1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interface for lazy computation of value constraint 11 // information. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "lazy-value-info" 16 #include "llvm/Analysis/LazyValueInfo.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Target/TargetData.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/ConstantRange.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include <map> 32 #include <stack> 33 using namespace llvm; 34 35 char LazyValueInfo::ID = 0; 36 INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", 37 "Lazy Value Information Analysis", false, true) 38 39 namespace llvm { 40 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } 41 } 42 43 44 //===----------------------------------------------------------------------===// 45 // LVILatticeVal 46 //===----------------------------------------------------------------------===// 47 48 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each 49 /// value. 50 /// 51 /// FIXME: This is basically just for bringup, this can be made a lot more rich 52 /// in the future. 53 /// 54 namespace { 55 class LVILatticeVal { 56 enum LatticeValueTy { 57 /// undefined - This Value has no known value yet. 58 undefined, 59 60 /// constant - This Value has a specific constant value. 61 constant, 62 /// notconstant - This Value is known to not have the specified value. 63 notconstant, 64 65 /// constantrange - The Value falls within this range. 66 constantrange, 67 68 /// overdefined - This value is not known to be constant, and we know that 69 /// it has a value. 70 overdefined 71 }; 72 73 /// Val: This stores the current lattice value along with the Constant* for 74 /// the constant if this is a 'constant' or 'notconstant' value. 75 LatticeValueTy Tag; 76 Constant *Val; 77 ConstantRange Range; 78 79 public: 80 LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} 81 82 static LVILatticeVal get(Constant *C) { 83 LVILatticeVal Res; 84 if (!isa<UndefValue>(C)) 85 Res.markConstant(C); 86 return Res; 87 } 88 static LVILatticeVal getNot(Constant *C) { 89 LVILatticeVal Res; 90 if (!isa<UndefValue>(C)) 91 Res.markNotConstant(C); 92 return Res; 93 } 94 static LVILatticeVal getRange(ConstantRange CR) { 95 LVILatticeVal Res; 96 Res.markConstantRange(CR); 97 return Res; 98 } 99 100 bool isUndefined() const { return Tag == undefined; } 101 bool isConstant() const { return Tag == constant; } 102 bool isNotConstant() const { return Tag == notconstant; } 103 bool isConstantRange() const { return Tag == constantrange; } 104 bool isOverdefined() const { return Tag == overdefined; } 105 106 Constant *getConstant() const { 107 assert(isConstant() && "Cannot get the constant of a non-constant!"); 108 return Val; 109 } 110 111 Constant *getNotConstant() const { 112 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); 113 return Val; 114 } 115 116 ConstantRange getConstantRange() const { 117 assert(isConstantRange() && 118 "Cannot get the constant-range of a non-constant-range!"); 119 return Range; 120 } 121 122 /// markOverdefined - Return true if this is a change in status. 123 bool markOverdefined() { 124 if (isOverdefined()) 125 return false; 126 Tag = overdefined; 127 return true; 128 } 129 130 /// markConstant - Return true if this is a change in status. 131 bool markConstant(Constant *V) { 132 assert(V && "Marking constant with NULL"); 133 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 134 return markConstantRange(ConstantRange(CI->getValue())); 135 if (isa<UndefValue>(V)) 136 return false; 137 138 assert((!isConstant() || getConstant() == V) && 139 "Marking constant with different value"); 140 assert(isUndefined()); 141 Tag = constant; 142 Val = V; 143 return true; 144 } 145 146 /// markNotConstant - Return true if this is a change in status. 147 bool markNotConstant(Constant *V) { 148 assert(V && "Marking constant with NULL"); 149 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 150 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); 151 if (isa<UndefValue>(V)) 152 return false; 153 154 assert((!isConstant() || getConstant() != V) && 155 "Marking constant !constant with same value"); 156 assert((!isNotConstant() || getNotConstant() == V) && 157 "Marking !constant with different value"); 158 assert(isUndefined() || isConstant()); 159 Tag = notconstant; 160 Val = V; 161 return true; 162 } 163 164 /// markConstantRange - Return true if this is a change in status. 165 bool markConstantRange(const ConstantRange NewR) { 166 if (isConstantRange()) { 167 if (NewR.isEmptySet()) 168 return markOverdefined(); 169 170 bool changed = Range == NewR; 171 Range = NewR; 172 return changed; 173 } 174 175 assert(isUndefined()); 176 if (NewR.isEmptySet()) 177 return markOverdefined(); 178 179 Tag = constantrange; 180 Range = NewR; 181 return true; 182 } 183 184 /// mergeIn - Merge the specified lattice value into this one, updating this 185 /// one and returning true if anything changed. 186 bool mergeIn(const LVILatticeVal &RHS) { 187 if (RHS.isUndefined() || isOverdefined()) return false; 188 if (RHS.isOverdefined()) return markOverdefined(); 189 190 if (isUndefined()) { 191 Tag = RHS.Tag; 192 Val = RHS.Val; 193 Range = RHS.Range; 194 return true; 195 } 196 197 if (isConstant()) { 198 if (RHS.isConstant()) { 199 if (Val == RHS.Val) 200 return false; 201 return markOverdefined(); 202 } 203 204 if (RHS.isNotConstant()) { 205 if (Val == RHS.Val) 206 return markOverdefined(); 207 208 // Unless we can prove that the two Constants are different, we must 209 // move to overdefined. 210 // FIXME: use TargetData for smarter constant folding. 211 if (ConstantInt *Res = dyn_cast<ConstantInt>( 212 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, 213 getConstant(), 214 RHS.getNotConstant()))) 215 if (Res->isOne()) 216 return markNotConstant(RHS.getNotConstant()); 217 218 return markOverdefined(); 219 } 220 221 // RHS is a ConstantRange, LHS is a non-integer Constant. 222 223 // FIXME: consider the case where RHS is a range [1, 0) and LHS is 224 // a function. The correct result is to pick up RHS. 225 226 return markOverdefined(); 227 } 228 229 if (isNotConstant()) { 230 if (RHS.isConstant()) { 231 if (Val == RHS.Val) 232 return markOverdefined(); 233 234 // Unless we can prove that the two Constants are different, we must 235 // move to overdefined. 236 // FIXME: use TargetData for smarter constant folding. 237 if (ConstantInt *Res = dyn_cast<ConstantInt>( 238 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, 239 getNotConstant(), 240 RHS.getConstant()))) 241 if (Res->isOne()) 242 return false; 243 244 return markOverdefined(); 245 } 246 247 if (RHS.isNotConstant()) { 248 if (Val == RHS.Val) 249 return false; 250 return markOverdefined(); 251 } 252 253 return markOverdefined(); 254 } 255 256 assert(isConstantRange() && "New LVILattice type?"); 257 if (!RHS.isConstantRange()) 258 return markOverdefined(); 259 260 ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); 261 if (NewR.isFullSet()) 262 return markOverdefined(); 263 return markConstantRange(NewR); 264 } 265 }; 266 267 } // end anonymous namespace. 268 269 namespace llvm { 270 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) 271 LLVM_ATTRIBUTE_USED; 272 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { 273 if (Val.isUndefined()) 274 return OS << "undefined"; 275 if (Val.isOverdefined()) 276 return OS << "overdefined"; 277 278 if (Val.isNotConstant()) 279 return OS << "notconstant<" << *Val.getNotConstant() << '>'; 280 else if (Val.isConstantRange()) 281 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " 282 << Val.getConstantRange().getUpper() << '>'; 283 return OS << "constant<" << *Val.getConstant() << '>'; 284 } 285 } 286 287 //===----------------------------------------------------------------------===// 288 // LazyValueInfoCache Decl 289 //===----------------------------------------------------------------------===// 290 291 namespace { 292 /// LVIValueHandle - A callback value handle update the cache when 293 /// values are erased. 294 class LazyValueInfoCache; 295 struct LVIValueHandle : public CallbackVH { 296 LazyValueInfoCache *Parent; 297 298 LVIValueHandle(Value *V, LazyValueInfoCache *P) 299 : CallbackVH(V), Parent(P) { } 300 301 void deleted(); 302 void allUsesReplacedWith(Value *V) { 303 deleted(); 304 } 305 }; 306 } 307 308 namespace llvm { 309 template<> 310 struct DenseMapInfo<LVIValueHandle> { 311 typedef DenseMapInfo<Value*> PointerInfo; 312 static inline LVIValueHandle getEmptyKey() { 313 return LVIValueHandle(PointerInfo::getEmptyKey(), 314 static_cast<LazyValueInfoCache*>(0)); 315 } 316 static inline LVIValueHandle getTombstoneKey() { 317 return LVIValueHandle(PointerInfo::getTombstoneKey(), 318 static_cast<LazyValueInfoCache*>(0)); 319 } 320 static unsigned getHashValue(const LVIValueHandle &Val) { 321 return PointerInfo::getHashValue(Val); 322 } 323 static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) { 324 return LHS == RHS; 325 } 326 }; 327 328 template<> 329 struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > { 330 typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy; 331 typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo; 332 typedef DenseMapInfo<Value*> BPointerInfo; 333 static inline PairTy getEmptyKey() { 334 return std::make_pair(APointerInfo::getEmptyKey(), 335 BPointerInfo::getEmptyKey()); 336 } 337 static inline PairTy getTombstoneKey() { 338 return std::make_pair(APointerInfo::getTombstoneKey(), 339 BPointerInfo::getTombstoneKey()); 340 } 341 static unsigned getHashValue( const PairTy &Val) { 342 return APointerInfo::getHashValue(Val.first) ^ 343 BPointerInfo::getHashValue(Val.second); 344 } 345 static bool isEqual(const PairTy &LHS, const PairTy &RHS) { 346 return APointerInfo::isEqual(LHS.first, RHS.first) && 347 BPointerInfo::isEqual(LHS.second, RHS.second); 348 } 349 }; 350 } 351 352 namespace { 353 /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which 354 /// maintains information about queries across the clients' queries. 355 class LazyValueInfoCache { 356 /// ValueCacheEntryTy - This is all of the cached block information for 357 /// exactly one Value*. The entries are sorted by the BasicBlock* of the 358 /// entries, allowing us to do a lookup with a binary search. 359 typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy; 360 361 /// ValueCache - This is all of the cached information for all values, 362 /// mapped from Value* to key information. 363 DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache; 364 365 /// OverDefinedCache - This tracks, on a per-block basis, the set of 366 /// values that are over-defined at the end of that block. This is required 367 /// for cache updating. 368 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; 369 DenseSet<OverDefinedPairTy> OverDefinedCache; 370 371 /// BlockValueStack - This stack holds the state of the value solver 372 /// during a query. It basically emulates the callstack of the naive 373 /// recursive value lookup process. 374 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; 375 376 friend struct LVIValueHandle; 377 378 /// OverDefinedCacheUpdater - A helper object that ensures that the 379 /// OverDefinedCache is updated whenever solveBlockValue returns. 380 struct OverDefinedCacheUpdater { 381 LazyValueInfoCache *Parent; 382 Value *Val; 383 BasicBlock *BB; 384 LVILatticeVal &BBLV; 385 386 OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV, 387 LazyValueInfoCache *P) 388 : Parent(P), Val(V), BB(B), BBLV(LV) { } 389 390 bool markResult(bool changed) { 391 if (changed && BBLV.isOverdefined()) 392 Parent->OverDefinedCache.insert(std::make_pair(BB, Val)); 393 return changed; 394 } 395 }; 396 397 398 399 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); 400 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, 401 LVILatticeVal &Result); 402 bool hasBlockValue(Value *Val, BasicBlock *BB); 403 404 // These methods process one work item and may add more. A false value 405 // returned means that the work item was not completely processed and must 406 // be revisited after going through the new items. 407 bool solveBlockValue(Value *Val, BasicBlock *BB); 408 bool solveBlockValueNonLocal(LVILatticeVal &BBLV, 409 Value *Val, BasicBlock *BB); 410 bool solveBlockValuePHINode(LVILatticeVal &BBLV, 411 PHINode *PN, BasicBlock *BB); 412 bool solveBlockValueConstantRange(LVILatticeVal &BBLV, 413 Instruction *BBI, BasicBlock *BB); 414 415 void solve(); 416 417 ValueCacheEntryTy &lookup(Value *V) { 418 return ValueCache[LVIValueHandle(V, this)]; 419 } 420 421 public: 422 /// getValueInBlock - This is the query interface to determine the lattice 423 /// value for the specified Value* at the end of the specified block. 424 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); 425 426 /// getValueOnEdge - This is the query interface to determine the lattice 427 /// value for the specified Value* that is true on the specified edge. 428 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); 429 430 /// threadEdge - This is the update interface to inform the cache that an 431 /// edge from PredBB to OldSucc has been threaded to be from PredBB to 432 /// NewSucc. 433 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 434 435 /// eraseBlock - This is part of the update interface to inform the cache 436 /// that a block has been deleted. 437 void eraseBlock(BasicBlock *BB); 438 439 /// clear - Empty the cache. 440 void clear() { 441 ValueCache.clear(); 442 OverDefinedCache.clear(); 443 } 444 }; 445 } // end anonymous namespace 446 447 void LVIValueHandle::deleted() { 448 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; 449 450 SmallVector<OverDefinedPairTy, 4> ToErase; 451 for (DenseSet<OverDefinedPairTy>::iterator 452 I = Parent->OverDefinedCache.begin(), 453 E = Parent->OverDefinedCache.end(); 454 I != E; ++I) { 455 if (I->second == getValPtr()) 456 ToErase.push_back(*I); 457 } 458 459 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), 460 E = ToErase.end(); I != E; ++I) 461 Parent->OverDefinedCache.erase(*I); 462 463 // This erasure deallocates *this, so it MUST happen after we're done 464 // using any and all members of *this. 465 Parent->ValueCache.erase(*this); 466 } 467 468 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 469 SmallVector<OverDefinedPairTy, 4> ToErase; 470 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), 471 E = OverDefinedCache.end(); I != E; ++I) { 472 if (I->first == BB) 473 ToErase.push_back(*I); 474 } 475 476 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), 477 E = ToErase.end(); I != E; ++I) 478 OverDefinedCache.erase(*I); 479 480 for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator 481 I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) 482 I->second.erase(BB); 483 } 484 485 void LazyValueInfoCache::solve() { 486 while (!BlockValueStack.empty()) { 487 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); 488 if (solveBlockValue(e.second, e.first)) 489 BlockValueStack.pop(); 490 } 491 } 492 493 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { 494 // If already a constant, there is nothing to compute. 495 if (isa<Constant>(Val)) 496 return true; 497 498 LVIValueHandle ValHandle(Val, this); 499 if (!ValueCache.count(ValHandle)) return false; 500 return ValueCache[ValHandle].count(BB); 501 } 502 503 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { 504 // If already a constant, there is nothing to compute. 505 if (Constant *VC = dyn_cast<Constant>(Val)) 506 return LVILatticeVal::get(VC); 507 508 return lookup(Val)[BB]; 509 } 510 511 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { 512 if (isa<Constant>(Val)) 513 return true; 514 515 ValueCacheEntryTy &Cache = lookup(Val); 516 LVILatticeVal &BBLV = Cache[BB]; 517 518 // OverDefinedCacheUpdater is a helper object that will update 519 // the OverDefinedCache for us when this method exits. Make sure to 520 // call markResult on it as we exist, passing a bool to indicate if the 521 // cache needs updating, i.e. if we have solve a new value or not. 522 OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this); 523 524 // If we've already computed this block's value, return it. 525 if (!BBLV.isUndefined()) { 526 DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); 527 528 // Since we're reusing a cached value here, we don't need to update the 529 // OverDefinedCahce. The cache will have been properly updated 530 // whenever the cached value was inserted. 531 ODCacheUpdater.markResult(false); 532 return true; 533 } 534 535 // Otherwise, this is the first time we're seeing this block. Reset the 536 // lattice value to overdefined, so that cycles will terminate and be 537 // conservatively correct. 538 BBLV.markOverdefined(); 539 540 Instruction *BBI = dyn_cast<Instruction>(Val); 541 if (BBI == 0 || BBI->getParent() != BB) { 542 return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB)); 543 } 544 545 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 546 return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB)); 547 } 548 549 if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) { 550 BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType())); 551 return ODCacheUpdater.markResult(true); 552 } 553 554 // We can only analyze the definitions of certain classes of instructions 555 // (integral binops and casts at the moment), so bail if this isn't one. 556 LVILatticeVal Result; 557 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || 558 !BBI->getType()->isIntegerTy()) { 559 DEBUG(dbgs() << " compute BB '" << BB->getName() 560 << "' - overdefined because inst def found.\n"); 561 BBLV.markOverdefined(); 562 return ODCacheUpdater.markResult(true); 563 } 564 565 // FIXME: We're currently limited to binops with a constant RHS. This should 566 // be improved. 567 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); 568 if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 569 DEBUG(dbgs() << " compute BB '" << BB->getName() 570 << "' - overdefined because inst def found.\n"); 571 572 BBLV.markOverdefined(); 573 return ODCacheUpdater.markResult(true); 574 } 575 576 return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB)); 577 } 578 579 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 580 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 581 return L->getPointerAddressSpace() == 0 && 582 GetUnderlyingObject(L->getPointerOperand()) == 583 GetUnderlyingObject(Ptr); 584 } 585 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 586 return S->getPointerAddressSpace() == 0 && 587 GetUnderlyingObject(S->getPointerOperand()) == 588 GetUnderlyingObject(Ptr); 589 } 590 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 591 if (MI->isVolatile()) return false; 592 593 // FIXME: check whether it has a valuerange that excludes zero? 594 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 595 if (!Len || Len->isZero()) return false; 596 597 if (MI->getDestAddressSpace() == 0) 598 if (MI->getRawDest() == Ptr || MI->getDest() == Ptr) 599 return true; 600 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 601 if (MTI->getSourceAddressSpace() == 0) 602 if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr) 603 return true; 604 } 605 return false; 606 } 607 608 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, 609 Value *Val, BasicBlock *BB) { 610 LVILatticeVal Result; // Start Undefined. 611 612 // If this is a pointer, and there's a load from that pointer in this BB, 613 // then we know that the pointer can't be NULL. 614 bool NotNull = false; 615 if (Val->getType()->isPointerTy()) { 616 if (isa<AllocaInst>(Val)) { 617 NotNull = true; 618 } else { 619 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){ 620 if (InstructionDereferencesPointer(BI, Val)) { 621 NotNull = true; 622 break; 623 } 624 } 625 } 626 } 627 628 // If this is the entry block, we must be asking about an argument. The 629 // value is overdefined. 630 if (BB == &BB->getParent()->getEntryBlock()) { 631 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 632 if (NotNull) { 633 PointerType *PTy = cast<PointerType>(Val->getType()); 634 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); 635 } else { 636 Result.markOverdefined(); 637 } 638 BBLV = Result; 639 return true; 640 } 641 642 // Loop over all of our predecessors, merging what we know from them into 643 // result. 644 bool EdgesMissing = false; 645 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 646 LVILatticeVal EdgeResult; 647 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); 648 if (EdgesMissing) 649 continue; 650 651 Result.mergeIn(EdgeResult); 652 653 // If we hit overdefined, exit early. The BlockVals entry is already set 654 // to overdefined. 655 if (Result.isOverdefined()) { 656 DEBUG(dbgs() << " compute BB '" << BB->getName() 657 << "' - overdefined because of pred.\n"); 658 // If we previously determined that this is a pointer that can't be null 659 // then return that rather than giving up entirely. 660 if (NotNull) { 661 PointerType *PTy = cast<PointerType>(Val->getType()); 662 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); 663 } 664 665 BBLV = Result; 666 return true; 667 } 668 } 669 if (EdgesMissing) 670 return false; 671 672 // Return the merged value, which is more precise than 'overdefined'. 673 assert(!Result.isOverdefined()); 674 BBLV = Result; 675 return true; 676 } 677 678 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, 679 PHINode *PN, BasicBlock *BB) { 680 LVILatticeVal Result; // Start Undefined. 681 682 // Loop over all of our predecessors, merging what we know from them into 683 // result. 684 bool EdgesMissing = false; 685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 686 BasicBlock *PhiBB = PN->getIncomingBlock(i); 687 Value *PhiVal = PN->getIncomingValue(i); 688 LVILatticeVal EdgeResult; 689 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult); 690 if (EdgesMissing) 691 continue; 692 693 Result.mergeIn(EdgeResult); 694 695 // If we hit overdefined, exit early. The BlockVals entry is already set 696 // to overdefined. 697 if (Result.isOverdefined()) { 698 DEBUG(dbgs() << " compute BB '" << BB->getName() 699 << "' - overdefined because of pred.\n"); 700 701 BBLV = Result; 702 return true; 703 } 704 } 705 if (EdgesMissing) 706 return false; 707 708 // Return the merged value, which is more precise than 'overdefined'. 709 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 710 BBLV = Result; 711 return true; 712 } 713 714 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, 715 Instruction *BBI, 716 BasicBlock *BB) { 717 // Figure out the range of the LHS. If that fails, bail. 718 if (!hasBlockValue(BBI->getOperand(0), BB)) { 719 BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0))); 720 return false; 721 } 722 723 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); 724 if (!LHSVal.isConstantRange()) { 725 BBLV.markOverdefined(); 726 return true; 727 } 728 729 ConstantRange LHSRange = LHSVal.getConstantRange(); 730 ConstantRange RHSRange(1); 731 IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); 732 if (isa<BinaryOperator>(BBI)) { 733 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) { 734 RHSRange = ConstantRange(RHS->getValue()); 735 } else { 736 BBLV.markOverdefined(); 737 return true; 738 } 739 } 740 741 // NOTE: We're currently limited by the set of operations that ConstantRange 742 // can evaluate symbolically. Enhancing that set will allows us to analyze 743 // more definitions. 744 LVILatticeVal Result; 745 switch (BBI->getOpcode()) { 746 case Instruction::Add: 747 Result.markConstantRange(LHSRange.add(RHSRange)); 748 break; 749 case Instruction::Sub: 750 Result.markConstantRange(LHSRange.sub(RHSRange)); 751 break; 752 case Instruction::Mul: 753 Result.markConstantRange(LHSRange.multiply(RHSRange)); 754 break; 755 case Instruction::UDiv: 756 Result.markConstantRange(LHSRange.udiv(RHSRange)); 757 break; 758 case Instruction::Shl: 759 Result.markConstantRange(LHSRange.shl(RHSRange)); 760 break; 761 case Instruction::LShr: 762 Result.markConstantRange(LHSRange.lshr(RHSRange)); 763 break; 764 case Instruction::Trunc: 765 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); 766 break; 767 case Instruction::SExt: 768 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); 769 break; 770 case Instruction::ZExt: 771 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); 772 break; 773 case Instruction::BitCast: 774 Result.markConstantRange(LHSRange); 775 break; 776 case Instruction::And: 777 Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); 778 break; 779 case Instruction::Or: 780 Result.markConstantRange(LHSRange.binaryOr(RHSRange)); 781 break; 782 783 // Unhandled instructions are overdefined. 784 default: 785 DEBUG(dbgs() << " compute BB '" << BB->getName() 786 << "' - overdefined because inst def found.\n"); 787 Result.markOverdefined(); 788 break; 789 } 790 791 BBLV = Result; 792 return true; 793 } 794 795 /// getEdgeValue - This method attempts to infer more complex 796 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, 797 BasicBlock *BBTo, LVILatticeVal &Result) { 798 // If already a constant, there is nothing to compute. 799 if (Constant *VC = dyn_cast<Constant>(Val)) { 800 Result = LVILatticeVal::get(VC); 801 return true; 802 } 803 804 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 805 // know that v != 0. 806 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 807 // If this is a conditional branch and only one successor goes to BBTo, then 808 // we maybe able to infer something from the condition. 809 if (BI->isConditional() && 810 BI->getSuccessor(0) != BI->getSuccessor(1)) { 811 bool isTrueDest = BI->getSuccessor(0) == BBTo; 812 assert(BI->getSuccessor(!isTrueDest) == BBTo && 813 "BBTo isn't a successor of BBFrom"); 814 815 // If V is the condition of the branch itself, then we know exactly what 816 // it is. 817 if (BI->getCondition() == Val) { 818 Result = LVILatticeVal::get(ConstantInt::get( 819 Type::getInt1Ty(Val->getContext()), isTrueDest)); 820 return true; 821 } 822 823 // If the condition of the branch is an equality comparison, we may be 824 // able to infer the value. 825 ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 826 if (ICI && ICI->getOperand(0) == Val && 827 isa<Constant>(ICI->getOperand(1))) { 828 if (ICI->isEquality()) { 829 // We know that V has the RHS constant if this is a true SETEQ or 830 // false SETNE. 831 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) 832 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); 833 else 834 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); 835 return true; 836 } 837 838 if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 839 // Calculate the range of values that would satisfy the comparison. 840 ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); 841 ConstantRange TrueValues = 842 ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); 843 844 // If we're interested in the false dest, invert the condition. 845 if (!isTrueDest) TrueValues = TrueValues.inverse(); 846 847 // Figure out the possible values of the query BEFORE this branch. 848 if (!hasBlockValue(Val, BBFrom)) { 849 BlockValueStack.push(std::make_pair(BBFrom, Val)); 850 return false; 851 } 852 853 LVILatticeVal InBlock = getBlockValue(Val, BBFrom); 854 if (!InBlock.isConstantRange()) { 855 Result = LVILatticeVal::getRange(TrueValues); 856 return true; 857 } 858 859 // Find all potential values that satisfy both the input and output 860 // conditions. 861 ConstantRange PossibleValues = 862 TrueValues.intersectWith(InBlock.getConstantRange()); 863 864 Result = LVILatticeVal::getRange(PossibleValues); 865 return true; 866 } 867 } 868 } 869 } 870 871 // If the edge was formed by a switch on the value, then we may know exactly 872 // what it is. 873 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 874 if (SI->getCondition() == Val) { 875 // We don't know anything in the default case. 876 if (SI->getDefaultDest() == BBTo) { 877 Result.markOverdefined(); 878 return true; 879 } 880 881 // We only know something if there is exactly one value that goes from 882 // BBFrom to BBTo. 883 unsigned NumEdges = 0; 884 ConstantInt *EdgeVal = 0; 885 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { 886 if (SI->getSuccessor(i) != BBTo) continue; 887 if (NumEdges++) break; 888 EdgeVal = SI->getCaseValue(i); 889 } 890 assert(EdgeVal && "Missing successor?"); 891 if (NumEdges == 1) { 892 Result = LVILatticeVal::get(EdgeVal); 893 return true; 894 } 895 } 896 } 897 898 // Otherwise see if the value is known in the block. 899 if (hasBlockValue(Val, BBFrom)) { 900 Result = getBlockValue(Val, BBFrom); 901 return true; 902 } 903 BlockValueStack.push(std::make_pair(BBFrom, Val)); 904 return false; 905 } 906 907 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { 908 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 909 << BB->getName() << "'\n"); 910 911 BlockValueStack.push(std::make_pair(BB, V)); 912 solve(); 913 LVILatticeVal Result = getBlockValue(V, BB); 914 915 DEBUG(dbgs() << " Result = " << Result << "\n"); 916 return Result; 917 } 918 919 LVILatticeVal LazyValueInfoCache:: 920 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { 921 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 922 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); 923 924 LVILatticeVal Result; 925 if (!getEdgeValue(V, FromBB, ToBB, Result)) { 926 solve(); 927 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result); 928 (void)WasFastQuery; 929 assert(WasFastQuery && "More work to do after problem solved?"); 930 } 931 932 DEBUG(dbgs() << " Result = " << Result << "\n"); 933 return Result; 934 } 935 936 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 937 BasicBlock *NewSucc) { 938 // When an edge in the graph has been threaded, values that we could not 939 // determine a value for before (i.e. were marked overdefined) may be possible 940 // to solve now. We do NOT try to proactively update these values. Instead, 941 // we clear their entries from the cache, and allow lazy updating to recompute 942 // them when needed. 943 944 // The updating process is fairly simple: we need to dropped cached info 945 // for all values that were marked overdefined in OldSucc, and for those same 946 // values in any successor of OldSucc (except NewSucc) in which they were 947 // also marked overdefined. 948 std::vector<BasicBlock*> worklist; 949 worklist.push_back(OldSucc); 950 951 DenseSet<Value*> ClearSet; 952 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), 953 E = OverDefinedCache.end(); I != E; ++I) { 954 if (I->first == OldSucc) 955 ClearSet.insert(I->second); 956 } 957 958 // Use a worklist to perform a depth-first search of OldSucc's successors. 959 // NOTE: We do not need a visited list since any blocks we have already 960 // visited will have had their overdefined markers cleared already, and we 961 // thus won't loop to their successors. 962 while (!worklist.empty()) { 963 BasicBlock *ToUpdate = worklist.back(); 964 worklist.pop_back(); 965 966 // Skip blocks only accessible through NewSucc. 967 if (ToUpdate == NewSucc) continue; 968 969 bool changed = false; 970 for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end(); 971 I != E; ++I) { 972 // If a value was marked overdefined in OldSucc, and is here too... 973 DenseSet<OverDefinedPairTy>::iterator OI = 974 OverDefinedCache.find(std::make_pair(ToUpdate, *I)); 975 if (OI == OverDefinedCache.end()) continue; 976 977 // Remove it from the caches. 978 ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; 979 ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); 980 981 assert(CI != Entry.end() && "Couldn't find entry to update?"); 982 Entry.erase(CI); 983 OverDefinedCache.erase(OI); 984 985 // If we removed anything, then we potentially need to update 986 // blocks successors too. 987 changed = true; 988 } 989 990 if (!changed) continue; 991 992 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 993 } 994 } 995 996 //===----------------------------------------------------------------------===// 997 // LazyValueInfo Impl 998 //===----------------------------------------------------------------------===// 999 1000 /// getCache - This lazily constructs the LazyValueInfoCache. 1001 static LazyValueInfoCache &getCache(void *&PImpl) { 1002 if (!PImpl) 1003 PImpl = new LazyValueInfoCache(); 1004 return *static_cast<LazyValueInfoCache*>(PImpl); 1005 } 1006 1007 bool LazyValueInfo::runOnFunction(Function &F) { 1008 if (PImpl) 1009 getCache(PImpl).clear(); 1010 1011 TD = getAnalysisIfAvailable<TargetData>(); 1012 // Fully lazy. 1013 return false; 1014 } 1015 1016 void LazyValueInfo::releaseMemory() { 1017 // If the cache was allocated, free it. 1018 if (PImpl) { 1019 delete &getCache(PImpl); 1020 PImpl = 0; 1021 } 1022 } 1023 1024 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { 1025 LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); 1026 1027 if (Result.isConstant()) 1028 return Result.getConstant(); 1029 if (Result.isConstantRange()) { 1030 ConstantRange CR = Result.getConstantRange(); 1031 if (const APInt *SingleVal = CR.getSingleElement()) 1032 return ConstantInt::get(V->getContext(), *SingleVal); 1033 } 1034 return 0; 1035 } 1036 1037 /// getConstantOnEdge - Determine whether the specified value is known to be a 1038 /// constant on the specified edge. Return null if not. 1039 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1040 BasicBlock *ToBB) { 1041 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); 1042 1043 if (Result.isConstant()) 1044 return Result.getConstant(); 1045 if (Result.isConstantRange()) { 1046 ConstantRange CR = Result.getConstantRange(); 1047 if (const APInt *SingleVal = CR.getSingleElement()) 1048 return ConstantInt::get(V->getContext(), *SingleVal); 1049 } 1050 return 0; 1051 } 1052 1053 /// getPredicateOnEdge - Determine whether the specified value comparison 1054 /// with a constant is known to be true or false on the specified CFG edge. 1055 /// Pred is a CmpInst predicate. 1056 LazyValueInfo::Tristate 1057 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1058 BasicBlock *FromBB, BasicBlock *ToBB) { 1059 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); 1060 1061 // If we know the value is a constant, evaluate the conditional. 1062 Constant *Res = 0; 1063 if (Result.isConstant()) { 1064 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); 1065 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1066 return ResCI->isZero() ? False : True; 1067 return Unknown; 1068 } 1069 1070 if (Result.isConstantRange()) { 1071 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1072 if (!CI) return Unknown; 1073 1074 ConstantRange CR = Result.getConstantRange(); 1075 if (Pred == ICmpInst::ICMP_EQ) { 1076 if (!CR.contains(CI->getValue())) 1077 return False; 1078 1079 if (CR.isSingleElement() && CR.contains(CI->getValue())) 1080 return True; 1081 } else if (Pred == ICmpInst::ICMP_NE) { 1082 if (!CR.contains(CI->getValue())) 1083 return True; 1084 1085 if (CR.isSingleElement() && CR.contains(CI->getValue())) 1086 return False; 1087 } 1088 1089 // Handle more complex predicates. 1090 ConstantRange TrueValues = 1091 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); 1092 if (TrueValues.contains(CR)) 1093 return True; 1094 if (TrueValues.inverse().contains(CR)) 1095 return False; 1096 return Unknown; 1097 } 1098 1099 if (Result.isNotConstant()) { 1100 // If this is an equality comparison, we can try to fold it knowing that 1101 // "V != C1". 1102 if (Pred == ICmpInst::ICMP_EQ) { 1103 // !C1 == C -> false iff C1 == C. 1104 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1105 Result.getNotConstant(), C, TD); 1106 if (Res->isNullValue()) 1107 return False; 1108 } else if (Pred == ICmpInst::ICMP_NE) { 1109 // !C1 != C -> true iff C1 == C. 1110 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1111 Result.getNotConstant(), C, TD); 1112 if (Res->isNullValue()) 1113 return True; 1114 } 1115 return Unknown; 1116 } 1117 1118 return Unknown; 1119 } 1120 1121 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1122 BasicBlock *NewSucc) { 1123 if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); 1124 } 1125 1126 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1127 if (PImpl) getCache(PImpl).eraseBlock(BB); 1128 } 1129