1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGException.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().Target), Builder(cgm.getModule().getContext()), 34 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 35 NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1), 36 ExceptionSlot(0), EHSelectorSlot(0), 37 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 38 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 39 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 40 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 41 TrapBB(0) { 42 43 CatchUndefined = getContext().getLangOptions().CatchUndefined; 44 CGM.getCXXABI().getMangleContext().startNewFunction(); 45 } 46 47 48 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 49 return CGM.getTypes().ConvertTypeForMem(T); 50 } 51 52 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 53 return CGM.getTypes().ConvertType(T); 54 } 55 56 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 57 switch (type.getCanonicalType()->getTypeClass()) { 58 #define TYPE(name, parent) 59 #define ABSTRACT_TYPE(name, parent) 60 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 61 #define DEPENDENT_TYPE(name, parent) case Type::name: 62 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 63 #include "clang/AST/TypeNodes.def" 64 llvm_unreachable("non-canonical or dependent type in IR-generation"); 65 66 case Type::Builtin: 67 case Type::Pointer: 68 case Type::BlockPointer: 69 case Type::LValueReference: 70 case Type::RValueReference: 71 case Type::MemberPointer: 72 case Type::Vector: 73 case Type::ExtVector: 74 case Type::FunctionProto: 75 case Type::FunctionNoProto: 76 case Type::Enum: 77 case Type::ObjCObjectPointer: 78 return false; 79 80 // Complexes, arrays, records, and Objective-C objects. 81 case Type::Complex: 82 case Type::ConstantArray: 83 case Type::IncompleteArray: 84 case Type::VariableArray: 85 case Type::Record: 86 case Type::ObjCObject: 87 case Type::ObjCInterface: 88 return true; 89 } 90 llvm_unreachable("unknown type kind!"); 91 } 92 93 void CodeGenFunction::EmitReturnBlock() { 94 // For cleanliness, we try to avoid emitting the return block for 95 // simple cases. 96 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 97 98 if (CurBB) { 99 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 100 101 // We have a valid insert point, reuse it if it is empty or there are no 102 // explicit jumps to the return block. 103 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 104 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 105 delete ReturnBlock.getBlock(); 106 } else 107 EmitBlock(ReturnBlock.getBlock()); 108 return; 109 } 110 111 // Otherwise, if the return block is the target of a single direct 112 // branch then we can just put the code in that block instead. This 113 // cleans up functions which started with a unified return block. 114 if (ReturnBlock.getBlock()->hasOneUse()) { 115 llvm::BranchInst *BI = 116 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 117 if (BI && BI->isUnconditional() && 118 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 119 // Reset insertion point and delete the branch. 120 Builder.SetInsertPoint(BI->getParent()); 121 BI->eraseFromParent(); 122 delete ReturnBlock.getBlock(); 123 return; 124 } 125 } 126 127 // FIXME: We are at an unreachable point, there is no reason to emit the block 128 // unless it has uses. However, we still need a place to put the debug 129 // region.end for now. 130 131 EmitBlock(ReturnBlock.getBlock()); 132 } 133 134 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 135 if (!BB) return; 136 if (!BB->use_empty()) 137 return CGF.CurFn->getBasicBlockList().push_back(BB); 138 delete BB; 139 } 140 141 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 142 assert(BreakContinueStack.empty() && 143 "mismatched push/pop in break/continue stack!"); 144 145 // Pop any cleanups that might have been associated with the 146 // parameters. Do this in whatever block we're currently in; it's 147 // important to do this before we enter the return block or return 148 // edges will be *really* confused. 149 if (EHStack.stable_begin() != PrologueCleanupDepth) 150 PopCleanupBlocks(PrologueCleanupDepth); 151 152 // Emit function epilog (to return). 153 EmitReturnBlock(); 154 155 if (ShouldInstrumentFunction()) 156 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 157 158 // Emit debug descriptor for function end. 159 if (CGDebugInfo *DI = getDebugInfo()) { 160 DI->setLocation(EndLoc); 161 DI->EmitFunctionEnd(Builder); 162 } 163 164 EmitFunctionEpilog(*CurFnInfo); 165 EmitEndEHSpec(CurCodeDecl); 166 167 assert(EHStack.empty() && 168 "did not remove all scopes from cleanup stack!"); 169 170 // If someone did an indirect goto, emit the indirect goto block at the end of 171 // the function. 172 if (IndirectBranch) { 173 EmitBlock(IndirectBranch->getParent()); 174 Builder.ClearInsertionPoint(); 175 } 176 177 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 178 llvm::Instruction *Ptr = AllocaInsertPt; 179 AllocaInsertPt = 0; 180 Ptr->eraseFromParent(); 181 182 // If someone took the address of a label but never did an indirect goto, we 183 // made a zero entry PHI node, which is illegal, zap it now. 184 if (IndirectBranch) { 185 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 186 if (PN->getNumIncomingValues() == 0) { 187 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 188 PN->eraseFromParent(); 189 } 190 } 191 192 EmitIfUsed(*this, RethrowBlock.getBlock()); 193 EmitIfUsed(*this, TerminateLandingPad); 194 EmitIfUsed(*this, TerminateHandler); 195 EmitIfUsed(*this, UnreachableBlock); 196 197 if (CGM.getCodeGenOpts().EmitDeclMetadata) 198 EmitDeclMetadata(); 199 } 200 201 /// ShouldInstrumentFunction - Return true if the current function should be 202 /// instrumented with __cyg_profile_func_* calls 203 bool CodeGenFunction::ShouldInstrumentFunction() { 204 if (!CGM.getCodeGenOpts().InstrumentFunctions) 205 return false; 206 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 207 return false; 208 return true; 209 } 210 211 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 212 /// instrumentation function with the current function and the call site, if 213 /// function instrumentation is enabled. 214 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 215 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 216 llvm::PointerType *PointerTy = Int8PtrTy; 217 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 218 llvm::FunctionType *FunctionTy = 219 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 220 ProfileFuncArgs, false); 221 222 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 223 llvm::CallInst *CallSite = Builder.CreateCall( 224 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 225 llvm::ConstantInt::get(Int32Ty, 0), 226 "callsite"); 227 228 Builder.CreateCall2(F, 229 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 230 CallSite); 231 } 232 233 void CodeGenFunction::EmitMCountInstrumentation() { 234 llvm::FunctionType *FTy = 235 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 236 237 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 238 Target.getMCountName()); 239 Builder.CreateCall(MCountFn); 240 } 241 242 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 243 llvm::Function *Fn, 244 const CGFunctionInfo &FnInfo, 245 const FunctionArgList &Args, 246 SourceLocation StartLoc) { 247 const Decl *D = GD.getDecl(); 248 249 DidCallStackSave = false; 250 CurCodeDecl = CurFuncDecl = D; 251 FnRetTy = RetTy; 252 CurFn = Fn; 253 CurFnInfo = &FnInfo; 254 assert(CurFn->isDeclaration() && "Function already has body?"); 255 256 // Pass inline keyword to optimizer if it appears explicitly on any 257 // declaration. 258 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 259 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 260 RE = FD->redecls_end(); RI != RE; ++RI) 261 if (RI->isInlineSpecified()) { 262 Fn->addFnAttr(llvm::Attribute::InlineHint); 263 break; 264 } 265 266 if (getContext().getLangOptions().OpenCL) { 267 // Add metadata for a kernel function. 268 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 269 if (FD->hasAttr<OpenCLKernelAttr>()) { 270 llvm::LLVMContext &Context = getLLVMContext(); 271 llvm::NamedMDNode *OpenCLMetadata = 272 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 273 274 llvm::Value *Op = Fn; 275 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 276 } 277 } 278 279 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 280 281 // Create a marker to make it easy to insert allocas into the entryblock 282 // later. Don't create this with the builder, because we don't want it 283 // folded. 284 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 285 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 286 if (Builder.isNamePreserving()) 287 AllocaInsertPt->setName("allocapt"); 288 289 ReturnBlock = getJumpDestInCurrentScope("return"); 290 291 Builder.SetInsertPoint(EntryBB); 292 293 // Emit subprogram debug descriptor. 294 if (CGDebugInfo *DI = getDebugInfo()) { 295 // FIXME: what is going on here and why does it ignore all these 296 // interesting type properties? 297 QualType FnType = 298 getContext().getFunctionType(RetTy, 0, 0, 299 FunctionProtoType::ExtProtoInfo()); 300 301 DI->setLocation(StartLoc); 302 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 303 } 304 305 if (ShouldInstrumentFunction()) 306 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 307 308 if (CGM.getCodeGenOpts().InstrumentForProfiling) 309 EmitMCountInstrumentation(); 310 311 if (RetTy->isVoidType()) { 312 // Void type; nothing to return. 313 ReturnValue = 0; 314 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 315 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 316 // Indirect aggregate return; emit returned value directly into sret slot. 317 // This reduces code size, and affects correctness in C++. 318 ReturnValue = CurFn->arg_begin(); 319 } else { 320 ReturnValue = CreateIRTemp(RetTy, "retval"); 321 322 // Tell the epilog emitter to autorelease the result. We do this 323 // now so that various specialized functions can suppress it 324 // during their IR-generation. 325 if (getLangOptions().ObjCAutoRefCount && 326 !CurFnInfo->isReturnsRetained() && 327 RetTy->isObjCRetainableType()) 328 AutoreleaseResult = true; 329 } 330 331 EmitStartEHSpec(CurCodeDecl); 332 333 PrologueCleanupDepth = EHStack.stable_begin(); 334 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 335 336 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 337 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 338 339 // If any of the arguments have a variably modified type, make sure to 340 // emit the type size. 341 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 342 i != e; ++i) { 343 QualType Ty = (*i)->getType(); 344 345 if (Ty->isVariablyModifiedType()) 346 EmitVariablyModifiedType(Ty); 347 } 348 } 349 350 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 351 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 352 assert(FD->getBody()); 353 EmitStmt(FD->getBody()); 354 } 355 356 /// Tries to mark the given function nounwind based on the 357 /// non-existence of any throwing calls within it. We believe this is 358 /// lightweight enough to do at -O0. 359 static void TryMarkNoThrow(llvm::Function *F) { 360 // LLVM treats 'nounwind' on a function as part of the type, so we 361 // can't do this on functions that can be overwritten. 362 if (F->mayBeOverridden()) return; 363 364 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 365 for (llvm::BasicBlock::iterator 366 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 367 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) 368 if (!Call->doesNotThrow()) 369 return; 370 F->setDoesNotThrow(true); 371 } 372 373 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 374 const CGFunctionInfo &FnInfo) { 375 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 376 377 // Check if we should generate debug info for this function. 378 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 379 DebugInfo = CGM.getModuleDebugInfo(); 380 381 FunctionArgList Args; 382 QualType ResTy = FD->getResultType(); 383 384 CurGD = GD; 385 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 386 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 387 388 if (FD->getNumParams()) 389 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 390 Args.push_back(FD->getParamDecl(i)); 391 392 SourceRange BodyRange; 393 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 394 395 // Emit the standard function prologue. 396 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 397 398 // Generate the body of the function. 399 if (isa<CXXDestructorDecl>(FD)) 400 EmitDestructorBody(Args); 401 else if (isa<CXXConstructorDecl>(FD)) 402 EmitConstructorBody(Args); 403 else 404 EmitFunctionBody(Args); 405 406 // Emit the standard function epilogue. 407 FinishFunction(BodyRange.getEnd()); 408 409 // If we haven't marked the function nothrow through other means, do 410 // a quick pass now to see if we can. 411 if (!CurFn->doesNotThrow()) 412 TryMarkNoThrow(CurFn); 413 } 414 415 /// ContainsLabel - Return true if the statement contains a label in it. If 416 /// this statement is not executed normally, it not containing a label means 417 /// that we can just remove the code. 418 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 419 // Null statement, not a label! 420 if (S == 0) return false; 421 422 // If this is a label, we have to emit the code, consider something like: 423 // if (0) { ... foo: bar(); } goto foo; 424 // 425 // TODO: If anyone cared, we could track __label__'s, since we know that you 426 // can't jump to one from outside their declared region. 427 if (isa<LabelStmt>(S)) 428 return true; 429 430 // If this is a case/default statement, and we haven't seen a switch, we have 431 // to emit the code. 432 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 433 return true; 434 435 // If this is a switch statement, we want to ignore cases below it. 436 if (isa<SwitchStmt>(S)) 437 IgnoreCaseStmts = true; 438 439 // Scan subexpressions for verboten labels. 440 for (Stmt::const_child_range I = S->children(); I; ++I) 441 if (ContainsLabel(*I, IgnoreCaseStmts)) 442 return true; 443 444 return false; 445 } 446 447 /// containsBreak - Return true if the statement contains a break out of it. 448 /// If the statement (recursively) contains a switch or loop with a break 449 /// inside of it, this is fine. 450 bool CodeGenFunction::containsBreak(const Stmt *S) { 451 // Null statement, not a label! 452 if (S == 0) return false; 453 454 // If this is a switch or loop that defines its own break scope, then we can 455 // include it and anything inside of it. 456 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 457 isa<ForStmt>(S)) 458 return false; 459 460 if (isa<BreakStmt>(S)) 461 return true; 462 463 // Scan subexpressions for verboten breaks. 464 for (Stmt::const_child_range I = S->children(); I; ++I) 465 if (containsBreak(*I)) 466 return true; 467 468 return false; 469 } 470 471 472 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 473 /// to a constant, or if it does but contains a label, return false. If it 474 /// constant folds return true and set the boolean result in Result. 475 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 476 bool &ResultBool) { 477 llvm::APInt ResultInt; 478 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 479 return false; 480 481 ResultBool = ResultInt.getBoolValue(); 482 return true; 483 } 484 485 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 486 /// to a constant, or if it does but contains a label, return false. If it 487 /// constant folds return true and set the folded value. 488 bool CodeGenFunction:: 489 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 490 // FIXME: Rename and handle conversion of other evaluatable things 491 // to bool. 492 Expr::EvalResult Result; 493 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 494 Result.HasSideEffects) 495 return false; // Not foldable, not integer or not fully evaluatable. 496 497 if (CodeGenFunction::ContainsLabel(Cond)) 498 return false; // Contains a label. 499 500 ResultInt = Result.Val.getInt(); 501 return true; 502 } 503 504 505 506 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 507 /// statement) to the specified blocks. Based on the condition, this might try 508 /// to simplify the codegen of the conditional based on the branch. 509 /// 510 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 511 llvm::BasicBlock *TrueBlock, 512 llvm::BasicBlock *FalseBlock) { 513 Cond = Cond->IgnoreParens(); 514 515 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 516 // Handle X && Y in a condition. 517 if (CondBOp->getOpcode() == BO_LAnd) { 518 // If we have "1 && X", simplify the code. "0 && X" would have constant 519 // folded if the case was simple enough. 520 bool ConstantBool = false; 521 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 522 ConstantBool) { 523 // br(1 && X) -> br(X). 524 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 525 } 526 527 // If we have "X && 1", simplify the code to use an uncond branch. 528 // "X && 0" would have been constant folded to 0. 529 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 530 ConstantBool) { 531 // br(X && 1) -> br(X). 532 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 533 } 534 535 // Emit the LHS as a conditional. If the LHS conditional is false, we 536 // want to jump to the FalseBlock. 537 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 538 539 ConditionalEvaluation eval(*this); 540 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 541 EmitBlock(LHSTrue); 542 543 // Any temporaries created here are conditional. 544 eval.begin(*this); 545 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 546 eval.end(*this); 547 548 return; 549 } 550 551 if (CondBOp->getOpcode() == BO_LOr) { 552 // If we have "0 || X", simplify the code. "1 || X" would have constant 553 // folded if the case was simple enough. 554 bool ConstantBool = false; 555 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 556 !ConstantBool) { 557 // br(0 || X) -> br(X). 558 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 559 } 560 561 // If we have "X || 0", simplify the code to use an uncond branch. 562 // "X || 1" would have been constant folded to 1. 563 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 564 !ConstantBool) { 565 // br(X || 0) -> br(X). 566 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 567 } 568 569 // Emit the LHS as a conditional. If the LHS conditional is true, we 570 // want to jump to the TrueBlock. 571 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 572 573 ConditionalEvaluation eval(*this); 574 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 575 EmitBlock(LHSFalse); 576 577 // Any temporaries created here are conditional. 578 eval.begin(*this); 579 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 580 eval.end(*this); 581 582 return; 583 } 584 } 585 586 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 587 // br(!x, t, f) -> br(x, f, t) 588 if (CondUOp->getOpcode() == UO_LNot) 589 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 590 } 591 592 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 593 // Handle ?: operator. 594 595 // Just ignore GNU ?: extension. 596 if (CondOp->getLHS()) { 597 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 598 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 599 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 600 601 ConditionalEvaluation cond(*this); 602 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 603 604 cond.begin(*this); 605 EmitBlock(LHSBlock); 606 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 607 cond.end(*this); 608 609 cond.begin(*this); 610 EmitBlock(RHSBlock); 611 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 612 cond.end(*this); 613 614 return; 615 } 616 } 617 618 // Emit the code with the fully general case. 619 llvm::Value *CondV = EvaluateExprAsBool(Cond); 620 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 621 } 622 623 /// ErrorUnsupported - Print out an error that codegen doesn't support the 624 /// specified stmt yet. 625 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 626 bool OmitOnError) { 627 CGM.ErrorUnsupported(S, Type, OmitOnError); 628 } 629 630 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 631 /// variable-length array whose elements have a non-zero bit-pattern. 632 /// 633 /// \param src - a char* pointing to the bit-pattern for a single 634 /// base element of the array 635 /// \param sizeInChars - the total size of the VLA, in chars 636 /// \param align - the total alignment of the VLA 637 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 638 llvm::Value *dest, llvm::Value *src, 639 llvm::Value *sizeInChars) { 640 std::pair<CharUnits,CharUnits> baseSizeAndAlign 641 = CGF.getContext().getTypeInfoInChars(baseType); 642 643 CGBuilderTy &Builder = CGF.Builder; 644 645 llvm::Value *baseSizeInChars 646 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 647 648 llvm::Type *i8p = Builder.getInt8PtrTy(); 649 650 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 651 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 652 653 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 654 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 655 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 656 657 // Make a loop over the VLA. C99 guarantees that the VLA element 658 // count must be nonzero. 659 CGF.EmitBlock(loopBB); 660 661 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 662 cur->addIncoming(begin, originBB); 663 664 // memcpy the individual element bit-pattern. 665 Builder.CreateMemCpy(cur, src, baseSizeInChars, 666 baseSizeAndAlign.second.getQuantity(), 667 /*volatile*/ false); 668 669 // Go to the next element. 670 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 671 672 // Leave if that's the end of the VLA. 673 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 674 Builder.CreateCondBr(done, contBB, loopBB); 675 cur->addIncoming(next, loopBB); 676 677 CGF.EmitBlock(contBB); 678 } 679 680 void 681 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 682 // Ignore empty classes in C++. 683 if (getContext().getLangOptions().CPlusPlus) { 684 if (const RecordType *RT = Ty->getAs<RecordType>()) { 685 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 686 return; 687 } 688 } 689 690 // Cast the dest ptr to the appropriate i8 pointer type. 691 unsigned DestAS = 692 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 693 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 694 if (DestPtr->getType() != BP) 695 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 696 697 // Get size and alignment info for this aggregate. 698 std::pair<CharUnits, CharUnits> TypeInfo = 699 getContext().getTypeInfoInChars(Ty); 700 CharUnits Size = TypeInfo.first; 701 CharUnits Align = TypeInfo.second; 702 703 llvm::Value *SizeVal; 704 const VariableArrayType *vla; 705 706 // Don't bother emitting a zero-byte memset. 707 if (Size.isZero()) { 708 // But note that getTypeInfo returns 0 for a VLA. 709 if (const VariableArrayType *vlaType = 710 dyn_cast_or_null<VariableArrayType>( 711 getContext().getAsArrayType(Ty))) { 712 QualType eltType; 713 llvm::Value *numElts; 714 llvm::tie(numElts, eltType) = getVLASize(vlaType); 715 716 SizeVal = numElts; 717 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 718 if (!eltSize.isOne()) 719 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 720 vla = vlaType; 721 } else { 722 return; 723 } 724 } else { 725 SizeVal = CGM.getSize(Size); 726 vla = 0; 727 } 728 729 // If the type contains a pointer to data member we can't memset it to zero. 730 // Instead, create a null constant and copy it to the destination. 731 // TODO: there are other patterns besides zero that we can usefully memset, 732 // like -1, which happens to be the pattern used by member-pointers. 733 if (!CGM.getTypes().isZeroInitializable(Ty)) { 734 // For a VLA, emit a single element, then splat that over the VLA. 735 if (vla) Ty = getContext().getBaseElementType(vla); 736 737 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 738 739 llvm::GlobalVariable *NullVariable = 740 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 741 /*isConstant=*/true, 742 llvm::GlobalVariable::PrivateLinkage, 743 NullConstant, llvm::Twine()); 744 llvm::Value *SrcPtr = 745 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 746 747 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 748 749 // Get and call the appropriate llvm.memcpy overload. 750 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 751 return; 752 } 753 754 // Otherwise, just memset the whole thing to zero. This is legal 755 // because in LLVM, all default initializers (other than the ones we just 756 // handled above) are guaranteed to have a bit pattern of all zeros. 757 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 758 Align.getQuantity(), false); 759 } 760 761 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 762 // Make sure that there is a block for the indirect goto. 763 if (IndirectBranch == 0) 764 GetIndirectGotoBlock(); 765 766 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 767 768 // Make sure the indirect branch includes all of the address-taken blocks. 769 IndirectBranch->addDestination(BB); 770 return llvm::BlockAddress::get(CurFn, BB); 771 } 772 773 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 774 // If we already made the indirect branch for indirect goto, return its block. 775 if (IndirectBranch) return IndirectBranch->getParent(); 776 777 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 778 779 // Create the PHI node that indirect gotos will add entries to. 780 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 781 "indirect.goto.dest"); 782 783 // Create the indirect branch instruction. 784 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 785 return IndirectBranch->getParent(); 786 } 787 788 /// Computes the length of an array in elements, as well as the base 789 /// element type and a properly-typed first element pointer. 790 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 791 QualType &baseType, 792 llvm::Value *&addr) { 793 const ArrayType *arrayType = origArrayType; 794 795 // If it's a VLA, we have to load the stored size. Note that 796 // this is the size of the VLA in bytes, not its size in elements. 797 llvm::Value *numVLAElements = 0; 798 if (isa<VariableArrayType>(arrayType)) { 799 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 800 801 // Walk into all VLAs. This doesn't require changes to addr, 802 // which has type T* where T is the first non-VLA element type. 803 do { 804 QualType elementType = arrayType->getElementType(); 805 arrayType = getContext().getAsArrayType(elementType); 806 807 // If we only have VLA components, 'addr' requires no adjustment. 808 if (!arrayType) { 809 baseType = elementType; 810 return numVLAElements; 811 } 812 } while (isa<VariableArrayType>(arrayType)); 813 814 // We get out here only if we find a constant array type 815 // inside the VLA. 816 } 817 818 // We have some number of constant-length arrays, so addr should 819 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 820 // down to the first element of addr. 821 llvm::SmallVector<llvm::Value*, 8> gepIndices; 822 823 // GEP down to the array type. 824 llvm::ConstantInt *zero = Builder.getInt32(0); 825 gepIndices.push_back(zero); 826 827 // It's more efficient to calculate the count from the LLVM 828 // constant-length arrays than to re-evaluate the array bounds. 829 uint64_t countFromCLAs = 1; 830 831 llvm::ArrayType *llvmArrayType = 832 cast<llvm::ArrayType>( 833 cast<llvm::PointerType>(addr->getType())->getElementType()); 834 while (true) { 835 assert(isa<ConstantArrayType>(arrayType)); 836 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 837 == llvmArrayType->getNumElements()); 838 839 gepIndices.push_back(zero); 840 countFromCLAs *= llvmArrayType->getNumElements(); 841 842 llvmArrayType = 843 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 844 if (!llvmArrayType) break; 845 846 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 847 assert(arrayType && "LLVM and Clang types are out-of-synch"); 848 } 849 850 baseType = arrayType->getElementType(); 851 852 // Create the actual GEP. 853 addr = Builder.CreateInBoundsGEP(addr, gepIndices.begin(), 854 gepIndices.end(), "array.begin"); 855 856 llvm::Value *numElements 857 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 858 859 // If we had any VLA dimensions, factor them in. 860 if (numVLAElements) 861 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 862 863 return numElements; 864 } 865 866 std::pair<llvm::Value*, QualType> 867 CodeGenFunction::getVLASize(QualType type) { 868 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 869 assert(vla && "type was not a variable array type!"); 870 return getVLASize(vla); 871 } 872 873 std::pair<llvm::Value*, QualType> 874 CodeGenFunction::getVLASize(const VariableArrayType *type) { 875 // The number of elements so far; always size_t. 876 llvm::Value *numElements = 0; 877 878 QualType elementType; 879 do { 880 elementType = type->getElementType(); 881 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 882 assert(vlaSize && "no size for VLA!"); 883 assert(vlaSize->getType() == SizeTy); 884 885 if (!numElements) { 886 numElements = vlaSize; 887 } else { 888 // It's undefined behavior if this wraps around, so mark it that way. 889 numElements = Builder.CreateNUWMul(numElements, vlaSize); 890 } 891 } while ((type = getContext().getAsVariableArrayType(elementType))); 892 893 return std::pair<llvm::Value*,QualType>(numElements, elementType); 894 } 895 896 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 897 assert(type->isVariablyModifiedType() && 898 "Must pass variably modified type to EmitVLASizes!"); 899 900 EnsureInsertPoint(); 901 902 // We're going to walk down into the type and look for VLA 903 // expressions. 904 type = type.getCanonicalType(); 905 do { 906 assert(type->isVariablyModifiedType()); 907 908 const Type *ty = type.getTypePtr(); 909 switch (ty->getTypeClass()) { 910 #define TYPE(Class, Base) 911 #define ABSTRACT_TYPE(Class, Base) 912 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 913 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 914 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 915 #include "clang/AST/TypeNodes.def" 916 llvm_unreachable("unexpected dependent or non-canonical type!"); 917 918 // These types are never variably-modified. 919 case Type::Builtin: 920 case Type::Complex: 921 case Type::Vector: 922 case Type::ExtVector: 923 case Type::Record: 924 case Type::Enum: 925 case Type::ObjCObject: 926 case Type::ObjCInterface: 927 case Type::ObjCObjectPointer: 928 llvm_unreachable("type class is never variably-modified!"); 929 930 case Type::Pointer: 931 type = cast<PointerType>(ty)->getPointeeType(); 932 break; 933 934 case Type::BlockPointer: 935 type = cast<BlockPointerType>(ty)->getPointeeType(); 936 break; 937 938 case Type::LValueReference: 939 case Type::RValueReference: 940 type = cast<ReferenceType>(ty)->getPointeeType(); 941 break; 942 943 case Type::MemberPointer: 944 type = cast<MemberPointerType>(ty)->getPointeeType(); 945 break; 946 947 case Type::ConstantArray: 948 case Type::IncompleteArray: 949 // Losing element qualification here is fine. 950 type = cast<ArrayType>(ty)->getElementType(); 951 break; 952 953 case Type::VariableArray: { 954 // Losing element qualification here is fine. 955 const VariableArrayType *vat = cast<VariableArrayType>(ty); 956 957 // Unknown size indication requires no size computation. 958 // Otherwise, evaluate and record it. 959 if (const Expr *size = vat->getSizeExpr()) { 960 // It's possible that we might have emitted this already, 961 // e.g. with a typedef and a pointer to it. 962 llvm::Value *&entry = VLASizeMap[size]; 963 if (!entry) { 964 // Always zexting here would be wrong if it weren't 965 // undefined behavior to have a negative bound. 966 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 967 /*signed*/ false); 968 } 969 } 970 type = vat->getElementType(); 971 break; 972 } 973 974 case Type::FunctionProto: 975 case Type::FunctionNoProto: 976 type = cast<FunctionType>(ty)->getResultType(); 977 break; 978 } 979 } while (type->isVariablyModifiedType()); 980 } 981 982 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 983 if (getContext().getBuiltinVaListType()->isArrayType()) 984 return EmitScalarExpr(E); 985 return EmitLValue(E).getAddress(); 986 } 987 988 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 989 llvm::Constant *Init) { 990 assert (Init && "Invalid DeclRefExpr initializer!"); 991 if (CGDebugInfo *Dbg = getDebugInfo()) 992 Dbg->EmitGlobalVariable(E->getDecl(), Init); 993 } 994 995 CodeGenFunction::PeepholeProtection 996 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 997 // At the moment, the only aggressive peephole we do in IR gen 998 // is trunc(zext) folding, but if we add more, we can easily 999 // extend this protection. 1000 1001 if (!rvalue.isScalar()) return PeepholeProtection(); 1002 llvm::Value *value = rvalue.getScalarVal(); 1003 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1004 1005 // Just make an extra bitcast. 1006 assert(HaveInsertPoint()); 1007 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1008 Builder.GetInsertBlock()); 1009 1010 PeepholeProtection protection; 1011 protection.Inst = inst; 1012 return protection; 1013 } 1014 1015 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1016 if (!protection.Inst) return; 1017 1018 // In theory, we could try to duplicate the peepholes now, but whatever. 1019 protection.Inst->eraseFromParent(); 1020 } 1021