Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "lazy-value-info"
     16 #include "llvm/Analysis/LazyValueInfo.h"
     17 #include "llvm/Analysis/ValueTracking.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Target/TargetData.h"
     23 #include "llvm/Support/CFG.h"
     24 #include "llvm/Support/ConstantRange.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Support/ValueHandle.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/DenseSet.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include <map>
     32 #include <stack>
     33 using namespace llvm;
     34 
     35 char LazyValueInfo::ID = 0;
     36 INITIALIZE_PASS(LazyValueInfo, "lazy-value-info",
     37                 "Lazy Value Information Analysis", false, true)
     38 
     39 namespace llvm {
     40   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     41 }
     42 
     43 
     44 //===----------------------------------------------------------------------===//
     45 //                               LVILatticeVal
     46 //===----------------------------------------------------------------------===//
     47 
     48 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
     49 /// value.
     50 ///
     51 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     52 /// in the future.
     53 ///
     54 namespace {
     55 class LVILatticeVal {
     56   enum LatticeValueTy {
     57     /// undefined - This Value has no known value yet.
     58     undefined,
     59 
     60     /// constant - This Value has a specific constant value.
     61     constant,
     62     /// notconstant - This Value is known to not have the specified value.
     63     notconstant,
     64 
     65     /// constantrange - The Value falls within this range.
     66     constantrange,
     67 
     68     /// overdefined - This value is not known to be constant, and we know that
     69     /// it has a value.
     70     overdefined
     71   };
     72 
     73   /// Val: This stores the current lattice value along with the Constant* for
     74   /// the constant if this is a 'constant' or 'notconstant' value.
     75   LatticeValueTy Tag;
     76   Constant *Val;
     77   ConstantRange Range;
     78 
     79 public:
     80   LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
     81 
     82   static LVILatticeVal get(Constant *C) {
     83     LVILatticeVal Res;
     84     if (!isa<UndefValue>(C))
     85       Res.markConstant(C);
     86     return Res;
     87   }
     88   static LVILatticeVal getNot(Constant *C) {
     89     LVILatticeVal Res;
     90     if (!isa<UndefValue>(C))
     91       Res.markNotConstant(C);
     92     return Res;
     93   }
     94   static LVILatticeVal getRange(ConstantRange CR) {
     95     LVILatticeVal Res;
     96     Res.markConstantRange(CR);
     97     return Res;
     98   }
     99 
    100   bool isUndefined() const     { return Tag == undefined; }
    101   bool isConstant() const      { return Tag == constant; }
    102   bool isNotConstant() const   { return Tag == notconstant; }
    103   bool isConstantRange() const { return Tag == constantrange; }
    104   bool isOverdefined() const   { return Tag == overdefined; }
    105 
    106   Constant *getConstant() const {
    107     assert(isConstant() && "Cannot get the constant of a non-constant!");
    108     return Val;
    109   }
    110 
    111   Constant *getNotConstant() const {
    112     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    113     return Val;
    114   }
    115 
    116   ConstantRange getConstantRange() const {
    117     assert(isConstantRange() &&
    118            "Cannot get the constant-range of a non-constant-range!");
    119     return Range;
    120   }
    121 
    122   /// markOverdefined - Return true if this is a change in status.
    123   bool markOverdefined() {
    124     if (isOverdefined())
    125       return false;
    126     Tag = overdefined;
    127     return true;
    128   }
    129 
    130   /// markConstant - Return true if this is a change in status.
    131   bool markConstant(Constant *V) {
    132     assert(V && "Marking constant with NULL");
    133     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    134       return markConstantRange(ConstantRange(CI->getValue()));
    135     if (isa<UndefValue>(V))
    136       return false;
    137 
    138     assert((!isConstant() || getConstant() == V) &&
    139            "Marking constant with different value");
    140     assert(isUndefined());
    141     Tag = constant;
    142     Val = V;
    143     return true;
    144   }
    145 
    146   /// markNotConstant - Return true if this is a change in status.
    147   bool markNotConstant(Constant *V) {
    148     assert(V && "Marking constant with NULL");
    149     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    150       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    151     if (isa<UndefValue>(V))
    152       return false;
    153 
    154     assert((!isConstant() || getConstant() != V) &&
    155            "Marking constant !constant with same value");
    156     assert((!isNotConstant() || getNotConstant() == V) &&
    157            "Marking !constant with different value");
    158     assert(isUndefined() || isConstant());
    159     Tag = notconstant;
    160     Val = V;
    161     return true;
    162   }
    163 
    164   /// markConstantRange - Return true if this is a change in status.
    165   bool markConstantRange(const ConstantRange NewR) {
    166     if (isConstantRange()) {
    167       if (NewR.isEmptySet())
    168         return markOverdefined();
    169 
    170       bool changed = Range == NewR;
    171       Range = NewR;
    172       return changed;
    173     }
    174 
    175     assert(isUndefined());
    176     if (NewR.isEmptySet())
    177       return markOverdefined();
    178 
    179     Tag = constantrange;
    180     Range = NewR;
    181     return true;
    182   }
    183 
    184   /// mergeIn - Merge the specified lattice value into this one, updating this
    185   /// one and returning true if anything changed.
    186   bool mergeIn(const LVILatticeVal &RHS) {
    187     if (RHS.isUndefined() || isOverdefined()) return false;
    188     if (RHS.isOverdefined()) return markOverdefined();
    189 
    190     if (isUndefined()) {
    191       Tag = RHS.Tag;
    192       Val = RHS.Val;
    193       Range = RHS.Range;
    194       return true;
    195     }
    196 
    197     if (isConstant()) {
    198       if (RHS.isConstant()) {
    199         if (Val == RHS.Val)
    200           return false;
    201         return markOverdefined();
    202       }
    203 
    204       if (RHS.isNotConstant()) {
    205         if (Val == RHS.Val)
    206           return markOverdefined();
    207 
    208         // Unless we can prove that the two Constants are different, we must
    209         // move to overdefined.
    210         // FIXME: use TargetData for smarter constant folding.
    211         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    212                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    213                                                 getConstant(),
    214                                                 RHS.getNotConstant())))
    215           if (Res->isOne())
    216             return markNotConstant(RHS.getNotConstant());
    217 
    218         return markOverdefined();
    219       }
    220 
    221       // RHS is a ConstantRange, LHS is a non-integer Constant.
    222 
    223       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    224       // a function. The correct result is to pick up RHS.
    225 
    226       return markOverdefined();
    227     }
    228 
    229     if (isNotConstant()) {
    230       if (RHS.isConstant()) {
    231         if (Val == RHS.Val)
    232           return markOverdefined();
    233 
    234         // Unless we can prove that the two Constants are different, we must
    235         // move to overdefined.
    236         // FIXME: use TargetData for smarter constant folding.
    237         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    238                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    239                                                 getNotConstant(),
    240                                                 RHS.getConstant())))
    241           if (Res->isOne())
    242             return false;
    243 
    244         return markOverdefined();
    245       }
    246 
    247       if (RHS.isNotConstant()) {
    248         if (Val == RHS.Val)
    249           return false;
    250         return markOverdefined();
    251       }
    252 
    253       return markOverdefined();
    254     }
    255 
    256     assert(isConstantRange() && "New LVILattice type?");
    257     if (!RHS.isConstantRange())
    258       return markOverdefined();
    259 
    260     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    261     if (NewR.isFullSet())
    262       return markOverdefined();
    263     return markConstantRange(NewR);
    264   }
    265 };
    266 
    267 } // end anonymous namespace.
    268 
    269 namespace llvm {
    270 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    271     LLVM_ATTRIBUTE_USED;
    272 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    273   if (Val.isUndefined())
    274     return OS << "undefined";
    275   if (Val.isOverdefined())
    276     return OS << "overdefined";
    277 
    278   if (Val.isNotConstant())
    279     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    280   else if (Val.isConstantRange())
    281     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    282               << Val.getConstantRange().getUpper() << '>';
    283   return OS << "constant<" << *Val.getConstant() << '>';
    284 }
    285 }
    286 
    287 //===----------------------------------------------------------------------===//
    288 //                          LazyValueInfoCache Decl
    289 //===----------------------------------------------------------------------===//
    290 
    291 namespace {
    292   /// LVIValueHandle - A callback value handle update the cache when
    293   /// values are erased.
    294   class LazyValueInfoCache;
    295   struct LVIValueHandle : public CallbackVH {
    296     LazyValueInfoCache *Parent;
    297 
    298     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    299       : CallbackVH(V), Parent(P) { }
    300 
    301     void deleted();
    302     void allUsesReplacedWith(Value *V) {
    303       deleted();
    304     }
    305   };
    306 }
    307 
    308 namespace llvm {
    309   template<>
    310   struct DenseMapInfo<LVIValueHandle> {
    311     typedef DenseMapInfo<Value*> PointerInfo;
    312     static inline LVIValueHandle getEmptyKey() {
    313       return LVIValueHandle(PointerInfo::getEmptyKey(),
    314                             static_cast<LazyValueInfoCache*>(0));
    315     }
    316     static inline LVIValueHandle getTombstoneKey() {
    317       return LVIValueHandle(PointerInfo::getTombstoneKey(),
    318                             static_cast<LazyValueInfoCache*>(0));
    319     }
    320     static unsigned getHashValue(const LVIValueHandle &Val) {
    321       return PointerInfo::getHashValue(Val);
    322     }
    323     static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) {
    324       return LHS == RHS;
    325     }
    326   };
    327 
    328   template<>
    329   struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > {
    330     typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy;
    331     typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo;
    332     typedef DenseMapInfo<Value*> BPointerInfo;
    333     static inline PairTy getEmptyKey() {
    334       return std::make_pair(APointerInfo::getEmptyKey(),
    335                             BPointerInfo::getEmptyKey());
    336     }
    337     static inline PairTy getTombstoneKey() {
    338       return std::make_pair(APointerInfo::getTombstoneKey(),
    339                             BPointerInfo::getTombstoneKey());
    340     }
    341     static unsigned getHashValue( const PairTy &Val) {
    342       return APointerInfo::getHashValue(Val.first) ^
    343              BPointerInfo::getHashValue(Val.second);
    344     }
    345     static bool isEqual(const PairTy &LHS, const PairTy &RHS) {
    346       return APointerInfo::isEqual(LHS.first, RHS.first) &&
    347              BPointerInfo::isEqual(LHS.second, RHS.second);
    348     }
    349   };
    350 }
    351 
    352 namespace {
    353   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
    354   /// maintains information about queries across the clients' queries.
    355   class LazyValueInfoCache {
    356     /// ValueCacheEntryTy - This is all of the cached block information for
    357     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    358     /// entries, allowing us to do a lookup with a binary search.
    359     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
    360 
    361     /// ValueCache - This is all of the cached information for all values,
    362     /// mapped from Value* to key information.
    363     DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    364 
    365     /// OverDefinedCache - This tracks, on a per-block basis, the set of
    366     /// values that are over-defined at the end of that block.  This is required
    367     /// for cache updating.
    368     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    369     DenseSet<OverDefinedPairTy> OverDefinedCache;
    370 
    371     /// BlockValueStack - This stack holds the state of the value solver
    372     /// during a query.  It basically emulates the callstack of the naive
    373     /// recursive value lookup process.
    374     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    375 
    376     friend struct LVIValueHandle;
    377 
    378     /// OverDefinedCacheUpdater - A helper object that ensures that the
    379     /// OverDefinedCache is updated whenever solveBlockValue returns.
    380     struct OverDefinedCacheUpdater {
    381       LazyValueInfoCache *Parent;
    382       Value *Val;
    383       BasicBlock *BB;
    384       LVILatticeVal &BBLV;
    385 
    386       OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
    387                        LazyValueInfoCache *P)
    388         : Parent(P), Val(V), BB(B), BBLV(LV) { }
    389 
    390       bool markResult(bool changed) {
    391         if (changed && BBLV.isOverdefined())
    392           Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
    393         return changed;
    394       }
    395     };
    396 
    397 
    398 
    399     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    400     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    401                       LVILatticeVal &Result);
    402     bool hasBlockValue(Value *Val, BasicBlock *BB);
    403 
    404     // These methods process one work item and may add more. A false value
    405     // returned means that the work item was not completely processed and must
    406     // be revisited after going through the new items.
    407     bool solveBlockValue(Value *Val, BasicBlock *BB);
    408     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    409                                  Value *Val, BasicBlock *BB);
    410     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    411                                 PHINode *PN, BasicBlock *BB);
    412     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    413                                       Instruction *BBI, BasicBlock *BB);
    414 
    415     void solve();
    416 
    417     ValueCacheEntryTy &lookup(Value *V) {
    418       return ValueCache[LVIValueHandle(V, this)];
    419     }
    420 
    421   public:
    422     /// getValueInBlock - This is the query interface to determine the lattice
    423     /// value for the specified Value* at the end of the specified block.
    424     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
    425 
    426     /// getValueOnEdge - This is the query interface to determine the lattice
    427     /// value for the specified Value* that is true on the specified edge.
    428     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
    429 
    430     /// threadEdge - This is the update interface to inform the cache that an
    431     /// edge from PredBB to OldSucc has been threaded to be from PredBB to
    432     /// NewSucc.
    433     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    434 
    435     /// eraseBlock - This is part of the update interface to inform the cache
    436     /// that a block has been deleted.
    437     void eraseBlock(BasicBlock *BB);
    438 
    439     /// clear - Empty the cache.
    440     void clear() {
    441       ValueCache.clear();
    442       OverDefinedCache.clear();
    443     }
    444   };
    445 } // end anonymous namespace
    446 
    447 void LVIValueHandle::deleted() {
    448   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    449 
    450   SmallVector<OverDefinedPairTy, 4> ToErase;
    451   for (DenseSet<OverDefinedPairTy>::iterator
    452        I = Parent->OverDefinedCache.begin(),
    453        E = Parent->OverDefinedCache.end();
    454        I != E; ++I) {
    455     if (I->second == getValPtr())
    456       ToErase.push_back(*I);
    457   }
    458 
    459   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    460        E = ToErase.end(); I != E; ++I)
    461     Parent->OverDefinedCache.erase(*I);
    462 
    463   // This erasure deallocates *this, so it MUST happen after we're done
    464   // using any and all members of *this.
    465   Parent->ValueCache.erase(*this);
    466 }
    467 
    468 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    469   SmallVector<OverDefinedPairTy, 4> ToErase;
    470   for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
    471        E = OverDefinedCache.end(); I != E; ++I) {
    472     if (I->first == BB)
    473       ToErase.push_back(*I);
    474   }
    475 
    476   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    477        E = ToErase.end(); I != E; ++I)
    478     OverDefinedCache.erase(*I);
    479 
    480   for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator
    481        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    482     I->second.erase(BB);
    483 }
    484 
    485 void LazyValueInfoCache::solve() {
    486   while (!BlockValueStack.empty()) {
    487     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    488     if (solveBlockValue(e.second, e.first))
    489       BlockValueStack.pop();
    490   }
    491 }
    492 
    493 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    494   // If already a constant, there is nothing to compute.
    495   if (isa<Constant>(Val))
    496     return true;
    497 
    498   LVIValueHandle ValHandle(Val, this);
    499   if (!ValueCache.count(ValHandle)) return false;
    500   return ValueCache[ValHandle].count(BB);
    501 }
    502 
    503 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    504   // If already a constant, there is nothing to compute.
    505   if (Constant *VC = dyn_cast<Constant>(Val))
    506     return LVILatticeVal::get(VC);
    507 
    508   return lookup(Val)[BB];
    509 }
    510 
    511 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    512   if (isa<Constant>(Val))
    513     return true;
    514 
    515   ValueCacheEntryTy &Cache = lookup(Val);
    516   LVILatticeVal &BBLV = Cache[BB];
    517 
    518   // OverDefinedCacheUpdater is a helper object that will update
    519   // the OverDefinedCache for us when this method exits.  Make sure to
    520   // call markResult on it as we exist, passing a bool to indicate if the
    521   // cache needs updating, i.e. if we have solve a new value or not.
    522   OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
    523 
    524   // If we've already computed this block's value, return it.
    525   if (!BBLV.isUndefined()) {
    526     DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    527 
    528     // Since we're reusing a cached value here, we don't need to update the
    529     // OverDefinedCahce.  The cache will have been properly updated
    530     // whenever the cached value was inserted.
    531     ODCacheUpdater.markResult(false);
    532     return true;
    533   }
    534 
    535   // Otherwise, this is the first time we're seeing this block.  Reset the
    536   // lattice value to overdefined, so that cycles will terminate and be
    537   // conservatively correct.
    538   BBLV.markOverdefined();
    539 
    540   Instruction *BBI = dyn_cast<Instruction>(Val);
    541   if (BBI == 0 || BBI->getParent() != BB) {
    542     return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
    543   }
    544 
    545   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    546     return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
    547   }
    548 
    549   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    550     BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    551     return ODCacheUpdater.markResult(true);
    552   }
    553 
    554   // We can only analyze the definitions of certain classes of instructions
    555   // (integral binops and casts at the moment), so bail if this isn't one.
    556   LVILatticeVal Result;
    557   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    558      !BBI->getType()->isIntegerTy()) {
    559     DEBUG(dbgs() << " compute BB '" << BB->getName()
    560                  << "' - overdefined because inst def found.\n");
    561     BBLV.markOverdefined();
    562     return ODCacheUpdater.markResult(true);
    563   }
    564 
    565   // FIXME: We're currently limited to binops with a constant RHS.  This should
    566   // be improved.
    567   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    568   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    569     DEBUG(dbgs() << " compute BB '" << BB->getName()
    570                  << "' - overdefined because inst def found.\n");
    571 
    572     BBLV.markOverdefined();
    573     return ODCacheUpdater.markResult(true);
    574   }
    575 
    576   return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
    577 }
    578 
    579 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    580   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    581     return L->getPointerAddressSpace() == 0 &&
    582         GetUnderlyingObject(L->getPointerOperand()) ==
    583         GetUnderlyingObject(Ptr);
    584   }
    585   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    586     return S->getPointerAddressSpace() == 0 &&
    587         GetUnderlyingObject(S->getPointerOperand()) ==
    588         GetUnderlyingObject(Ptr);
    589   }
    590   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    591     if (MI->isVolatile()) return false;
    592 
    593     // FIXME: check whether it has a valuerange that excludes zero?
    594     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    595     if (!Len || Len->isZero()) return false;
    596 
    597     if (MI->getDestAddressSpace() == 0)
    598       if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
    599         return true;
    600     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    601       if (MTI->getSourceAddressSpace() == 0)
    602         if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr)
    603           return true;
    604   }
    605   return false;
    606 }
    607 
    608 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    609                                                  Value *Val, BasicBlock *BB) {
    610   LVILatticeVal Result;  // Start Undefined.
    611 
    612   // If this is a pointer, and there's a load from that pointer in this BB,
    613   // then we know that the pointer can't be NULL.
    614   bool NotNull = false;
    615   if (Val->getType()->isPointerTy()) {
    616     if (isa<AllocaInst>(Val)) {
    617       NotNull = true;
    618     } else {
    619       for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
    620         if (InstructionDereferencesPointer(BI, Val)) {
    621           NotNull = true;
    622           break;
    623         }
    624       }
    625     }
    626   }
    627 
    628   // If this is the entry block, we must be asking about an argument.  The
    629   // value is overdefined.
    630   if (BB == &BB->getParent()->getEntryBlock()) {
    631     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    632     if (NotNull) {
    633       PointerType *PTy = cast<PointerType>(Val->getType());
    634       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    635     } else {
    636       Result.markOverdefined();
    637     }
    638     BBLV = Result;
    639     return true;
    640   }
    641 
    642   // Loop over all of our predecessors, merging what we know from them into
    643   // result.
    644   bool EdgesMissing = false;
    645   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    646     LVILatticeVal EdgeResult;
    647     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    648     if (EdgesMissing)
    649       continue;
    650 
    651     Result.mergeIn(EdgeResult);
    652 
    653     // If we hit overdefined, exit early.  The BlockVals entry is already set
    654     // to overdefined.
    655     if (Result.isOverdefined()) {
    656       DEBUG(dbgs() << " compute BB '" << BB->getName()
    657             << "' - overdefined because of pred.\n");
    658       // If we previously determined that this is a pointer that can't be null
    659       // then return that rather than giving up entirely.
    660       if (NotNull) {
    661         PointerType *PTy = cast<PointerType>(Val->getType());
    662         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    663       }
    664 
    665       BBLV = Result;
    666       return true;
    667     }
    668   }
    669   if (EdgesMissing)
    670     return false;
    671 
    672   // Return the merged value, which is more precise than 'overdefined'.
    673   assert(!Result.isOverdefined());
    674   BBLV = Result;
    675   return true;
    676 }
    677 
    678 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    679                                                 PHINode *PN, BasicBlock *BB) {
    680   LVILatticeVal Result;  // Start Undefined.
    681 
    682   // Loop over all of our predecessors, merging what we know from them into
    683   // result.
    684   bool EdgesMissing = false;
    685   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    686     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    687     Value *PhiVal = PN->getIncomingValue(i);
    688     LVILatticeVal EdgeResult;
    689     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
    690     if (EdgesMissing)
    691       continue;
    692 
    693     Result.mergeIn(EdgeResult);
    694 
    695     // If we hit overdefined, exit early.  The BlockVals entry is already set
    696     // to overdefined.
    697     if (Result.isOverdefined()) {
    698       DEBUG(dbgs() << " compute BB '" << BB->getName()
    699             << "' - overdefined because of pred.\n");
    700 
    701       BBLV = Result;
    702       return true;
    703     }
    704   }
    705   if (EdgesMissing)
    706     return false;
    707 
    708   // Return the merged value, which is more precise than 'overdefined'.
    709   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    710   BBLV = Result;
    711   return true;
    712 }
    713 
    714 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    715                                                       Instruction *BBI,
    716                                                       BasicBlock *BB) {
    717   // Figure out the range of the LHS.  If that fails, bail.
    718   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    719     BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
    720     return false;
    721   }
    722 
    723   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    724   if (!LHSVal.isConstantRange()) {
    725     BBLV.markOverdefined();
    726     return true;
    727   }
    728 
    729   ConstantRange LHSRange = LHSVal.getConstantRange();
    730   ConstantRange RHSRange(1);
    731   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    732   if (isa<BinaryOperator>(BBI)) {
    733     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    734       RHSRange = ConstantRange(RHS->getValue());
    735     } else {
    736       BBLV.markOverdefined();
    737       return true;
    738     }
    739   }
    740 
    741   // NOTE: We're currently limited by the set of operations that ConstantRange
    742   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    743   // more definitions.
    744   LVILatticeVal Result;
    745   switch (BBI->getOpcode()) {
    746   case Instruction::Add:
    747     Result.markConstantRange(LHSRange.add(RHSRange));
    748     break;
    749   case Instruction::Sub:
    750     Result.markConstantRange(LHSRange.sub(RHSRange));
    751     break;
    752   case Instruction::Mul:
    753     Result.markConstantRange(LHSRange.multiply(RHSRange));
    754     break;
    755   case Instruction::UDiv:
    756     Result.markConstantRange(LHSRange.udiv(RHSRange));
    757     break;
    758   case Instruction::Shl:
    759     Result.markConstantRange(LHSRange.shl(RHSRange));
    760     break;
    761   case Instruction::LShr:
    762     Result.markConstantRange(LHSRange.lshr(RHSRange));
    763     break;
    764   case Instruction::Trunc:
    765     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    766     break;
    767   case Instruction::SExt:
    768     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    769     break;
    770   case Instruction::ZExt:
    771     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    772     break;
    773   case Instruction::BitCast:
    774     Result.markConstantRange(LHSRange);
    775     break;
    776   case Instruction::And:
    777     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    778     break;
    779   case Instruction::Or:
    780     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    781     break;
    782 
    783   // Unhandled instructions are overdefined.
    784   default:
    785     DEBUG(dbgs() << " compute BB '" << BB->getName()
    786                  << "' - overdefined because inst def found.\n");
    787     Result.markOverdefined();
    788     break;
    789   }
    790 
    791   BBLV = Result;
    792   return true;
    793 }
    794 
    795 /// getEdgeValue - This method attempts to infer more complex
    796 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    797                                       BasicBlock *BBTo, LVILatticeVal &Result) {
    798   // If already a constant, there is nothing to compute.
    799   if (Constant *VC = dyn_cast<Constant>(Val)) {
    800     Result = LVILatticeVal::get(VC);
    801     return true;
    802   }
    803 
    804   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
    805   // know that v != 0.
    806   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    807     // If this is a conditional branch and only one successor goes to BBTo, then
    808     // we maybe able to infer something from the condition.
    809     if (BI->isConditional() &&
    810         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    811       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    812       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    813              "BBTo isn't a successor of BBFrom");
    814 
    815       // If V is the condition of the branch itself, then we know exactly what
    816       // it is.
    817       if (BI->getCondition() == Val) {
    818         Result = LVILatticeVal::get(ConstantInt::get(
    819                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    820         return true;
    821       }
    822 
    823       // If the condition of the branch is an equality comparison, we may be
    824       // able to infer the value.
    825       ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
    826       if (ICI && ICI->getOperand(0) == Val &&
    827           isa<Constant>(ICI->getOperand(1))) {
    828         if (ICI->isEquality()) {
    829           // We know that V has the RHS constant if this is a true SETEQ or
    830           // false SETNE.
    831           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    832             Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    833           else
    834             Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    835           return true;
    836         }
    837 
    838         if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    839           // Calculate the range of values that would satisfy the comparison.
    840           ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
    841           ConstantRange TrueValues =
    842             ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
    843 
    844           // If we're interested in the false dest, invert the condition.
    845           if (!isTrueDest) TrueValues = TrueValues.inverse();
    846 
    847           // Figure out the possible values of the query BEFORE this branch.
    848           if (!hasBlockValue(Val, BBFrom)) {
    849             BlockValueStack.push(std::make_pair(BBFrom, Val));
    850             return false;
    851           }
    852 
    853           LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
    854           if (!InBlock.isConstantRange()) {
    855             Result = LVILatticeVal::getRange(TrueValues);
    856             return true;
    857           }
    858 
    859           // Find all potential values that satisfy both the input and output
    860           // conditions.
    861           ConstantRange PossibleValues =
    862             TrueValues.intersectWith(InBlock.getConstantRange());
    863 
    864           Result = LVILatticeVal::getRange(PossibleValues);
    865           return true;
    866         }
    867       }
    868     }
    869   }
    870 
    871   // If the edge was formed by a switch on the value, then we may know exactly
    872   // what it is.
    873   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    874     if (SI->getCondition() == Val) {
    875       // We don't know anything in the default case.
    876       if (SI->getDefaultDest() == BBTo) {
    877         Result.markOverdefined();
    878         return true;
    879       }
    880 
    881       // We only know something if there is exactly one value that goes from
    882       // BBFrom to BBTo.
    883       unsigned NumEdges = 0;
    884       ConstantInt *EdgeVal = 0;
    885       for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
    886         if (SI->getSuccessor(i) != BBTo) continue;
    887         if (NumEdges++) break;
    888         EdgeVal = SI->getCaseValue(i);
    889       }
    890       assert(EdgeVal && "Missing successor?");
    891       if (NumEdges == 1) {
    892         Result = LVILatticeVal::get(EdgeVal);
    893         return true;
    894       }
    895     }
    896   }
    897 
    898   // Otherwise see if the value is known in the block.
    899   if (hasBlockValue(Val, BBFrom)) {
    900     Result = getBlockValue(Val, BBFrom);
    901     return true;
    902   }
    903   BlockValueStack.push(std::make_pair(BBFrom, Val));
    904   return false;
    905 }
    906 
    907 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
    908   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
    909         << BB->getName() << "'\n");
    910 
    911   BlockValueStack.push(std::make_pair(BB, V));
    912   solve();
    913   LVILatticeVal Result = getBlockValue(V, BB);
    914 
    915   DEBUG(dbgs() << "  Result = " << Result << "\n");
    916   return Result;
    917 }
    918 
    919 LVILatticeVal LazyValueInfoCache::
    920 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
    921   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
    922         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
    923 
    924   LVILatticeVal Result;
    925   if (!getEdgeValue(V, FromBB, ToBB, Result)) {
    926     solve();
    927     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
    928     (void)WasFastQuery;
    929     assert(WasFastQuery && "More work to do after problem solved?");
    930   }
    931 
    932   DEBUG(dbgs() << "  Result = " << Result << "\n");
    933   return Result;
    934 }
    935 
    936 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
    937                                     BasicBlock *NewSucc) {
    938   // When an edge in the graph has been threaded, values that we could not
    939   // determine a value for before (i.e. were marked overdefined) may be possible
    940   // to solve now.  We do NOT try to proactively update these values.  Instead,
    941   // we clear their entries from the cache, and allow lazy updating to recompute
    942   // them when needed.
    943 
    944   // The updating process is fairly simple: we need to dropped cached info
    945   // for all values that were marked overdefined in OldSucc, and for those same
    946   // values in any successor of OldSucc (except NewSucc) in which they were
    947   // also marked overdefined.
    948   std::vector<BasicBlock*> worklist;
    949   worklist.push_back(OldSucc);
    950 
    951   DenseSet<Value*> ClearSet;
    952   for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
    953        E = OverDefinedCache.end(); I != E; ++I) {
    954     if (I->first == OldSucc)
    955       ClearSet.insert(I->second);
    956   }
    957 
    958   // Use a worklist to perform a depth-first search of OldSucc's successors.
    959   // NOTE: We do not need a visited list since any blocks we have already
    960   // visited will have had their overdefined markers cleared already, and we
    961   // thus won't loop to their successors.
    962   while (!worklist.empty()) {
    963     BasicBlock *ToUpdate = worklist.back();
    964     worklist.pop_back();
    965 
    966     // Skip blocks only accessible through NewSucc.
    967     if (ToUpdate == NewSucc) continue;
    968 
    969     bool changed = false;
    970     for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
    971          I != E; ++I) {
    972       // If a value was marked overdefined in OldSucc, and is here too...
    973       DenseSet<OverDefinedPairTy>::iterator OI =
    974         OverDefinedCache.find(std::make_pair(ToUpdate, *I));
    975       if (OI == OverDefinedCache.end()) continue;
    976 
    977       // Remove it from the caches.
    978       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
    979       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
    980 
    981       assert(CI != Entry.end() && "Couldn't find entry to update?");
    982       Entry.erase(CI);
    983       OverDefinedCache.erase(OI);
    984 
    985       // If we removed anything, then we potentially need to update
    986       // blocks successors too.
    987       changed = true;
    988     }
    989 
    990     if (!changed) continue;
    991 
    992     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
    993   }
    994 }
    995 
    996 //===----------------------------------------------------------------------===//
    997 //                            LazyValueInfo Impl
    998 //===----------------------------------------------------------------------===//
    999 
   1000 /// getCache - This lazily constructs the LazyValueInfoCache.
   1001 static LazyValueInfoCache &getCache(void *&PImpl) {
   1002   if (!PImpl)
   1003     PImpl = new LazyValueInfoCache();
   1004   return *static_cast<LazyValueInfoCache*>(PImpl);
   1005 }
   1006 
   1007 bool LazyValueInfo::runOnFunction(Function &F) {
   1008   if (PImpl)
   1009     getCache(PImpl).clear();
   1010 
   1011   TD = getAnalysisIfAvailable<TargetData>();
   1012   // Fully lazy.
   1013   return false;
   1014 }
   1015 
   1016 void LazyValueInfo::releaseMemory() {
   1017   // If the cache was allocated, free it.
   1018   if (PImpl) {
   1019     delete &getCache(PImpl);
   1020     PImpl = 0;
   1021   }
   1022 }
   1023 
   1024 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
   1025   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
   1026 
   1027   if (Result.isConstant())
   1028     return Result.getConstant();
   1029   if (Result.isConstantRange()) {
   1030     ConstantRange CR = Result.getConstantRange();
   1031     if (const APInt *SingleVal = CR.getSingleElement())
   1032       return ConstantInt::get(V->getContext(), *SingleVal);
   1033   }
   1034   return 0;
   1035 }
   1036 
   1037 /// getConstantOnEdge - Determine whether the specified value is known to be a
   1038 /// constant on the specified edge.  Return null if not.
   1039 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1040                                            BasicBlock *ToBB) {
   1041   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1042 
   1043   if (Result.isConstant())
   1044     return Result.getConstant();
   1045   if (Result.isConstantRange()) {
   1046     ConstantRange CR = Result.getConstantRange();
   1047     if (const APInt *SingleVal = CR.getSingleElement())
   1048       return ConstantInt::get(V->getContext(), *SingleVal);
   1049   }
   1050   return 0;
   1051 }
   1052 
   1053 /// getPredicateOnEdge - Determine whether the specified value comparison
   1054 /// with a constant is known to be true or false on the specified CFG edge.
   1055 /// Pred is a CmpInst predicate.
   1056 LazyValueInfo::Tristate
   1057 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1058                                   BasicBlock *FromBB, BasicBlock *ToBB) {
   1059   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1060 
   1061   // If we know the value is a constant, evaluate the conditional.
   1062   Constant *Res = 0;
   1063   if (Result.isConstant()) {
   1064     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
   1065     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1066       return ResCI->isZero() ? False : True;
   1067     return Unknown;
   1068   }
   1069 
   1070   if (Result.isConstantRange()) {
   1071     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1072     if (!CI) return Unknown;
   1073 
   1074     ConstantRange CR = Result.getConstantRange();
   1075     if (Pred == ICmpInst::ICMP_EQ) {
   1076       if (!CR.contains(CI->getValue()))
   1077         return False;
   1078 
   1079       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1080         return True;
   1081     } else if (Pred == ICmpInst::ICMP_NE) {
   1082       if (!CR.contains(CI->getValue()))
   1083         return True;
   1084 
   1085       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1086         return False;
   1087     }
   1088 
   1089     // Handle more complex predicates.
   1090     ConstantRange TrueValues =
   1091         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1092     if (TrueValues.contains(CR))
   1093       return True;
   1094     if (TrueValues.inverse().contains(CR))
   1095       return False;
   1096     return Unknown;
   1097   }
   1098 
   1099   if (Result.isNotConstant()) {
   1100     // If this is an equality comparison, we can try to fold it knowing that
   1101     // "V != C1".
   1102     if (Pred == ICmpInst::ICMP_EQ) {
   1103       // !C1 == C -> false iff C1 == C.
   1104       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1105                                             Result.getNotConstant(), C, TD);
   1106       if (Res->isNullValue())
   1107         return False;
   1108     } else if (Pred == ICmpInst::ICMP_NE) {
   1109       // !C1 != C -> true iff C1 == C.
   1110       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1111                                             Result.getNotConstant(), C, TD);
   1112       if (Res->isNullValue())
   1113         return True;
   1114     }
   1115     return Unknown;
   1116   }
   1117 
   1118   return Unknown;
   1119 }
   1120 
   1121 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1122                                BasicBlock *NewSucc) {
   1123   if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
   1124 }
   1125 
   1126 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1127   if (PImpl) getCache(PImpl).eraseBlock(BB);
   1128 }
   1129