Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGException.h"
     19 #include "clang/Basic/TargetInfo.h"
     20 #include "clang/AST/APValue.h"
     21 #include "clang/AST/ASTContext.h"
     22 #include "clang/AST/Decl.h"
     23 #include "clang/AST/DeclCXX.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/Target/TargetData.h"
     27 #include "llvm/Intrinsics.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
     32   : CodeGenTypeCache(cgm), CGM(cgm),
     33     Target(CGM.getContext().Target), Builder(cgm.getModule().getContext()),
     34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
     35     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
     36     ExceptionSlot(0), EHSelectorSlot(0),
     37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
     38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
     39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
     40     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
     41     TrapBB(0) {
     42 
     43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
     44   CGM.getCXXABI().getMangleContext().startNewFunction();
     45 }
     46 
     47 
     48 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     49   return CGM.getTypes().ConvertTypeForMem(T);
     50 }
     51 
     52 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     53   return CGM.getTypes().ConvertType(T);
     54 }
     55 
     56 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
     57   switch (type.getCanonicalType()->getTypeClass()) {
     58 #define TYPE(name, parent)
     59 #define ABSTRACT_TYPE(name, parent)
     60 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     61 #define DEPENDENT_TYPE(name, parent) case Type::name:
     62 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     63 #include "clang/AST/TypeNodes.def"
     64     llvm_unreachable("non-canonical or dependent type in IR-generation");
     65 
     66   case Type::Builtin:
     67   case Type::Pointer:
     68   case Type::BlockPointer:
     69   case Type::LValueReference:
     70   case Type::RValueReference:
     71   case Type::MemberPointer:
     72   case Type::Vector:
     73   case Type::ExtVector:
     74   case Type::FunctionProto:
     75   case Type::FunctionNoProto:
     76   case Type::Enum:
     77   case Type::ObjCObjectPointer:
     78     return false;
     79 
     80   // Complexes, arrays, records, and Objective-C objects.
     81   case Type::Complex:
     82   case Type::ConstantArray:
     83   case Type::IncompleteArray:
     84   case Type::VariableArray:
     85   case Type::Record:
     86   case Type::ObjCObject:
     87   case Type::ObjCInterface:
     88     return true;
     89   }
     90   llvm_unreachable("unknown type kind!");
     91 }
     92 
     93 void CodeGenFunction::EmitReturnBlock() {
     94   // For cleanliness, we try to avoid emitting the return block for
     95   // simple cases.
     96   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
     97 
     98   if (CurBB) {
     99     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    100 
    101     // We have a valid insert point, reuse it if it is empty or there are no
    102     // explicit jumps to the return block.
    103     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    104       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    105       delete ReturnBlock.getBlock();
    106     } else
    107       EmitBlock(ReturnBlock.getBlock());
    108     return;
    109   }
    110 
    111   // Otherwise, if the return block is the target of a single direct
    112   // branch then we can just put the code in that block instead. This
    113   // cleans up functions which started with a unified return block.
    114   if (ReturnBlock.getBlock()->hasOneUse()) {
    115     llvm::BranchInst *BI =
    116       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
    117     if (BI && BI->isUnconditional() &&
    118         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    119       // Reset insertion point and delete the branch.
    120       Builder.SetInsertPoint(BI->getParent());
    121       BI->eraseFromParent();
    122       delete ReturnBlock.getBlock();
    123       return;
    124     }
    125   }
    126 
    127   // FIXME: We are at an unreachable point, there is no reason to emit the block
    128   // unless it has uses. However, we still need a place to put the debug
    129   // region.end for now.
    130 
    131   EmitBlock(ReturnBlock.getBlock());
    132 }
    133 
    134 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    135   if (!BB) return;
    136   if (!BB->use_empty())
    137     return CGF.CurFn->getBasicBlockList().push_back(BB);
    138   delete BB;
    139 }
    140 
    141 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    142   assert(BreakContinueStack.empty() &&
    143          "mismatched push/pop in break/continue stack!");
    144 
    145   // Pop any cleanups that might have been associated with the
    146   // parameters.  Do this in whatever block we're currently in; it's
    147   // important to do this before we enter the return block or return
    148   // edges will be *really* confused.
    149   if (EHStack.stable_begin() != PrologueCleanupDepth)
    150     PopCleanupBlocks(PrologueCleanupDepth);
    151 
    152   // Emit function epilog (to return).
    153   EmitReturnBlock();
    154 
    155   if (ShouldInstrumentFunction())
    156     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    157 
    158   // Emit debug descriptor for function end.
    159   if (CGDebugInfo *DI = getDebugInfo()) {
    160     DI->setLocation(EndLoc);
    161     DI->EmitFunctionEnd(Builder);
    162   }
    163 
    164   EmitFunctionEpilog(*CurFnInfo);
    165   EmitEndEHSpec(CurCodeDecl);
    166 
    167   assert(EHStack.empty() &&
    168          "did not remove all scopes from cleanup stack!");
    169 
    170   // If someone did an indirect goto, emit the indirect goto block at the end of
    171   // the function.
    172   if (IndirectBranch) {
    173     EmitBlock(IndirectBranch->getParent());
    174     Builder.ClearInsertionPoint();
    175   }
    176 
    177   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    178   llvm::Instruction *Ptr = AllocaInsertPt;
    179   AllocaInsertPt = 0;
    180   Ptr->eraseFromParent();
    181 
    182   // If someone took the address of a label but never did an indirect goto, we
    183   // made a zero entry PHI node, which is illegal, zap it now.
    184   if (IndirectBranch) {
    185     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    186     if (PN->getNumIncomingValues() == 0) {
    187       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    188       PN->eraseFromParent();
    189     }
    190   }
    191 
    192   EmitIfUsed(*this, RethrowBlock.getBlock());
    193   EmitIfUsed(*this, TerminateLandingPad);
    194   EmitIfUsed(*this, TerminateHandler);
    195   EmitIfUsed(*this, UnreachableBlock);
    196 
    197   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    198     EmitDeclMetadata();
    199 }
    200 
    201 /// ShouldInstrumentFunction - Return true if the current function should be
    202 /// instrumented with __cyg_profile_func_* calls
    203 bool CodeGenFunction::ShouldInstrumentFunction() {
    204   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    205     return false;
    206   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    207     return false;
    208   return true;
    209 }
    210 
    211 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    212 /// instrumentation function with the current function and the call site, if
    213 /// function instrumentation is enabled.
    214 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    215   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    216   llvm::PointerType *PointerTy = Int8PtrTy;
    217   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    218   llvm::FunctionType *FunctionTy =
    219     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
    220                             ProfileFuncArgs, false);
    221 
    222   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    223   llvm::CallInst *CallSite = Builder.CreateCall(
    224     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    225     llvm::ConstantInt::get(Int32Ty, 0),
    226     "callsite");
    227 
    228   Builder.CreateCall2(F,
    229                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    230                       CallSite);
    231 }
    232 
    233 void CodeGenFunction::EmitMCountInstrumentation() {
    234   llvm::FunctionType *FTy =
    235     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
    236 
    237   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
    238                                                        Target.getMCountName());
    239   Builder.CreateCall(MCountFn);
    240 }
    241 
    242 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
    243                                     llvm::Function *Fn,
    244                                     const CGFunctionInfo &FnInfo,
    245                                     const FunctionArgList &Args,
    246                                     SourceLocation StartLoc) {
    247   const Decl *D = GD.getDecl();
    248 
    249   DidCallStackSave = false;
    250   CurCodeDecl = CurFuncDecl = D;
    251   FnRetTy = RetTy;
    252   CurFn = Fn;
    253   CurFnInfo = &FnInfo;
    254   assert(CurFn->isDeclaration() && "Function already has body?");
    255 
    256   // Pass inline keyword to optimizer if it appears explicitly on any
    257   // declaration.
    258   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    259     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
    260            RE = FD->redecls_end(); RI != RE; ++RI)
    261       if (RI->isInlineSpecified()) {
    262         Fn->addFnAttr(llvm::Attribute::InlineHint);
    263         break;
    264       }
    265 
    266   if (getContext().getLangOptions().OpenCL) {
    267     // Add metadata for a kernel function.
    268     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    269       if (FD->hasAttr<OpenCLKernelAttr>()) {
    270         llvm::LLVMContext &Context = getLLVMContext();
    271         llvm::NamedMDNode *OpenCLMetadata =
    272           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    273 
    274         llvm::Value *Op = Fn;
    275         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
    276       }
    277   }
    278 
    279   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    280 
    281   // Create a marker to make it easy to insert allocas into the entryblock
    282   // later.  Don't create this with the builder, because we don't want it
    283   // folded.
    284   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    285   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    286   if (Builder.isNamePreserving())
    287     AllocaInsertPt->setName("allocapt");
    288 
    289   ReturnBlock = getJumpDestInCurrentScope("return");
    290 
    291   Builder.SetInsertPoint(EntryBB);
    292 
    293   // Emit subprogram debug descriptor.
    294   if (CGDebugInfo *DI = getDebugInfo()) {
    295     // FIXME: what is going on here and why does it ignore all these
    296     // interesting type properties?
    297     QualType FnType =
    298       getContext().getFunctionType(RetTy, 0, 0,
    299                                    FunctionProtoType::ExtProtoInfo());
    300 
    301     DI->setLocation(StartLoc);
    302     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
    303   }
    304 
    305   if (ShouldInstrumentFunction())
    306     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    307 
    308   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    309     EmitMCountInstrumentation();
    310 
    311   if (RetTy->isVoidType()) {
    312     // Void type; nothing to return.
    313     ReturnValue = 0;
    314   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    315              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
    316     // Indirect aggregate return; emit returned value directly into sret slot.
    317     // This reduces code size, and affects correctness in C++.
    318     ReturnValue = CurFn->arg_begin();
    319   } else {
    320     ReturnValue = CreateIRTemp(RetTy, "retval");
    321 
    322     // Tell the epilog emitter to autorelease the result.  We do this
    323     // now so that various specialized functions can suppress it
    324     // during their IR-generation.
    325     if (getLangOptions().ObjCAutoRefCount &&
    326         !CurFnInfo->isReturnsRetained() &&
    327         RetTy->isObjCRetainableType())
    328       AutoreleaseResult = true;
    329   }
    330 
    331   EmitStartEHSpec(CurCodeDecl);
    332 
    333   PrologueCleanupDepth = EHStack.stable_begin();
    334   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    335 
    336   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
    337     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    338 
    339   // If any of the arguments have a variably modified type, make sure to
    340   // emit the type size.
    341   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    342        i != e; ++i) {
    343     QualType Ty = (*i)->getType();
    344 
    345     if (Ty->isVariablyModifiedType())
    346       EmitVariablyModifiedType(Ty);
    347   }
    348 }
    349 
    350 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
    351   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
    352   assert(FD->getBody());
    353   EmitStmt(FD->getBody());
    354 }
    355 
    356 /// Tries to mark the given function nounwind based on the
    357 /// non-existence of any throwing calls within it.  We believe this is
    358 /// lightweight enough to do at -O0.
    359 static void TryMarkNoThrow(llvm::Function *F) {
    360   // LLVM treats 'nounwind' on a function as part of the type, so we
    361   // can't do this on functions that can be overwritten.
    362   if (F->mayBeOverridden()) return;
    363 
    364   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    365     for (llvm::BasicBlock::iterator
    366            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    367       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
    368         if (!Call->doesNotThrow())
    369           return;
    370   F->setDoesNotThrow(true);
    371 }
    372 
    373 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    374                                    const CGFunctionInfo &FnInfo) {
    375   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    376 
    377   // Check if we should generate debug info for this function.
    378   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
    379     DebugInfo = CGM.getModuleDebugInfo();
    380 
    381   FunctionArgList Args;
    382   QualType ResTy = FD->getResultType();
    383 
    384   CurGD = GD;
    385   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
    386     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
    387 
    388   if (FD->getNumParams())
    389     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    390       Args.push_back(FD->getParamDecl(i));
    391 
    392   SourceRange BodyRange;
    393   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    394 
    395   // Emit the standard function prologue.
    396   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
    397 
    398   // Generate the body of the function.
    399   if (isa<CXXDestructorDecl>(FD))
    400     EmitDestructorBody(Args);
    401   else if (isa<CXXConstructorDecl>(FD))
    402     EmitConstructorBody(Args);
    403   else
    404     EmitFunctionBody(Args);
    405 
    406   // Emit the standard function epilogue.
    407   FinishFunction(BodyRange.getEnd());
    408 
    409   // If we haven't marked the function nothrow through other means, do
    410   // a quick pass now to see if we can.
    411   if (!CurFn->doesNotThrow())
    412     TryMarkNoThrow(CurFn);
    413 }
    414 
    415 /// ContainsLabel - Return true if the statement contains a label in it.  If
    416 /// this statement is not executed normally, it not containing a label means
    417 /// that we can just remove the code.
    418 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    419   // Null statement, not a label!
    420   if (S == 0) return false;
    421 
    422   // If this is a label, we have to emit the code, consider something like:
    423   // if (0) {  ...  foo:  bar(); }  goto foo;
    424   //
    425   // TODO: If anyone cared, we could track __label__'s, since we know that you
    426   // can't jump to one from outside their declared region.
    427   if (isa<LabelStmt>(S))
    428     return true;
    429 
    430   // If this is a case/default statement, and we haven't seen a switch, we have
    431   // to emit the code.
    432   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    433     return true;
    434 
    435   // If this is a switch statement, we want to ignore cases below it.
    436   if (isa<SwitchStmt>(S))
    437     IgnoreCaseStmts = true;
    438 
    439   // Scan subexpressions for verboten labels.
    440   for (Stmt::const_child_range I = S->children(); I; ++I)
    441     if (ContainsLabel(*I, IgnoreCaseStmts))
    442       return true;
    443 
    444   return false;
    445 }
    446 
    447 /// containsBreak - Return true if the statement contains a break out of it.
    448 /// If the statement (recursively) contains a switch or loop with a break
    449 /// inside of it, this is fine.
    450 bool CodeGenFunction::containsBreak(const Stmt *S) {
    451   // Null statement, not a label!
    452   if (S == 0) return false;
    453 
    454   // If this is a switch or loop that defines its own break scope, then we can
    455   // include it and anything inside of it.
    456   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    457       isa<ForStmt>(S))
    458     return false;
    459 
    460   if (isa<BreakStmt>(S))
    461     return true;
    462 
    463   // Scan subexpressions for verboten breaks.
    464   for (Stmt::const_child_range I = S->children(); I; ++I)
    465     if (containsBreak(*I))
    466       return true;
    467 
    468   return false;
    469 }
    470 
    471 
    472 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    473 /// to a constant, or if it does but contains a label, return false.  If it
    474 /// constant folds return true and set the boolean result in Result.
    475 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    476                                                    bool &ResultBool) {
    477   llvm::APInt ResultInt;
    478   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    479     return false;
    480 
    481   ResultBool = ResultInt.getBoolValue();
    482   return true;
    483 }
    484 
    485 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    486 /// to a constant, or if it does but contains a label, return false.  If it
    487 /// constant folds return true and set the folded value.
    488 bool CodeGenFunction::
    489 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
    490   // FIXME: Rename and handle conversion of other evaluatable things
    491   // to bool.
    492   Expr::EvalResult Result;
    493   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
    494       Result.HasSideEffects)
    495     return false;  // Not foldable, not integer or not fully evaluatable.
    496 
    497   if (CodeGenFunction::ContainsLabel(Cond))
    498     return false;  // Contains a label.
    499 
    500   ResultInt = Result.Val.getInt();
    501   return true;
    502 }
    503 
    504 
    505 
    506 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    507 /// statement) to the specified blocks.  Based on the condition, this might try
    508 /// to simplify the codegen of the conditional based on the branch.
    509 ///
    510 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    511                                            llvm::BasicBlock *TrueBlock,
    512                                            llvm::BasicBlock *FalseBlock) {
    513   Cond = Cond->IgnoreParens();
    514 
    515   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    516     // Handle X && Y in a condition.
    517     if (CondBOp->getOpcode() == BO_LAnd) {
    518       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    519       // folded if the case was simple enough.
    520       bool ConstantBool = false;
    521       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    522           ConstantBool) {
    523         // br(1 && X) -> br(X).
    524         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    525       }
    526 
    527       // If we have "X && 1", simplify the code to use an uncond branch.
    528       // "X && 0" would have been constant folded to 0.
    529       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    530           ConstantBool) {
    531         // br(X && 1) -> br(X).
    532         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    533       }
    534 
    535       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    536       // want to jump to the FalseBlock.
    537       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    538 
    539       ConditionalEvaluation eval(*this);
    540       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
    541       EmitBlock(LHSTrue);
    542 
    543       // Any temporaries created here are conditional.
    544       eval.begin(*this);
    545       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    546       eval.end(*this);
    547 
    548       return;
    549     }
    550 
    551     if (CondBOp->getOpcode() == BO_LOr) {
    552       // If we have "0 || X", simplify the code.  "1 || X" would have constant
    553       // folded if the case was simple enough.
    554       bool ConstantBool = false;
    555       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    556           !ConstantBool) {
    557         // br(0 || X) -> br(X).
    558         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    559       }
    560 
    561       // If we have "X || 0", simplify the code to use an uncond branch.
    562       // "X || 1" would have been constant folded to 1.
    563       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    564           !ConstantBool) {
    565         // br(X || 0) -> br(X).
    566         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    567       }
    568 
    569       // Emit the LHS as a conditional.  If the LHS conditional is true, we
    570       // want to jump to the TrueBlock.
    571       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
    572 
    573       ConditionalEvaluation eval(*this);
    574       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
    575       EmitBlock(LHSFalse);
    576 
    577       // Any temporaries created here are conditional.
    578       eval.begin(*this);
    579       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    580       eval.end(*this);
    581 
    582       return;
    583     }
    584   }
    585 
    586   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    587     // br(!x, t, f) -> br(x, f, t)
    588     if (CondUOp->getOpcode() == UO_LNot)
    589       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
    590   }
    591 
    592   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    593     // Handle ?: operator.
    594 
    595     // Just ignore GNU ?: extension.
    596     if (CondOp->getLHS()) {
    597       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    598       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    599       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
    600 
    601       ConditionalEvaluation cond(*this);
    602       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
    603 
    604       cond.begin(*this);
    605       EmitBlock(LHSBlock);
    606       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
    607       cond.end(*this);
    608 
    609       cond.begin(*this);
    610       EmitBlock(RHSBlock);
    611       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
    612       cond.end(*this);
    613 
    614       return;
    615     }
    616   }
    617 
    618   // Emit the code with the fully general case.
    619   llvm::Value *CondV = EvaluateExprAsBool(Cond);
    620   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
    621 }
    622 
    623 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    624 /// specified stmt yet.
    625 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
    626                                        bool OmitOnError) {
    627   CGM.ErrorUnsupported(S, Type, OmitOnError);
    628 }
    629 
    630 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
    631 /// variable-length array whose elements have a non-zero bit-pattern.
    632 ///
    633 /// \param src - a char* pointing to the bit-pattern for a single
    634 /// base element of the array
    635 /// \param sizeInChars - the total size of the VLA, in chars
    636 /// \param align - the total alignment of the VLA
    637 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
    638                                llvm::Value *dest, llvm::Value *src,
    639                                llvm::Value *sizeInChars) {
    640   std::pair<CharUnits,CharUnits> baseSizeAndAlign
    641     = CGF.getContext().getTypeInfoInChars(baseType);
    642 
    643   CGBuilderTy &Builder = CGF.Builder;
    644 
    645   llvm::Value *baseSizeInChars
    646     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
    647 
    648   llvm::Type *i8p = Builder.getInt8PtrTy();
    649 
    650   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
    651   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
    652 
    653   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
    654   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
    655   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
    656 
    657   // Make a loop over the VLA.  C99 guarantees that the VLA element
    658   // count must be nonzero.
    659   CGF.EmitBlock(loopBB);
    660 
    661   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
    662   cur->addIncoming(begin, originBB);
    663 
    664   // memcpy the individual element bit-pattern.
    665   Builder.CreateMemCpy(cur, src, baseSizeInChars,
    666                        baseSizeAndAlign.second.getQuantity(),
    667                        /*volatile*/ false);
    668 
    669   // Go to the next element.
    670   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
    671 
    672   // Leave if that's the end of the VLA.
    673   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
    674   Builder.CreateCondBr(done, contBB, loopBB);
    675   cur->addIncoming(next, loopBB);
    676 
    677   CGF.EmitBlock(contBB);
    678 }
    679 
    680 void
    681 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
    682   // Ignore empty classes in C++.
    683   if (getContext().getLangOptions().CPlusPlus) {
    684     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    685       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
    686         return;
    687     }
    688   }
    689 
    690   // Cast the dest ptr to the appropriate i8 pointer type.
    691   unsigned DestAS =
    692     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
    693   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
    694   if (DestPtr->getType() != BP)
    695     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
    696 
    697   // Get size and alignment info for this aggregate.
    698   std::pair<CharUnits, CharUnits> TypeInfo =
    699     getContext().getTypeInfoInChars(Ty);
    700   CharUnits Size = TypeInfo.first;
    701   CharUnits Align = TypeInfo.second;
    702 
    703   llvm::Value *SizeVal;
    704   const VariableArrayType *vla;
    705 
    706   // Don't bother emitting a zero-byte memset.
    707   if (Size.isZero()) {
    708     // But note that getTypeInfo returns 0 for a VLA.
    709     if (const VariableArrayType *vlaType =
    710           dyn_cast_or_null<VariableArrayType>(
    711                                           getContext().getAsArrayType(Ty))) {
    712       QualType eltType;
    713       llvm::Value *numElts;
    714       llvm::tie(numElts, eltType) = getVLASize(vlaType);
    715 
    716       SizeVal = numElts;
    717       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
    718       if (!eltSize.isOne())
    719         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
    720       vla = vlaType;
    721     } else {
    722       return;
    723     }
    724   } else {
    725     SizeVal = CGM.getSize(Size);
    726     vla = 0;
    727   }
    728 
    729   // If the type contains a pointer to data member we can't memset it to zero.
    730   // Instead, create a null constant and copy it to the destination.
    731   // TODO: there are other patterns besides zero that we can usefully memset,
    732   // like -1, which happens to be the pattern used by member-pointers.
    733   if (!CGM.getTypes().isZeroInitializable(Ty)) {
    734     // For a VLA, emit a single element, then splat that over the VLA.
    735     if (vla) Ty = getContext().getBaseElementType(vla);
    736 
    737     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
    738 
    739     llvm::GlobalVariable *NullVariable =
    740       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
    741                                /*isConstant=*/true,
    742                                llvm::GlobalVariable::PrivateLinkage,
    743                                NullConstant, llvm::Twine());
    744     llvm::Value *SrcPtr =
    745       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
    746 
    747     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
    748 
    749     // Get and call the appropriate llvm.memcpy overload.
    750     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
    751     return;
    752   }
    753 
    754   // Otherwise, just memset the whole thing to zero.  This is legal
    755   // because in LLVM, all default initializers (other than the ones we just
    756   // handled above) are guaranteed to have a bit pattern of all zeros.
    757   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
    758                        Align.getQuantity(), false);
    759 }
    760 
    761 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
    762   // Make sure that there is a block for the indirect goto.
    763   if (IndirectBranch == 0)
    764     GetIndirectGotoBlock();
    765 
    766   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
    767 
    768   // Make sure the indirect branch includes all of the address-taken blocks.
    769   IndirectBranch->addDestination(BB);
    770   return llvm::BlockAddress::get(CurFn, BB);
    771 }
    772 
    773 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
    774   // If we already made the indirect branch for indirect goto, return its block.
    775   if (IndirectBranch) return IndirectBranch->getParent();
    776 
    777   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
    778 
    779   // Create the PHI node that indirect gotos will add entries to.
    780   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
    781                                               "indirect.goto.dest");
    782 
    783   // Create the indirect branch instruction.
    784   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
    785   return IndirectBranch->getParent();
    786 }
    787 
    788 /// Computes the length of an array in elements, as well as the base
    789 /// element type and a properly-typed first element pointer.
    790 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
    791                                               QualType &baseType,
    792                                               llvm::Value *&addr) {
    793   const ArrayType *arrayType = origArrayType;
    794 
    795   // If it's a VLA, we have to load the stored size.  Note that
    796   // this is the size of the VLA in bytes, not its size in elements.
    797   llvm::Value *numVLAElements = 0;
    798   if (isa<VariableArrayType>(arrayType)) {
    799     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
    800 
    801     // Walk into all VLAs.  This doesn't require changes to addr,
    802     // which has type T* where T is the first non-VLA element type.
    803     do {
    804       QualType elementType = arrayType->getElementType();
    805       arrayType = getContext().getAsArrayType(elementType);
    806 
    807       // If we only have VLA components, 'addr' requires no adjustment.
    808       if (!arrayType) {
    809         baseType = elementType;
    810         return numVLAElements;
    811       }
    812     } while (isa<VariableArrayType>(arrayType));
    813 
    814     // We get out here only if we find a constant array type
    815     // inside the VLA.
    816   }
    817 
    818   // We have some number of constant-length arrays, so addr should
    819   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
    820   // down to the first element of addr.
    821   llvm::SmallVector<llvm::Value*, 8> gepIndices;
    822 
    823   // GEP down to the array type.
    824   llvm::ConstantInt *zero = Builder.getInt32(0);
    825   gepIndices.push_back(zero);
    826 
    827   // It's more efficient to calculate the count from the LLVM
    828   // constant-length arrays than to re-evaluate the array bounds.
    829   uint64_t countFromCLAs = 1;
    830 
    831   llvm::ArrayType *llvmArrayType =
    832     cast<llvm::ArrayType>(
    833       cast<llvm::PointerType>(addr->getType())->getElementType());
    834   while (true) {
    835     assert(isa<ConstantArrayType>(arrayType));
    836     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
    837              == llvmArrayType->getNumElements());
    838 
    839     gepIndices.push_back(zero);
    840     countFromCLAs *= llvmArrayType->getNumElements();
    841 
    842     llvmArrayType =
    843       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
    844     if (!llvmArrayType) break;
    845 
    846     arrayType = getContext().getAsArrayType(arrayType->getElementType());
    847     assert(arrayType && "LLVM and Clang types are out-of-synch");
    848   }
    849 
    850   baseType = arrayType->getElementType();
    851 
    852   // Create the actual GEP.
    853   addr = Builder.CreateInBoundsGEP(addr, gepIndices.begin(),
    854                                    gepIndices.end(), "array.begin");
    855 
    856   llvm::Value *numElements
    857     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
    858 
    859   // If we had any VLA dimensions, factor them in.
    860   if (numVLAElements)
    861     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
    862 
    863   return numElements;
    864 }
    865 
    866 std::pair<llvm::Value*, QualType>
    867 CodeGenFunction::getVLASize(QualType type) {
    868   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
    869   assert(vla && "type was not a variable array type!");
    870   return getVLASize(vla);
    871 }
    872 
    873 std::pair<llvm::Value*, QualType>
    874 CodeGenFunction::getVLASize(const VariableArrayType *type) {
    875   // The number of elements so far; always size_t.
    876   llvm::Value *numElements = 0;
    877 
    878   QualType elementType;
    879   do {
    880     elementType = type->getElementType();
    881     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
    882     assert(vlaSize && "no size for VLA!");
    883     assert(vlaSize->getType() == SizeTy);
    884 
    885     if (!numElements) {
    886       numElements = vlaSize;
    887     } else {
    888       // It's undefined behavior if this wraps around, so mark it that way.
    889       numElements = Builder.CreateNUWMul(numElements, vlaSize);
    890     }
    891   } while ((type = getContext().getAsVariableArrayType(elementType)));
    892 
    893   return std::pair<llvm::Value*,QualType>(numElements, elementType);
    894 }
    895 
    896 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
    897   assert(type->isVariablyModifiedType() &&
    898          "Must pass variably modified type to EmitVLASizes!");
    899 
    900   EnsureInsertPoint();
    901 
    902   // We're going to walk down into the type and look for VLA
    903   // expressions.
    904   type = type.getCanonicalType();
    905   do {
    906     assert(type->isVariablyModifiedType());
    907 
    908     const Type *ty = type.getTypePtr();
    909     switch (ty->getTypeClass()) {
    910 #define TYPE(Class, Base)
    911 #define ABSTRACT_TYPE(Class, Base)
    912 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    913 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    914 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    915 #include "clang/AST/TypeNodes.def"
    916       llvm_unreachable("unexpected dependent or non-canonical type!");
    917 
    918     // These types are never variably-modified.
    919     case Type::Builtin:
    920     case Type::Complex:
    921     case Type::Vector:
    922     case Type::ExtVector:
    923     case Type::Record:
    924     case Type::Enum:
    925     case Type::ObjCObject:
    926     case Type::ObjCInterface:
    927     case Type::ObjCObjectPointer:
    928       llvm_unreachable("type class is never variably-modified!");
    929 
    930     case Type::Pointer:
    931       type = cast<PointerType>(ty)->getPointeeType();
    932       break;
    933 
    934     case Type::BlockPointer:
    935       type = cast<BlockPointerType>(ty)->getPointeeType();
    936       break;
    937 
    938     case Type::LValueReference:
    939     case Type::RValueReference:
    940       type = cast<ReferenceType>(ty)->getPointeeType();
    941       break;
    942 
    943     case Type::MemberPointer:
    944       type = cast<MemberPointerType>(ty)->getPointeeType();
    945       break;
    946 
    947     case Type::ConstantArray:
    948     case Type::IncompleteArray:
    949       // Losing element qualification here is fine.
    950       type = cast<ArrayType>(ty)->getElementType();
    951       break;
    952 
    953     case Type::VariableArray: {
    954       // Losing element qualification here is fine.
    955       const VariableArrayType *vat = cast<VariableArrayType>(ty);
    956 
    957       // Unknown size indication requires no size computation.
    958       // Otherwise, evaluate and record it.
    959       if (const Expr *size = vat->getSizeExpr()) {
    960         // It's possible that we might have emitted this already,
    961         // e.g. with a typedef and a pointer to it.
    962         llvm::Value *&entry = VLASizeMap[size];
    963         if (!entry) {
    964           // Always zexting here would be wrong if it weren't
    965           // undefined behavior to have a negative bound.
    966           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
    967                                         /*signed*/ false);
    968         }
    969       }
    970       type = vat->getElementType();
    971       break;
    972     }
    973 
    974     case Type::FunctionProto:
    975     case Type::FunctionNoProto:
    976       type = cast<FunctionType>(ty)->getResultType();
    977       break;
    978     }
    979   } while (type->isVariablyModifiedType());
    980 }
    981 
    982 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
    983   if (getContext().getBuiltinVaListType()->isArrayType())
    984     return EmitScalarExpr(E);
    985   return EmitLValue(E).getAddress();
    986 }
    987 
    988 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
    989                                               llvm::Constant *Init) {
    990   assert (Init && "Invalid DeclRefExpr initializer!");
    991   if (CGDebugInfo *Dbg = getDebugInfo())
    992     Dbg->EmitGlobalVariable(E->getDecl(), Init);
    993 }
    994 
    995 CodeGenFunction::PeepholeProtection
    996 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
    997   // At the moment, the only aggressive peephole we do in IR gen
    998   // is trunc(zext) folding, but if we add more, we can easily
    999   // extend this protection.
   1000 
   1001   if (!rvalue.isScalar()) return PeepholeProtection();
   1002   llvm::Value *value = rvalue.getScalarVal();
   1003   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1004 
   1005   // Just make an extra bitcast.
   1006   assert(HaveInsertPoint());
   1007   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1008                                                   Builder.GetInsertBlock());
   1009 
   1010   PeepholeProtection protection;
   1011   protection.Inst = inst;
   1012   return protection;
   1013 }
   1014 
   1015 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1016   if (!protection.Inst) return;
   1017 
   1018   // In theory, we could try to duplicate the peepholes now, but whatever.
   1019   protection.Inst->eraseFromParent();
   1020 }
   1021