 3309 const ReferenceType *RefType = 3310 Conv->getConversionType()->getAs<ReferenceType>(); 3311 if (!RefType || 3312 (!RefType->isLValueReferenceType() && 3313 !RefType->getPointeeType()->isFunctionType())) 3314 continue; 3315 } 3316 3317 if (ConvTemplate) 3318 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3319 Init, DeclType, CandidateSet); 3320 else 3321 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3322 DeclType, CandidateSet); 3323 } 3324 3325 OverloadCandidateSet::iterator Best; 3326 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3327 case OR_Success: 3328 // C++ [over.ics.ref]p1: 3329 // 3330 // [...] If the parameter binds directly to the result of 3331 // applying a conversion function to the argument 3332 // expression, the implicit conversion sequence is a 3333 // user-defined conversion sequence (13.3.3.1.2), with the 3334 // second standard conversion sequence either an identity 3335 // conversion or, if the conversion function returns an 3336 // entity of a type that is a derived class of the parameter 3337 // type, a derived-to-base Conversion. 3338 if (!Best->FinalConversion.DirectBinding) 3339 return false; 3340 3341 if (Best->Function) 3342 S.MarkDeclarationReferenced(DeclLoc, Best->Function); 3343 ICS.setUserDefined(); 3344 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3345 ICS.UserDefined.After = Best->FinalConversion; 3346 ICS.UserDefined.ConversionFunction = Best->Function; 3347 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl(); 3348 ICS.UserDefined.EllipsisConversion = false; 3349 assert(ICS.UserDefined.After.ReferenceBinding && 3350 ICS.UserDefined.After.DirectBinding && 3351 "Expected a direct reference binding!"); 3352 return true; 3353 3354 case OR_Ambiguous: 3355 ICS.setAmbiguous(); 3356 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3357 Cand != CandidateSet.end(); ++Cand) 3358 if (Cand->Viable) 3359 ICS.Ambiguous.addConversion(Cand->Function); 3360 return true; 3361 3362 case OR_No_Viable_Function: 3363 case OR_Deleted: 3364 // There was no suitable conversion, or we found a deleted 3365 // conversion; continue with other checks. 3366 return false; 3367 } 3368 3369 return false; 3370 } 3371 3372 /// \brief Compute an implicit conversion sequence for reference 3373 /// initialization. 3374 static ImplicitConversionSequence 3375 TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 3376 SourceLocation DeclLoc, 3377 bool SuppressUserConversions, 3378 bool AllowExplicit) { 3379 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3380 3381 // Most paths end in a failed conversion. 3382 ImplicitConversionSequence ICS; 3383 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3384 3385 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3386 QualType T2 = Init->getType(); 3387 3388 // If the initializer is the address of an overloaded function, try 3389 // to resolve the overloaded function. If all goes well, T2 is the 3390 // type of the resulting function. 3391 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3392 DeclAccessPair Found; 3393 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3394 false, Found)) 3395 T2 = Fn->getType(); 3396 } 3397 3398 // Compute some basic properties of the types and the initializer. 3399 bool isRValRef = DeclType->isRValueReferenceType(); 3400 bool DerivedToBase = false; 3401 bool ObjCConversion = false; 3402 bool ObjCLifetimeConversion = false; 3403 Expr::Classification InitCategory = Init->Classify(S.Context); 3404 Sema::ReferenceCompareResult RefRelationship 3405 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3406 ObjCConversion, ObjCLifetimeConversion); 3407 3408 3409 // C++0x [dcl.init.ref]p5: 3410 // A reference to type "cv1 T1" is initialized by an expression 3411 // of type "cv2 T2" as follows: 3412 3413 // -- If reference is an lvalue reference and the initializer expression 3414 if (!isRValRef) { 3415 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3416 // reference-compatible with "cv2 T2," or 3417 // 3418 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3419 if (InitCategory.isLValue() && 3420 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3421 // C++ [over.ics.ref]p1: 3422 // When a parameter of reference type binds directly (8.5.3) 3423 // to an argument expression, the implicit conversion sequence 3424 // is the identity conversion, unless the argument expression 3425 // has a type that is a derived class of the parameter type, 3426 // in which case the implicit conversion sequence is a 3427 // derived-to-base Conversion (13.3.3.1). 3428 ICS.setStandard(); 3429 ICS.Standard.First = ICK_Identity; 3430 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3431 : ObjCConversion? ICK_Compatible_Conversion 3432 : ICK_Identity; 3433 ICS.Standard.Third = ICK_Identity; 3434 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3435 ICS.Standard.setToType(0, T2); 3436 ICS.Standard.setToType(1, T1); 3437 ICS.Standard.setToType(2, T1); 3438 ICS.Standard.ReferenceBinding = true; 3439 ICS.Standard.DirectBinding = true; 3440 ICS.Standard.IsLvalueReference = !isRValRef; 3441 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3442 ICS.Standard.BindsToRvalue = false; 3443 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3444 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3445 ICS.Standard.CopyConstructor = 0; 3446 3447 // Nothing more to do: the inaccessibility/ambiguity check for 3448 // derived-to-base conversions is suppressed when we're 3449 // computing the implicit conversion sequence (C++ 3450 // [over.best.ics]p2). 3451 return ICS; 3452 } 3453 3454 // -- has a class type (i.e., T2 is a class type), where T1 is 3455 // not reference-related to T2, and can be implicitly 3456 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3457 // is reference-compatible with "cv3 T3" 92) (this 3458 // conversion is selected by enumerating the applicable 3459 // conversion functions (13.3.1.6) and choosing the best 3460 // one through overload resolution (13.3)), 3461 if (!SuppressUserConversions && T2->isRecordType() && 3462 !S.RequireCompleteType(DeclLoc, T2, 0) && 3463 RefRelationship == Sema::Ref_Incompatible) { 3464 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3465 Init, T2, /*AllowRvalues=*/false, 3466 AllowExplicit)) 3467 return ICS; 3468 } 3469 } 3470 3471 // -- Otherwise, the reference shall be an lvalue reference to a 3472 // non-volatile const type (i.e., cv1 shall be const), or the reference 3473 // shall be an rvalue reference. 3474 // 3475 // We actually handle one oddity of C++ [over.ics.ref] at this 3476 // point, which is that, due to p2 (which short-circuits reference 3477 // binding by only attempting a simple conversion for non-direct 3478 // bindings) and p3's strange wording, we allow a const volatile 3479 // reference to bind to an rvalue. Hence the check for the presence 3480 // of "const" rather than checking for "const" being the only 3481 // qualifier. 3482 // This is also the point where rvalue references and lvalue inits no longer 3483 // go together. 3484 if (!isRValRef && !T1.isConstQualified()) 3485 return ICS; 3486 3487 // -- If the initializer expression 3488 // 3489 // -- is an xvalue, class prvalue, array prvalue or function 3490 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 3491 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3492 (InitCategory.isXValue() || 3493 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3494 (InitCategory.isLValue() && T2->isFunctionType()))) { 3495 ICS.setStandard(); 3496 ICS.Standard.First = ICK_Identity; 3497 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3498 : ObjCConversion? ICK_Compatible_Conversion 3499 : ICK_Identity; 3500 ICS.Standard.Third = ICK_Identity; 3501 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3502 ICS.Standard.setToType(0, T2); 3503 ICS.Standard.setToType(1, T1); 3504 ICS.Standard.setToType(2, T1); 3505 ICS.Standard.ReferenceBinding = true; 3506 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3507 // binding unless we're binding to a class prvalue. 3508 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3509 // allow the use of rvalue references in C++98/03 for the benefit of 3510 // standard library implementors; therefore, we need the xvalue check here. 3511 ICS.Standard.DirectBinding = 3512 S.getLangOptions().CPlusPlus0x || 3513 (InitCategory.isPRValue() && !T2->isRecordType()); 3514 ICS.Standard.IsLvalueReference = !isRValRef; 3515 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3516 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3517 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3518 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3519 ICS.Standard.CopyConstructor = 0; 3520 return ICS; 3521 } 3522 3523 // -- has a class type (i.e., T2 is a class type), where T1 is not 3524 // reference-related to T2, and can be implicitly converted to 3525 // an xvalue, class prvalue, or function lvalue of type 3526 // "cv3 T3", where "cv1 T1" is reference-compatible with 3527 // "cv3 T3", 3528 // 3529 // then the reference is bound to the value of the initializer 3530 // expression in the first case and to the result of the conversion 3531 // in the second case (or, in either case, to an appropriate base 3532 // class subobject). 3533 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3534 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3535 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3536 Init, T2, /*AllowRvalues=*/true, 3537 AllowExplicit)) { 3538 // In the second case, if the reference is an rvalue reference 3539 // and the second standard conversion sequence of the 3540 // user-defined conversion sequence includes an lvalue-to-rvalue 3541 // conversion, the program is ill-formed. 3542 if (ICS.isUserDefined() && isRValRef && 3543 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3544 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3545 3546 return ICS; 3547 } 3548 3549 // -- Otherwise, a temporary of type "cv1 T1" is created and 3550 // initialized from the initializer expression using the 3551 // rules for a non-reference copy initialization (8.5). The 3552 // reference is then bound to the temporary. If T1 is 3553 // reference-related to T2, cv1 must be the same 3554 // cv-qualification as, or greater cv-qualification than, 3555 // cv2; otherwise, the program is ill-formed. 3556 if (RefRelationship == Sema::Ref_Related) { 3557 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3558 // we would be reference-compatible or reference-compatible with 3559 // added qualification. But that wasn't the case, so the reference 3560 // initialization fails. 3561 // 3562 // Note that we only want to check address spaces and cvr-qualifiers here. 3563 // ObjC GC and lifetime qualifiers aren't important. 3564 Qualifiers T1Quals = T1.getQualifiers(); 3565 Qualifiers T2Quals = T2.getQualifiers(); 3566 T1Quals.removeObjCGCAttr(); 3567 T1Quals.removeObjCLifetime(); 3568 T2Quals.removeObjCGCAttr(); 3569 T2Quals.removeObjCLifetime(); 3570 if (!T1Quals.compatiblyIncludes(T2Quals)) 3571 return ICS; 3572 } 3573 3574 // If at least one of the types is a class type, the types are not 3575 // related, and we aren't allowed any user conversions, the 3576 // reference binding fails. This case is important for breaking 3577 // recursion, since TryImplicitConversion below will attempt to 3578 // create a temporary through the use of a copy constructor. 3579 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3580 (T1->isRecordType() || T2->isRecordType())) 3581 return ICS; 3582 3583 // If T1 is reference-related to T2 and the reference is an rvalue 3584 // reference, the initializer expression shall not be an lvalue. 3585 if (RefRelationship >= Sema::Ref_Related && 3586 isRValRef && Init->Classify(S.Context).isLValue()) 3587 return ICS; 3588 3589 // C++ [over.ics.ref]p2: 3590 // When a parameter of reference type is not bound directly to 3591 // an argument expression, the conversion sequence is the one 3592 // required to convert the argument expression to the 3593 // underlying type of the reference according to 3594 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3595 // to copy-initializing a temporary of the underlying type with 3596 // the argument expression. Any difference in top-level 3597 // cv-qualification is subsumed by the initialization itself 3598 // and does not constitute a conversion. 3599 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3600 /*AllowExplicit=*/false, 3601 /*InOverloadResolution=*/false, 3602 /*CStyle=*/false, 3603 /*AllowObjCWritebackConversion=*/false); 3604 3605 // Of course, that's still a reference binding. 3606 if (ICS.isStandard()) { 3607 ICS.Standard.ReferenceBinding = true; 3608 ICS.Standard.IsLvalueReference = !isRValRef; 3609 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3610 ICS.Standard.BindsToRvalue = true; 3611 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3612 ICS.Standard.ObjCLifetimeConversionBinding = false; 3613 } else if (ICS.isUserDefined()) { 3614 ICS.UserDefined.After.ReferenceBinding = true; 3615 ICS.Standard.IsLvalueReference = !isRValRef; 3616 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3617 ICS.Standard.BindsToRvalue = true; 3618 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3619 ICS.Standard.ObjCLifetimeConversionBinding = false; 3620 } 3621 3622 return ICS; 3623 } 3624 3625 /// TryCopyInitialization - Try to copy-initialize a value of type 3626 /// ToType from the expression From. Return the implicit conversion 3627 /// sequence required to pass this argument, which may be a bad 3628 /// conversion sequence (meaning that the argument cannot be passed to 3629 /// a parameter of this type). If @p SuppressUserConversions, then we 3630 /// do not permit any user-defined conversion sequences. 3631 static ImplicitConversionSequence 3632 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3633 bool SuppressUserConversions, 3634 bool InOverloadResolution, 3635 bool AllowObjCWritebackConversion) { 3636 if (ToType->isReferenceType()) 3637 return TryReferenceInit(S, From, ToType, 3638 /*FIXME:*/From->getLocStart(), 3639 SuppressUserConversions, 3640 /*AllowExplicit=*/false); 3641 3642 return TryImplicitConversion(S, From, ToType, 3643 SuppressUserConversions, 3644 /*AllowExplicit=*/false, 3645 InOverloadResolution, 3646 /*CStyle=*/false, 3647 AllowObjCWritebackConversion); 3648 } 3649 3650 /// TryObjectArgumentInitialization - Try to initialize the object 3651 /// parameter of the given member function (@c Method) from the 3652 /// expression @p From. 3653 static ImplicitConversionSequence 3654 TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3655 Expr::Classification FromClassification, 3656 CXXMethodDecl *Method, 3657 CXXRecordDecl *ActingContext) { 3658 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3659 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3660 // const volatile object. 3661 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3662 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3663 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3664 3665 // Set up the conversion sequence as a "bad" conversion, to allow us 3666 // to exit early. 3667 ImplicitConversionSequence ICS; 3668 3669 // We need to have an object of class type. 3670 QualType FromType = OrigFromType; 3671 if (const PointerType *PT = FromType->getAs<PointerType>()) { 3672 FromType = PT->getPointeeType(); 3673 3674 // When we had a pointer, it's implicitly dereferenced, so we 3675 // better have an lvalue. 3676 assert(FromClassification.isLValue()); 3677 } 3678 3679 assert(FromType->isRecordType()); 3680 3681 // C++0x [over.match.funcs]p4: 3682 // For non-static member functions, the type of the implicit object 3683 // parameter is 3684 // 3685 // - "lvalue reference to cv X" for functions declared without a 3686 // ref-qualifier or with the & ref-qualifier 3687 // - "rvalue reference to cv X" for functions declared with the && 3688 // ref-qualifier 3689 // 3690 // where X is the class of which the function is a member and cv is the 3691 // cv-qualification on the member function declaration. 3692 // 3693 // However, when finding an implicit conversion sequence for the argument, we 3694 // are not allowed to create temporaries or perform user-defined conversions 3695 // (C++ [over.match.funcs]p5). We perform a simplified version of 3696 // reference binding here, that allows class rvalues to bind to 3697 // non-constant references. 3698 3699 // First check the qualifiers. 3700 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3701 if (ImplicitParamType.getCVRQualifiers() 3702 != FromTypeCanon.getLocalCVRQualifiers() && 3703 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3704 ICS.setBad(BadConversionSequence::bad_qualifiers, 3705 OrigFromType, ImplicitParamType); 3706 return ICS; 3707 } 3708 3709 // Check that we have either the same type or a derived type. It 3710 // affects the conversion rank. 3711 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3712 ImplicitConversionKind SecondKind; 3713 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3714 SecondKind = ICK_Identity; 3715 } else if (S.IsDerivedFrom(FromType, ClassType)) 3716 SecondKind = ICK_Derived_To_Base; 3717 else { 3718 ICS.setBad(BadConversionSequence::unrelated_class, 3719 FromType, ImplicitParamType); 3720 return ICS; 3721 } 3722 3723 // Check the ref-qualifier. 3724 switch (Method->getRefQualifier()) { 3725 case RQ_None: 3726 // Do nothing; we don't care about lvalueness or rvalueness. 3727 break; 3728 3729 case RQ_LValue: 3730 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 3731 // non-const lvalue reference cannot bind to an rvalue 3732 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 3733 ImplicitParamType); 3734 return ICS; 3735 } 3736 break; 3737 3738 case RQ_RValue: 3739 if (!FromClassification.isRValue()) { 3740 // rvalue reference cannot bind to an lvalue 3741 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 3742 ImplicitParamType); 3743 return ICS; 3744 } 3745 break; 3746 } 3747 3748 // Success. Mark this as a reference binding. 3749 ICS.setStandard(); 3750 ICS.Standard.setAsIdentityConversion(); 3751 ICS.Standard.Second = SecondKind; 3752 ICS.Standard.setFromType(FromType); 3753 ICS.Standard.setAllToTypes(ImplicitParamType); 3754 ICS.Standard.ReferenceBinding = true; 3755 ICS.Standard.DirectBinding = true; 3756 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 3757 ICS.Standard.BindsToFunctionLvalue = false; 3758 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 3759 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 3760 = (Method->getRefQualifier() == RQ_None); 3761 return ICS; 3762 } 3763 3764 /// PerformObjectArgumentInitialization - Perform initialization of 3765 /// the implicit object parameter for the given Method with the given 3766 /// expression. 3767 ExprResult 3768 Sema::PerformObjectArgumentInitialization(Expr *From, 3769 NestedNameSpecifier *Qualifier, 3770 NamedDecl *FoundDecl, 3771 CXXMethodDecl *Method) { 3772 QualType FromRecordType, DestType; 3773 QualType ImplicitParamRecordType = 3774 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3775 3776 Expr::Classification FromClassification; 3777 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3778 FromRecordType = PT->getPointeeType(); 3779 DestType = Method->getThisType(Context); 3780 FromClassification = Expr::Classification::makeSimpleLValue(); 3781 } else { 3782 FromRecordType = From->getType(); 3783 DestType = ImplicitParamRecordType; 3784 FromClassification = From->Classify(Context); 3785 } 3786 3787 // Note that we always use the true parent context when performing 3788 // the actual argument initialization. 3789 ImplicitConversionSequence ICS 3790 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 3791 Method, Method->getParent()); 3792 if (ICS.isBad()) { 3793 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3794 Qualifiers FromQs = FromRecordType.getQualifiers(); 3795 Qualifiers ToQs = DestType.getQualifiers(); 3796 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3797 if (CVR) { 3798 Diag(From->getSourceRange().getBegin(), 3799 diag::err_member_function_call_bad_cvr) 3800 << Method->getDeclName() << FromRecordType << (CVR - 1) 3801 << From->getSourceRange(); 3802 Diag(Method->getLocation(), diag::note_previous_decl) 3803 << Method->getDeclName(); 3804 return ExprError(); 3805 } 3806 } 3807 3808 return Diag(From->getSourceRange().getBegin(), 3809 diag::err_implicit_object_parameter_init) 3810 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3811 } 3812 3813 if (ICS.Standard.Second == ICK_Derived_To_Base) { 3814 ExprResult FromRes = 3815 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3816 if (FromRes.isInvalid()) 3817 return ExprError(); 3818 From = FromRes.take(); 3819 } 3820 3821 if (!Context.hasSameType(From->getType(), DestType)) 3822 From = ImpCastExprToType(From, DestType, CK_NoOp, 3823 From->getType()->isPointerType() ? VK_RValue : VK_LValue).take(); 3824 return Owned(From); 3825 } 3826 3827 /// TryContextuallyConvertToBool - Attempt to contextually convert the 3828 /// expression From to bool (C++0x [conv]p3). 3829 static ImplicitConversionSequence 3830 TryContextuallyConvertToBool(Sema &S, Expr *From) { 3831 // FIXME: This is pretty broken. 3832 return TryImplicitConversion(S, From, S.Context.BoolTy, 3833 // FIXME: Are these flags correct? 3834 /*SuppressUserConversions=*/false, 3835 /*AllowExplicit=*/true, 3836 /*InOverloadResolution=*/false, 3837 /*CStyle=*/false, 3838 /*AllowObjCWritebackConversion=*/false); 3839 } 3840 3841 /// PerformContextuallyConvertToBool - Perform a contextual conversion 3842 /// of the expression From to bool (C++0x [conv]p3). 3843 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 3844 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3845 if (!ICS.isBad()) 3846 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3847 3848 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3849 return Diag(From->getSourceRange().getBegin(), 3850 diag::err_typecheck_bool_condition) 3851 << From->getType() << From->getSourceRange(); 3852 return ExprError(); 3853 } 3854 3855 /// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3856 /// expression From to 'id'. 3857 static ImplicitConversionSequence 3858 TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3859 QualType Ty = S.Context.getObjCIdType(); 3860 return TryImplicitConversion(S, From, Ty, 3861 // FIXME: Are these flags correct? 3862 /*SuppressUserConversions=*/false, 3863 /*AllowExplicit=*/true, 3864 /*InOverloadResolution=*/false, 3865 /*CStyle=*/false, 3866 /*AllowObjCWritebackConversion=*/false); 3867 } 3868 3869 /// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3870 /// of the expression From to 'id'. 3871 ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) { 3872 QualType Ty = Context.getObjCIdType(); 3873 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3874 if (!ICS.isBad()) 3875 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3876 return ExprError(); 3877 } 3878 3879 /// \brief Attempt to convert the given expression to an integral or 3880 /// enumeration type. 3881 /// 3882 /// This routine will attempt to convert an expression of class type to an 3883 /// integral or enumeration type, if that class type only has a single 3884 /// conversion to an integral or enumeration type. 3885 /// 3886 /// \param Loc The source location of the construct that requires the 3887 /// conversion. 3888 /// 3889 /// \param FromE The expression we're converting from. 3890 /// 3891 /// \param NotIntDiag The diagnostic to be emitted if the expression does not 3892 /// have integral or enumeration type. 3893 /// 3894 /// \param IncompleteDiag The diagnostic to be emitted if the expression has 3895 /// incomplete class type. 3896 /// 3897 /// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3898 /// explicit conversion function (because no implicit conversion functions 3899 /// were available). This is a recovery mode. 3900 /// 3901 /// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3902 /// showing which conversion was picked. 3903 /// 3904 /// \param AmbigDiag The diagnostic to be emitted if there is more than one 3905 /// conversion function that could convert to integral or enumeration type. 3906 /// 3907 /// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3908 /// usable conversion function. 3909 /// 3910 /// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3911 /// function, which may be an extension in this case. 3912 /// 3913 /// \returns The expression, converted to an integral or enumeration type if 3914 /// successful. 3915 ExprResult 3916 Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3917 const PartialDiagnostic &NotIntDiag, 3918 const PartialDiagnostic &IncompleteDiag, 3919 const PartialDiagnostic &ExplicitConvDiag, 3920 const PartialDiagnostic &ExplicitConvNote, 3921 const PartialDiagnostic &AmbigDiag, 3922 const PartialDiagnostic &AmbigNote, 3923 const PartialDiagnostic &ConvDiag) { 3924 // We can't perform any more checking for type-dependent expressions. 3925 if (From->isTypeDependent()) 3926 return Owned(From); 3927 3928 // If the expression already has integral or enumeration type, we're golden. 3929 QualType T = From->getType(); 3930 if (T->isIntegralOrEnumerationType()) 3931 return Owned(From); 3932 3933 // FIXME: Check for missing '()' if T is a function type? 3934 3935 // If we don't have a class type in C++, there's no way we can get an 3936 // expression of integral or enumeration type. 3937 const RecordType *RecordTy = T->getAs<RecordType>(); 3938 if (!RecordTy || !getLangOptions().CPlusPlus) { 3939 Diag(Loc, NotIntDiag) 3940 << T << From->getSourceRange(); 3941 return Owned(From); 3942 } 3943 3944 // We must have a complete class type. 3945 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3946 return Owned(From); 3947 3948 // Look for a conversion to an integral or enumeration type. 3949 UnresolvedSet<4> ViableConversions; 3950 UnresolvedSet<4> ExplicitConversions; 3951 const UnresolvedSetImpl *Conversions 3952 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3953 3954 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3955 E = Conversions->end(); 3956 I != E; 3957 ++I) { 3958 if (CXXConversionDecl *Conversion 3959 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3960 if (Conversion->getConversionType().getNonReferenceType() 3961 ->isIntegralOrEnumerationType()) { 3962 if (Conversion->isExplicit()) 3963 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3964 else 3965 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3966 } 3967 } 3968 3969 switch (ViableConversions.size()) { 3970 case 0: 3971 if (ExplicitConversions.size() == 1) { 3972 DeclAccessPair Found = ExplicitConversions[0]; 3973 CXXConversionDecl *Conversion 3974 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3975 3976 // The user probably meant to invoke the given explicit 3977 // conversion; use it. 3978 QualType ConvTy 3979 = Conversion->getConversionType().getNonReferenceType(); 3980 std::string TypeStr; 3981 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3982 3983 Diag(Loc, ExplicitConvDiag) 3984 << T << ConvTy 3985 << FixItHint::CreateInsertion(From->getLocStart(), 3986 "static_cast<" + TypeStr + ">(") 3987 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3988 ")"); 3989 Diag(Conversion->getLocation(), ExplicitConvNote) 3990 << ConvTy->isEnumeralType() << ConvTy; 3991 3992 // If we aren't in a SFINAE context, build a call to the 3993 // explicit conversion function. 3994 if (isSFINAEContext()) 3995 return ExprError(); 3996 3997 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3998 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion); 3999 if (Result.isInvalid()) 4000 return ExprError(); 4001 4002 From = Result.get(); 4003 } 4004 4005 // We'll complain below about a non-integral condition type. 4006 break; 4007 4008 case 1: { 4009 // Apply this conversion. 4010 DeclAccessPair Found = ViableConversions[0]; 4011 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4012 4013 CXXConversionDecl *Conversion 4014 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4015 QualType ConvTy 4016 = Conversion->getConversionType().getNonReferenceType(); 4017 if (ConvDiag.getDiagID()) { 4018 if (isSFINAEContext()) 4019 return ExprError(); 4020 4021 Diag(Loc, ConvDiag) 4022 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 4023 } 4024 4025 ExprResult Result = BuildCXXMemberCallExpr(From, Found, 4026 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 4027 if (Result.isInvalid()) 4028 return ExprError(); 4029 4030 From = Result.get(); 4031 break; 4032 } 4033 4034 default: 4035 Diag(Loc, AmbigDiag) 4036 << T << From->getSourceRange(); 4037 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 4038 CXXConversionDecl *Conv 4039 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 4040 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 4041 Diag(Conv->getLocation(), AmbigNote) 4042 << ConvTy->isEnumeralType() << ConvTy; 4043 } 4044 return Owned(From); 4045 } 4046 4047 if (!From->getType()->isIntegralOrEnumerationType()) 4048 Diag(Loc, NotIntDiag) 4049 << From->getType() << From->getSourceRange(); 4050 4051 return Owned(From); 4052 } 4053 4054 /// AddOverloadCandidate - Adds the given function to the set of 4055 /// candidate functions, using the given function call arguments. If 4056 /// @p SuppressUserConversions, then don't allow user-defined 4057 /// conversions via constructors or conversion operators. 4058 /// 4059 /// \para PartialOverloading true if we are performing "partial" overloading 4060 /// based on an incomplete set of function arguments. This feature is used by 4061 /// code completion. 4062 void 4063 Sema::AddOverloadCandidate(FunctionDecl *Function, 4064 DeclAccessPair FoundDecl, 4065 Expr **Args, unsigned NumArgs, 4066 OverloadCandidateSet& CandidateSet, 4067 bool SuppressUserConversions, 4068 bool PartialOverloading) { 4069 const FunctionProtoType* Proto 4070 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 4071 assert(Proto && "Functions without a prototype cannot be overloaded"); 4072 assert(!Function->getDescribedFunctionTemplate() && 4073 "Use AddTemplateOverloadCandidate for function templates"); 4074 4075 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 4076 if (!isa<CXXConstructorDecl>(Method)) { 4077 // If we get here, it's because we're calling a member function 4078 // that is named without a member access expression (e.g., 4079 // "this->f") that was either written explicitly or created 4080 // implicitly. This can happen with a qualified call to a member 4081 // function, e.g., X::f(). We use an empty type for the implied 4082 // object argument (C++ [over.call.func]p3), and the acting context 4083 // is irrelevant. 4084 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 4085 QualType(), Expr::Classification::makeSimpleLValue(), 4086 Args, NumArgs, CandidateSet, 4087 SuppressUserConversions); 4088 return; 4089 } 4090 // We treat a constructor like a non-member function, since its object 4091 // argument doesn't participate in overload resolution. 4092 } 4093 4094 if (!CandidateSet.isNewCandidate(Function)) 4095 return; 4096 4097 // Overload resolution is always an unevaluated context. 4098 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4099 4100 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 4101 // C++ [class.copy]p3: 4102 // A member function template is never instantiated to perform the copy 4103 // of a class object to an object of its class type. 4104 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 4105 if (NumArgs == 1 && 4106 Constructor->isSpecializationCopyingObject() && 4107 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 4108 IsDerivedFrom(Args[0]->getType(), ClassType))) 4109 return; 4110 } 4111 4112 // Add this candidate 4113 CandidateSet.push_back(OverloadCandidate()); 4114 OverloadCandidate& Candidate = CandidateSet.back(); 4115 Candidate.FoundDecl = FoundDecl; 4116 Candidate.Function = Function; 4117 Candidate.Viable = true; 4118 Candidate.IsSurrogate = false; 4119 Candidate.IgnoreObjectArgument = false; 4120 Candidate.ExplicitCallArguments = NumArgs; 4121 4122 unsigned NumArgsInProto = Proto->getNumArgs(); 4123 4124 // (C++ 13.3.2p2): A candidate function having fewer than m 4125 // parameters is viable only if it has an ellipsis in its parameter 4126 // list (8.3.5). 4127 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 4128 !Proto->isVariadic()) { 4129 Candidate.Viable = false; 4130 Candidate.FailureKind = ovl_fail_too_many_arguments; 4131 return; 4132 } 4133 4134 // (C++ 13.3.2p2): A candidate function having more than m parameters 4135 // is viable only if the (m+1)st parameter has a default argument 4136 // (8.3.6). For the purposes of overload resolution, the 4137 // parameter list is truncated on the right, so that there are 4138 // exactly m parameters. 4139 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 4140 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 4141 // Not enough arguments. 4142 Candidate.Viable = false; 4143 Candidate.FailureKind = ovl_fail_too_few_arguments; 4144 return; 4145 } 4146 4147 // Determine the implicit conversion sequences for each of the 4148 // arguments. 4149 Candidate.Conversions.resize(NumArgs); 4150 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4151 if (ArgIdx < NumArgsInProto) { 4152 // (C++ 13.3.2p3): for F to be a viable function, there shall 4153 // exist for each argument an implicit conversion sequence 4154 // (13.3.3.1) that converts that argument to the corresponding 4155 // parameter of F. 4156 QualType ParamType = Proto->getArgType(ArgIdx); 4157 Candidate.Conversions[ArgIdx] 4158 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4159 SuppressUserConversions, 4160 /*InOverloadResolution=*/true, 4161 /*AllowObjCWritebackConversion=*/ 4162 getLangOptions().ObjCAutoRefCount); 4163 if (Candidate.Conversions[ArgIdx].isBad()) { 4164 Candidate.Viable = false; 4165 Candidate.FailureKind = ovl_fail_bad_conversion; 4166 break; 4167 } 4168 } else { 4169 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4170 // argument for which there is no corresponding parameter is 4171 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4172 Candidate.Conversions[ArgIdx].setEllipsis(); 4173 } 4174 } 4175 } 4176 4177 /// \brief Add all of the function declarations in the given function set to 4178 /// the overload canddiate set. 4179 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 4180 Expr **Args, unsigned NumArgs, 4181 OverloadCandidateSet& CandidateSet, 4182 bool SuppressUserConversions) { 4183 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 4184 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 4185 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4186 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 4187 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 4188 cast<CXXMethodDecl>(FD)->getParent(), 4189 Args[0]->getType(), Args[0]->Classify(Context), 4190 Args + 1, NumArgs - 1, 4191 CandidateSet, SuppressUserConversions); 4192 else 4193 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 4194 SuppressUserConversions); 4195 } else { 4196 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 4197 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 4198 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 4199 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 4200 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 4201 /*FIXME: explicit args */ 0, 4202 Args[0]->getType(), 4203 Args[0]->Classify(Context), 4204 Args + 1, NumArgs - 1, 4205 CandidateSet, 4206 SuppressUserConversions); 4207 else 4208 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 4209 /*FIXME: explicit args */ 0, 4210 Args, NumArgs, CandidateSet, 4211 SuppressUserConversions); 4212 } 4213 } 4214 } 4215 4216 /// AddMethodCandidate - Adds a named decl (which is some kind of 4217 /// method) as a method candidate to the given overload set. 4218 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 4219 QualType ObjectType, 4220 Expr::Classification ObjectClassification, 4221 Expr **Args, unsigned NumArgs, 4222 OverloadCandidateSet& CandidateSet, 4223 bool SuppressUserConversions) { 4224 NamedDecl *Decl = FoundDecl.getDecl(); 4225 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 4226 4227 if (isa<UsingShadowDecl>(Decl)) 4228 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 4229 4230 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 4231 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 4232 "Expected a member function template"); 4233 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 4234 /*ExplicitArgs*/ 0, 4235 ObjectType, ObjectClassification, Args, NumArgs, 4236 CandidateSet, 4237 SuppressUserConversions); 4238 } else { 4239 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 4240 ObjectType, ObjectClassification, Args, NumArgs, 4241 CandidateSet, SuppressUserConversions); 4242 } 4243 } 4244 4245 /// AddMethodCandidate - Adds the given C++ member function to the set 4246 /// of candidate functions, using the given function call arguments 4247 /// and the object argument (@c Object). For example, in a call 4248 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 4249 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 4250 /// allow user-defined conversions via constructors or conversion 4251 /// operators. 4252 void 4253 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 4254 CXXRecordDecl *ActingContext, QualType ObjectType, 4255 Expr::Classification ObjectClassification, 4256 Expr **Args, unsigned NumArgs, 4257 OverloadCandidateSet& CandidateSet, 4258 bool SuppressUserConversions) { 4259 const FunctionProtoType* Proto 4260 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 4261 assert(Proto && "Methods without a prototype cannot be overloaded"); 4262 assert(!isa<CXXConstructorDecl>(Method) && 4263 "Use AddOverloadCandidate for constructors"); 4264 4265 if (!CandidateSet.isNewCandidate(Method)) 4266 return; 4267 4268 // Overload resolution is always an unevaluated context. 4269 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4270 4271 // Add this candidate 4272 CandidateSet.push_back(OverloadCandidate()); 4273 OverloadCandidate& Candidate = CandidateSet.back(); 4274 Candidate.FoundDecl = FoundDecl; 4275 Candidate.Function = Method; 4276 Candidate.IsSurrogate = false; 4277 Candidate.IgnoreObjectArgument = false; 4278 Candidate.ExplicitCallArguments = NumArgs; 4279 4280 unsigned NumArgsInProto = Proto->getNumArgs(); 4281 4282 // (C++ 13.3.2p2): A candidate function having fewer than m 4283 // parameters is viable only if it has an ellipsis in its parameter 4284 // list (8.3.5). 4285 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4286 Candidate.Viable = false; 4287 Candidate.FailureKind = ovl_fail_too_many_arguments; 4288 return; 4289 } 4290 4291 // (C++ 13.3.2p2): A candidate function having more than m parameters 4292 // is viable only if the (m+1)st parameter has a default argument 4293 // (8.3.6). For the purposes of overload resolution, the 4294 // parameter list is truncated on the right, so that there are 4295 // exactly m parameters. 4296 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 4297 if (NumArgs < MinRequiredArgs) { 4298 // Not enough arguments. 4299 Candidate.Viable = false; 4300 Candidate.FailureKind = ovl_fail_too_few_arguments; 4301 return; 4302 } 4303 4304 Candidate.Viable = true; 4305 Candidate.Conversions.resize(NumArgs + 1); 4306 4307 if (Method->isStatic() || ObjectType.isNull()) 4308 // The implicit object argument is ignored. 4309 Candidate.IgnoreObjectArgument = true; 4310 else { 4311 // Determine the implicit conversion sequence for the object 4312 // parameter. 4313 Candidate.Conversions[0] 4314 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 4315 Method, ActingContext); 4316 if (Candidate.Conversions[0].isBad()) { 4317 Candidate.Viable = false; 4318 Candidate.FailureKind = ovl_fail_bad_conversion; 4319 return; 4320 } 4321 } 4322 4323 // Determine the implicit conversion sequences for each of the 4324 // arguments. 4325 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4326 if (ArgIdx < NumArgsInProto) { 4327 // (C++ 13.3.2p3): for F to be a viable function, there shall 4328 // exist for each argument an implicit conversion sequence 4329 // (13.3.3.1) that converts that argument to the corresponding 4330 // parameter of F. 4331 QualType ParamType = Proto->getArgType(ArgIdx); 4332 Candidate.Conversions[ArgIdx + 1] 4333 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4334 SuppressUserConversions, 4335 /*InOverloadResolution=*/true, 4336 /*AllowObjCWritebackConversion=*/ 4337 getLangOptions().ObjCAutoRefCount); 4338 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4339 Candidate.Viable = false; 4340 Candidate.FailureKind = ovl_fail_bad_conversion; 4341 break; 4342 } 4343 } else { 4344 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4345 // argument for which there is no corresponding parameter is 4346 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4347 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4348 } 4349 } 4350 } 4351 4352 /// \brief Add a C++ member function template as a candidate to the candidate 4353 /// set, using template argument deduction to produce an appropriate member 4354 /// function template specialization. 4355 void 4356 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 4357 DeclAccessPair FoundDecl, 4358 CXXRecordDecl *ActingContext, 4359 TemplateArgumentListInfo *ExplicitTemplateArgs, 4360 QualType ObjectType, 4361 Expr::Classification ObjectClassification, 4362 Expr **Args, unsigned NumArgs, 4363 OverloadCandidateSet& CandidateSet, 4364 bool SuppressUserConversions) { 4365 if (!CandidateSet.isNewCandidate(MethodTmpl)) 4366 return; 4367 4368 // C++ [over.match.funcs]p7: 4369 // In each case where a candidate is a function template, candidate 4370 // function template specializations are generated using template argument 4371 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4372 // candidate functions in the usual way.113) A given name can refer to one 4373 // or more function templates and also to a set of overloaded non-template 4374 // functions. In such a case, the candidate functions generated from each 4375 // function template are combined with the set of non-template candidate 4376 // functions. 4377 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4378 FunctionDecl *Specialization = 0; 4379 if (TemplateDeductionResult Result 4380 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 4381 Args, NumArgs, Specialization, Info)) { 4382 CandidateSet.push_back(OverloadCandidate()); 4383 OverloadCandidate &Candidate = CandidateSet.back(); 4384 Candidate.FoundDecl = FoundDecl; 4385 Candidate.Function = MethodTmpl->getTemplatedDecl(); 4386 Candidate.Viable = false; 4387 Candidate.FailureKind = ovl_fail_bad_deduction; 4388 Candidate.IsSurrogate = false; 4389 Candidate.IgnoreObjectArgument = false; 4390 Candidate.ExplicitCallArguments = NumArgs; 4391 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4392 Info); 4393 return; 4394 } 4395 4396 // Add the function template specialization produced by template argument 4397 // deduction as a candidate. 4398 assert(Specialization && "Missing member function template specialization?"); 4399 assert(isa<CXXMethodDecl>(Specialization) && 4400 "Specialization is not a member function?"); 4401 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 4402 ActingContext, ObjectType, ObjectClassification, 4403 Args, NumArgs, CandidateSet, SuppressUserConversions); 4404 } 4405 4406 /// \brief Add a C++ function template specialization as a candidate 4407 /// in the candidate set, using template argument deduction to produce 4408 /// an appropriate function template specialization. 4409 void 4410 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 4411 DeclAccessPair FoundDecl, 4412 TemplateArgumentListInfo *ExplicitTemplateArgs, 4413 Expr **Args, unsigned NumArgs, 4414 OverloadCandidateSet& CandidateSet, 4415 bool SuppressUserConversions) { 4416 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4417 return; 4418 4419 // C++ [over.match.funcs]p7: 4420 // In each case where a candidate is a function template, candidate 4421 // function template specializations are generated using template argument 4422 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4423 // candidate functions in the usual way.113) A given name can refer to one 4424 // or more function templates and also to a set of overloaded non-template 4425 // functions. In such a case, the candidate functions generated from each 4426 // function template are combined with the set of non-template candidate 4427 // functions. 4428 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4429 FunctionDecl *Specialization = 0; 4430 if (TemplateDeductionResult Result 4431 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4432 Args, NumArgs, Specialization, Info)) { 4433 CandidateSet.push_back(OverloadCandidate()); 4434 OverloadCandidate &Candidate = CandidateSet.back(); 4435 Candidate.FoundDecl = FoundDecl; 4436 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4437 Candidate.Viable = false; 4438 Candidate.FailureKind = ovl_fail_bad_deduction; 4439 Candidate.IsSurrogate = false; 4440 Candidate.IgnoreObjectArgument = false; 4441 Candidate.ExplicitCallArguments = NumArgs; 4442 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4443 Info); 4444 return; 4445 } 4446 4447 // Add the function template specialization produced by template argument 4448 // deduction as a candidate. 4449 assert(Specialization && "Missing function template specialization?"); 4450 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 4451 SuppressUserConversions); 4452 } 4453 4454 /// AddConversionCandidate - Add a C++ conversion function as a 4455 /// candidate in the candidate set (C++ [over.match.conv], 4456 /// C++ [over.match.copy]). From is the expression we're converting from, 4457 /// and ToType is the type that we're eventually trying to convert to 4458 /// (which may or may not be the same type as the type that the 4459 /// conversion function produces). 4460 void 4461 Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 4462 DeclAccessPair FoundDecl, 4463 CXXRecordDecl *ActingContext, 4464 Expr *From, QualType ToType, 4465 OverloadCandidateSet& CandidateSet) { 4466 assert(!Conversion->getDescribedFunctionTemplate() && 4467 "Conversion function templates use AddTemplateConversionCandidate"); 4468 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 4469 if (!CandidateSet.isNewCandidate(Conversion)) 4470 return; 4471 4472 // Overload resolution is always an unevaluated context. 4473 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4474 4475 // Add this candidate 4476 CandidateSet.push_back(OverloadCandidate()); 4477 OverloadCandidate& Candidate = CandidateSet.back(); 4478 Candidate.FoundDecl = FoundDecl; 4479 Candidate.Function = Conversion; 4480 Candidate.IsSurrogate = false; 4481 Candidate.IgnoreObjectArgument = false; 4482 Candidate.FinalConversion.setAsIdentityConversion(); 4483 Candidate.FinalConversion.setFromType(ConvType); 4484 Candidate.FinalConversion.setAllToTypes(ToType); 4485 Candidate.Viable = true; 4486 Candidate.Conversions.resize(1); 4487 Candidate.ExplicitCallArguments = 1; 4488 4489 // C++ [over.match.funcs]p4: 4490 // For conversion functions, the function is considered to be a member of 4491 // the class of the implicit implied object argument for the purpose of 4492 // defining the type of the implicit object parameter. 4493 // 4494 // Determine the implicit conversion sequence for the implicit 4495 // object parameter. 4496 QualType ImplicitParamType = From->getType(); 4497 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4498 ImplicitParamType = FromPtrType->getPointeeType(); 4499 CXXRecordDecl *ConversionContext 4500 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4501 4502 Candidate.Conversions[0] 4503 = TryObjectArgumentInitialization(*this, From->getType(), 4504 From->Classify(Context), 4505 Conversion, ConversionContext); 4506 4507 if (Candidate.Conversions[0].isBad()) { 4508 Candidate.Viable = false; 4509 Candidate.FailureKind = ovl_fail_bad_conversion; 4510 return; 4511 } 4512 4513 // We won't go through a user-define type conversion function to convert a 4514 // derived to base as such conversions are given Conversion Rank. They only 4515 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 4516 QualType FromCanon 4517 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 4518 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 4519 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 4520 Candidate.Viable = false; 4521 Candidate.FailureKind = ovl_fail_trivial_conversion; 4522 return; 4523 } 4524 4525 // To determine what the conversion from the result of calling the 4526 // conversion function to the type we're eventually trying to 4527 // convert to (ToType), we need to synthesize a call to the 4528 // conversion function and attempt copy initialization from it. This 4529 // makes sure that we get the right semantics with respect to 4530 // lvalues/rvalues and the type. Fortunately, we can allocate this 4531 // call on the stack and we don't need its arguments to be 4532 // well-formed. 4533 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 4534 VK_LValue, From->getLocStart()); 4535 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 4536 Context.getPointerType(Conversion->getType()), 4537 CK_FunctionToPointerDecay, 4538 &ConversionRef, VK_RValue); 4539 4540 QualType ConversionType = Conversion->getConversionType(); 4541 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 4542 Candidate.Viable = false; 4543 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4544 return; 4545 } 4546 4547 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 4548 4549 // Note that it is safe to allocate CallExpr on the stack here because 4550 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 4551 // allocator). 4552 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 4553 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 4554 From->getLocStart()); 4555 ImplicitConversionSequence ICS = 4556 TryCopyInitialization(*this, &Call, ToType, 4557 /*SuppressUserConversions=*/true, 4558 /*InOverloadResolution=*/false, 4559 /*AllowObjCWritebackConversion=*/false); 4560 4561 switch (ICS.getKind()) { 4562 case ImplicitConversionSequence::StandardConversion: 4563 Candidate.FinalConversion = ICS.Standard; 4564 4565 // C++ [over.ics.user]p3: 4566 // If the user-defined conversion is specified by a specialization of a 4567 // conversion function template, the second standard conversion sequence 4568 // shall have exact match rank. 4569 if (Conversion->getPrimaryTemplate() && 4570 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 4571 Candidate.Viable = false; 4572 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 4573 } 4574 4575 // C++0x [dcl.init.ref]p5: 4576 // In the second case, if the reference is an rvalue reference and 4577 // the second standard conversion sequence of the user-defined 4578 // conversion sequence includes an lvalue-to-rvalue conversion, the 4579 // program is ill-formed. 4580 if (ToType->isRValueReferenceType() && 4581 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4582 Candidate.Viable = false; 4583 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4584 } 4585 break; 4586 4587 case ImplicitConversionSequence::BadConversion: 4588 Candidate.Viable = false; 4589 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4590 break; 4591 4592 default: 4593 assert(false && 4594 "Can only end up with a standard conversion sequence or failure"); 4595 } 4596 } 4597 4598 /// \brief Adds a conversion function template specialization 4599 /// candidate to the overload set, using template argument deduction 4600 /// to deduce the template arguments of the conversion function 4601 /// template from the type that we are converting to (C++ 4602 /// [temp.deduct.conv]). 4603 void 4604 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 4605 DeclAccessPair FoundDecl, 4606 CXXRecordDecl *ActingDC, 4607 Expr *From, QualType ToType, 4608 OverloadCandidateSet &CandidateSet) { 4609 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 4610 "Only conversion function templates permitted here"); 4611 4612 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4613 return; 4614 4615 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4616 CXXConversionDecl *Specialization = 0; 4617 if (TemplateDeductionResult Result 4618 = DeduceTemplateArguments(FunctionTemplate, ToType, 4619 Specialization, Info)) { 4620 CandidateSet.push_back(OverloadCandidate()); 4621 OverloadCandidate &Candidate = CandidateSet.back(); 4622 Candidate.FoundDecl = FoundDecl; 4623 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4624 Candidate.Viable = false; 4625 Candidate.FailureKind = ovl_fail_bad_deduction; 4626 Candidate.IsSurrogate = false; 4627 Candidate.IgnoreObjectArgument = false; 4628 Candidate.ExplicitCallArguments = 1; 4629 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4630 Info); 4631 return; 4632 } 4633 4634 // Add the conversion function template specialization produced by 4635 // template argument deduction as a candidate. 4636 assert(Specialization && "Missing function template specialization?"); 4637 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4638 CandidateSet); 4639 } 4640 4641 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4642 /// converts the given @c Object to a function pointer via the 4643 /// conversion function @c Conversion, and then attempts to call it 4644 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 4645 /// the type of function that we'll eventually be calling. 4646 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4647 DeclAccessPair FoundDecl, 4648 CXXRecordDecl *ActingContext, 4649 const FunctionProtoType *Proto, 4650 Expr *Object, 4651 Expr **Args, unsigned NumArgs, 4652 OverloadCandidateSet& CandidateSet) { 4653 if (!CandidateSet.isNewCandidate(Conversion)) 4654 return; 4655 4656 // Overload resolution is always an unevaluated context. 4657 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4658 4659 CandidateSet.push_back(OverloadCandidate()); 4660 OverloadCandidate& Candidate = CandidateSet.back(); 4661 Candidate.FoundDecl = FoundDecl; 4662 Candidate.Function = 0; 4663 Candidate.Surrogate = Conversion; 4664 Candidate.Viable = true; 4665 Candidate.IsSurrogate = true; 4666 Candidate.IgnoreObjectArgument = false; 4667 Candidate.Conversions.resize(NumArgs + 1); 4668 Candidate.ExplicitCallArguments = NumArgs; 4669 4670 // Determine the implicit conversion sequence for the implicit 4671 // object parameter. 4672 ImplicitConversionSequence ObjectInit 4673 = TryObjectArgumentInitialization(*this, Object->getType(), 4674 Object->Classify(Context), 4675 Conversion, ActingContext); 4676 if (ObjectInit.isBad()) { 4677 Candidate.Viable = false; 4678 Candidate.FailureKind = ovl_fail_bad_conversion; 4679 Candidate.Conversions[0] = ObjectInit; 4680 return; 4681 } 4682 4683 // The first conversion is actually a user-defined conversion whose 4684 // first conversion is ObjectInit's standard conversion (which is 4685 // effectively a reference binding). Record it as such. 4686 Candidate.Conversions[0].setUserDefined(); 4687 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4688 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4689 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4690 Candidate.Conversions[0].UserDefined.FoundConversionFunction 4691 = FoundDecl.getDecl(); 4692 Candidate.Conversions[0].UserDefined.After 4693 = Candidate.Conversions[0].UserDefined.Before; 4694 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4695 4696 // Find the 4697 unsigned NumArgsInProto = Proto->getNumArgs(); 4698 4699 // (C++ 13.3.2p2): A candidate function having fewer than m 4700 // parameters is viable only if it has an ellipsis in its parameter 4701 // list (8.3.5). 4702 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4703 Candidate.Viable = false; 4704 Candidate.FailureKind = ovl_fail_too_many_arguments; 4705 return; 4706 } 4707 4708 // Function types don't have any default arguments, so just check if 4709 // we have enough arguments. 4710 if (NumArgs < NumArgsInProto) { 4711 // Not enough arguments. 4712 Candidate.Viable = false; 4713 Candidate.FailureKind = ovl_fail_too_few_arguments; 4714 return; 4715 } 4716 4717 // Determine the implicit conversion sequences for each of the 4718 // arguments. 4719 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4720 if (ArgIdx < NumArgsInProto) { 4721 // (C++ 13.3.2p3): for F to be a viable function, there shall 4722 // exist for each argument an implicit conversion sequence 4723 // (13.3.3.1) that converts that argument to the corresponding 4724 // parameter of F. 4725 QualType ParamType = Proto->getArgType(ArgIdx); 4726 Candidate.Conversions[ArgIdx + 1] 4727 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4728 /*SuppressUserConversions=*/false, 4729 /*InOverloadResolution=*/false, 4730 /*AllowObjCWritebackConversion=*/ 4731 getLangOptions().ObjCAutoRefCount); 4732 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4733 Candidate.Viable = false; 4734 Candidate.FailureKind = ovl_fail_bad_conversion; 4735 break; 4736 } 4737 } else { 4738 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4739 // argument for which there is no corresponding parameter is 4740 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4741 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4742 } 4743 } 4744 } 4745 4746 /// \brief Add overload candidates for overloaded operators that are 4747 /// member functions. 4748 /// 4749 /// Add the overloaded operator candidates that are member functions 4750 /// for the operator Op that was used in an operator expression such 4751 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 4752 /// CandidateSet will store the added overload candidates. (C++ 4753 /// [over.match.oper]). 4754 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4755 SourceLocation OpLoc, 4756 Expr **Args, unsigned NumArgs, 4757 OverloadCandidateSet& CandidateSet, 4758 SourceRange OpRange) { 4759 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4760 4761 // C++ [over.match.oper]p3: 4762 // For a unary operator @ with an operand of a type whose 4763 // cv-unqualified version is T1, and for a binary operator @ with 4764 // a left operand of a type whose cv-unqualified version is T1 and 4765 // a right operand of a type whose cv-unqualified version is T2, 4766 // three sets of candidate functions, designated member 4767 // candidates, non-member candidates and built-in candidates, are 4768 // constructed as follows: 4769 QualType T1 = Args[0]->getType(); 4770 4771 // -- If T1 is a class type, the set of member candidates is the 4772 // result of the qualified lookup of T1::operator@ 4773 // (13.3.1.1.1); otherwise, the set of member candidates is 4774 // empty. 4775 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4776 // Complete the type if it can be completed. Otherwise, we're done. 4777 if (RequireCompleteType(OpLoc, T1, PDiag())) 4778 return; 4779 4780 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4781 LookupQualifiedName(Operators, T1Rec->getDecl()); 4782 Operators.suppressDiagnostics(); 4783 4784 for (LookupResult::iterator Oper = Operators.begin(), 4785 OperEnd = Operators.end(); 4786 Oper != OperEnd; 4787 ++Oper) 4788 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4789 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 4790 CandidateSet, 4791 /* SuppressUserConversions = */ false); 4792 } 4793 } 4794 4795 /// AddBuiltinCandidate - Add a candidate for a built-in 4796 /// operator. ResultTy and ParamTys are the result and parameter types 4797 /// of the built-in candidate, respectively. Args and NumArgs are the 4798 /// arguments being passed to the candidate. IsAssignmentOperator 4799 /// should be true when this built-in candidate is an assignment 4800 /// operator. NumContextualBoolArguments is the number of arguments 4801 /// (at the beginning of the argument list) that will be contextually 4802 /// converted to bool. 4803 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4804 Expr **Args, unsigned NumArgs, 4805 OverloadCandidateSet& CandidateSet, 4806 bool IsAssignmentOperator, 4807 unsigned NumContextualBoolArguments) { 4808 // Overload resolution is always an unevaluated context. 4809 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4810 4811 // Add this candidate 4812 CandidateSet.push_back(OverloadCandidate()); 4813 OverloadCandidate& Candidate = CandidateSet.back(); 4814 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4815 Candidate.Function = 0; 4816 Candidate.IsSurrogate = false; 4817 Candidate.IgnoreObjectArgument = false; 4818 Candidate.BuiltinTypes.ResultTy = ResultTy; 4819 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4820 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4821 4822 // Determine the implicit conversion sequences for each of the 4823 // arguments. 4824 Candidate.Viable = true; 4825 Candidate.Conversions.resize(NumArgs); 4826 Candidate.ExplicitCallArguments = NumArgs; 4827 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4828 // C++ [over.match.oper]p4: 4829 // For the built-in assignment operators, conversions of the 4830 // left operand are restricted as follows: 4831 // -- no temporaries are introduced to hold the left operand, and 4832 // -- no user-defined conversions are applied to the left 4833 // operand to achieve a type match with the left-most 4834 // parameter of a built-in candidate. 4835 // 4836 // We block these conversions by turning off user-defined 4837 // conversions, since that is the only way that initialization of 4838 // a reference to a non-class type can occur from something that 4839 // is not of the same type. 4840 if (ArgIdx < NumContextualBoolArguments) { 4841 assert(ParamTys[ArgIdx] == Context.BoolTy && 4842 "Contextual conversion to bool requires bool type"); 4843 Candidate.Conversions[ArgIdx] 4844 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4845 } else { 4846 Candidate.Conversions[ArgIdx] 4847 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4848 ArgIdx == 0 && IsAssignmentOperator, 4849 /*InOverloadResolution=*/false, 4850 /*AllowObjCWritebackConversion=*/ 4851 getLangOptions().ObjCAutoRefCount); 4852 } 4853 if (Candidate.Conversions[ArgIdx].isBad()) { 4854 Candidate.Viable = false; 4855 Candidate.FailureKind = ovl_fail_bad_conversion; 4856 break; 4857 } 4858 } 4859 } 4860 4861 /// BuiltinCandidateTypeSet - A set of types that will be used for the 4862 /// candidate operator functions for built-in operators (C++ 4863 /// [over.built]). The types are separated into pointer types and 4864 /// enumeration types. 4865 class BuiltinCandidateTypeSet { 4866 /// TypeSet - A set of types. 4867 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4868 4869 /// PointerTypes - The set of pointer types that will be used in the 4870 /// built-in candidates. 4871 TypeSet PointerTypes; 4872 4873 /// MemberPointerTypes - The set of member pointer types that will be 4874 /// used in the built-in candidates. 4875 TypeSet MemberPointerTypes; 4876 4877 /// EnumerationTypes - The set of enumeration types that will be 4878 /// used in the built-in candidates. 4879 TypeSet EnumerationTypes; 4880 4881 /// \brief The set of vector types that will be used in the built-in 4882 /// candidates. 4883 TypeSet VectorTypes; 4884 4885 /// \brief A flag indicating non-record types are viable candidates 4886 bool HasNonRecordTypes; 4887 4888 /// \brief A flag indicating whether either arithmetic or enumeration types 4889 /// were present in the candidate set. 4890 bool HasArithmeticOrEnumeralTypes; 4891 4892 /// \brief A flag indicating whether the nullptr type was present in the 4893 /// candidate set. 4894 bool HasNullPtrType; 4895 4896 /// Sema - The semantic analysis instance where we are building the 4897 /// candidate type set. 4898 Sema &SemaRef; 4899 4900 /// Context - The AST context in which we will build the type sets. 4901 ASTContext &Context; 4902 4903 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4904 const Qualifiers &VisibleQuals); 4905 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4906 4907 public: 4908 /// iterator - Iterates through the types that are part of the set. 4909 typedef TypeSet::iterator iterator; 4910 4911 BuiltinCandidateTypeSet(Sema &SemaRef) 4912 : HasNonRecordTypes(false), 4913 HasArithmeticOrEnumeralTypes(false), 4914 HasNullPtrType(false), 4915 SemaRef(SemaRef), 4916 Context(SemaRef.Context) { } 4917 4918 void AddTypesConvertedFrom(QualType Ty, 4919 SourceLocation Loc, 4920 bool AllowUserConversions, 4921 bool AllowExplicitConversions, 4922 const Qualifiers &VisibleTypeConversionsQuals); 4923 4924 /// pointer_begin - First pointer type found; 4925 iterator pointer_begin() { return PointerTypes.begin(); } 4926 4927 /// pointer_end - Past the last pointer type found; 4928 iterator pointer_end() { return PointerTypes.end(); } 4929 4930 /// member_pointer_begin - First member pointer type found; 4931 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4932 4933 /// member_pointer_end - Past the last member pointer type found; 4934 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4935 4936 /// enumeration_begin - First enumeration type found; 4937 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4938 4939 /// enumeration_end - Past the last enumeration type found; 4940 iterator enumeration_end() { return EnumerationTypes.end(); } 4941 4942 iterator vector_begin() { return VectorTypes.begin(); } 4943 iterator vector_end() { return VectorTypes.end(); } 4944 4945 bool hasNonRecordTypes() { return HasNonRecordTypes; } 4946 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 4947 bool hasNullPtrType() const { return HasNullPtrType; } 4948 }; 4949 4950 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4951 /// the set of pointer types along with any more-qualified variants of 4952 /// that type. For example, if @p Ty is "int const *", this routine 4953 /// will add "int const *", "int const volatile *", "int const 4954 /// restrict *", and "int const volatile restrict *" to the set of 4955 /// pointer types. Returns true if the add of @p Ty itself succeeded, 4956 /// false otherwise. 4957 /// 4958 /// FIXME: what to do about extended qualifiers? 4959 bool 4960 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4961 const Qualifiers &VisibleQuals) { 4962 4963 // Insert this type. 4964 if (!PointerTypes.insert(Ty)) 4965 return false; 4966 4967 QualType PointeeTy; 4968 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4969 bool buildObjCPtr = false; 4970 if (!PointerTy) { 4971 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4972 PointeeTy = PTy->getPointeeType(); 4973 buildObjCPtr = true; 4974 } 4975 else 4976 assert(false && "type was not a pointer type!"); 4977 } 4978 else 4979 PointeeTy = PointerTy->getPointeeType(); 4980 4981 // Don't add qualified variants of arrays. For one, they're not allowed 4982 // (the qualifier would sink to the element type), and for another, the 4983 // only overload situation where it matters is subscript or pointer +- int, 4984 // and those shouldn't have qualifier variants anyway. 4985 if (PointeeTy->isArrayType()) 4986 return true; 4987 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4988 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4989 BaseCVR = Array->getElementType().getCVRQualifiers(); 4990 bool hasVolatile = VisibleQuals.hasVolatile(); 4991 bool hasRestrict = VisibleQuals.hasRestrict(); 4992 4993 // Iterate through all strict supersets of BaseCVR. 4994 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4995 if ((CVR | BaseCVR) != CVR) continue; 4996 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4997 // in the types. 4998 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4999 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 5000 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5001 if (!buildObjCPtr) 5002 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 5003 else 5004 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 5005 } 5006 5007 return true; 5008 } 5009 5010 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 5011 /// to the set of pointer types along with any more-qualified variants of 5012 /// that type. For example, if @p Ty is "int const *", this routine 5013 /// will add "int const *", "int const volatile *", "int const 5014 /// restrict *", and "int const volatile restrict *" to the set of 5015 /// pointer types. Returns true if the add of @p Ty itself succeeded, 5016 /// false otherwise. 5017 /// 5018 /// FIXME: what to do about extended qualifiers? 5019 bool 5020 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 5021 QualType Ty) { 5022 // Insert this type. 5023 if (!MemberPointerTypes.insert(Ty)) 5024 return false; 5025 5026 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 5027 assert(PointerTy && "type was not a member pointer type!"); 5028 5029 QualType PointeeTy = PointerTy->getPointeeType(); 5030 // Don't add qualified variants of arrays. For one, they're not allowed 5031 // (the qualifier would sink to the element type), and for another, the 5032 // only overload situation where it matters is subscript or pointer +- int, 5033 // and those shouldn't have qualifier variants anyway. 5034 if (PointeeTy->isArrayType()) 5035 return true; 5036 const Type *ClassTy = PointerTy->getClass(); 5037 5038 // Iterate through all strict supersets of the pointee type's CVR 5039 // qualifiers. 5040 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5041 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5042 if ((CVR | BaseCVR) != CVR) continue; 5043 5044 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5045 MemberPointerTypes.insert( 5046 Context.getMemberPointerType(QPointeeTy, ClassTy)); 5047 } 5048 5049 return true; 5050 } 5051 5052 /// AddTypesConvertedFrom - Add each of the types to which the type @p 5053 /// Ty can be implicit converted to the given set of @p Types. We're 5054 /// primarily interested in pointer types and enumeration types. We also 5055 /// take member pointer types, for the conditional operator. 5056 /// AllowUserConversions is true if we should look at the conversion 5057 /// functions of a class type, and AllowExplicitConversions if we 5058 /// should also include the explicit conversion functions of a class 5059 /// type. 5060 void 5061 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 5062 SourceLocation Loc, 5063 bool AllowUserConversions, 5064 bool AllowExplicitConversions, 5065 const Qualifiers &VisibleQuals) { 5066 // Only deal with canonical types. 5067 Ty = Context.getCanonicalType(Ty); 5068 5069 // Look through reference types; they aren't part of the type of an 5070 // expression for the purposes of conversions. 5071 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 5072 Ty = RefTy->getPointeeType(); 5073 5074 // If we're dealing with an array type, decay to the pointer. 5075 if (Ty->isArrayType()) 5076 Ty = SemaRef.Context.getArrayDecayedType(Ty); 5077 5078 // Otherwise, we don't care about qualifiers on the type. 5079 Ty = Ty.getLocalUnqualifiedType(); 5080 5081 // Flag if we ever add a non-record type. 5082 const RecordType *TyRec = Ty->getAs<RecordType>(); 5083 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 5084 5085 // Flag if we encounter an arithmetic type. 5086 HasArithmeticOrEnumeralTypes = 5087 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 5088 5089 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 5090 PointerTypes.insert(Ty); 5091 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 5092 // Insert our type, and its more-qualified variants, into the set 5093 // of types. 5094 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 5095 return; 5096 } else if (Ty->isMemberPointerType()) { 5097 // Member pointers are far easier, since the pointee can't be converted. 5098 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 5099 return; 5100 } else if (Ty->isEnumeralType()) { 5101 HasArithmeticOrEnumeralTypes = true; 5102 EnumerationTypes.insert(Ty); 5103 } else if (Ty->isVectorType()) { 5104 // We treat vector types as arithmetic types in many contexts as an 5105 // extension. 5106 HasArithmeticOrEnumeralTypes = true; 5107 VectorTypes.insert(Ty); 5108 } else if (Ty->isNullPtrType()) { 5109 HasNullPtrType = true; 5110 } else if (AllowUserConversions && TyRec) { 5111 // No conversion functions in incomplete types. 5112 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 5113 return; 5114 5115 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5116 const UnresolvedSetImpl *Conversions 5117 = ClassDecl->getVisibleConversionFunctions(); 5118 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5119 E = Conversions->end(); I != E; ++I) { 5120 NamedDecl *D = I.getDecl(); 5121 if (isa<UsingShadowDecl>(D)) 5122 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5123 5124 // Skip conversion function templates; they don't tell us anything 5125 // about which builtin types we can convert to. 5126 if (isa<FunctionTemplateDecl>(D)) 5127 continue; 5128 5129 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5130 if (AllowExplicitConversions || !Conv->isExplicit()) { 5131 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 5132 VisibleQuals); 5133 } 5134 } 5135 } 5136 } 5137 5138 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds 5139 /// the volatile- and non-volatile-qualified assignment operators for the 5140 /// given type to the candidate set. 5141 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 5142 QualType T, 5143 Expr **Args, 5144 unsigned NumArgs, 5145 OverloadCandidateSet &CandidateSet) { 5146 QualType ParamTypes[2]; 5147 5148 // T& operator=(T&, T) 5149 ParamTypes[0] = S.Context.getLValueReferenceType(T); 5150 ParamTypes[1] = T; 5151 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5152 /*IsAssignmentOperator=*/true); 5153 5154 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 5155 // volatile T& operator=(volatile T&, T) 5156 ParamTypes[0] 5157 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 5158 ParamTypes[1] = T; 5159 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5160 /*IsAssignmentOperator=*/true); 5161 } 5162 } 5163 5164 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 5165 /// if any, found in visible type conversion functions found in ArgExpr's type. 5166 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 5167 Qualifiers VRQuals; 5168 const RecordType *TyRec; 5169 if (const MemberPointerType *RHSMPType = 5170 ArgExpr->getType()->getAs<MemberPointerType>()) 5171 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 5172 else 5173 TyRec = ArgExpr->getType()->getAs<RecordType>(); 5174 if (!TyRec) { 5175 // Just to be safe, assume the worst case. 5176 VRQuals.addVolatile(); 5177 VRQuals.addRestrict(); 5178 return VRQuals; 5179 } 5180 5181 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5182 if (!ClassDecl->hasDefinition()) 5183 return VRQuals; 5184 5185 const UnresolvedSetImpl *Conversions = 5186 ClassDecl->getVisibleConversionFunctions(); 5187 5188 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5189 E = Conversions->end(); I != E; ++I) { 5190 NamedDecl *D = I.getDecl(); 5191 if (isa<UsingShadowDecl>(D)) 5192 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5193 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 5194 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 5195 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 5196 CanTy = ResTypeRef->getPointeeType(); 5197 // Need to go down the pointer/mempointer chain and add qualifiers 5198 // as see them. 5199 bool done = false; 5200 while (!done) { 5201 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 5202 CanTy = ResTypePtr->getPointeeType(); 5203 else if (const MemberPointerType *ResTypeMPtr = 5204 CanTy->getAs<MemberPointerType>()) 5205 CanTy = ResTypeMPtr->getPointeeType(); 5206 else 5207 done = true; 5208 if (CanTy.isVolatileQualified()) 5209 VRQuals.addVolatile(); 5210 if (CanTy.isRestrictQualified()) 5211 VRQuals.addRestrict(); 5212 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 5213 return VRQuals; 5214 } 5215 } 5216 } 5217 return VRQuals; 5218 } 5219 5220 namespace { 5221 5222 /// \brief Helper class to manage the addition of builtin operator overload 5223 /// candidates. It provides shared state and utility methods used throughout 5224 /// the process, as well as a helper method to add each group of builtin 5225 /// operator overloads from the standard to a candidate set. 5226 class BuiltinOperatorOverloadBuilder { 5227 // Common instance state available to all overload candidate addition methods. 5228 Sema &S; 5229 Expr **Args; 5230 unsigned NumArgs; 5231 Qualifiers VisibleTypeConversionsQuals; 5232 bool HasArithmeticOrEnumeralCandidateType; 5233 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 5234 OverloadCandidateSet &CandidateSet; 5235 5236 // Define some constants used to index and iterate over the arithemetic types 5237 // provided via the getArithmeticType() method below. 5238 // The "promoted arithmetic types" are the arithmetic 5239 // types are that preserved by promotion (C++ [over.built]p2). 5240 static const unsigned FirstIntegralType = 3; 5241 static const unsigned LastIntegralType = 18; 5242 static const unsigned FirstPromotedIntegralType = 3, 5243 LastPromotedIntegralType = 9; 5244 static const unsigned FirstPromotedArithmeticType = 0, 5245 LastPromotedArithmeticType = 9; 5246 static const unsigned NumArithmeticTypes = 18; 5247 5248 /// \brief Get the canonical type for a given arithmetic type index. 5249 CanQualType getArithmeticType(unsigned index) { 5250 assert(index < NumArithmeticTypes); 5251 static CanQualType ASTContext::* const 5252 ArithmeticTypes[NumArithmeticTypes] = { 5253 // Start of promoted types. 5254 &ASTContext::FloatTy, 5255 &ASTContext::DoubleTy, 5256 &ASTContext::LongDoubleTy, 5257 5258 // Start of integral types. 5259 &ASTContext::IntTy, 5260 &ASTContext::LongTy, 5261 &ASTContext::LongLongTy, 5262 &ASTContext::UnsignedIntTy, 5263 &ASTContext::UnsignedLongTy, 5264 &ASTContext::UnsignedLongLongTy, 5265 // End of promoted types. 5266 5267 &ASTContext::BoolTy, 5268 &ASTContext::CharTy, 5269 &ASTContext::WCharTy, 5270 &ASTContext::Char16Ty, 5271 &ASTContext::Char32Ty, 5272 &ASTContext::SignedCharTy, 5273 &ASTContext::ShortTy, 5274 &ASTContext::UnsignedCharTy, 5275 &ASTContext::UnsignedShortTy, 5276 // End of integral types. 5277 // FIXME: What about complex? 5278 }; 5279 return S.Context.*ArithmeticTypes[index]; 5280 } 5281 5282 /// \brief Gets the canonical type resulting from the usual arithemetic 5283 /// converions for the given arithmetic types. 5284 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 5285 // Accelerator table for performing the usual arithmetic conversions. 5286 // The rules are basically: 5287 // - if either is floating-point, use the wider floating-point 5288 // - if same signedness, use the higher rank 5289 // - if same size, use unsigned of the higher rank 5290 // - use the larger type 5291 // These rules, together with the axiom that higher ranks are 5292 // never smaller, are sufficient to precompute all of these results 5293 // *except* when dealing with signed types of higher rank. 5294 // (we could precompute SLL x UI for all known platforms, but it's 5295 // better not to make any assumptions). 5296 enum PromotedType { 5297 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 5298 }; 5299 static PromotedType ConversionsTable[LastPromotedArithmeticType] 5300 [LastPromotedArithmeticType] = { 5301 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 5302 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 5303 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 5304 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 5305 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 5306 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 5307 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 5308 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 5309 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 5310 }; 5311 5312 assert(L < LastPromotedArithmeticType); 5313 assert(R < LastPromotedArithmeticType); 5314 int Idx = ConversionsTable[L][R]; 5315 5316 // Fast path: the table gives us a concrete answer. 5317 if (Idx != Dep) return getArithmeticType(Idx); 5318 5319 // Slow path: we need to compare widths. 5320 // An invariant is that the signed type has higher rank. 5321 CanQualType LT = getArithmeticType(L), 5322 RT = getArithmeticType(R); 5323 unsigned LW = S.Context.getIntWidth(LT), 5324 RW = S.Context.getIntWidth(RT); 5325 5326 // If they're different widths, use the signed type. 5327 if (LW > RW) return LT; 5328 else if (LW < RW) return RT; 5329 5330 // Otherwise, use the unsigned type of the signed type's rank. 5331 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 5332 assert(L == SLL || R == SLL); 5333 return S.Context.UnsignedLongLongTy; 5334 } 5335 5336 /// \brief Helper method to factor out the common pattern of adding overloads 5337 /// for '++' and '--' builtin operators. 5338 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 5339 bool HasVolatile) { 5340 QualType ParamTypes[2] = { 5341 S.Context.getLValueReferenceType(CandidateTy), 5342 S.Context.IntTy 5343 }; 5344 5345 // Non-volatile version. 5346 if (NumArgs == 1) 5347 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5348 else 5349 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5350 5351 // Use a heuristic to reduce number of builtin candidates in the set: 5352 // add volatile version only if there are conversions to a volatile type. 5353 if (HasVolatile) { 5354 ParamTypes[0] = 5355 S.Context.getLValueReferenceType( 5356 S.Context.getVolatileType(CandidateTy)); 5357 if (NumArgs == 1) 5358 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5359 else 5360 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5361 } 5362 } 5363 5364 public: 5365 BuiltinOperatorOverloadBuilder( 5366 Sema &S, Expr **Args, unsigned NumArgs, 5367 Qualifiers VisibleTypeConversionsQuals, 5368 bool HasArithmeticOrEnumeralCandidateType, 5369 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 5370 OverloadCandidateSet &CandidateSet) 5371 : S(S), Args(Args), NumArgs(NumArgs), 5372 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 5373 HasArithmeticOrEnumeralCandidateType( 5374 HasArithmeticOrEnumeralCandidateType), 5375 CandidateTypes(CandidateTypes), 5376 CandidateSet(CandidateSet) { 5377 // Validate some of our static helper constants in debug builds. 5378 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 5379 "Invalid first promoted integral type"); 5380 assert(getArithmeticType(LastPromotedIntegralType - 1) 5381 == S.Context.UnsignedLongLongTy && 5382 "Invalid last promoted integral type"); 5383 assert(getArithmeticType(FirstPromotedArithmeticType) 5384 == S.Context.FloatTy && 5385 "Invalid first promoted arithmetic type"); 5386 assert(getArithmeticType(LastPromotedArithmeticType - 1) 5387 == S.Context.UnsignedLongLongTy && 5388 "Invalid last promoted arithmetic type"); 5389 } 5390 5391 // C++ [over.built]p3: 5392 // 5393 // For every pair (T, VQ), where T is an arithmetic type, and VQ 5394 // is either volatile or empty, there exist candidate operator 5395 // functions of the form 5396 // 5397 // VQ T& operator++(VQ T&); 5398 // T operator++(VQ T&, int); 5399 // 5400 // C++ [over.built]p4: 5401 // 5402 // For every pair (T, VQ), where T is an arithmetic type other 5403 // than bool, and VQ is either volatile or empty, there exist 5404 // candidate operator functions of the form 5405 // 5406 // VQ T& operator--(VQ T&); 5407 // T operator--(VQ T&, int); 5408 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 5409 if (!HasArithmeticOrEnumeralCandidateType) 5410 return; 5411 5412 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 5413 Arith < NumArithmeticTypes; ++Arith) { 5414 addPlusPlusMinusMinusStyleOverloads( 5415 getArithmeticType(Arith), 5416 VisibleTypeConversionsQuals.hasVolatile()); 5417 } 5418 } 5419 5420 // C++ [over.built]p5: 5421 // 5422 // For every pair (T, VQ), where T is a cv-qualified or 5423 // cv-unqualified object type, and VQ is either volatile or 5424 // empty, there exist candidate operator functions of the form 5425 // 5426 // T*VQ& operator++(T*VQ&); 5427 // T*VQ& operator--(T*VQ&); 5428 // T* operator++(T*VQ&, int); 5429 // T* operator--(T*VQ&, int); 5430 void addPlusPlusMinusMinusPointerOverloads() { 5431 for (BuiltinCandidateTypeSet::iterator 5432 Ptr = CandidateTypes[0].pointer_begin(), 5433 PtrEnd = CandidateTypes[0].pointer_end(); 5434 Ptr != PtrEnd; ++Ptr) { 5435 // Skip pointer types that aren't pointers to object types. 5436 if (!(*Ptr)->getPointeeType()->isObjectType()) 5437 continue; 5438 5439 addPlusPlusMinusMinusStyleOverloads(*Ptr, 5440 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5441 VisibleTypeConversionsQuals.hasVolatile())); 5442 } 5443 } 5444 5445 // C++ [over.built]p6: 5446 // For every cv-qualified or cv-unqualified object type T, there 5447 // exist candidate operator functions of the form 5448 // 5449 // T& operator*(T*); 5450 // 5451 // C++ [over.built]p7: 5452 // For every function type T that does not have cv-qualifiers or a 5453 // ref-qualifier, there exist candidate operator functions of the form 5454 // T& operator*(T*); 5455 void addUnaryStarPointerOverloads() { 5456 for (BuiltinCandidateTypeSet::iterator 5457 Ptr = CandidateTypes[0].pointer_begin(), 5458 PtrEnd = CandidateTypes[0].pointer_end(); 5459 Ptr != PtrEnd; ++Ptr) { 5460 QualType ParamTy = *Ptr; 5461 QualType PointeeTy = ParamTy->getPointeeType(); 5462 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 5463 continue; 5464 5465 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 5466 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 5467 continue; 5468 5469 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 5470 &ParamTy, Args, 1, CandidateSet); 5471 } 5472 } 5473 5474 // C++ [over.built]p9: 5475 // For every promoted arithmetic type T, there exist candidate 5476 // operator functions of the form 5477 // 5478 // T operator+(T); 5479 // T operator-(T); 5480 void addUnaryPlusOrMinusArithmeticOverloads() { 5481 if (!HasArithmeticOrEnumeralCandidateType) 5482 return; 5483 5484 for (unsigned Arith = FirstPromotedArithmeticType; 5485 Arith < LastPromotedArithmeticType; ++Arith) { 5486 QualType ArithTy = getArithmeticType(Arith); 5487 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 5488 } 5489 5490 // Extension: We also add these operators for vector types. 5491 for (BuiltinCandidateTypeSet::iterator 5492 Vec = CandidateTypes[0].vector_begin(), 5493 VecEnd = CandidateTypes[0].vector_end(); 5494 Vec != VecEnd; ++Vec) { 5495 QualType VecTy = *Vec; 5496 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5497 } 5498 } 5499 5500 // C++ [over.built]p8: 5501 // For every type T, there exist candidate operator functions of 5502 // the form 5503 // 5504 // T* operator+(T*); 5505 void addUnaryPlusPointerOverloads() { 5506 for (BuiltinCandidateTypeSet::iterator 5507 Ptr = CandidateTypes[0].pointer_begin(), 5508 PtrEnd = CandidateTypes[0].pointer_end(); 5509 Ptr != PtrEnd; ++Ptr) { 5510 QualType ParamTy = *Ptr; 5511 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 5512 } 5513 } 5514 5515 // C++ [over.built]p10: 5516 // For every promoted integral type T, there exist candidate 5517 // operator functions of the form 5518 // 5519 // T operator~(T); 5520 void addUnaryTildePromotedIntegralOverloads() { 5521 if (!HasArithmeticOrEnumeralCandidateType) 5522 return; 5523 5524 for (unsigned Int = FirstPromotedIntegralType; 5525 Int < LastPromotedIntegralType; ++Int) { 5526 QualType IntTy = getArithmeticType(Int); 5527 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 5528 } 5529 5530 // Extension: We also add this operator for vector types. 5531 for (BuiltinCandidateTypeSet::iterator 5532 Vec = CandidateTypes[0].vector_begin(), 5533 VecEnd = CandidateTypes[0].vector_end(); 5534 Vec != VecEnd; ++Vec) { 5535 QualType VecTy = *Vec; 5536 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5537 } 5538 } 5539 5540 // C++ [over.match.oper]p16: 5541 // For every pointer to member type T, there exist candidate operator 5542 // functions of the form 5543 // 5544 // bool operator==(T,T); 5545 // bool operator!=(T,T); 5546 void addEqualEqualOrNotEqualMemberPointerOverloads() { 5547 /// Set of (canonical) types that we've already handled. 5548 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5549 5550 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5551 for (BuiltinCandidateTypeSet::iterator 5552 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5553 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5554 MemPtr != MemPtrEnd; 5555 ++MemPtr) { 5556 // Don't add the same builtin candidate twice. 5557 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5558 continue; 5559 5560 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5561 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5562 CandidateSet); 5563 } 5564 } 5565 } 5566 5567 // C++ [over.built]p15: 5568 // 5569 // For every T, where T is an enumeration type, a pointer type, or 5570 // std::nullptr_t, there exist candidate operator functions of the form 5571 // 5572 // bool operator<(T, T); 5573 // bool operator>(T, T); 5574 // bool operator<=(T, T); 5575 // bool operator>=(T, T); 5576 // bool operator==(T, T); 5577 // bool operator!=(T, T); 5578 void addRelationalPointerOrEnumeralOverloads() { 5579 // C++ [over.built]p1: 5580 // If there is a user-written candidate with the same name and parameter 5581 // types as a built-in candidate operator function, the built-in operator 5582 // function is hidden and is not included in the set of candidate 5583 // functions. 5584 // 5585 // The text is actually in a note, but if we don't implement it then we end 5586 // up with ambiguities when the user provides an overloaded operator for 5587 // an enumeration type. Note that only enumeration types have this problem, 5588 // so we track which enumeration types we've seen operators for. Also, the 5589 // only other overloaded operator with enumeration argumenst, operator=, 5590 // cannot be overloaded for enumeration types, so this is the only place 5591 // where we must suppress candidates like this. 5592 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 5593 UserDefinedBinaryOperators; 5594 5595 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5596 if (CandidateTypes[ArgIdx].enumeration_begin() != 5597 CandidateTypes[ArgIdx].enumeration_end()) { 5598 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 5599 CEnd = CandidateSet.end(); 5600 C != CEnd; ++C) { 5601 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 5602 continue; 5603 5604 QualType FirstParamType = 5605 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 5606 QualType SecondParamType = 5607 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 5608 5609 // Skip if either parameter isn't of enumeral type. 5610 if (!FirstParamType->isEnumeralType() || 5611 !SecondParamType->isEnumeralType()) 5612 continue; 5613 5614 // Add this operator to the set of known user-defined operators. 5615 UserDefinedBinaryOperators.insert( 5616 std::make_pair(S.Context.getCanonicalType(FirstParamType), 5617 S.Context.getCanonicalType(SecondParamType))); 5618 } 5619 } 5620 } 5621 5622 /// Set of (canonical) types that we've already handled. 5623 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5624 5625 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5626 for (BuiltinCandidateTypeSet::iterator 5627 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5628 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5629 Ptr != PtrEnd; ++Ptr) { 5630 // Don't add the same builtin candidate twice. 5631 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5632 continue; 5633 5634 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5635 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5636 CandidateSet); 5637 } 5638 for (BuiltinCandidateTypeSet::iterator 5639 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5640 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5641 Enum != EnumEnd; ++Enum) { 5642 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 5643 5644 // Don't add the same builtin candidate twice, or if a user defined 5645 // candidate exists. 5646 if (!AddedTypes.insert(CanonType) || 5647 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 5648 CanonType))) 5649 continue; 5650 5651 QualType ParamTypes[2] = { *Enum, *Enum }; 5652 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5653 CandidateSet); 5654 } 5655 5656 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 5657 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 5658 if (AddedTypes.insert(NullPtrTy) && 5659 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 5660 NullPtrTy))) { 5661 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 5662 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5663 CandidateSet); 5664 } 5665 } 5666 } 5667 } 5668 5669 // C++ [over.built]p13: 5670 // 5671 // For every cv-qualified or cv-unqualified object type T 5672 // there exist candidate operator functions of the form 5673 // 5674 // T* operator+(T*, ptrdiff_t); 5675 // T& operator[](T*, ptrdiff_t); [BELOW] 5676 // T* operator-(T*, ptrdiff_t); 5677 // T* operator+(ptrdiff_t, T*); 5678 // T& operator[](ptrdiff_t, T*); [BELOW] 5679 // 5680 // C++ [over.built]p14: 5681 // 5682 // For every T, where T is a pointer to object type, there 5683 // exist candidate operator functions of the form 5684 // 5685 // ptrdiff_t operator-(T, T); 5686 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 5687 /// Set of (canonical) types that we've already handled. 5688 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5689 5690 for (int Arg = 0; Arg < 2; ++Arg) { 5691 QualType AsymetricParamTypes[2] = { 5692 S.Context.getPointerDiffType(), 5693 S.Context.getPointerDiffType(), 5694 }; 5695 for (BuiltinCandidateTypeSet::iterator 5696 Ptr = CandidateTypes[Arg].pointer_begin(), 5697 PtrEnd = CandidateTypes[Arg].pointer_end(); 5698 Ptr != PtrEnd; ++Ptr) { 5699 QualType PointeeTy = (*Ptr)->getPointeeType(); 5700 if (!PointeeTy->isObjectType()) 5701 continue; 5702 5703 AsymetricParamTypes[Arg] = *Ptr; 5704 if (Arg == 0 || Op == OO_Plus) { 5705 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5706 // T* operator+(ptrdiff_t, T*); 5707 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 5708 CandidateSet); 5709 } 5710 if (Op == OO_Minus) { 5711 // ptrdiff_t operator-(T, T); 5712 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5713 continue; 5714 5715 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5716 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 5717 Args, 2, CandidateSet); 5718 } 5719 } 5720 } 5721 } 5722 5723 // C++ [over.built]p12: 5724 // 5725 // For every pair of promoted arithmetic types L and R, there 5726 // exist candidate operator functions of the form 5727 // 5728 // LR operator*(L, R); 5729 // LR operator/(L, R); 5730 // LR operator+(L, R); 5731 // LR operator-(L, R); 5732 // bool operator<(L, R); 5733 // bool operator>(L, R); 5734 // bool operator<=(L, R); 5735 // bool operator>=(L, R); 5736 // bool operator==(L, R); 5737 // bool operator!=(L, R); 5738 // 5739 // where LR is the result of the usual arithmetic conversions 5740 // between types L and R. 5741 // 5742 // C++ [over.built]p24: 5743 // 5744 // For every pair of promoted arithmetic types L and R, there exist 5745 // candidate operator functions of the form 5746 // 5747 // LR operator?(bool, L, R); 5748 // 5749 // where LR is the result of the usual arithmetic conversions 5750 // between types L and R. 5751 // Our candidates ignore the first parameter. 5752 void addGenericBinaryArithmeticOverloads(bool isComparison) { 5753 if (!HasArithmeticOrEnumeralCandidateType) 5754 return; 5755 5756 for (unsigned Left = FirstPromotedArithmeticType; 5757 Left < LastPromotedArithmeticType; ++Left) { 5758 for (unsigned Right = FirstPromotedArithmeticType; 5759 Right < LastPromotedArithmeticType; ++Right) { 5760 QualType LandR[2] = { getArithmeticType(Left), 5761 getArithmeticType(Right) }; 5762 QualType Result = 5763 isComparison ? S.Context.BoolTy 5764 : getUsualArithmeticConversions(Left, Right); 5765 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5766 } 5767 } 5768 5769 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5770 // conditional operator for vector types. 5771 for (BuiltinCandidateTypeSet::iterator 5772 Vec1 = CandidateTypes[0].vector_begin(), 5773 Vec1End = CandidateTypes[0].vector_end(); 5774 Vec1 != Vec1End; ++Vec1) { 5775 for (BuiltinCandidateTypeSet::iterator 5776 Vec2 = CandidateTypes[1].vector_begin(), 5777 Vec2End = CandidateTypes[1].vector_end(); 5778 Vec2 != Vec2End; ++Vec2) { 5779 QualType LandR[2] = { *Vec1, *Vec2 }; 5780 QualType Result = S.Context.BoolTy; 5781 if (!isComparison) { 5782 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5783 Result = *Vec1; 5784 else 5785 Result = *Vec2; 5786 } 5787 5788 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5789 } 5790 } 5791 } 5792 5793 // C++ [over.built]p17: 5794 // 5795 // For every pair of promoted integral types L and R, there 5796 // exist candidate operator functions of the form 5797 // 5798 // LR operator%(L, R); 5799 // LR operator&(L, R); 5800 // LR operator^(L, R); 5801 // LR operator|(L, R); 5802 // L operator<<(L, R); 5803 // L operator>>(L, R); 5804 // 5805 // where LR is the result of the usual arithmetic conversions 5806 // between types L and R. 5807 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 5808 if (!HasArithmeticOrEnumeralCandidateType) 5809 return; 5810 5811 for (unsigned Left = FirstPromotedIntegralType; 5812 Left < LastPromotedIntegralType; ++Left) { 5813 for (unsigned Right = FirstPromotedIntegralType; 5814 Right < LastPromotedIntegralType; ++Right) { 5815 QualType LandR[2] = { getArithmeticType(Left), 5816 getArithmeticType(Right) }; 5817 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5818 ? LandR[0] 5819 : getUsualArithmeticConversions(Left, Right); 5820 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5821 } 5822 } 5823 } 5824 5825 // C++ [over.built]p20: 5826 // 5827 // For every pair (T, VQ), where T is an enumeration or 5828 // pointer to member type and VQ is either volatile or 5829 // empty, there exist candidate operator functions of the form 5830 // 5831 // VQ T& operator=(VQ T&, T); 5832 void addAssignmentMemberPointerOrEnumeralOverloads() { 5833 /// Set of (canonical) types that we've already handled. 5834 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5835 5836 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5837 for (BuiltinCandidateTypeSet::iterator 5838 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5839 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5840 Enum != EnumEnd; ++Enum) { 5841 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5842 continue; 5843 5844 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 5845 CandidateSet); 5846 } 5847 5848 for (BuiltinCandidateTypeSet::iterator 5849 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5850 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5851 MemPtr != MemPtrEnd; ++MemPtr) { 5852 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5853 continue; 5854 5855 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 5856 CandidateSet); 5857 } 5858 } 5859 } 5860 5861 // C++ [over.built]p19: 5862 // 5863 // For every pair (T, VQ), where T is any type and VQ is either 5864 // volatile or empty, there exist candidate operator functions 5865 // of the form 5866 // 5867 // T*VQ& operator=(T*VQ&, T*); 5868 // 5869 // C++ [over.built]p21: 5870 // 5871 // For every pair (T, VQ), where T is a cv-qualified or 5872 // cv-unqualified object type and VQ is either volatile or 5873 // empty, there exist candidate operator functions of the form 5874 // 5875 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5876 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5877 void addAssignmentPointerOverloads(bool isEqualOp) { 5878 /// Set of (canonical) types that we've already handled. 5879 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5880 5881 for (BuiltinCandidateTypeSet::iterator 5882 Ptr = CandidateTypes[0].pointer_begin(), 5883 PtrEnd = CandidateTypes[0].pointer_end(); 5884 Ptr != PtrEnd; ++Ptr) { 5885 // If this is operator=, keep track of the builtin candidates we added. 5886 if (isEqualOp) 5887 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 5888 else if (!(*Ptr)->getPointeeType()->isObjectType()) 5889 continue; 5890 5891 // non-volatile version 5892 QualType ParamTypes[2] = { 5893 S.Context.getLValueReferenceType(*Ptr), 5894 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 5895 }; 5896 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5897 /*IsAssigmentOperator=*/ isEqualOp); 5898 5899 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5900 VisibleTypeConversionsQuals.hasVolatile()) { 5901 // volatile version 5902 ParamTypes[0] = 5903 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5904 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5905 /*IsAssigmentOperator=*/isEqualOp); 5906 } 5907 } 5908 5909 if (isEqualOp) { 5910 for (BuiltinCandidateTypeSet::iterator 5911 Ptr = CandidateTypes[1].pointer_begin(), 5912 PtrEnd = CandidateTypes[1].pointer_end(); 5913 Ptr != PtrEnd; ++Ptr) { 5914 // Make sure we don't add the same candidate twice. 5915 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5916 continue; 5917 5918 QualType ParamTypes[2] = { 5919 S.Context.getLValueReferenceType(*Ptr), 5920 *Ptr, 5921 }; 5922 5923 // non-volatile version 5924 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5925 /*IsAssigmentOperator=*/true); 5926 5927 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5928 VisibleTypeConversionsQuals.hasVolatile()) { 5929 // volatile version 5930 ParamTypes[0] = 5931 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5932 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5933 CandidateSet, /*IsAssigmentOperator=*/true); 5934 } 5935 } 5936 } 5937 } 5938 5939 // C++ [over.built]p18: 5940 // 5941 // For every triple (L, VQ, R), where L is an arithmetic type, 5942 // VQ is either volatile or empty, and R is a promoted 5943 // arithmetic type, there exist candidate operator functions of 5944 // the form 5945 // 5946 // VQ L& operator=(VQ L&, R); 5947 // VQ L& operator*=(VQ L&, R); 5948 // VQ L& operator/=(VQ L&, R); 5949 // VQ L& operator+=(VQ L&, R); 5950 // VQ L& operator-=(VQ L&, R); 5951 void addAssignmentArithmeticOverloads(bool isEqualOp) { 5952 if (!HasArithmeticOrEnumeralCandidateType) 5953 return; 5954 5955 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5956 for (unsigned Right = FirstPromotedArithmeticType; 5957 Right < LastPromotedArithmeticType; ++Right) { 5958 QualType ParamTypes[2]; 5959 ParamTypes[1] = getArithmeticType(Right); 5960 5961 // Add this built-in operator as a candidate (VQ is empty). 5962 ParamTypes[0] = 5963 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5964 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5965 /*IsAssigmentOperator=*/isEqualOp); 5966 5967 // Add this built-in operator as a candidate (VQ is 'volatile'). 5968 if (VisibleTypeConversionsQuals.hasVolatile()) { 5969 ParamTypes[0] = 5970 S.Context.getVolatileType(getArithmeticType(Left)); 5971 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5972 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5973 CandidateSet, 5974 /*IsAssigmentOperator=*/isEqualOp); 5975 } 5976 } 5977 } 5978 5979 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5980 for (BuiltinCandidateTypeSet::iterator 5981 Vec1 = CandidateTypes[0].vector_begin(), 5982 Vec1End = CandidateTypes[0].vector_end(); 5983 Vec1 != Vec1End; ++Vec1) { 5984 for (BuiltinCandidateTypeSet::iterator 5985 Vec2 = CandidateTypes[1].vector_begin(), 5986 Vec2End = CandidateTypes[1].vector_end(); 5987 Vec2 != Vec2End; ++Vec2) { 5988 QualType ParamTypes[2]; 5989 ParamTypes[1] = *Vec2; 5990 // Add this built-in operator as a candidate (VQ is empty). 5991 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 5992 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5993 /*IsAssigmentOperator=*/isEqualOp); 5994 5995 // Add this built-in operator as a candidate (VQ is 'volatile'). 5996 if (VisibleTypeConversionsQuals.hasVolatile()) { 5997 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 5998 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5999 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6000 CandidateSet, 6001 /*IsAssigmentOperator=*/isEqualOp); 6002 } 6003 } 6004 } 6005 } 6006 6007 // C++ [over.built]p22: 6008 // 6009 // For every triple (L, VQ, R), where L is an integral type, VQ 6010 // is either volatile or empty, and R is a promoted integral 6011 // type, there exist candidate operator functions of the form 6012 // 6013 // VQ L& operator%=(VQ L&, R); 6014 // VQ L& operator<<=(VQ L&, R); 6015 // VQ L& operator>>=(VQ L&, R); 6016 // VQ L& operator&=(VQ L&, R); 6017 // VQ L& operator^=(VQ L&, R); 6018 // VQ L& operator|=(VQ L&, R); 6019 void addAssignmentIntegralOverloads() { 6020 if (!HasArithmeticOrEnumeralCandidateType) 6021 return; 6022 6023 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 6024 for (unsigned Right = FirstPromotedIntegralType; 6025 Right < LastPromotedIntegralType; ++Right) { 6026 QualType ParamTypes[2]; 6027 ParamTypes[1] = getArithmeticType(Right); 6028 6029 // Add this built-in operator as a candidate (VQ is empty). 6030 ParamTypes[0] = 6031 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6032 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 6033 if (VisibleTypeConversionsQuals.hasVolatile()) { 6034 // Add this built-in operator as a candidate (VQ is 'volatile'). 6035 ParamTypes[0] = getArithmeticType(Left); 6036 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 6037 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6038 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6039 CandidateSet); 6040 } 6041 } 6042 } 6043 } 6044 6045 // C++ [over.operator]p23: 6046 // 6047 // There also exist candidate operator functions of the form 6048 // 6049 // bool operator!(bool); 6050 // bool operator&&(bool, bool); 6051 // bool operator||(bool, bool); 6052 void addExclaimOverload() { 6053 QualType ParamTy = S.Context.BoolTy; 6054 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 6055 /*IsAssignmentOperator=*/false, 6056 /*NumContextualBoolArguments=*/1); 6057 } 6058 void addAmpAmpOrPipePipeOverload() { 6059 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 6060 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 6061 /*IsAssignmentOperator=*/false, 6062 /*NumContextualBoolArguments=*/2); 6063 } 6064 6065 // C++ [over.built]p13: 6066 // 6067 // For every cv-qualified or cv-unqualified object type T there 6068 // exist candidate operator functions of the form 6069 // 6070 // T* operator+(T*, ptrdiff_t); [ABOVE] 6071 // T& operator[](T*, ptrdiff_t); 6072 // T* operator-(T*, ptrdiff_t); [ABOVE] 6073 // T* operator+(ptrdiff_t, T*); [ABOVE] 6074 // T& operator[](ptrdiff_t, T*); 6075 void addSubscriptOverloads() { 6076 for (BuiltinCandidateTypeSet::iterator 6077 Ptr = CandidateTypes[0].pointer_begin(), 6078 PtrEnd = CandidateTypes[0].pointer_end(); 6079 Ptr != PtrEnd; ++Ptr) { 6080 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 6081 QualType PointeeType = (*Ptr)->getPointeeType(); 6082 if (!PointeeType->isObjectType()) 6083 continue; 6084 6085 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6086 6087 // T& operator[](T*, ptrdiff_t) 6088 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6089 } 6090 6091 for (BuiltinCandidateTypeSet::iterator 6092 Ptr = CandidateTypes[1].pointer_begin(), 6093 PtrEnd = CandidateTypes[1].pointer_end(); 6094 Ptr != PtrEnd; ++Ptr) { 6095 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 6096 QualType PointeeType = (*Ptr)->getPointeeType(); 6097 if (!PointeeType->isObjectType()) 6098 continue; 6099 6100 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6101 6102 // T& operator[](ptrdiff_t, T*) 6103 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6104 } 6105 } 6106 6107 // C++ [over.built]p11: 6108 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 6109 // C1 is the same type as C2 or is a derived class of C2, T is an object 6110 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 6111 // there exist candidate operator functions of the form 6112 // 6113 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 6114 // 6115 // where CV12 is the union of CV1 and CV2. 6116 void addArrowStarOverloads() { 6117 for (BuiltinCandidateTypeSet::iterator 6118 Ptr = CandidateTypes[0].pointer_begin(), 6119 PtrEnd = CandidateTypes[0].pointer_end(); 6120 Ptr != PtrEnd; ++Ptr) { 6121 QualType C1Ty = (*Ptr); 6122 QualType C1; 6123 QualifierCollector Q1; 6124 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 6125 if (!isa<RecordType>(C1)) 6126 continue; 6127 // heuristic to reduce number of builtin candidates in the set. 6128 // Add volatile/restrict version only if there are conversions to a 6129 // volatile/restrict type. 6130 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 6131 continue; 6132 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 6133 continue; 6134 for (BuiltinCandidateTypeSet::iterator 6135 MemPtr = CandidateTypes[1].member_pointer_begin(), 6136 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 6137 MemPtr != MemPtrEnd; ++MemPtr) { 6138 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 6139 QualType C2 = QualType(mptr->getClass(), 0); 6140 C2 = C2.getUnqualifiedType(); 6141 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 6142 break; 6143 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 6144 // build CV12 T& 6145 QualType T = mptr->getPointeeType(); 6146 if (!VisibleTypeConversionsQuals.hasVolatile() && 6147 T.isVolatileQualified()) 6148 continue; 6149 if (!VisibleTypeConversionsQuals.hasRestrict() && 6150 T.isRestrictQualified()) 6151 continue; 6152 T = Q1.apply(S.Context, T); 6153 QualType ResultTy = S.Context.getLValueReferenceType(T); 6154 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6155 } 6156 } 6157 } 6158 6159 // Note that we don't consider the first argument, since it has been 6160 // contextually converted to bool long ago. The candidates below are 6161 // therefore added as binary. 6162 // 6163 // C++ [over.built]p25: 6164 // For every type T, where T is a pointer, pointer-to-member, or scoped 6165 // enumeration type, there exist candidate operator functions of the form 6166 // 6167 // T operator?(bool, T, T); 6168 // 6169 void addConditionalOperatorOverloads() { 6170 /// Set of (canonical) types that we've already handled. 6171 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6172 6173 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6174 for (BuiltinCandidateTypeSet::iterator 6175 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6176 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6177 Ptr != PtrEnd; ++Ptr) { 6178 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6179 continue; 6180 6181 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6182 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 6183 } 6184 6185 for (BuiltinCandidateTypeSet::iterator 6186 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6187 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6188 MemPtr != MemPtrEnd; ++MemPtr) { 6189 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6190 continue; 6191 6192 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6193 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 6194 } 6195 6196 if (S.getLangOptions().CPlusPlus0x) { 6197 for (BuiltinCandidateTypeSet::iterator 6198 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6199 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6200 Enum != EnumEnd; ++Enum) { 6201 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 6202 continue; 6203 6204 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6205 continue; 6206 6207 QualType ParamTypes[2] = { *Enum, *Enum }; 6208 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 6209 } 6210 } 6211 } 6212 } 6213 }; 6214 6215 } // end anonymous namespace 6216 6217 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 6218 /// operator overloads to the candidate set (C++ [over.built]), based 6219 /// on the operator @p Op and the arguments given. For example, if the 6220 /// operator is a binary '+', this routine might add "int 6221 /// operator+(int, int)" to cover integer addition. 6222 void 6223 Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 6224 SourceLocation OpLoc, 6225 Expr **Args, unsigned NumArgs, 6226 OverloadCandidateSet& CandidateSet) { 6227 // Find all of the types that the arguments can convert to, but only 6228 // if the operator we're looking at has built-in operator candidates 6229 // that make use of these types. Also record whether we encounter non-record 6230 // candidate types or either arithmetic or enumeral candidate types. 6231 Qualifiers VisibleTypeConversionsQuals; 6232 VisibleTypeConversionsQuals.addConst(); 6233 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6234 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 6235 6236 bool HasNonRecordCandidateType = false; 6237 bool HasArithmeticOrEnumeralCandidateType = false; 6238 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 6239 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6240 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 6241 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 6242 OpLoc, 6243 true, 6244 (Op == OO_Exclaim || 6245 Op == OO_AmpAmp || 6246 Op == OO_PipePipe), 6247 VisibleTypeConversionsQuals); 6248 HasNonRecordCandidateType = HasNonRecordCandidateType || 6249 CandidateTypes[ArgIdx].hasNonRecordTypes(); 6250 HasArithmeticOrEnumeralCandidateType = 6251 HasArithmeticOrEnumeralCandidateType || 6252 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 6253 } 6254 6255 // Exit early when no non-record types have been added to the candidate set 6256 // for any of the arguments to the operator. 6257 if (!HasNonRecordCandidateType) 6258 return; 6259 6260 // Setup an object to manage the common state for building overloads. 6261 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 6262 VisibleTypeConversionsQuals, 6263 HasArithmeticOrEnumeralCandidateType, 6264 CandidateTypes, CandidateSet); 6265 6266 // Dispatch over the operation to add in only those overloads which apply. 6267 switch (Op) { 6268 case OO_None: 6269 case NUM_OVERLOADED_OPERATORS: 6270 assert(false && "Expected an overloaded operator"); 6271 break; 6272 6273 case OO_New: 6274 case OO_Delete: 6275 case OO_Array_New: 6276 case OO_Array_Delete: 6277 case OO_Call: 6278 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 6279 break; 6280 6281 case OO_Comma: 6282 case OO_Arrow: 6283 // C++ [over.match.oper]p3: 6284 // -- For the operator ',', the unary operator '&', or the 6285 // operator '->', the built-in candidates set is empty. 6286 break; 6287 6288 case OO_Plus: // '+' is either unary or binary 6289 if (NumArgs == 1) 6290 OpBuilder.addUnaryPlusPointerOverloads(); 6291 // Fall through. 6292 6293 case OO_Minus: // '-' is either unary or binary 6294 if (NumArgs == 1) { 6295 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 6296 } else { 6297 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 6298 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6299 } 6300 break; 6301 6302 case OO_Star: // '*' is either unary or binary 6303 if (NumArgs == 1) 6304 OpBuilder.addUnaryStarPointerOverloads(); 6305 else 6306 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6307 break; 6308 6309 case OO_Slash: 6310 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6311 break; 6312 6313 case OO_PlusPlus: 6314 case OO_MinusMinus: 6315 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 6316 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 6317 break; 6318 6319 case OO_EqualEqual: 6320 case OO_ExclaimEqual: 6321 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 6322 // Fall through. 6323 6324 case OO_Less: 6325 case OO_Greater: 6326 case OO_LessEqual: 6327 case OO_GreaterEqual: 6328 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 6329 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 6330 break; 6331 6332 case OO_Percent: 6333 case OO_Caret: 6334 case OO_Pipe: 6335 case OO_LessLess: 6336 case OO_GreaterGreater: 6337 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6338 break; 6339 6340 case OO_Amp: // '&' is either unary or binary 6341 if (NumArgs == 1) 6342 // C++ [over.match.oper]p3: 6343 // -- For the operator ',', the unary operator '&', or the 6344 // operator '->', the built-in candidates set is empty. 6345 break; 6346 6347 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6348 break; 6349 6350 case OO_Tilde: 6351 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 6352 break; 6353 6354 case OO_Equal: 6355 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 6356 // Fall through. 6357 6358 case OO_PlusEqual: 6359 case OO_MinusEqual: 6360 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 6361 // Fall through. 6362 6363 case OO_StarEqual: 6364 case OO_SlashEqual: 6365 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 6366 break; 6367 6368 case OO_PercentEqual: 6369 case OO_LessLessEqual: 6370 case OO_GreaterGreaterEqual: 6371 case OO_AmpEqual: 6372 case OO_CaretEqual: 6373 case OO_PipeEqual: 6374 OpBuilder.addAssignmentIntegralOverloads(); 6375 break; 6376 6377 case OO_Exclaim: 6378 OpBuilder.addExclaimOverload(); 6379 break; 6380 6381 case OO_AmpAmp: 6382 case OO_PipePipe: 6383 OpBuilder.addAmpAmpOrPipePipeOverload(); 6384 break; 6385 6386 case OO_Subscript: 6387 OpBuilder.addSubscriptOverloads(); 6388 break; 6389 6390 case OO_ArrowStar: 6391 OpBuilder.addArrowStarOverloads(); 6392 break; 6393 6394 case OO_Conditional: 6395 OpBuilder.addConditionalOperatorOverloads(); 6396 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6397 break; 6398 } 6399 } 6400 6401 /// \brief Add function candidates found via argument-dependent lookup 6402 /// to the set of overloading candidates. 6403 /// 6404 /// This routine performs argument-dependent name lookup based on the 6405 /// given function name (which may also be an operator name) and adds 6406 /// all of the overload candidates found by ADL to the overload 6407 /// candidate set (C++ [basic.lookup.argdep]). 6408 void 6409 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 6410 bool Operator, 6411 Expr **Args, unsigned NumArgs, 6412 TemplateArgumentListInfo *ExplicitTemplateArgs, 6413 OverloadCandidateSet& CandidateSet, 6414 bool PartialOverloading, 6415 bool StdNamespaceIsAssociated) { 6416 ADLResult Fns; 6417 6418 // FIXME: This approach for uniquing ADL results (and removing 6419 // redundant candidates from the set) relies on pointer-equality, 6420 // which means we need to key off the canonical decl. However, 6421 // always going back to the canonical decl might not get us the 6422 // right set of default arguments. What default arguments are 6423 // we supposed to consider on ADL candidates, anyway? 6424 6425 // FIXME: Pass in the explicit template arguments? 6426 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, 6427 StdNamespaceIsAssociated); 6428 6429 // Erase all of the candidates we already knew about. 6430 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 6431 CandEnd = CandidateSet.end(); 6432 Cand != CandEnd; ++Cand) 6433 if (Cand->Function) { 6434 Fns.erase(Cand->Function); 6435 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 6436 Fns.erase(FunTmpl); 6437 } 6438 6439 // For each of the ADL candidates we found, add it to the overload 6440 // set. 6441 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 6442 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 6443 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 6444 if (ExplicitTemplateArgs) 6445 continue; 6446 6447 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 6448 false, PartialOverloading); 6449 } else 6450 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 6451 FoundDecl, ExplicitTemplateArgs, 6452 Args, NumArgs, CandidateSet); 6453 } 6454 } 6455 6456 /// isBetterOverloadCandidate - Determines whether the first overload 6457 /// candidate is a better candidate than the second (C++ 13.3.3p1). 6458 bool 6459 isBetterOverloadCandidate(Sema &S, 6460 const OverloadCandidate &Cand1, 6461 const OverloadCandidate &Cand2, 6462 SourceLocation Loc, 6463 bool UserDefinedConversion) { 6464 // Define viable functions to be better candidates than non-viable 6465 // functions. 6466 if (!Cand2.Viable) 6467 return Cand1.Viable; 6468 else if (!Cand1.Viable) 6469 return false; 6470 6471 // C++ [over.match.best]p1: 6472 // 6473 // -- if F is a static member function, ICS1(F) is defined such 6474 // that ICS1(F) is neither better nor worse than ICS1(G) for 6475 // any function G, and, symmetrically, ICS1(G) is neither 6476 // better nor worse than ICS1(F). 6477 unsigned StartArg = 0; 6478 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 6479 StartArg = 1; 6480 6481 // C++ [over.match.best]p1: 6482 // A viable function F1 is defined to be a better function than another 6483 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 6484 // conversion sequence than ICSi(F2), and then... 6485 unsigned NumArgs = Cand1.Conversions.size(); 6486 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 6487 bool HasBetterConversion = false; 6488 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 6489 switch (CompareImplicitConversionSequences(S, 6490 Cand1.Conversions[ArgIdx], 6491 Cand2.Conversions[ArgIdx])) { 6492 case ImplicitConversionSequence::Better: 6493 // Cand1 has a better conversion sequence. 6494 HasBetterConversion = true; 6495 break; 6496 6497 case ImplicitConversionSequence::Worse: 6498 // Cand1 can't be better than Cand2. 6499 return false; 6500 6501 case ImplicitConversionSequence::Indistinguishable: 6502 // Do nothing. 6503 break; 6504 } 6505 } 6506 6507 // -- for some argument j, ICSj(F1) is a better conversion sequence than 6508 // ICSj(F2), or, if not that, 6509 if (HasBetterConversion) 6510 return true; 6511 6512 // - F1 is a non-template function and F2 is a function template 6513 // specialization, or, if not that, 6514 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 6515 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 6516 return true; 6517 6518 // -- F1 and F2 are function template specializations, and the function 6519 // template for F1 is more specialized than the template for F2 6520 // according to the partial ordering rules described in 14.5.5.2, or, 6521 // if not that, 6522 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 6523 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 6524 if (FunctionTemplateDecl *BetterTemplate 6525 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 6526 Cand2.Function->getPrimaryTemplate(), 6527 Loc, 6528 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 6529 : TPOC_Call, 6530 Cand1.ExplicitCallArguments)) 6531 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 6532 } 6533 6534 // -- the context is an initialization by user-defined conversion 6535 // (see 8.5, 13.3.1.5) and the standard conversion sequence 6536 // from the return type of F1 to the destination type (i.e., 6537 // the type of the entity being initialized) is a better 6538 // conversion sequence than the standard conversion sequence 6539 // from the return type of F2 to the destination type. 6540 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 6541 isa<CXXConversionDecl>(Cand1.Function) && 6542 isa<CXXConversionDecl>(Cand2.Function)) { 6543 switch (CompareStandardConversionSequences(S, 6544 Cand1.FinalConversion, 6545 Cand2.FinalConversion)) { 6546 case ImplicitConversionSequence::Better: 6547 // Cand1 has a better conversion sequence. 6548 return true; 6549 6550 case ImplicitConversionSequence::Worse: 6551 // Cand1 can't be better than Cand2. 6552 return false; 6553 6554 case ImplicitConversionSequence::Indistinguishable: 6555 // Do nothing 6556 break; 6557 } 6558 } 6559 6560 return false; 6561 } 6562 6563 /// \brief Computes the best viable function (C++ 13.3.3) 6564 /// within an overload candidate set. 6565 /// 6566 /// \param CandidateSet the set of candidate functions. 6567 /// 6568 /// \param Loc the location of the function name (or operator symbol) for 6569 /// which overload resolution occurs. 6570 /// 6571 /// \param Best f overload resolution was successful or found a deleted 6572 /// function, Best points to the candidate function found. 6573 /// 6574 /// \returns The result of overload resolution. 6575 OverloadingResult 6576 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 6577 iterator &Best, 6578 bool UserDefinedConversion) { 6579 // Find the best viable function. 6580 Best = end(); 6581 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6582 if (Cand->Viable) 6583 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 6584 UserDefinedConversion)) 6585 Best = Cand; 6586 } 6587 6588 // If we didn't find any viable functions, abort. 6589 if (Best == end()) 6590 return OR_No_Viable_Function; 6591 6592 // Make sure that this function is better than every other viable 6593 // function. If not, we have an ambiguity. 6594 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6595 if (Cand->Viable && 6596 Cand != Best && 6597 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 6598 UserDefinedConversion)) { 6599 Best = end(); 6600 return OR_Ambiguous; 6601 } 6602 } 6603 6604 // Best is the best viable function. 6605 if (Best->Function && 6606 (Best->Function->isDeleted() || 6607 S.isFunctionConsideredUnavailable(Best->Function))) 6608 return OR_Deleted; 6609 6610 return OR_Success; 6611 } 6612 6613 namespace { 6614 6615 enum OverloadCandidateKind { 6616 oc_function, 6617 oc_method, 6618 oc_constructor, 6619 oc_function_template, 6620 oc_method_template, 6621 oc_constructor_template, 6622 oc_implicit_default_constructor, 6623 oc_implicit_copy_constructor, 6624 oc_implicit_move_constructor, 6625 oc_implicit_copy_assignment, 6626 oc_implicit_move_assignment, 6627 oc_implicit_inherited_constructor 6628 }; 6629 6630 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 6631 FunctionDecl *Fn, 6632 std::string &Description) { 6633 bool isTemplate = false; 6634 6635 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 6636 isTemplate = true; 6637 Description = S.getTemplateArgumentBindingsText( 6638 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 6639 } 6640 6641 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 6642 if (!Ctor->isImplicit()) 6643 return isTemplate ? oc_constructor_template : oc_constructor; 6644 6645 if (Ctor->getInheritedConstructor()) 6646 return oc_implicit_inherited_constructor; 6647 6648 if (Ctor->isDefaultConstructor()) 6649 return oc_implicit_default_constructor; 6650 6651 if (Ctor->isMoveConstructor()) 6652 return oc_implicit_move_constructor; 6653 6654 assert(Ctor->isCopyConstructor() && 6655 "unexpected sort of implicit constructor"); 6656 return oc_implicit_copy_constructor; 6657 } 6658 6659 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 6660 // This actually gets spelled 'candidate function' for now, but 6661 // it doesn't hurt to split it out. 6662 if (!Meth->isImplicit()) 6663 return isTemplate ? oc_method_template : oc_method; 6664 6665 if (Meth->isMoveAssignmentOperator()) 6666 return oc_implicit_move_assignment; 6667 6668 assert(Meth->isCopyAssignmentOperator() 6669 && "implicit method is not copy assignment operator?"); 6670 return oc_implicit_copy_assignment; 6671 } 6672 6673 return isTemplate ? oc_function_template : oc_function; 6674 } 6675 6676 void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 6677 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 6678 if (!Ctor) return; 6679 6680 Ctor = Ctor->getInheritedConstructor(); 6681 if (!Ctor) return; 6682 6683 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 6684 } 6685 6686 } // end anonymous namespace 6687 6688 // Notes the location of an overload candidate. 6689 void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 6690 std::string FnDesc; 6691 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 6692 Diag(Fn->getLocation(), diag::note_ovl_candidate) 6693 << (unsigned) K << FnDesc; 6694 MaybeEmitInheritedConstructorNote(*this, Fn); 6695 } 6696 6697 //Notes the location of all overload candidates designated through 6698 // OverloadedExpr 6699 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) { 6700 assert(OverloadedExpr->getType() == Context.OverloadTy); 6701 6702 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 6703 OverloadExpr *OvlExpr = Ovl.Expression; 6704 6705 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6706 IEnd = OvlExpr->decls_end(); 6707 I != IEnd; ++I) { 6708 if (FunctionTemplateDecl *FunTmpl = 6709 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 6710 NoteOverloadCandidate(FunTmpl->getTemplatedDecl()); 6711 } else if (FunctionDecl *Fun 6712 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 6713 NoteOverloadCandidate(Fun); 6714 } 6715 } 6716 } 6717 6718 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 6719 /// "lead" diagnostic; it will be given two arguments, the source and 6720 /// target types of the conversion. 6721 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 6722 Sema &S, 6723 SourceLocation CaretLoc, 6724 const PartialDiagnostic &PDiag) const { 6725 S.Diag(CaretLoc, PDiag) 6726 << Ambiguous.getFromType() << Ambiguous.getToType(); 6727 for (AmbiguousConversionSequence::const_iterator 6728 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 6729 S.NoteOverloadCandidate(*I); 6730 } 6731 } 6732 6733 namespace { 6734 6735 /// Try to find a fix for the bad conversion. Populate the ConvFix structure 6736 /// on success. Produces the hints for the following cases: 6737 /// - The user forgot to apply * or & operator to one or more arguments. 6738 static bool TryToFixBadConversion(Sema &S, 6739 const ImplicitConversionSequence &Conv, 6740 OverloadCandidate::FixInfo &ConvFix) { 6741 assert(Conv.isBad() && "Only try to fix a bad conversion."); 6742 6743 const Expr *Arg = Conv.Bad.FromExpr; 6744 if (!Arg) 6745 return false; 6746 6747 // The conversion is from argument type to parameter type. 6748 const CanQualType FromQTy = S.Context.getCanonicalType(Conv.Bad 6749 .getFromType()); 6750 const CanQualType ToQTy = S.Context.getCanonicalType(Conv.Bad.getToType()); 6751 const SourceLocation Begin = Arg->getSourceRange().getBegin(); 6752 const SourceLocation End = S.PP.getLocForEndOfToken(Arg->getSourceRange() 6753 .getEnd()); 6754 bool NeedParen = true; 6755 if (isa<ParenExpr>(Arg) || isa<DeclRefExpr>(Arg)) 6756 NeedParen = false; 6757 6758 // Check if the argument needs to be dereferenced 6759 // (type * -> type) or (type * -> type &). 6760 if (const PointerType *FromPtrTy = dyn_cast<PointerType>(FromQTy)) { 6761 // Try to construct an implicit conversion from argument type to the 6762 // parameter type. 6763 OpaqueValueExpr TmpExpr(Arg->getExprLoc(), FromPtrTy->getPointeeType(), 6764 VK_LValue); 6765 ImplicitConversionSequence ICS = 6766 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 6767 6768 if (!ICS.isBad()) { 6769 // Do not suggest dereferencing a Null pointer. 6770 if (Arg->IgnoreParenCasts()-> 6771 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6772 return false; 6773 6774 if (NeedParen) { 6775 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*(")); 6776 ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")")); 6777 } else { 6778 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*")); 6779 } 6780 ConvFix.NumConversionsFixed++; 6781 if (ConvFix.NumConversionsFixed == 1) 6782 ConvFix.Kind = OFIK_Dereference; 6783 return true; 6784 } 6785 } 6786 6787 // Check if the pointer to the argument needs to be passed 6788 // (type -> type *) or (type & -> type *). 6789 if (isa<PointerType>(ToQTy)) { 6790 // Only suggest taking address of L-values. 6791 if (!Arg->isLValue()) 6792 return false; 6793 6794 OpaqueValueExpr TmpExpr(Arg->getExprLoc(), 6795 S.Context.getPointerType(FromQTy), VK_RValue); 6796 ImplicitConversionSequence ICS = 6797 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 6798 if (!ICS.isBad()) { 6799 if (NeedParen) { 6800 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&(")); 6801 ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")")); 6802 } else { 6803 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&")); 6804 } 6805 ConvFix.NumConversionsFixed++; 6806 if (ConvFix.NumConversionsFixed == 1) 6807 ConvFix.Kind = OFIK_TakeAddress; 6808 return true; 6809 } 6810 } 6811 return false; 6812 } 6813 6814 void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 6815 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 6816 assert(Conv.isBad()); 6817 assert(Cand->Function && "for now, candidate must be a function"); 6818 FunctionDecl *Fn = Cand->Function; 6819 6820 // There's a conversion slot for the object argument if this is a 6821 // non-constructor method. Note that 'I' corresponds the 6822 // conversion-slot index. 6823 bool isObjectArgument = false; 6824 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 6825 if (I == 0) 6826 isObjectArgument = true; 6827 else 6828 I--; 6829 } 6830 6831 std::string FnDesc; 6832 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6833 6834 Expr *FromExpr = Conv.Bad.FromExpr; 6835 QualType FromTy = Conv.Bad.getFromType(); 6836 QualType ToTy = Conv.Bad.getToType(); 6837 6838 if (FromTy == S.Context.OverloadTy) { 6839 assert(FromExpr && "overload set argument came from implicit argument?"); 6840 Expr *E = FromExpr->IgnoreParens(); 6841 if (isa<UnaryOperator>(E)) 6842 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 6843 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 6844 6845 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 6846 << (unsigned) FnKind << FnDesc 6847 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6848 << ToTy << Name << I+1; 6849 MaybeEmitInheritedConstructorNote(S, Fn); 6850 return; 6851 } 6852 6853 // Do some hand-waving analysis to see if the non-viability is due 6854 // to a qualifier mismatch. 6855 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 6856 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 6857 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 6858 CToTy = RT->getPointeeType(); 6859 else { 6860 // TODO: detect and diagnose the full richness of const mismatches. 6861 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 6862 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 6863 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 6864 } 6865 6866 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 6867 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 6868 // It is dumb that we have to do this here. 6869 while (isa<ArrayType>(CFromTy)) 6870 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 6871 while (isa<ArrayType>(CToTy)) 6872 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 6873 6874 Qualifiers FromQs = CFromTy.getQualifiers(); 6875 Qualifiers ToQs = CToTy.getQualifiers(); 6876 6877 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 6878 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 6879 << (unsigned) FnKind << FnDesc 6880 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6881 << FromTy 6882 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 6883 << (unsigned) isObjectArgument << I+1; 6884 MaybeEmitInheritedConstructorNote(S, Fn); 6885 return; 6886 } 6887 6888 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 6889 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 6890 << (unsigned) FnKind << FnDesc 6891 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6892 << FromTy 6893 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 6894 << (unsigned) isObjectArgument << I+1; 6895 MaybeEmitInheritedConstructorNote(S, Fn); 6896 return; 6897 } 6898 6899 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 6900 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 6901 << (unsigned) FnKind << FnDesc 6902 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6903 << FromTy 6904 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 6905 << (unsigned) isObjectArgument << I+1; 6906 MaybeEmitInheritedConstructorNote(S, Fn); 6907 return; 6908 } 6909 6910 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 6911 assert(CVR && "unexpected qualifiers mismatch"); 6912 6913 if (isObjectArgument) { 6914 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 6915 << (unsigned) FnKind << FnDesc 6916 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6917 << FromTy << (CVR - 1); 6918 } else { 6919 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 6920 << (unsigned) FnKind << FnDesc 6921 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6922 << FromTy << (CVR - 1) << I+1; 6923 } 6924 MaybeEmitInheritedConstructorNote(S, Fn); 6925 return; 6926 } 6927 6928 // Diagnose references or pointers to incomplete types differently, 6929 // since it's far from impossible that the incompleteness triggered 6930 // the failure. 6931 QualType TempFromTy = FromTy.getNonReferenceType(); 6932 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 6933 TempFromTy = PTy->getPointeeType(); 6934 if (TempFromTy->isIncompleteType()) { 6935 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 6936 << (unsigned) FnKind << FnDesc 6937 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6938 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6939 MaybeEmitInheritedConstructorNote(S, Fn); 6940 return; 6941 } 6942 6943 // Diagnose base -> derived pointer conversions. 6944 unsigned BaseToDerivedConversion = 0; 6945 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 6946 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 6947 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6948 FromPtrTy->getPointeeType()) && 6949 !FromPtrTy->getPointeeType()->isIncompleteType() && 6950 !ToPtrTy->getPointeeType()->isIncompleteType() && 6951 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 6952 FromPtrTy->getPointeeType())) 6953 BaseToDerivedConversion = 1; 6954 } 6955 } else if (const ObjCObjectPointerType *FromPtrTy 6956 = FromTy->getAs<ObjCObjectPointerType>()) { 6957 if (const ObjCObjectPointerType *ToPtrTy 6958 = ToTy->getAs<ObjCObjectPointerType>()) 6959 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 6960 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 6961 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6962 FromPtrTy->getPointeeType()) && 6963 FromIface->isSuperClassOf(ToIface)) 6964 BaseToDerivedConversion = 2; 6965 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 6966 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 6967 !FromTy->isIncompleteType() && 6968 !ToRefTy->getPointeeType()->isIncompleteType() && 6969 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 6970 BaseToDerivedConversion = 3; 6971 } 6972 6973 if (BaseToDerivedConversion) { 6974 S.Diag(Fn->getLocation(), 6975 diag::note_ovl_candidate_bad_base_to_derived_conv) 6976 << (unsigned) FnKind << FnDesc 6977 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6978 << (BaseToDerivedConversion - 1) 6979 << FromTy << ToTy << I+1; 6980 MaybeEmitInheritedConstructorNote(S, Fn); 6981 return; 6982 } 6983 6984 // TODO: specialize more based on the kind of mismatch 6985 6986 // Emit the generic diagnostic and, optionally, add the hints to it. 6987 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 6988 FDiag << (unsigned) FnKind << FnDesc 6989 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6990 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 6991 << (unsigned) (Cand->Fix.Kind); 6992 6993 // If we can fix the conversion, suggest the FixIts. 6994 for (llvm::SmallVector<FixItHint, 4>::iterator 6995 HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end(); 6996 HI != HE; ++HI) 6997 FDiag << *HI; 6998 S.Diag(Fn->getLocation(), FDiag); 6999 7000 MaybeEmitInheritedConstructorNote(S, Fn); 7001 } 7002 7003 void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 7004 unsigned NumFormalArgs) { 7005 // TODO: treat calls to a missing default constructor as a special case 7006 7007 FunctionDecl *Fn = Cand->Function; 7008 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 7009 7010 unsigned MinParams = Fn->getMinRequiredArguments(); 7011 7012 // With invalid overloaded operators, it's possible that we think we 7013 // have an arity mismatch when it fact it looks like we have the 7014 // right number of arguments, because only overloaded operators have 7015 // the weird behavior of overloading member and non-member functions. 7016 // Just don't report anything. 7017 if (Fn->isInvalidDecl() && 7018 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 7019 return; 7020 7021 // at least / at most / exactly 7022 unsigned mode, modeCount; 7023 if (NumFormalArgs < MinParams) { 7024 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 7025 (Cand->FailureKind == ovl_fail_bad_deduction && 7026 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 7027 if (MinParams != FnTy->getNumArgs() || 7028 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 7029 mode = 0; // "at least" 7030 else 7031 mode = 2; // "exactly" 7032 modeCount = MinParams; 7033 } else { 7034 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 7035 (Cand->FailureKind == ovl_fail_bad_deduction && 7036 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 7037 if (MinParams != FnTy->getNumArgs()) 7038 mode = 1; // "at most" 7039 else 7040 mode = 2; // "exactly" 7041 modeCount = FnTy->getNumArgs(); 7042 } 7043 7044 std::string Description; 7045 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 7046 7047 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 7048 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 7049 << modeCount << NumFormalArgs; 7050 MaybeEmitInheritedConstructorNote(S, Fn); 7051 } 7052 7053 /// Diagnose a failed template-argument deduction. 7054 void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 7055 Expr **Args, unsigned NumArgs) { 7056 FunctionDecl *Fn = Cand->Function; // pattern 7057 7058 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 7059 NamedDecl *ParamD; 7060 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 7061 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 7062 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 7063 switch (Cand->DeductionFailure.Result) { 7064 case Sema::TDK_Success: 7065 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7066 7067 case Sema::TDK_Incomplete: { 7068 assert(ParamD && "no parameter found for incomplete deduction result"); 7069 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 7070 << ParamD->getDeclName(); 7071 MaybeEmitInheritedConstructorNote(S, Fn); 7072 return; 7073 } 7074 7075 case Sema::TDK_Underqualified: { 7076 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 7077 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 7078 7079 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 7080 7081 // Param will have been canonicalized, but it should just be a 7082 // qualified version of ParamD, so move the qualifiers to that. 7083 QualifierCollector Qs; 7084 Qs.strip(Param); 7085 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 7086 assert(S.Context.hasSameType(Param, NonCanonParam)); 7087 7088 // Arg has also been canonicalized, but there's nothing we can do 7089 // about that. It also doesn't matter as much, because it won't 7090 // have any template parameters in it (because deduction isn't 7091 // done on dependent types). 7092 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 7093 7094 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 7095 << ParamD->getDeclName() << Arg << NonCanonParam; 7096 MaybeEmitInheritedConstructorNote(S, Fn); 7097 return; 7098 } 7099 7100 case Sema::TDK_Inconsistent: { 7101 assert(ParamD && "no parameter found for inconsistent deduction result"); 7102 int which = 0; 7103 if (isa<TemplateTypeParmDecl>(ParamD)) 7104 which = 0; 7105 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 7106 which = 1; 7107 else { 7108 which = 2; 7109 } 7110 7111 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 7112 << which << ParamD->getDeclName() 7113 << *Cand->DeductionFailure.getFirstArg() 7114 << *Cand->DeductionFailure.getSecondArg(); 7115 MaybeEmitInheritedConstructorNote(S, Fn); 7116 return; 7117 } 7118 7119 case Sema::TDK_InvalidExplicitArguments: 7120 assert(ParamD && "no parameter found for invalid explicit arguments"); 7121 if (ParamD->getDeclName()) 7122 S.Diag(Fn->getLocation(), 7123 diag::note_ovl_candidate_explicit_arg_mismatch_named) 7124 << ParamD->getDeclName(); 7125 else { 7126 int index = 0; 7127 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 7128 index = TTP->getIndex(); 7129 else if (NonTypeTemplateParmDecl *NTTP 7130 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 7131 index = NTTP->getIndex(); 7132 else 7133 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 7134 S.Diag(Fn->getLocation(), 7135 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 7136 << (index + 1); 7137 } 7138 MaybeEmitInheritedConstructorNote(S, Fn); 7139 return; 7140 7141 case Sema::TDK_TooManyArguments: 7142 case Sema::TDK_TooFewArguments: 7143 DiagnoseArityMismatch(S, Cand, NumArgs); 7144 return; 7145 7146 case Sema::TDK_InstantiationDepth: 7147 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 7148 MaybeEmitInheritedConstructorNote(S, Fn); 7149 return; 7150 7151 case Sema::TDK_SubstitutionFailure: { 7152 std::string ArgString; 7153 if (TemplateArgumentList *Args 7154 = Cand->DeductionFailure.getTemplateArgumentList()) 7155 ArgString = S.getTemplateArgumentBindingsText( 7156 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 7157 *Args); 7158 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 7159 << ArgString; 7160 MaybeEmitInheritedConstructorNote(S, Fn); 7161 return; 7162 } 7163 7164 // TODO: diagnose these individually, then kill off 7165 // note_ovl_candidate_bad_deduction, which is uselessly vague. 7166 case Sema::TDK_NonDeducedMismatch: 7167 case Sema::TDK_FailedOverloadResolution: 7168 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 7169 MaybeEmitInheritedConstructorNote(S, Fn); 7170 return; 7171 } 7172 } 7173 7174 /// Generates a 'note' diagnostic for an overload candidate. We've 7175 /// already generated a primary error at the call site. 7176 /// 7177 /// It really does need to be a single diagnostic with its caret 7178 /// pointed at the candidate declaration. Yes, this creates some 7179 /// major challenges of technical writing. Yes, this makes pointing 7180 /// out problems with specific arguments quite awkward. It's still 7181 /// better than generating twenty screens of text for every failed 7182 /// overload. 7183 /// 7184 /// It would be great to be able to express per-candidate problems 7185 /// more richly for those diagnostic clients that cared, but we'd 7186 /// still have to be just as careful with the default diagnostics. 7187 void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 7188 Expr **Args, unsigned NumArgs) { 7189 FunctionDecl *Fn = Cand->Function; 7190 7191 // Note deleted candidates, but only if they're viable. 7192 if (Cand->Viable && (Fn->isDeleted() || 7193 S.isFunctionConsideredUnavailable(Fn))) { 7194 std::string FnDesc; 7195 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7196 7197 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 7198 << FnKind << FnDesc << Fn->isDeleted(); 7199 MaybeEmitInheritedConstructorNote(S, Fn); 7200 return; 7201 } 7202 7203 // We don't really have anything else to say about viable candidates. 7204 if (Cand->Viable) { 7205 S.NoteOverloadCandidate(Fn); 7206 return; 7207 } 7208 7209 switch (Cand->FailureKind) { 7210 case ovl_fail_too_many_arguments: 7211 case ovl_fail_too_few_arguments: 7212 return DiagnoseArityMismatch(S, Cand, NumArgs); 7213 7214 case ovl_fail_bad_deduction: 7215 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 7216 7217 case ovl_fail_trivial_conversion: 7218 case ovl_fail_bad_final_conversion: 7219 case ovl_fail_final_conversion_not_exact: 7220 return S.NoteOverloadCandidate(Fn); 7221 7222 case ovl_fail_bad_conversion: { 7223 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 7224 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 7225 if (Cand->Conversions[I].isBad()) 7226 return DiagnoseBadConversion(S, Cand, I); 7227 7228 // FIXME: this currently happens when we're called from SemaInit 7229 // when user-conversion overload fails. Figure out how to handle 7230 // those conditions and diagnose them well. 7231 return S.NoteOverloadCandidate(Fn); 7232 } 7233 } 7234 } 7235 7236 void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 7237 // Desugar the type of the surrogate down to a function type, 7238 // retaining as many typedefs as possible while still showing 7239 // the function type (and, therefore, its parameter types). 7240 QualType FnType = Cand->Surrogate->getConversionType(); 7241 bool isLValueReference = false; 7242 bool isRValueReference = false; 7243 bool isPointer = false; 7244 if (const LValueReferenceType *FnTypeRef = 7245 FnType->getAs<LValueReferenceType>()) { 7246 FnType = FnTypeRef->getPointeeType(); 7247 isLValueReference = true; 7248 } else if (const RValueReferenceType *FnTypeRef = 7249 FnType->getAs<RValueReferenceType>()) { 7250 FnType = FnTypeRef->getPointeeType(); 7251 isRValueReference = true; 7252 } 7253 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 7254 FnType = FnTypePtr->getPointeeType(); 7255 isPointer = true; 7256 } 7257 // Desugar down to a function type. 7258 FnType = QualType(FnType->getAs<FunctionType>(), 0); 7259 // Reconstruct the pointer/reference as appropriate. 7260 if (isPointer) FnType = S.Context.getPointerType(FnType); 7261 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 7262 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 7263 7264 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 7265 << FnType; 7266 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 7267 } 7268 7269 void NoteBuiltinOperatorCandidate(Sema &S, 7270 const char *Opc, 7271 SourceLocation OpLoc, 7272 OverloadCandidate *Cand) { 7273 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 7274 std::string TypeStr("operator"); 7275 TypeStr += Opc; 7276 TypeStr += "("; 7277 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 7278 if (Cand->Conversions.size() == 1) { 7279 TypeStr += ")"; 7280 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 7281 } else { 7282 TypeStr += ", "; 7283 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 7284 TypeStr += ")"; 7285 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 7286 } 7287 } 7288 7289 void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 7290 OverloadCandidate *Cand) { 7291 unsigned NoOperands = Cand->Conversions.size(); 7292 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 7293 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 7294 if (ICS.isBad()) break; // all meaningless after first invalid 7295 if (!ICS.isAmbiguous()) continue; 7296 7297 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 7298 S.PDiag(diag::note_ambiguous_type_conversion)); 7299 } 7300 } 7301 7302 SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 7303 if (Cand->Function) 7304 return Cand->Function->getLocation(); 7305 if (Cand->IsSurrogate) 7306 return Cand->Surrogate->getLocation(); 7307 return SourceLocation(); 7308 } 7309 7310 struct CompareOverloadCandidatesForDisplay { 7311 Sema &S; 7312 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 7313 7314 bool operator()(const OverloadCandidate *L, 7315 const OverloadCandidate *R) { 7316 // Fast-path this check. 7317 if (L == R) return false; 7318 7319 // Order first by viability. 7320 if (L->Viable) { 7321 if (!R->Viable) return true; 7322 7323 // TODO: introduce a tri-valued comparison for overload 7324 // candidates. Would be more worthwhile if we had a sort 7325 // that could exploit it. 7326 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 7327 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 7328 } else if (R->Viable) 7329 return false; 7330 7331 assert(L->Viable == R->Viable); 7332 7333 // Criteria by which we can sort non-viable candidates: 7334 if (!L->Viable) { 7335 // 1. Arity mismatches come after other candidates. 7336 if (L->FailureKind == ovl_fail_too_many_arguments || 7337 L->FailureKind == ovl_fail_too_few_arguments) 7338 return false; 7339 if (R->FailureKind == ovl_fail_too_many_arguments || 7340 R->FailureKind == ovl_fail_too_few_arguments) 7341 return true; 7342 7343 // 2. Bad conversions come first and are ordered by the number 7344 // of bad conversions and quality of good conversions. 7345 if (L->FailureKind == ovl_fail_bad_conversion) { 7346 if (R->FailureKind != ovl_fail_bad_conversion) 7347 return true; 7348 7349 // The conversion that can be fixed with a smaller number of changes, 7350 // comes first. 7351 unsigned numLFixes = L->Fix.NumConversionsFixed; 7352 unsigned numRFixes = R->Fix.NumConversionsFixed; 7353 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 7354 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 7355 if (numLFixes != numRFixes) 7356 if (numLFixes < numRFixes) 7357 return true; 7358 else 7359 return false; 7360 7361 // If there's any ordering between the defined conversions... 7362 // FIXME: this might not be transitive. 7363 assert(L->Conversions.size() == R->Conversions.size()); 7364 7365 int leftBetter = 0; 7366 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 7367 for (unsigned E = L->Conversions.size(); I != E; ++I) { 7368 switch (CompareImplicitConversionSequences(S, 7369 L->Conversions[I], 7370 R->Conversions[I])) { 7371 case ImplicitConversionSequence::Better: 7372 leftBetter++; 7373 break; 7374 7375 case ImplicitConversionSequence::Worse: 7376 leftBetter--; 7377 break; 7378 7379 case ImplicitConversionSequence::Indistinguishable: 7380 break; 7381 } 7382 } 7383 if (leftBetter > 0) return true; 7384 if (leftBetter < 0) return false; 7385 7386 } else if (R->FailureKind == ovl_fail_bad_conversion) 7387 return false; 7388 7389 // TODO: others? 7390 } 7391 7392 // Sort everything else by location. 7393 SourceLocation LLoc = GetLocationForCandidate(L); 7394 SourceLocation RLoc = GetLocationForCandidate(R); 7395 7396 // Put candidates without locations (e.g. builtins) at the end. 7397 if (LLoc.isInvalid()) return false; 7398 if (RLoc.isInvalid()) return true; 7399 7400 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 7401 } 7402 }; 7403 7404 /// CompleteNonViableCandidate - Normally, overload resolution only 7405 /// computes up to the first. Produces the FixIt set if possible. 7406 void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 7407 Expr **Args, unsigned NumArgs) { 7408 assert(!Cand->Viable); 7409 7410 // Don't do anything on failures other than bad conversion. 7411 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 7412 7413 // We only want the FixIts if all the arguments can be corrected. 7414 bool Unfixable = false; 7415 7416 // Skip forward to the first bad conversion. 7417 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 7418 unsigned ConvCount = Cand->Conversions.size(); 7419 while (true) { 7420 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 7421 ConvIdx++; 7422 if (Cand->Conversions[ConvIdx - 1].isBad()) { 7423 if ((Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx - 1], 7424 Cand->Fix))) 7425 Cand->Fix.Hints.clear(); 7426 break; 7427 } 7428 } 7429 7430 if (ConvIdx == ConvCount) 7431 return; 7432 7433 assert(!Cand->Conversions[ConvIdx].isInitialized() && 7434 "remaining conversion is initialized?"); 7435 7436 // FIXME: this should probably be preserved from the overload 7437 // operation somehow. 7438 bool SuppressUserConversions = false; 7439 7440 const FunctionProtoType* Proto; 7441 unsigned ArgIdx = ConvIdx; 7442 7443 if (Cand->IsSurrogate) { 7444 QualType ConvType 7445 = Cand->Surrogate->getConversionType().getNonReferenceType(); 7446 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7447 ConvType = ConvPtrType->getPointeeType(); 7448 Proto = ConvType->getAs<FunctionProtoType>(); 7449 ArgIdx--; 7450 } else if (Cand->Function) { 7451 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 7452 if (isa<CXXMethodDecl>(Cand->Function) && 7453 !isa<CXXConstructorDecl>(Cand->Function)) 7454 ArgIdx--; 7455 } else { 7456 // Builtin binary operator with a bad first conversion. 7457 assert(ConvCount <= 3); 7458 for (; ConvIdx != ConvCount; ++ConvIdx) 7459 Cand->Conversions[ConvIdx] 7460 = TryCopyInitialization(S, Args[ConvIdx], 7461 Cand->BuiltinTypes.ParamTypes[ConvIdx], 7462 SuppressUserConversions, 7463 /*InOverloadResolution*/ true, 7464 /*AllowObjCWritebackConversion=*/ 7465 S.getLangOptions().ObjCAutoRefCount); 7466 return; 7467 } 7468 7469 // Fill in the rest of the conversions. 7470 unsigned NumArgsInProto = Proto->getNumArgs(); 7471 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 7472 if (ArgIdx < NumArgsInProto) { 7473 Cand->Conversions[ConvIdx] 7474 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 7475 SuppressUserConversions, 7476 /*InOverloadResolution=*/true, 7477 /*AllowObjCWritebackConversion=*/ 7478 S.getLangOptions().ObjCAutoRefCount); 7479 // Store the FixIt in the candidate if it exists. 7480 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 7481 Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx], 7482 Cand->Fix); 7483 } 7484 else 7485 Cand->Conversions[ConvIdx].setEllipsis(); 7486 } 7487 7488 if (Unfixable) { 7489 Cand->Fix.Hints.clear(); 7490 Cand->Fix.NumConversionsFixed = 0; 7491 } 7492 } 7493 7494 } // end anonymous namespace 7495 7496 /// PrintOverloadCandidates - When overload resolution fails, prints 7497 /// diagnostic messages containing the candidates in the candidate 7498 /// set. 7499 void OverloadCandidateSet::NoteCandidates(Sema &S, 7500 OverloadCandidateDisplayKind OCD, 7501 Expr **Args, unsigned NumArgs, 7502 const char *Opc, 7503 SourceLocation OpLoc) { 7504 // Sort the candidates by viability and position. Sorting directly would 7505 // be prohibitive, so we make a set of pointers and sort those. 7506 llvm::SmallVector<OverloadCandidate*, 32> Cands; 7507 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 7508 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 7509 if (Cand->Viable) 7510 Cands.push_back(Cand); 7511 else if (OCD == OCD_AllCandidates) { 7512 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 7513 if (Cand->Function || Cand->IsSurrogate) 7514 Cands.push_back(Cand); 7515 // Otherwise, this a non-viable builtin candidate. We do not, in general, 7516 // want to list every possible builtin candidate. 7517 } 7518 } 7519 7520 std::sort(Cands.begin(), Cands.end(), 7521 CompareOverloadCandidatesForDisplay(S)); 7522 7523 bool ReportedAmbiguousConversions = false; 7524 7525 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 7526 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 7527 unsigned CandsShown = 0; 7528 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 7529 OverloadCandidate *Cand = *I; 7530 7531 // Set an arbitrary limit on the number of candidate functions we'll spam 7532 // the user with. FIXME: This limit should depend on details of the 7533 // candidate list. 7534 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 7535 break; 7536 } 7537 ++CandsShown; 7538 7539 if (Cand->Function) 7540 NoteFunctionCandidate(S, Cand, Args, NumArgs); 7541 else if (Cand->IsSurrogate) 7542 NoteSurrogateCandidate(S, Cand); 7543 else { 7544 assert(Cand->Viable && 7545 "Non-viable built-in candidates are not added to Cands."); 7546 // Generally we only see ambiguities including viable builtin 7547 // operators if overload resolution got screwed up by an 7548 // ambiguous user-defined conversion. 7549 // 7550 // FIXME: It's quite possible for different conversions to see 7551 // different ambiguities, though. 7552 if (!ReportedAmbiguousConversions) { 7553 NoteAmbiguousUserConversions(S, OpLoc, Cand); 7554 ReportedAmbiguousConversions = true; 7555 } 7556 7557 // If this is a viable builtin, print it. 7558 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 7559 } 7560 } 7561 7562 if (I != E) 7563 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 7564 } 7565 7566 // [PossiblyAFunctionType] --> [Return] 7567 // NonFunctionType --> NonFunctionType 7568 // R (A) --> R(A) 7569 // R (*)(A) --> R (A) 7570 // R (&)(A) --> R (A) 7571 // R (S::*)(A) --> R (A) 7572 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 7573 QualType Ret = PossiblyAFunctionType; 7574 if (const PointerType *ToTypePtr = 7575 PossiblyAFunctionType->getAs<PointerType>()) 7576 Ret = ToTypePtr->getPointeeType(); 7577 else if (const ReferenceType *ToTypeRef = 7578 PossiblyAFunctionType->getAs<ReferenceType>()) 7579 Ret = ToTypeRef->getPointeeType(); 7580 else if (const MemberPointerType *MemTypePtr = 7581 PossiblyAFunctionType->getAs<MemberPointerType>()) 7582 Ret = MemTypePtr->getPointeeType(); 7583 Ret = 7584 Context.getCanonicalType(Ret).getUnqualifiedType(); 7585 return Ret; 7586 } 7587 7588 // A helper class to help with address of function resolution 7589 // - allows us to avoid passing around all those ugly parameters 7590 class AddressOfFunctionResolver 7591 { 7592 Sema& S; 7593 Expr* SourceExpr; 7594 const QualType& TargetType; 7595 QualType TargetFunctionType; // Extracted function type from target type 7596 7597 bool Complain; 7598 //DeclAccessPair& ResultFunctionAccessPair; 7599 ASTContext& Context; 7600 7601 bool TargetTypeIsNonStaticMemberFunction; 7602 bool FoundNonTemplateFunction; 7603 7604 OverloadExpr::FindResult OvlExprInfo; 7605 OverloadExpr *OvlExpr; 7606 TemplateArgumentListInfo OvlExplicitTemplateArgs; 7607 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 7608 7609 public: 7610 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 7611 const QualType& TargetType, bool Complain) 7612 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 7613 Complain(Complain), Context(S.getASTContext()), 7614 TargetTypeIsNonStaticMemberFunction( 7615 !!TargetType->getAs<MemberPointerType>()), 7616 FoundNonTemplateFunction(false), 7617 OvlExprInfo(OverloadExpr::find(SourceExpr)), 7618 OvlExpr(OvlExprInfo.Expression) 7619 { 7620 ExtractUnqualifiedFunctionTypeFromTargetType(); 7621 7622 if (!TargetFunctionType->isFunctionType()) { 7623 if (OvlExpr->hasExplicitTemplateArgs()) { 7624 DeclAccessPair dap; 7625 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 7626 OvlExpr, false, &dap) ) { 7627 7628 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7629 if (!Method->isStatic()) { 7630 // If the target type is a non-function type and the function 7631 // found is a non-static member function, pretend as if that was 7632 // the target, it's the only possible type to end up with. 7633 TargetTypeIsNonStaticMemberFunction = true; 7634 7635 // And skip adding the function if its not in the proper form. 7636 // We'll diagnose this due to an empty set of functions. 7637 if (!OvlExprInfo.HasFormOfMemberPointer) 7638 return; 7639 } 7640 } 7641 7642 Matches.push_back(std::make_pair(dap,Fn)); 7643 } 7644 } 7645 return; 7646 } 7647 7648 if (OvlExpr->hasExplicitTemplateArgs()) 7649 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 7650 7651 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 7652 // C++ [over.over]p4: 7653 // If more than one function is selected, [...] 7654 if (Matches.size() > 1) { 7655 if (FoundNonTemplateFunction) 7656 EliminateAllTemplateMatches(); 7657 else 7658 EliminateAllExceptMostSpecializedTemplate(); 7659 } 7660 } 7661 } 7662 7663 private: 7664 bool isTargetTypeAFunction() const { 7665 return TargetFunctionType->isFunctionType(); 7666 } 7667 7668 // [ToType] [Return] 7669 7670 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 7671 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 7672 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 7673 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 7674 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 7675 } 7676 7677 // return true if any matching specializations were found 7678 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 7679 const DeclAccessPair& CurAccessFunPair) { 7680 if (CXXMethodDecl *Method 7681 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 7682 // Skip non-static function templates when converting to pointer, and 7683 // static when converting to member pointer. 7684 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7685 return false; 7686 } 7687 else if (TargetTypeIsNonStaticMemberFunction) 7688 return false; 7689 7690 // C++ [over.over]p2: 7691 // If the name is a function template, template argument deduction is 7692 // done (14.8.2.2), and if the argument deduction succeeds, the 7693 // resulting template argument list is used to generate a single 7694 // function template specialization, which is added to the set of 7695 // overloaded functions considered. 7696 FunctionDecl *Specialization = 0; 7697 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7698 if (Sema::TemplateDeductionResult Result 7699 = S.DeduceTemplateArguments(FunctionTemplate, 7700 &OvlExplicitTemplateArgs, 7701 TargetFunctionType, Specialization, 7702 Info)) { 7703 // FIXME: make a note of the failed deduction for diagnostics. 7704 (void)Result; 7705 return false; 7706 } 7707 7708 // Template argument deduction ensures that we have an exact match. 7709 // This function template specicalization works. 7710 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 7711 assert(TargetFunctionType 7712 == Context.getCanonicalType(Specialization->getType())); 7713 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 7714 return true; 7715 } 7716 7717 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 7718 const DeclAccessPair& CurAccessFunPair) { 7719 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7720 // Skip non-static functions when converting to pointer, and static 7721 // when converting to member pointer. 7722 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7723 return false; 7724 } 7725 else if (TargetTypeIsNonStaticMemberFunction) 7726 return false; 7727 7728 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 7729 QualType ResultTy; 7730 if (Context.hasSameUnqualifiedType(TargetFunctionType, 7731 FunDecl->getType()) || 7732 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 7733 ResultTy)) { 7734 Matches.push_back(std::make_pair(CurAccessFunPair, 7735 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 7736 FoundNonTemplateFunction = true; 7737 return true; 7738 } 7739 } 7740 7741 return false; 7742 } 7743 7744 bool FindAllFunctionsThatMatchTargetTypeExactly() { 7745 bool Ret = false; 7746 7747 // If the overload expression doesn't have the form of a pointer to 7748 // member, don't try to convert it to a pointer-to-member type. 7749 if (IsInvalidFormOfPointerToMemberFunction()) 7750 return false; 7751 7752 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7753 E = OvlExpr->decls_end(); 7754 I != E; ++I) { 7755 // Look through any using declarations to find the underlying function. 7756 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 7757 7758 // C++ [over.over]p3: 7759 // Non-member functions and static member functions match 7760 // targets of type "pointer-to-function" or "reference-to-function." 7761 // Nonstatic member functions match targets of 7762 // type "pointer-to-member-function." 7763 // Note that according to DR 247, the containing class does not matter. 7764 if (FunctionTemplateDecl *FunctionTemplate 7765 = dyn_cast<FunctionTemplateDecl>(Fn)) { 7766 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 7767 Ret = true; 7768 } 7769 // If we have explicit template arguments supplied, skip non-templates. 7770 else if (!OvlExpr->hasExplicitTemplateArgs() && 7771 AddMatchingNonTemplateFunction(Fn, I.getPair())) 7772 Ret = true; 7773 } 7774 assert(Ret || Matches.empty()); 7775 return Ret; 7776 } 7777 7778 void EliminateAllExceptMostSpecializedTemplate() { 7779 // [...] and any given function template specialization F1 is 7780 // eliminated if the set contains a second function template 7781 // specialization whose function template is more specialized 7782 // than the function template of F1 according to the partial 7783 // ordering rules of 14.5.5.2. 7784 7785 // The algorithm specified above is quadratic. We instead use a 7786 // two-pass algorithm (similar to the one used to identify the 7787 // best viable function in an overload set) that identifies the 7788 // best function template (if it exists). 7789 7790 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 7791 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7792 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 7793 7794 UnresolvedSetIterator Result = 7795 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 7796 TPOC_Other, 0, SourceExpr->getLocStart(), 7797 S.PDiag(), 7798 S.PDiag(diag::err_addr_ovl_ambiguous) 7799 << Matches[0].second->getDeclName(), 7800 S.PDiag(diag::note_ovl_candidate) 7801 << (unsigned) oc_function_template, 7802 Complain); 7803 7804 if (Result != MatchesCopy.end()) { 7805 // Make it the first and only element 7806 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 7807 Matches[0].second = cast<FunctionDecl>(*Result); 7808 Matches.resize(1); 7809 } 7810 } 7811 7812 void EliminateAllTemplateMatches() { 7813 // [...] any function template specializations in the set are 7814 // eliminated if the set also contains a non-template function, [...] 7815 for (unsigned I = 0, N = Matches.size(); I != N; ) { 7816 if (Matches[I].second->getPrimaryTemplate() == 0) 7817 ++I; 7818 else { 7819 Matches[I] = Matches[--N]; 7820 Matches.set_size(N); 7821 } 7822 } 7823 } 7824 7825 public: 7826 void ComplainNoMatchesFound() const { 7827 assert(Matches.empty()); 7828 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 7829 << OvlExpr->getName() << TargetFunctionType 7830 << OvlExpr->getSourceRange(); 7831 S.NoteAllOverloadCandidates(OvlExpr); 7832 } 7833 7834 bool IsInvalidFormOfPointerToMemberFunction() const { 7835 return TargetTypeIsNonStaticMemberFunction && 7836 !OvlExprInfo.HasFormOfMemberPointer; 7837 } 7838 7839 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 7840 // TODO: Should we condition this on whether any functions might 7841 // have matched, or is it more appropriate to do that in callers? 7842 // TODO: a fixit wouldn't hurt. 7843 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 7844 << TargetType << OvlExpr->getSourceRange(); 7845 } 7846 7847 void ComplainOfInvalidConversion() const { 7848 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 7849 << OvlExpr->getName() << TargetType; 7850 } 7851 7852 void ComplainMultipleMatchesFound() const { 7853 assert(Matches.size() > 1); 7854 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 7855 << OvlExpr->getName() 7856 << OvlExpr->getSourceRange(); 7857 S.NoteAllOverloadCandidates(OvlExpr); 7858 } 7859 7860 int getNumMatches() const { return Matches.size(); } 7861 7862 FunctionDecl* getMatchingFunctionDecl() const { 7863 if (Matches.size() != 1) return 0; 7864 return Matches[0].second; 7865 } 7866 7867 const DeclAccessPair* getMatchingFunctionAccessPair() const { 7868 if (Matches.size() != 1) return 0; 7869 return &Matches[0].first; 7870 } 7871 }; 7872 7873 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 7874 /// an overloaded function (C++ [over.over]), where @p From is an 7875 /// expression with overloaded function type and @p ToType is the type 7876 /// we're trying to resolve to. For example: 7877 /// 7878 /// @code 7879 /// int f(double); 7880 /// int f(int); 7881 /// 7882 /// int (*pfd)(double) = f; // selects f(double) 7883 /// @endcode 7884 /// 7885 /// This routine returns the resulting FunctionDecl if it could be 7886 /// resolved, and NULL otherwise. When @p Complain is true, this 7887 /// routine will emit diagnostics if there is an error. 7888 FunctionDecl * 7889 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, 7890 bool Complain, 7891 DeclAccessPair &FoundResult) { 7892 7893 assert(AddressOfExpr->getType() == Context.OverloadTy); 7894 7895 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain); 7896 int NumMatches = Resolver.getNumMatches(); 7897 FunctionDecl* Fn = 0; 7898 if ( NumMatches == 0 && Complain) { 7899 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 7900 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 7901 else 7902 Resolver.ComplainNoMatchesFound(); 7903 } 7904 else if (NumMatches > 1 && Complain) 7905 Resolver.ComplainMultipleMatchesFound(); 7906 else if (NumMatches == 1) { 7907 Fn = Resolver.getMatchingFunctionDecl(); 7908 assert(Fn); 7909 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 7910 MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn); 7911 if (Complain) 7912 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 7913 } 7914 7915 return Fn; 7916 } 7917 7918 /// \brief Given an expression that refers to an overloaded function, try to 7919 /// resolve that overloaded function expression down to a single function. 7920 /// 7921 /// This routine can only resolve template-ids that refer to a single function 7922 /// template, where that template-id refers to a single template whose template 7923 /// arguments are either provided by the template-id or have defaults, 7924 /// as described in C++0x [temp.arg.explicit]p3. 7925 FunctionDecl * 7926 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 7927 bool Complain, 7928 DeclAccessPair *FoundResult) { 7929 // C++ [over.over]p1: 7930 // [...] [Note: any redundant set of parentheses surrounding the 7931 // overloaded function name is ignored (5.1). ] 7932 // C++ [over.over]p1: 7933 // [...] The overloaded function name can be preceded by the & 7934 // operator. 7935 7936 // If we didn't actually find any template-ids, we're done. 7937 if (!ovl->hasExplicitTemplateArgs()) 7938 return 0; 7939 7940 TemplateArgumentListInfo ExplicitTemplateArgs; 7941 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 7942 7943 // Look through all of the overloaded functions, searching for one 7944 // whose type matches exactly. 7945 FunctionDecl *Matched = 0; 7946 for (UnresolvedSetIterator I = ovl->decls_begin(), 7947 E = ovl->decls_end(); I != E; ++I) { 7948 // C++0x [temp.arg.explicit]p3: 7949 // [...] In contexts where deduction is done and fails, or in contexts 7950 // where deduction is not done, if a template argument list is 7951 // specified and it, along with any default template arguments, 7952 // identifies a single function template specialization, then the 7953 // template-id is an lvalue for the function template specialization. 7954 FunctionTemplateDecl *FunctionTemplate 7955 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 7956 7957 // C++ [over.over]p2: 7958 // If the name is a function template, template argument deduction is 7959 // done (14.8.2.2), and if the argument deduction succeeds, the 7960 // resulting template argument list is used to generate a single 7961 // function template specialization, which is added to the set of 7962 // overloaded functions considered. 7963 FunctionDecl *Specialization = 0; 7964 TemplateDeductionInfo Info(Context, ovl->getNameLoc()); 7965 if (TemplateDeductionResult Result 7966 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 7967 Specialization, Info)) { 7968 // FIXME: make a note of the failed deduction for diagnostics. 7969 (void)Result; 7970 continue; 7971 } 7972 7973 assert(Specialization && "no specialization and no error?"); 7974 7975 // Multiple matches; we can't resolve to a single declaration. 7976 if (Matched) { 7977 if (Complain) { 7978 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 7979 << ovl->getName(); 7980 NoteAllOverloadCandidates(ovl); 7981 } 7982 return 0; 7983 } 7984 7985 Matched = Specialization; 7986 if (FoundResult) *FoundResult = I.getPair(); 7987 } 7988 7989 return Matched; 7990 } 7991 7992 7993 7994 7995 // Resolve and fix an overloaded expression that 7996 // can be resolved because it identifies a single function 7997 // template specialization 7998 // Last three arguments should only be supplied if Complain = true 7999 ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 8000 Expr *SrcExpr, bool doFunctionPointerConverion, bool complain, 8001 const SourceRange& OpRangeForComplaining, 8002 QualType DestTypeForComplaining, 8003 unsigned DiagIDForComplaining) { 8004 assert(SrcExpr->getType() == Context.OverloadTy); 8005 8006 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr); 8007 8008 DeclAccessPair found; 8009 ExprResult SingleFunctionExpression; 8010 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 8011 ovl.Expression, /*complain*/ false, &found)) { 8012 if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin())) 8013 return ExprError(); 8014 8015 // It is only correct to resolve to an instance method if we're 8016 // resolving a form that's permitted to be a pointer to member. 8017 // Otherwise we'll end up making a bound member expression, which 8018 // is illegal in all the contexts we resolve like this. 8019 if (!ovl.HasFormOfMemberPointer && 8020 isa<CXXMethodDecl>(fn) && 8021 cast<CXXMethodDecl>(fn)->isInstance()) { 8022 if (complain) { 8023 Diag(ovl.Expression->getExprLoc(), 8024 diag::err_invalid_use_of_bound_member_func) 8025 << ovl.Expression->getSourceRange(); 8026 // TODO: I believe we only end up here if there's a mix of 8027 // static and non-static candidates (otherwise the expression 8028 // would have 'bound member' type, not 'overload' type). 8029 // Ideally we would note which candidate was chosen and why 8030 // the static candidates were rejected. 8031 } 8032 8033 return ExprError(); 8034 } 8035 8036 // Fix the expresion to refer to 'fn'. 8037 SingleFunctionExpression = 8038 Owned(FixOverloadedFunctionReference(SrcExpr, found, fn)); 8039 8040 // If desired, do function-to-pointer decay. 8041 if (doFunctionPointerConverion) 8042 SingleFunctionExpression = 8043 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 8044 } 8045 8046 if (!SingleFunctionExpression.isUsable()) { 8047 if (complain) { 8048 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 8049 << ovl.Expression->getName() 8050 << DestTypeForComplaining 8051 << OpRangeForComplaining 8052 << ovl.Expression->getQualifierLoc().getSourceRange(); 8053 NoteAllOverloadCandidates(SrcExpr); 8054 } 8055 return ExprError(); 8056 } 8057 8058 return SingleFunctionExpression; 8059 } 8060 8061 /// \brief Add a single candidate to the overload set. 8062 static void AddOverloadedCallCandidate(Sema &S, 8063 DeclAccessPair FoundDecl, 8064 TemplateArgumentListInfo *ExplicitTemplateArgs, 8065 Expr **Args, unsigned NumArgs, 8066 OverloadCandidateSet &CandidateSet, 8067 bool PartialOverloading, 8068 bool KnownValid) { 8069 NamedDecl *Callee = FoundDecl.getDecl(); 8070 if (isa<UsingShadowDecl>(Callee)) 8071 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 8072 8073 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 8074 if (ExplicitTemplateArgs) { 8075 assert(!KnownValid && "Explicit template arguments?"); 8076 return; 8077 } 8078 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 8079 false, PartialOverloading); 8080 return; 8081 } 8082 8083 if (FunctionTemplateDecl *FuncTemplate 8084 = dyn_cast<FunctionTemplateDecl>(Callee)) { 8085 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 8086 ExplicitTemplateArgs, 8087 Args, NumArgs, CandidateSet); 8088 return; 8089 } 8090 8091 assert(!KnownValid && "unhandled case in overloaded call candidate"); 8092 } 8093 8094 /// \brief Add the overload candidates named by callee and/or found by argument 8095 /// dependent lookup to the given overload set. 8096 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 8097 Expr **Args, unsigned NumArgs, 8098 OverloadCandidateSet &CandidateSet, 8099 bool PartialOverloading) { 8100 8101 #ifndef NDEBUG 8102 // Verify that ArgumentDependentLookup is consistent with the rules 8103 // in C++0x [basic.lookup.argdep]p3: 8104 // 8105 // Let X be the lookup set produced by unqualified lookup (3.4.1) 8106 // and let Y be the lookup set produced by argument dependent 8107 // lookup (defined as follows). If X contains 8108 // 8109 // -- a declaration of a class member, or 8110 // 8111 // -- a block-scope function declaration that is not a 8112 // using-declaration, or 8113 // 8114 // -- a declaration that is neither a function or a function 8115 // template 8116 // 8117 // then Y is empty. 8118 8119 if (ULE->requiresADL()) { 8120 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8121 E = ULE->decls_end(); I != E; ++I) { 8122 assert(!(*I)->getDeclContext()->isRecord()); 8123 assert(isa<UsingShadowDecl>(*I) || 8124 !(*I)->getDeclContext()->isFunctionOrMethod()); 8125 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 8126 } 8127 } 8128 #endif 8129 8130 // It would be nice to avoid this copy. 8131 TemplateArgumentListInfo TABuffer; 8132 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8133 if (ULE->hasExplicitTemplateArgs()) { 8134 ULE->copyTemplateArgumentsInto(TABuffer); 8135 ExplicitTemplateArgs = &TABuffer; 8136 } 8137 8138 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8139 E = ULE->decls_end(); I != E; ++I) 8140 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 8141 Args, NumArgs, CandidateSet, 8142 PartialOverloading, /*KnownValid*/ true); 8143 8144 if (ULE->requiresADL()) 8145 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 8146 Args, NumArgs, 8147 ExplicitTemplateArgs, 8148 CandidateSet, 8149 PartialOverloading, 8150 ULE->isStdAssociatedNamespace()); 8151 } 8152 8153 /// Attempt to recover from an ill-formed use of a non-dependent name in a 8154 /// template, where the non-dependent name was declared after the template 8155 /// was defined. This is common in code written for a compilers which do not 8156 /// correctly implement two-stage name lookup. 8157 /// 8158 /// Returns true if a viable candidate was found and a diagnostic was issued. 8159 static bool 8160 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 8161 const CXXScopeSpec &SS, LookupResult &R, 8162 TemplateArgumentListInfo *ExplicitTemplateArgs, 8163 Expr **Args, unsigned NumArgs) { 8164 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 8165 return false; 8166 8167 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 8168 SemaRef.LookupQualifiedName(R, DC); 8169 8170 if (!R.empty()) { 8171 R.suppressDiagnostics(); 8172 8173 if (isa<CXXRecordDecl>(DC)) { 8174 // Don't diagnose names we find in classes; we get much better 8175 // diagnostics for these from DiagnoseEmptyLookup. 8176 R.clear(); 8177 return false; 8178 } 8179 8180 OverloadCandidateSet Candidates(FnLoc); 8181 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 8182 AddOverloadedCallCandidate(SemaRef, I.getPair(), 8183 ExplicitTemplateArgs, Args, NumArgs, 8184 Candidates, false, /*KnownValid*/ false); 8185 8186 OverloadCandidateSet::iterator Best; 8187 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 8188 // No viable functions. Don't bother the user with notes for functions 8189 // which don't work and shouldn't be found anyway. 8190 R.clear(); 8191 return false; 8192 } 8193 8194 // Find the namespaces where ADL would have looked, and suggest 8195 // declaring the function there instead. 8196 Sema::AssociatedNamespaceSet AssociatedNamespaces; 8197 Sema::AssociatedClassSet AssociatedClasses; 8198 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, 8199 AssociatedNamespaces, 8200 AssociatedClasses); 8201 // Never suggest declaring a function within namespace 'std'. 8202 Sema::AssociatedNamespaceSet SuggestedNamespaces; 8203 if (DeclContext *Std = SemaRef.getStdNamespace()) { 8204 for (Sema::AssociatedNamespaceSet::iterator 8205 it = AssociatedNamespaces.begin(), 8206 end = AssociatedNamespaces.end(); it != end; ++it) { 8207 if (!Std->Encloses(*it)) 8208 SuggestedNamespaces.insert(*it); 8209 } 8210 } else { 8211 // Lacking the 'std::' namespace, use all of the associated namespaces. 8212 SuggestedNamespaces = AssociatedNamespaces; 8213 } 8214 8215 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 8216 << R.getLookupName(); 8217 if (SuggestedNamespaces.empty()) { 8218 SemaRef.Diag(Best->Function->getLocation(), 8219 diag::note_not_found_by_two_phase_lookup) 8220 << R.getLookupName() << 0; 8221 } else if (SuggestedNamespaces.size() == 1) { 8222 SemaRef.Diag(Best->Function->getLocation(), 8223 diag::note_not_found_by_two_phase_lookup) 8224 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 8225 } else { 8226 // FIXME: It would be useful to list the associated namespaces here, 8227 // but the diagnostics infrastructure doesn't provide a way to produce 8228 // a localized representation of a list of items. 8229 SemaRef.Diag(Best->Function->getLocation(), 8230 diag::note_not_found_by_two_phase_lookup) 8231 << R.getLookupName() << 2; 8232 } 8233 8234 // Try to recover by calling this function. 8235 return true; 8236 } 8237 8238 R.clear(); 8239 } 8240 8241 return false; 8242 } 8243 8244 /// Attempt to recover from ill-formed use of a non-dependent operator in a 8245 /// template, where the non-dependent operator was declared after the template 8246 /// was defined. 8247 /// 8248 /// Returns true if a viable candidate was found and a diagnostic was issued. 8249 static bool 8250 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 8251 SourceLocation OpLoc, 8252 Expr **Args, unsigned NumArgs) { 8253 DeclarationName OpName = 8254 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 8255 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 8256 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 8257 /*ExplicitTemplateArgs=*/0, Args, NumArgs); 8258 } 8259 8260 /// Attempts to recover from a call where no functions were found. 8261 /// 8262 /// Returns true if new candidates were found. 8263 static ExprResult 8264 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 8265 UnresolvedLookupExpr *ULE, 8266 SourceLocation LParenLoc, 8267 Expr **Args, unsigned NumArgs, 8268 SourceLocation RParenLoc, 8269 bool EmptyLookup) { 8270 8271 CXXScopeSpec SS; 8272 SS.Adopt(ULE->getQualifierLoc()); 8273 8274 TemplateArgumentListInfo TABuffer; 8275 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8276 if (ULE->hasExplicitTemplateArgs()) { 8277 ULE->copyTemplateArgumentsInto(TABuffer); 8278 ExplicitTemplateArgs = &TABuffer; 8279 } 8280 8281 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 8282 Sema::LookupOrdinaryName); 8283 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 8284 ExplicitTemplateArgs, Args, NumArgs) && 8285 (!EmptyLookup || 8286 SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))) 8287 return ExprError(); 8288 8289 assert(!R.empty() && "lookup results empty despite recovery"); 8290 8291 // Build an implicit member call if appropriate. Just drop the 8292 // casts and such from the call, we don't really care. 8293 ExprResult NewFn = ExprError(); 8294 if ((*R.begin())->isCXXClassMember()) 8295 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 8296 ExplicitTemplateArgs); 8297 else if (ExplicitTemplateArgs) 8298 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 8299 else 8300 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 8301 8302 if (NewFn.isInvalid()) 8303 return ExprError(); 8304 8305 // This shouldn't cause an infinite loop because we're giving it 8306 // an expression with viable lookup results, which should never 8307 // end up here. 8308 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 8309 MultiExprArg(Args, NumArgs), RParenLoc); 8310 } 8311 8312 /// ResolveOverloadedCallFn - Given the call expression that calls Fn 8313 /// (which eventually refers to the declaration Func) and the call 8314 /// arguments Args/NumArgs, attempt to resolve the function call down 8315 /// to a specific function. If overload resolution succeeds, returns 8316 /// the function declaration produced by overload 8317 /// resolution. Otherwise, emits diagnostics, deletes all of the 8318 /// arguments and Fn, and returns NULL. 8319 ExprResult 8320 Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 8321 SourceLocation LParenLoc, 8322 Expr **Args, unsigned NumArgs, 8323 SourceLocation RParenLoc, 8324 Expr *ExecConfig) { 8325 #ifndef NDEBUG 8326 if (ULE->requiresADL()) { 8327 // To do ADL, we must have found an unqualified name. 8328 assert(!ULE->getQualifier() && "qualified name with ADL"); 8329 8330 // We don't perform ADL for implicit declarations of builtins. 8331 // Verify that this was correctly set up. 8332 FunctionDecl *F; 8333 if (ULE->decls_begin() + 1 == ULE->decls_end() && 8334 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 8335 F->getBuiltinID() && F->isImplicit()) 8336 assert(0 && "performing ADL for builtin"); 8337 8338 // We don't perform ADL in C. 8339 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 8340 } else 8341 assert(!ULE->isStdAssociatedNamespace() && 8342 "std is associated namespace but not doing ADL"); 8343 #endif 8344 8345 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 8346 8347 // Add the functions denoted by the callee to the set of candidate 8348 // functions, including those from argument-dependent lookup. 8349 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 8350 8351 // If we found nothing, try to recover. 8352 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 8353 // out if it fails. 8354 if (CandidateSet.empty()) 8355 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 8356 RParenLoc, /*EmptyLookup=*/true); 8357 8358 OverloadCandidateSet::iterator Best; 8359 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 8360 case OR_Success: { 8361 FunctionDecl *FDecl = Best->Function; 8362 MarkDeclarationReferenced(Fn->getExprLoc(), FDecl); 8363 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 8364 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), 8365 ULE->getNameLoc()); 8366 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 8367 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 8368 ExecConfig); 8369 } 8370 8371 case OR_No_Viable_Function: { 8372 // Try to recover by looking for viable functions which the user might 8373 // have meant to call. 8374 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, 8375 Args, NumArgs, RParenLoc, 8376 /*EmptyLookup=*/false); 8377 if (!Recovery.isInvalid()) 8378 return Recovery; 8379 8380 Diag(Fn->getSourceRange().getBegin(), 8381 diag::err_ovl_no_viable_function_in_call) 8382 << ULE->getName() << Fn->getSourceRange(); 8383 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8384 break; 8385 } 8386 8387 case OR_Ambiguous: 8388 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 8389 << ULE->getName() << Fn->getSourceRange(); 8390 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8391 break; 8392 8393 case OR_Deleted: 8394 { 8395 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 8396 << Best->Function->isDeleted() 8397 << ULE->getName() 8398 << getDeletedOrUnavailableSuffix(Best->Function) 8399 << Fn->getSourceRange(); 8400 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8401 } 8402 break; 8403 } 8404 8405 // Overload resolution failed. 8406 return ExprError(); 8407 } 8408 8409 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 8410 return Functions.size() > 1 || 8411 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 8412 } 8413 8414 /// \brief Create a unary operation that may resolve to an overloaded 8415 /// operator. 8416 /// 8417 /// \param OpLoc The location of the operator itself (e.g., '*'). 8418 /// 8419 /// \param OpcIn The UnaryOperator::Opcode that describes this 8420 /// operator. 8421 /// 8422 /// \param Functions The set of non-member functions that will be 8423 /// considered by overload resolution. The caller needs to build this 8424 /// set based on the context using, e.g., 8425 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 8426 /// set should not contain any member functions; those will be added 8427 /// by CreateOverloadedUnaryOp(). 8428 /// 8429 /// \param input The input argument. 8430 ExprResult 8431 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 8432 const UnresolvedSetImpl &Fns, 8433 Expr *Input) { 8434 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 8435 8436 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 8437 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 8438 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 8439 // TODO: provide better source location info. 8440 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 8441 8442 if (Input->getObjectKind() == OK_ObjCProperty) { 8443 ExprResult Result = ConvertPropertyForRValue(Input); 8444 if (Result.isInvalid()) 8445 return ExprError(); 8446 Input = Result.take(); 8447 } 8448 8449 Expr *Args[2] = { Input, 0 }; 8450 unsigned NumArgs = 1; 8451 8452 // For post-increment and post-decrement, add the implicit '0' as 8453 // the second argument, so that we know this is a post-increment or 8454 // post-decrement. 8455 if (Opc == UO_PostInc || Opc == UO_PostDec) { 8456 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 8457 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 8458 SourceLocation()); 8459 NumArgs = 2; 8460 } 8461 8462 if (Input->isTypeDependent()) { 8463 if (Fns.empty()) 8464 return Owned(new (Context) UnaryOperator(Input, 8465 Opc, 8466 Context.DependentTy, 8467 VK_RValue, OK_Ordinary, 8468 OpLoc)); 8469 8470 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8471 UnresolvedLookupExpr *Fn 8472 = UnresolvedLookupExpr::Create(Context, NamingClass, 8473 NestedNameSpecifierLoc(), OpNameInfo, 8474 /*ADL*/ true, IsOverloaded(Fns), 8475 Fns.begin(), Fns.end()); 8476 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 8477 &Args[0], NumArgs, 8478 Context.DependentTy, 8479 VK_RValue, 8480 OpLoc)); 8481 } 8482 8483 // Build an empty overload set. 8484 OverloadCandidateSet CandidateSet(OpLoc); 8485 8486 // Add the candidates from the given function set. 8487 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 8488 8489 // Add operator candidates that are member functions. 8490 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 8491 8492 // Add candidates from ADL. 8493 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 8494 Args, NumArgs, 8495 /*ExplicitTemplateArgs*/ 0, 8496 CandidateSet); 8497 8498 // Add builtin operator candidates. 8499 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 8500 8501 // Perform overload resolution. 8502 OverloadCandidateSet::iterator Best; 8503 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8504 case OR_Success: { 8505 // We found a built-in operator or an overloaded operator. 8506 FunctionDecl *FnDecl = Best->Function; 8507 8508 if (FnDecl) { 8509 // We matched an overloaded operator. Build a call to that 8510 // operator. 8511 8512 MarkDeclarationReferenced(OpLoc, FnDecl); 8513 8514 // Convert the arguments. 8515 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 8516 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 8517 8518 ExprResult InputRes = 8519 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 8520 Best->FoundDecl, Method); 8521 if (InputRes.isInvalid()) 8522 return ExprError(); 8523 Input = InputRes.take(); 8524 } else { 8525 // Convert the arguments. 8526 ExprResult InputInit 8527 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8528 Context, 8529 FnDecl->getParamDecl(0)), 8530 SourceLocation(), 8531 Input); 8532 if (InputInit.isInvalid()) 8533 return ExprError(); 8534 Input = InputInit.take(); 8535 } 8536 8537 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8538 8539 // Determine the result type. 8540 QualType ResultTy = FnDecl->getResultType(); 8541 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8542 ResultTy = ResultTy.getNonLValueExprType(Context); 8543 8544 // Build the actual expression node. 8545 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl); 8546 if (FnExpr.isInvalid()) 8547 return ExprError(); 8548 8549 Args[0] = Input; 8550 CallExpr *TheCall = 8551 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 8552 Args, NumArgs, ResultTy, VK, OpLoc); 8553 8554 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 8555 FnDecl)) 8556 return ExprError(); 8557 8558 return MaybeBindToTemporary(TheCall); 8559 } else { 8560 // We matched a built-in operator. Convert the arguments, then 8561 // break out so that we will build the appropriate built-in 8562 // operator node. 8563 ExprResult InputRes = 8564 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 8565 Best->Conversions[0], AA_Passing); 8566 if (InputRes.isInvalid()) 8567 return ExprError(); 8568 Input = InputRes.take(); 8569 break; 8570 } 8571 } 8572 8573 case OR_No_Viable_Function: 8574 // This is an erroneous use of an operator which can be overloaded by 8575 // a non-member function. Check for non-member operators which were 8576 // defined too late to be candidates. 8577 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) 8578 // FIXME: Recover by calling the found function. 8579 return ExprError(); 8580 8581 // No viable function; fall through to handling this as a 8582 // built-in operator, which will produce an error message for us. 8583 break; 8584 8585 case OR_Ambiguous: 8586 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8587 << UnaryOperator::getOpcodeStr(Opc) 8588 << Input->getType() 8589 << Input->getSourceRange(); 8590 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 8591 Args, NumArgs, 8592 UnaryOperator::getOpcodeStr(Opc), OpLoc); 8593 return ExprError(); 8594 8595 case OR_Deleted: 8596 Diag(OpLoc, diag::err_ovl_deleted_oper) 8597 << Best->Function->isDeleted() 8598 << UnaryOperator::getOpcodeStr(Opc) 8599 << getDeletedOrUnavailableSuffix(Best->Function) 8600 << Input->getSourceRange(); 8601 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8602 return ExprError(); 8603 } 8604 8605 // Either we found no viable overloaded operator or we matched a 8606 // built-in operator. In either case, fall through to trying to 8607 // build a built-in operation. 8608 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 8609 } 8610 8611 /// \brief Create a binary operation that may resolve to an overloaded 8612 /// operator. 8613 /// 8614 /// \param OpLoc The location of the operator itself (e.g., '+'). 8615 /// 8616 /// \param OpcIn The BinaryOperator::Opcode that describes this 8617 /// operator. 8618 /// 8619 /// \param Functions The set of non-member functions that will be 8620 /// considered by overload resolution. The caller needs to build this 8621 /// set based on the context using, e.g., 8622 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 8623 /// set should not contain any member functions; those will be added 8624 /// by CreateOverloadedBinOp(). 8625 /// 8626 /// \param LHS Left-hand argument. 8627 /// \param RHS Right-hand argument. 8628 ExprResult 8629 Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 8630 unsigned OpcIn, 8631 const UnresolvedSetImpl &Fns, 8632 Expr *LHS, Expr *RHS) { 8633 Expr *Args[2] = { LHS, RHS }; 8634 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 8635 8636 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 8637 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 8638 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 8639 8640 // If either side is type-dependent, create an appropriate dependent 8641 // expression. 8642 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 8643 if (Fns.empty()) { 8644 // If there are no functions to store, just build a dependent 8645 // BinaryOperator or CompoundAssignment. 8646 if (Opc <= BO_Assign || Opc > BO_OrAssign) 8647 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 8648 Context.DependentTy, 8649 VK_RValue, OK_Ordinary, 8650 OpLoc)); 8651 8652 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 8653 Context.DependentTy, 8654 VK_LValue, 8655 OK_Ordinary, 8656 Context.DependentTy, 8657 Context.DependentTy, 8658 OpLoc)); 8659 } 8660 8661 // FIXME: save results of ADL from here? 8662 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8663 // TODO: provide better source location info in DNLoc component. 8664 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 8665 UnresolvedLookupExpr *Fn 8666 = UnresolvedLookupExpr::Create(Context, NamingClass, 8667 NestedNameSpecifierLoc(), OpNameInfo, 8668 /*ADL*/ true, IsOverloaded(Fns), 8669 Fns.begin(), Fns.end()); 8670 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 8671 Args, 2, 8672 Context.DependentTy, 8673 VK_RValue, 8674 OpLoc)); 8675 } 8676 8677 // Always do property rvalue conversions on the RHS. 8678 if (Args[1]->getObjectKind() == OK_ObjCProperty) { 8679 ExprResult Result = ConvertPropertyForRValue(Args[1]); 8680 if (Result.isInvalid()) 8681 return ExprError(); 8682 Args[1] = Result.take(); 8683 } 8684 8685 // The LHS is more complicated. 8686 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 8687 8688 // There's a tension for assignment operators between primitive 8689 // property assignment and the overloaded operators. 8690 if (BinaryOperator::isAssignmentOp(Opc)) { 8691 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); 8692 8693 // Is the property "logically" settable? 8694 bool Settable = (PRE->isExplicitProperty() || 8695 PRE->getImplicitPropertySetter()); 8696 8697 // To avoid gratuitously inventing semantics, use the primitive 8698 // unless it isn't. Thoughts in case we ever really care: 8699 // - If the property isn't logically settable, we have to 8700 // load and hope. 8701 // - If the property is settable and this is simple assignment, 8702 // we really should use the primitive. 8703 // - If the property is settable, then we could try overloading 8704 // on a generic lvalue of the appropriate type; if it works 8705 // out to a builtin candidate, we would do that same operation 8706 // on the property, and otherwise just error. 8707 if (Settable) 8708 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8709 } 8710 8711 ExprResult Result = ConvertPropertyForRValue(Args[0]); 8712 if (Result.isInvalid()) 8713 return ExprError(); 8714 Args[0] = Result.take(); 8715 } 8716 8717 // If this is the assignment operator, we only perform overload resolution 8718 // if the left-hand side is a class or enumeration type. This is actually 8719 // a hack. The standard requires that we do overload resolution between the 8720 // various built-in candidates, but as DR507 points out, this can lead to 8721 // problems. So we do it this way, which pretty much follows what GCC does. 8722 // Note that we go the traditional code path for compound assignment forms. 8723 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 8724 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8725 8726 // If this is the .* operator, which is not overloadable, just 8727 // create a built-in binary operator. 8728 if (Opc == BO_PtrMemD) 8729 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8730 8731 // Build an empty overload set. 8732 OverloadCandidateSet CandidateSet(OpLoc); 8733 8734 // Add the candidates from the given function set. 8735 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 8736 8737 // Add operator candidates that are member functions. 8738 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8739 8740 // Add candidates from ADL. 8741 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 8742 Args, 2, 8743 /*ExplicitTemplateArgs*/ 0, 8744 CandidateSet); 8745 8746 // Add builtin operator candidates. 8747 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8748 8749 // Perform overload resolution. 8750 OverloadCandidateSet::iterator Best; 8751 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8752 case OR_Success: { 8753 // We found a built-in operator or an overloaded operator. 8754 FunctionDecl *FnDecl = Best->Function; 8755 8756 if (FnDecl) { 8757 // We matched an overloaded operator. Build a call to that 8758 // operator. 8759 8760 MarkDeclarationReferenced(OpLoc, FnDecl); 8761 8762 // Convert the arguments. 8763 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 8764 // Best->Access is only meaningful for class members. 8765 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 8766 8767 ExprResult Arg1 = 8768 PerformCopyInitialization( 8769 InitializedEntity::InitializeParameter(Context, 8770 FnDecl->getParamDecl(0)), 8771 SourceLocation(), Owned(Args[1])); 8772 if (Arg1.isInvalid()) 8773 return ExprError(); 8774 8775 ExprResult Arg0 = 8776 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 8777 Best->FoundDecl, Method); 8778 if (Arg0.isInvalid()) 8779 return ExprError(); 8780 Args[0] = Arg0.takeAs<Expr>(); 8781 Args[1] = RHS = Arg1.takeAs<Expr>(); 8782 } else { 8783 // Convert the arguments. 8784 ExprResult Arg0 = PerformCopyInitialization( 8785 InitializedEntity::InitializeParameter(Context, 8786 FnDecl->getParamDecl(0)), 8787 SourceLocation(), Owned(Args[0])); 8788 if (Arg0.isInvalid()) 8789 return ExprError(); 8790 8791 ExprResult Arg1 = 8792 PerformCopyInitialization( 8793 InitializedEntity::InitializeParameter(Context, 8794 FnDecl->getParamDecl(1)), 8795 SourceLocation(), Owned(Args[1])); 8796 if (Arg1.isInvalid()) 8797 return ExprError(); 8798 Args[0] = LHS = Arg0.takeAs<Expr>(); 8799 Args[1] = RHS = Arg1.takeAs<Expr>(); 8800 } 8801 8802 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8803 8804 // Determine the result type. 8805 QualType ResultTy = FnDecl->getResultType(); 8806 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8807 ResultTy = ResultTy.getNonLValueExprType(Context); 8808 8809 // Build the actual expression node. 8810 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 8811 if (FnExpr.isInvalid()) 8812 return ExprError(); 8813 8814 CXXOperatorCallExpr *TheCall = 8815 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 8816 Args, 2, ResultTy, VK, OpLoc); 8817 8818 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 8819 FnDecl)) 8820 return ExprError(); 8821 8822 return MaybeBindToTemporary(TheCall); 8823 } else { 8824 // We matched a built-in operator. Convert the arguments, then 8825 // break out so that we will build the appropriate built-in 8826 // operator node. 8827 ExprResult ArgsRes0 = 8828 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 8829 Best->Conversions[0], AA_Passing); 8830 if (ArgsRes0.isInvalid()) 8831 return ExprError(); 8832 Args[0] = ArgsRes0.take(); 8833 8834 ExprResult ArgsRes1 = 8835 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 8836 Best->Conversions[1], AA_Passing); 8837 if (ArgsRes1.isInvalid()) 8838 return ExprError(); 8839 Args[1] = ArgsRes1.take(); 8840 break; 8841 } 8842 } 8843 8844 case OR_No_Viable_Function: { 8845 // C++ [over.match.oper]p9: 8846 // If the operator is the operator , [...] and there are no 8847 // viable functions, then the operator is assumed to be the 8848 // built-in operator and interpreted according to clause 5. 8849 if (Opc == BO_Comma) 8850 break; 8851 8852 // For class as left operand for assignment or compound assigment 8853 // operator do not fall through to handling in built-in, but report that 8854 // no overloaded assignment operator found 8855 ExprResult Result = ExprError(); 8856 if (Args[0]->getType()->isRecordType() && 8857 Opc >= BO_Assign && Opc <= BO_OrAssign) { 8858 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8859 << BinaryOperator::getOpcodeStr(Opc) 8860 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8861 } else { 8862 // This is an erroneous use of an operator which can be overloaded by 8863 // a non-member function. Check for non-member operators which were 8864 // defined too late to be candidates. 8865 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) 8866 // FIXME: Recover by calling the found function. 8867 return ExprError(); 8868 8869 // No viable function; try to create a built-in operation, which will 8870 // produce an error. Then, show the non-viable candidates. 8871 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8872 } 8873 assert(Result.isInvalid() && 8874 "C++ binary operator overloading is missing candidates!"); 8875 if (Result.isInvalid()) 8876 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8877 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8878 return move(Result); 8879 } 8880 8881 case OR_Ambiguous: 8882 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 8883 << BinaryOperator::getOpcodeStr(Opc) 8884 << Args[0]->getType() << Args[1]->getType() 8885 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8886 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 8887 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8888 return ExprError(); 8889 8890 case OR_Deleted: 8891 Diag(OpLoc, diag::err_ovl_deleted_oper) 8892 << Best->Function->isDeleted() 8893 << BinaryOperator::getOpcodeStr(Opc) 8894 << getDeletedOrUnavailableSuffix(Best->Function) 8895 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8896 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 8897 return ExprError(); 8898 } 8899 8900 // We matched a built-in operator; build it. 8901 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8902 } 8903 8904 ExprResult 8905 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 8906 SourceLocation RLoc, 8907 Expr *Base, Expr *Idx) { 8908 Expr *Args[2] = { Base, Idx }; 8909 DeclarationName OpName = 8910 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 8911 8912 // If either side is type-dependent, create an appropriate dependent 8913 // expression. 8914 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 8915 8916 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8917 // CHECKME: no 'operator' keyword? 8918 DeclarationNameInfo OpNameInfo(OpName, LLoc); 8919 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 8920 UnresolvedLookupExpr *Fn 8921 = UnresolvedLookupExpr::Create(Context, NamingClass, 8922 NestedNameSpecifierLoc(), OpNameInfo, 8923 /*ADL*/ true, /*Overloaded*/ false, 8924 UnresolvedSetIterator(), 8925 UnresolvedSetIterator()); 8926 // Can't add any actual overloads yet 8927 8928 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 8929 Args, 2, 8930 Context.DependentTy, 8931 VK_RValue, 8932 RLoc)); 8933 } 8934 8935 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 8936 ExprResult Result = ConvertPropertyForRValue(Args[0]); 8937 if (Result.isInvalid()) 8938 return ExprError(); 8939 Args[0] = Result.take(); 8940 } 8941 if (Args[1]->getObjectKind() == OK_ObjCProperty) { 8942 ExprResult Result = ConvertPropertyForRValue(Args[1]); 8943 if (Result.isInvalid()) 8944 return ExprError(); 8945 Args[1] = Result.take(); 8946 } 8947 8948 // Build an empty overload set. 8949 OverloadCandidateSet CandidateSet(LLoc); 8950 8951 // Subscript can only be overloaded as a member function. 8952 8953 // Add operator candidates that are member functions. 8954 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 8955 8956 // Add builtin operator candidates. 8957 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 8958 8959 // Perform overload resolution. 8960 OverloadCandidateSet::iterator Best; 8961 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 8962 case OR_Success: { 8963 // We found a built-in operator or an overloaded operator. 8964 FunctionDecl *FnDecl = Best->Function; 8965 8966 if (FnDecl) { 8967 // We matched an overloaded operator. Build a call to that 8968 // operator. 8969 8970 MarkDeclarationReferenced(LLoc, FnDecl); 8971 8972 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 8973 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 8974 8975 // Convert the arguments. 8976 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 8977 ExprResult Arg0 = 8978 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 8979 Best->FoundDecl, Method); 8980 if (Arg0.isInvalid()) 8981 return ExprError(); 8982 Args[0] = Arg0.take(); 8983 8984 // Convert the arguments. 8985 ExprResult InputInit 8986 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8987 Context, 8988 FnDecl->getParamDecl(0)), 8989 SourceLocation(), 8990 Owned(Args[1])); 8991 if (InputInit.isInvalid()) 8992 return ExprError(); 8993 8994 Args[1] = InputInit.takeAs<Expr>(); 8995 8996 // Determine the result type 8997 QualType ResultTy = FnDecl->getResultType(); 8998 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8999 ResultTy = ResultTy.getNonLValueExprType(Context); 9000 9001 // Build the actual expression node. 9002 DeclarationNameLoc LocInfo; 9003 LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding(); 9004 LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding(); 9005 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc, LocInfo); 9006 if (FnExpr.isInvalid()) 9007 return ExprError(); 9008 9009 CXXOperatorCallExpr *TheCall = 9010 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 9011 FnExpr.take(), Args, 2, 9012 ResultTy, VK, RLoc); 9013 9014 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 9015 FnDecl)) 9016 return ExprError(); 9017 9018 return MaybeBindToTemporary(TheCall); 9019 } else { 9020 // We matched a built-in operator. Convert the arguments, then 9021 // break out so that we will build the appropriate built-in 9022 // operator node. 9023 ExprResult ArgsRes0 = 9024 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9025 Best->Conversions[0], AA_Passing); 9026 if (ArgsRes0.isInvalid()) 9027 return ExprError(); 9028 Args[0] = ArgsRes0.take(); 9029 9030 ExprResult ArgsRes1 = 9031 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9032 Best->Conversions[1], AA_Passing); 9033 if (ArgsRes1.isInvalid()) 9034 return ExprError(); 9035 Args[1] = ArgsRes1.take(); 9036 9037 break; 9038 } 9039 } 9040 9041 case OR_No_Viable_Function: { 9042 if (CandidateSet.empty()) 9043 Diag(LLoc, diag::err_ovl_no_oper) 9044 << Args[0]->getType() << /*subscript*/ 0 9045 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9046 else 9047 Diag(LLoc, diag::err_ovl_no_viable_subscript) 9048 << Args[0]->getType() 9049 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9050 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9051 "[]", LLoc); 9052 return ExprError(); 9053 } 9054 9055 case OR_Ambiguous: 9056 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 9057 << "[]" 9058 << Args[0]->getType() << Args[1]->getType() 9059 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9060 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9061 "[]", LLoc); 9062 return ExprError(); 9063 9064 case OR_Deleted: 9065 Diag(LLoc, diag::err_ovl_deleted_oper) 9066 << Best->Function->isDeleted() << "[]" 9067 << getDeletedOrUnavailableSuffix(Best->Function) 9068 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9069 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9070 "[]", LLoc); 9071 return ExprError(); 9072 } 9073 9074 // We matched a built-in operator; build it. 9075 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 9076 } 9077 9078 /// BuildCallToMemberFunction - Build a call to a member 9079 /// function. MemExpr is the expression that refers to the member 9080 /// function (and includes the object parameter), Args/NumArgs are the 9081 /// arguments to the function call (not including the object 9082 /// parameter). The caller needs to validate that the member 9083 /// expression refers to a non-static member function or an overloaded 9084 /// member function. 9085 ExprResult 9086 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 9087 SourceLocation LParenLoc, Expr **Args, 9088 unsigned NumArgs, SourceLocation RParenLoc) { 9089 assert(MemExprE->getType() == Context.BoundMemberTy || 9090 MemExprE->getType() == Context.OverloadTy); 9091 9092 // Dig out the member expression. This holds both the object 9093 // argument and the member function we're referring to. 9094 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 9095 9096 // Determine whether this is a call to a pointer-to-member function. 9097 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 9098 assert(op->getType() == Context.BoundMemberTy); 9099 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 9100 9101 QualType fnType = 9102 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 9103 9104 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 9105 QualType resultType = proto->getCallResultType(Context); 9106 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 9107 9108 // Check that the object type isn't more qualified than the 9109 // member function we're calling. 9110 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 9111 9112 QualType objectType = op->getLHS()->getType(); 9113 if (op->getOpcode() == BO_PtrMemI) 9114 objectType = objectType->castAs<PointerType>()->getPointeeType(); 9115 Qualifiers objectQuals = objectType.getQualifiers(); 9116 9117 Qualifiers difference = objectQuals - funcQuals; 9118 difference.removeObjCGCAttr(); 9119 difference.removeAddressSpace(); 9120 if (difference) { 9121 std::string qualsString = difference.getAsString(); 9122 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 9123 << fnType.getUnqualifiedType() 9124 << qualsString 9125 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 9126 } 9127 9128 CXXMemberCallExpr *call 9129 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9130 resultType, valueKind, RParenLoc); 9131 9132 if (CheckCallReturnType(proto->getResultType(), 9133 op->getRHS()->getSourceRange().getBegin(), 9134 call, 0)) 9135 return ExprError(); 9136 9137 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 9138 return ExprError(); 9139 9140 return MaybeBindToTemporary(call); 9141 } 9142 9143 MemberExpr *MemExpr; 9144 CXXMethodDecl *Method = 0; 9145 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 9146 NestedNameSpecifier *Qualifier = 0; 9147 if (isa<MemberExpr>(NakedMemExpr)) { 9148 MemExpr = cast<MemberExpr>(NakedMemExpr); 9149 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 9150 FoundDecl = MemExpr->getFoundDecl(); 9151 Qualifier = MemExpr->getQualifier(); 9152 } else { 9153 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 9154 Qualifier = UnresExpr->getQualifier(); 9155 9156 QualType ObjectType = UnresExpr->getBaseType(); 9157 Expr::Classification ObjectClassification 9158 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 9159 : UnresExpr->getBase()->Classify(Context); 9160 9161 // Add overload candidates 9162 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 9163 9164 // FIXME: avoid copy. 9165 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9166 if (UnresExpr->hasExplicitTemplateArgs()) { 9167 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 9168 TemplateArgs = &TemplateArgsBuffer; 9169 } 9170 9171 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 9172 E = UnresExpr->decls_end(); I != E; ++I) { 9173 9174 NamedDecl *Func = *I; 9175 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 9176 if (isa<UsingShadowDecl>(Func)) 9177 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 9178 9179 9180 // Microsoft supports direct constructor calls. 9181 if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) { 9182 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 9183 CandidateSet); 9184 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 9185 // If explicit template arguments were provided, we can't call a 9186 // non-template member function. 9187 if (TemplateArgs) 9188 continue; 9189 9190 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 9191 ObjectClassification, 9192 Args, NumArgs, CandidateSet, 9193 /*SuppressUserConversions=*/false); 9194 } else { 9195 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 9196 I.getPair(), ActingDC, TemplateArgs, 9197 ObjectType, ObjectClassification, 9198 Args, NumArgs, CandidateSet, 9199 /*SuppressUsedConversions=*/false); 9200 } 9201 } 9202 9203 DeclarationName DeclName = UnresExpr->getMemberName(); 9204 9205 OverloadCandidateSet::iterator Best; 9206 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 9207 Best)) { 9208 case OR_Success: 9209 Method = cast<CXXMethodDecl>(Best->Function); 9210 MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method); 9211 FoundDecl = Best->FoundDecl; 9212 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 9213 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 9214 break; 9215 9216 case OR_No_Viable_Function: 9217 Diag(UnresExpr->getMemberLoc(), 9218 diag::err_ovl_no_viable_member_function_in_call) 9219 << DeclName << MemExprE->getSourceRange(); 9220 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9221 // FIXME: Leaking incoming expressions! 9222 return ExprError(); 9223 9224 case OR_Ambiguous: 9225 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 9226 << DeclName << MemExprE->getSourceRange(); 9227 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9228 // FIXME: Leaking incoming expressions! 9229 return ExprError(); 9230 9231 case OR_Deleted: 9232 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 9233 << Best->Function->isDeleted() 9234 << DeclName 9235 << getDeletedOrUnavailableSuffix(Best->Function) 9236 << MemExprE->getSourceRange(); 9237 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9238 // FIXME: Leaking incoming expressions! 9239 return ExprError(); 9240 } 9241 9242 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 9243 9244 // If overload resolution picked a static member, build a 9245 // non-member call based on that function. 9246 if (Method->isStatic()) { 9247 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 9248 Args, NumArgs, RParenLoc); 9249 } 9250 9251 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 9252 } 9253 9254 QualType ResultType = Method->getResultType(); 9255 ExprValueKind VK = Expr::getValueKindForType(ResultType); 9256 ResultType = ResultType.getNonLValueExprType(Context); 9257 9258 assert(Method && "Member call to something that isn't a method?"); 9259 CXXMemberCallExpr *TheCall = 9260 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9261 ResultType, VK, RParenLoc); 9262 9263 // Check for a valid return type. 9264 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 9265 TheCall, Method)) 9266 return ExprError(); 9267 9268 // Convert the object argument (for a non-static member function call). 9269 // We only need to do this if there was actually an overload; otherwise 9270 // it was done at lookup. 9271 if (!Method->isStatic()) { 9272 ExprResult ObjectArg = 9273 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 9274 FoundDecl, Method); 9275 if (ObjectArg.isInvalid()) 9276 return ExprError(); 9277 MemExpr->setBase(ObjectArg.take()); 9278 } 9279 9280 // Convert the rest of the arguments 9281 const FunctionProtoType *Proto = 9282 Method->getType()->getAs<FunctionProtoType>(); 9283 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 9284 RParenLoc)) 9285 return ExprError(); 9286 9287 if (CheckFunctionCall(Method, TheCall)) 9288 return ExprError(); 9289 9290 if ((isa<CXXConstructorDecl>(CurContext) || 9291 isa<CXXDestructorDecl>(CurContext)) && 9292 TheCall->getMethodDecl()->isPure()) { 9293 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 9294 9295 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 9296 Diag(MemExpr->getLocStart(), 9297 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 9298 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 9299 << MD->getParent()->getDeclName(); 9300 9301 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 9302 } 9303 } 9304 return MaybeBindToTemporary(TheCall); 9305 } 9306 9307 /// BuildCallToObjectOfClassType - Build a call to an object of class 9308 /// type (C++ [over.call.object]), which can end up invoking an 9309 /// overloaded function call operator (@c operator()) or performing a 9310 /// user-defined conversion on the object argument. 9311 ExprResult 9312 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 9313 SourceLocation LParenLoc, 9314 Expr **Args, unsigned NumArgs, 9315 SourceLocation RParenLoc) { 9316 ExprResult Object = Owned(Obj); 9317 if (Object.get()->getObjectKind() == OK_ObjCProperty) { 9318 Object = ConvertPropertyForRValue(Object.take()); 9319 if (Object.isInvalid()) 9320 return ExprError(); 9321 } 9322 9323 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 9324 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 9325 9326 // C++ [over.call.object]p1: 9327 // If the primary-expression E in the function call syntax 9328 // evaluates to a class object of type "cv T", then the set of 9329 // candidate functions includes at least the function call 9330 // operators of T. The function call operators of T are obtained by 9331 // ordinary lookup of the name operator() in the context of 9332 // (E).operator(). 9333 OverloadCandidateSet CandidateSet(LParenLoc); 9334 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 9335 9336 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 9337 PDiag(diag::err_incomplete_object_call) 9338 << Object.get()->getSourceRange())) 9339 return true; 9340 9341 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 9342 LookupQualifiedName(R, Record->getDecl()); 9343 R.suppressDiagnostics(); 9344 9345 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 9346 Oper != OperEnd; ++Oper) { 9347 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 9348 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 9349 /*SuppressUserConversions=*/ false); 9350 } 9351 9352 // C++ [over.call.object]p2: 9353 // In addition, for each conversion function declared in T of the 9354 // form 9355 // 9356 // operator conversion-type-id () cv-qualifier; 9357 // 9358 // where cv-qualifier is the same cv-qualification as, or a 9359 // greater cv-qualification than, cv, and where conversion-type-id 9360 // denotes the type "pointer to function of (P1,...,Pn) returning 9361 // R", or the type "reference to pointer to function of 9362 // (P1,...,Pn) returning R", or the type "reference to function 9363 // of (P1,...,Pn) returning R", a surrogate call function [...] 9364 // is also considered as a candidate function. Similarly, 9365 // surrogate call functions are added to the set of candidate 9366 // functions for each conversion function declared in an 9367 // accessible base class provided the function is not hidden 9368 // within T by another intervening declaration. 9369 const UnresolvedSetImpl *Conversions 9370 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 9371 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 9372 E = Conversions->end(); I != E; ++I) { 9373 NamedDecl *D = *I; 9374 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 9375 if (isa<UsingShadowDecl>(D)) 9376 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 9377 9378 // Skip over templated conversion functions; they aren't 9379 // surrogates. 9380 if (isa<FunctionTemplateDecl>(D)) 9381 continue; 9382 9383 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 9384 9385 // Strip the reference type (if any) and then the pointer type (if 9386 // any) to get down to what might be a function type. 9387 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 9388 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 9389 ConvType = ConvPtrType->getPointeeType(); 9390 9391 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 9392 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 9393 Object.get(), Args, NumArgs, CandidateSet); 9394 } 9395 9396 // Perform overload resolution. 9397 OverloadCandidateSet::iterator Best; 9398 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 9399 Best)) { 9400 case OR_Success: 9401 // Overload resolution succeeded; we'll build the appropriate call 9402 // below. 9403 break; 9404 9405 case OR_No_Viable_Function: 9406 if (CandidateSet.empty()) 9407 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) 9408 << Object.get()->getType() << /*call*/ 1 9409 << Object.get()->getSourceRange(); 9410 else 9411 Diag(Object.get()->getSourceRange().getBegin(), 9412 diag::err_ovl_no_viable_object_call) 9413 << Object.get()->getType() << Object.get()->getSourceRange(); 9414 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9415 break; 9416 9417 case OR_Ambiguous: 9418 Diag(Object.get()->getSourceRange().getBegin(), 9419 diag::err_ovl_ambiguous_object_call) 9420 << Object.get()->getType() << Object.get()->getSourceRange(); 9421 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 9422 break; 9423 9424 case OR_Deleted: 9425 Diag(Object.get()->getSourceRange().getBegin(), 9426 diag::err_ovl_deleted_object_call) 9427 << Best->Function->isDeleted() 9428 << Object.get()->getType() 9429 << getDeletedOrUnavailableSuffix(Best->Function) 9430 << Object.get()->getSourceRange(); 9431 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9432 break; 9433 } 9434 9435 if (Best == CandidateSet.end()) 9436 return true; 9437 9438 if (Best->Function == 0) { 9439 // Since there is no function declaration, this is one of the 9440 // surrogate candidates. Dig out the conversion function. 9441 CXXConversionDecl *Conv 9442 = cast<CXXConversionDecl>( 9443 Best->Conversions[0].UserDefined.ConversionFunction); 9444 9445 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 9446 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 9447 9448 // We selected one of the surrogate functions that converts the 9449 // object parameter to a function pointer. Perform the conversion 9450 // on the object argument, then let ActOnCallExpr finish the job. 9451 9452 // Create an implicit member expr to refer to the conversion operator. 9453 // and then call it. 9454 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv); 9455 if (Call.isInvalid()) 9456 return ExprError(); 9457 9458 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 9459 RParenLoc); 9460 } 9461 9462 MarkDeclarationReferenced(LParenLoc, Best->Function); 9463 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 9464 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 9465 9466 // We found an overloaded operator(). Build a CXXOperatorCallExpr 9467 // that calls this method, using Object for the implicit object 9468 // parameter and passing along the remaining arguments. 9469 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 9470 const FunctionProtoType *Proto = 9471 Method->getType()->getAs<FunctionProtoType>(); 9472 9473 unsigned NumArgsInProto = Proto->getNumArgs(); 9474 unsigned NumArgsToCheck = NumArgs; 9475 9476 // Build the full argument list for the method call (the 9477 // implicit object parameter is placed at the beginning of the 9478 // list). 9479 Expr **MethodArgs; 9480 if (NumArgs < NumArgsInProto) { 9481 NumArgsToCheck = NumArgsInProto; 9482 MethodArgs = new Expr*[NumArgsInProto + 1]; 9483 } else { 9484 MethodArgs = new Expr*[NumArgs + 1]; 9485 } 9486 MethodArgs[0] = Object.get(); 9487 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 9488 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 9489 9490 ExprResult NewFn = CreateFunctionRefExpr(*this, Method); 9491 if (NewFn.isInvalid()) 9492 return true; 9493 9494 // Once we've built TheCall, all of the expressions are properly 9495 // owned. 9496 QualType ResultTy = Method->getResultType(); 9497 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9498 ResultTy = ResultTy.getNonLValueExprType(Context); 9499 9500 CXXOperatorCallExpr *TheCall = 9501 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 9502 MethodArgs, NumArgs + 1, 9503 ResultTy, VK, RParenLoc); 9504 delete [] MethodArgs; 9505 9506 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 9507 Method)) 9508 return true; 9509 9510 // We may have default arguments. If so, we need to allocate more 9511 // slots in the call for them. 9512 if (NumArgs < NumArgsInProto) 9513 TheCall->setNumArgs(Context, NumArgsInProto + 1); 9514 else if (NumArgs > NumArgsInProto) 9515 NumArgsToCheck = NumArgsInProto; 9516 9517 bool IsError = false; 9518 9519 // Initialize the implicit object parameter. 9520 ExprResult ObjRes = 9521 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 9522 Best->FoundDecl, Method); 9523 if (ObjRes.isInvalid()) 9524 IsError = true; 9525 else 9526 Object = move(ObjRes); 9527 TheCall->setArg(0, Object.take()); 9528 9529 // Check the argument types. 9530 for (unsigned i = 0; i != NumArgsToCheck; i++) { 9531 Expr *Arg; 9532 if (i < NumArgs) { 9533 Arg = Args[i]; 9534 9535 // Pass the argument. 9536 9537 ExprResult InputInit 9538 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9539 Context, 9540 Method->getParamDecl(i)), 9541 SourceLocation(), Arg); 9542 9543 IsError |= InputInit.isInvalid(); 9544 Arg = InputInit.takeAs<Expr>(); 9545 } else { 9546 ExprResult DefArg 9547 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 9548 if (DefArg.isInvalid()) { 9549 IsError = true; 9550 break; 9551 } 9552 9553 Arg = DefArg.takeAs<Expr>(); 9554 } 9555 9556 TheCall->setArg(i + 1, Arg); 9557 } 9558 9559 // If this is a variadic call, handle args passed through "...". 9560 if (Proto->isVariadic()) { 9561 // Promote the arguments (C99 6.5.2.2p7). 9562 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 9563 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 9564 IsError |= Arg.isInvalid(); 9565 TheCall->setArg(i + 1, Arg.take()); 9566 } 9567 } 9568 9569 if (IsError) return true; 9570 9571 if (CheckFunctionCall(Method, TheCall)) 9572 return true; 9573 9574 return MaybeBindToTemporary(TheCall); 9575 } 9576 9577 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 9578 /// (if one exists), where @c Base is an expression of class type and 9579 /// @c Member is the name of the member we're trying to find. 9580 ExprResult 9581 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 9582 assert(Base->getType()->isRecordType() && 9583 "left-hand side must have class type"); 9584 9585 if (Base->getObjectKind() == OK_ObjCProperty) { 9586 ExprResult Result = ConvertPropertyForRValue(Base); 9587 if (Result.isInvalid()) 9588 return ExprError(); 9589 Base = Result.take(); 9590 } 9591 9592 SourceLocation Loc = Base->getExprLoc(); 9593 9594 // C++ [over.ref]p1: 9595 // 9596 // [...] An expression x->m is interpreted as (x.operator->())->m 9597 // for a class object x of type T if T::operator->() exists and if 9598 // the operator is selected as the best match function by the 9599 // overload resolution mechanism (13.3). 9600 DeclarationName OpName = 9601 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 9602 OverloadCandidateSet CandidateSet(Loc); 9603 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 9604 9605 if (RequireCompleteType(Loc, Base->getType(), 9606 PDiag(diag::err_typecheck_incomplete_tag) 9607 << Base->getSourceRange())) 9608 return ExprError(); 9609 9610 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 9611 LookupQualifiedName(R, BaseRecord->getDecl()); 9612 R.suppressDiagnostics(); 9613 9614 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 9615 Oper != OperEnd; ++Oper) { 9616 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 9617 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 9618 } 9619 9620 // Perform overload resolution. 9621 OverloadCandidateSet::iterator Best; 9622 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9623 case OR_Success: 9624 // Overload resolution succeeded; we'll build the call below. 9625 break; 9626 9627 case OR_No_Viable_Function: 9628 if (CandidateSet.empty()) 9629 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 9630 << Base->getType() << Base->getSourceRange(); 9631 else 9632 Diag(OpLoc, diag::err_ovl_no_viable_oper) 9633 << "operator->" << Base->getSourceRange(); 9634 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 9635 return ExprError(); 9636 9637 case OR_Ambiguous: 9638 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 9639 << "->" << Base->getType() << Base->getSourceRange(); 9640 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 9641 return ExprError(); 9642 9643 case OR_Deleted: 9644 Diag(OpLoc, diag::err_ovl_deleted_oper) 9645 << Best->Function->isDeleted() 9646 << "->" 9647 << getDeletedOrUnavailableSuffix(Best->Function) 9648 << Base->getSourceRange(); 9649 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 9650 return ExprError(); 9651 } 9652 9653 MarkDeclarationReferenced(OpLoc, Best->Function); 9654 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 9655 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9656 9657 // Convert the object parameter. 9658 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 9659 ExprResult BaseResult = 9660 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 9661 Best->FoundDecl, Method); 9662 if (BaseResult.isInvalid()) 9663 return ExprError(); 9664 Base = BaseResult.take(); 9665 9666 // Build the operator call. 9667 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method); 9668 if (FnExpr.isInvalid()) 9669 return ExprError(); 9670 9671 QualType ResultTy = Method->getResultType(); 9672 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9673 ResultTy = ResultTy.getNonLValueExprType(Context); 9674 CXXOperatorCallExpr *TheCall = 9675 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 9676 &Base, 1, ResultTy, VK, OpLoc); 9677 9678 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 9679 Method)) 9680 return ExprError(); 9681 9682 return MaybeBindToTemporary(TheCall); 9683 } 9684 9685 /// FixOverloadedFunctionReference - E is an expression that refers to 9686 /// a C++ overloaded function (possibly with some parentheses and 9687 /// perhaps a '&' around it). We have resolved the overloaded function 9688 /// to the function declaration Fn, so patch up the expression E to 9689 /// refer (possibly indirectly) to Fn. Returns the new expr. 9690 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 9691 FunctionDecl *Fn) { 9692 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 9693 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 9694 Found, Fn); 9695 if (SubExpr == PE->getSubExpr()) 9696 return PE; 9697 9698 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 9699 } 9700 9701 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 9702 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 9703 Found, Fn); 9704 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 9705 SubExpr->getType()) && 9706 "Implicit cast type cannot be determined from overload"); 9707 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 9708 if (SubExpr == ICE->getSubExpr()) 9709 return ICE; 9710 9711 return ImplicitCastExpr::Create(Context, ICE->getType(), 9712 ICE->getCastKind(), 9713 SubExpr, 0, 9714 ICE->getValueKind()); 9715 } 9716 9717 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 9718 assert(UnOp->getOpcode() == UO_AddrOf && 9719 "Can only take the address of an overloaded function"); 9720 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 9721 if (Method->isStatic()) { 9722 // Do nothing: static member functions aren't any different 9723 // from non-member functions. 9724 } else { 9725 // Fix the sub expression, which really has to be an 9726 // UnresolvedLookupExpr holding an overloaded member function 9727 // or template. 9728 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 9729 Found, Fn); 9730 if (SubExpr == UnOp->getSubExpr()) 9731 return UnOp; 9732 9733 assert(isa<DeclRefExpr>(SubExpr) 9734 && "fixed to something other than a decl ref"); 9735 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 9736 && "fixed to a member ref with no nested name qualifier"); 9737 9738 // We have taken the address of a pointer to member 9739 // function. Perform the computation here so that we get the 9740 // appropriate pointer to member type. 9741 QualType ClassType 9742 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 9743 QualType MemPtrType 9744 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 9745 9746 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 9747 VK_RValue, OK_Ordinary, 9748 UnOp->getOperatorLoc()); 9749 } 9750 } 9751 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 9752 Found, Fn); 9753 if (SubExpr == UnOp->getSubExpr()) 9754 return UnOp; 9755 9756 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 9757 Context.getPointerType(SubExpr->getType()), 9758 VK_RValue, OK_Ordinary, 9759 UnOp->getOperatorLoc()); 9760 } 9761 9762 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 9763 // FIXME: avoid copy. 9764 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9765 if (ULE->hasExplicitTemplateArgs()) { 9766 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 9767 TemplateArgs = &TemplateArgsBuffer; 9768 } 9769 9770 return DeclRefExpr::Create(Context, 9771 ULE->getQualifierLoc(), 9772 Fn, 9773 ULE->getNameLoc(), 9774 Fn->getType(), 9775 VK_LValue, 9776 Found.getDecl(), 9777 TemplateArgs); 9778 } 9779 9780 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 9781 // FIXME: avoid copy. 9782 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9783 if (MemExpr->hasExplicitTemplateArgs()) { 9784 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 9785 TemplateArgs = &TemplateArgsBuffer; 9786 } 9787 9788 Expr *Base; 9789 9790 // If we're filling in a static method where we used to have an 9791 // implicit member access, rewrite to a simple decl ref. 9792 if (MemExpr->isImplicitAccess()) { 9793 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 9794 return DeclRefExpr::Create(Context, 9795 MemExpr->getQualifierLoc(), 9796 Fn, 9797 MemExpr->getMemberLoc(), 9798 Fn->getType(), 9799 VK_LValue, 9800 Found.getDecl(), 9801 TemplateArgs); 9802 } else { 9803 SourceLocation Loc = MemExpr->getMemberLoc(); 9804 if (MemExpr->getQualifier()) 9805 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 9806 Base = new (Context) CXXThisExpr(Loc, 9807 MemExpr->getBaseType(), 9808 /*isImplicit=*/true); 9809 } 9810 } else 9811 Base = MemExpr->getBase(); 9812 9813 ExprValueKind valueKind; 9814 QualType type; 9815 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 9816 valueKind = VK_LValue; 9817 type = Fn->getType(); 9818 } else { 9819 valueKind = VK_RValue; 9820 type = Context.BoundMemberTy; 9821 } 9822 9823 return MemberExpr::Create(Context, Base, 9824 MemExpr->isArrow(), 9825 MemExpr->getQualifierLoc(), 9826 Fn, 9827 Found, 9828 MemExpr->getMemberNameInfo(), 9829 TemplateArgs, 9830 type, valueKind, OK_Ordinary); 9831 } 9832 9833 llvm_unreachable("Invalid reference to overloaded function"); 9834 return E; 9835 } 9836 9837 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 9838 DeclAccessPair Found, 9839 FunctionDecl *Fn) { 9840 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 9841 } 9842 9843 } // end namespace clang 9844