Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * the trip count
     27 //  * etc...
     28 //
     29 //===----------------------------------------------------------------------===//
     30 
     31 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
     32 #define LLVM_ANALYSIS_LOOP_INFO_H
     33 
     34 #include "llvm/Pass.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/DepthFirstIterator.h"
     37 #include "llvm/ADT/GraphTraits.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/Analysis/Dominators.h"
     41 #include "llvm/Support/CFG.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include <algorithm>
     44 #include <map>
     45 
     46 namespace llvm {
     47 
     48 template<typename T>
     49 static void RemoveFromVector(std::vector<T*> &V, T *N) {
     50   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     51   assert(I != V.end() && "N is not in this list!");
     52   V.erase(I);
     53 }
     54 
     55 class DominatorTree;
     56 class LoopInfo;
     57 class Loop;
     58 class PHINode;
     59 template<class N, class M> class LoopInfoBase;
     60 template<class N, class M> class LoopBase;
     61 
     62 //===----------------------------------------------------------------------===//
     63 /// LoopBase class - Instances of this class are used to represent loops that
     64 /// are detected in the flow graph
     65 ///
     66 template<class BlockT, class LoopT>
     67 class LoopBase {
     68   LoopT *ParentLoop;
     69   // SubLoops - Loops contained entirely within this one.
     70   std::vector<LoopT *> SubLoops;
     71 
     72   // Blocks - The list of blocks in this loop.  First entry is the header node.
     73   std::vector<BlockT*> Blocks;
     74 
     75   // DO NOT IMPLEMENT
     76   LoopBase(const LoopBase<BlockT, LoopT> &);
     77   // DO NOT IMPLEMENT
     78   const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
     79 public:
     80   /// Loop ctor - This creates an empty loop.
     81   LoopBase() : ParentLoop(0) {}
     82   ~LoopBase() {
     83     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     84       delete SubLoops[i];
     85   }
     86 
     87   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     88   /// loop has depth 1, for consistency with loop depth values used for basic
     89   /// blocks, where depth 0 is used for blocks not inside any loops.
     90   unsigned getLoopDepth() const {
     91     unsigned D = 1;
     92     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     93          CurLoop = CurLoop->ParentLoop)
     94       ++D;
     95     return D;
     96   }
     97   BlockT *getHeader() const { return Blocks.front(); }
     98   LoopT *getParentLoop() const { return ParentLoop; }
     99 
    100   /// contains - Return true if the specified loop is contained within in
    101   /// this loop.
    102   ///
    103   bool contains(const LoopT *L) const {
    104     if (L == this) return true;
    105     if (L == 0)    return false;
    106     return contains(L->getParentLoop());
    107   }
    108 
    109   /// contains - Return true if the specified basic block is in this loop.
    110   ///
    111   bool contains(const BlockT *BB) const {
    112     return std::find(block_begin(), block_end(), BB) != block_end();
    113   }
    114 
    115   /// contains - Return true if the specified instruction is in this loop.
    116   ///
    117   template<class InstT>
    118   bool contains(const InstT *Inst) const {
    119     return contains(Inst->getParent());
    120   }
    121 
    122   /// iterator/begin/end - Return the loops contained entirely within this loop.
    123   ///
    124   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    125   typedef typename std::vector<LoopT *>::const_iterator iterator;
    126   iterator begin() const { return SubLoops.begin(); }
    127   iterator end() const { return SubLoops.end(); }
    128   bool empty() const { return SubLoops.empty(); }
    129 
    130   /// getBlocks - Get a list of the basic blocks which make up this loop.
    131   ///
    132   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    133   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    134   block_iterator block_begin() const { return Blocks.begin(); }
    135   block_iterator block_end() const { return Blocks.end(); }
    136 
    137   /// isLoopExiting - True if terminator in the block can branch to another
    138   /// block that is outside of the current loop.
    139   ///
    140   bool isLoopExiting(const BlockT *BB) const {
    141     typedef GraphTraits<BlockT*> BlockTraits;
    142     for (typename BlockTraits::ChildIteratorType SI =
    143          BlockTraits::child_begin(const_cast<BlockT*>(BB)),
    144          SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
    145       if (!contains(*SI))
    146         return true;
    147     }
    148     return false;
    149   }
    150 
    151   /// getNumBackEdges - Calculate the number of back edges to the loop header
    152   ///
    153   unsigned getNumBackEdges() const {
    154     unsigned NumBackEdges = 0;
    155     BlockT *H = getHeader();
    156 
    157     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    158     for (typename InvBlockTraits::ChildIteratorType I =
    159          InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
    160          E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
    161       if (contains(*I))
    162         ++NumBackEdges;
    163 
    164     return NumBackEdges;
    165   }
    166 
    167   //===--------------------------------------------------------------------===//
    168   // APIs for simple analysis of the loop.
    169   //
    170   // Note that all of these methods can fail on general loops (ie, there may not
    171   // be a preheader, etc).  For best success, the loop simplification and
    172   // induction variable canonicalization pass should be used to normalize loops
    173   // for easy analysis.  These methods assume canonical loops.
    174 
    175   /// getExitingBlocks - Return all blocks inside the loop that have successors
    176   /// outside of the loop.  These are the blocks _inside of the current loop_
    177   /// which branch out.  The returned list is always unique.
    178   ///
    179   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
    180     // Sort the blocks vector so that we can use binary search to do quick
    181     // lookups.
    182     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    183     std::sort(LoopBBs.begin(), LoopBBs.end());
    184 
    185     typedef GraphTraits<BlockT*> BlockTraits;
    186     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    187       for (typename BlockTraits::ChildIteratorType I =
    188           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    189           I != E; ++I)
    190         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
    191           // Not in current loop? It must be an exit block.
    192           ExitingBlocks.push_back(*BI);
    193           break;
    194         }
    195   }
    196 
    197   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    198   /// return that block. Otherwise return null.
    199   BlockT *getExitingBlock() const {
    200     SmallVector<BlockT*, 8> ExitingBlocks;
    201     getExitingBlocks(ExitingBlocks);
    202     if (ExitingBlocks.size() == 1)
    203       return ExitingBlocks[0];
    204     return 0;
    205   }
    206 
    207   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    208   /// are the blocks _outside of the current loop_ which are branched to.
    209   ///
    210   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
    211     // Sort the blocks vector so that we can use binary search to do quick
    212     // lookups.
    213     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    214     std::sort(LoopBBs.begin(), LoopBBs.end());
    215 
    216     typedef GraphTraits<BlockT*> BlockTraits;
    217     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    218       for (typename BlockTraits::ChildIteratorType I =
    219            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    220            I != E; ++I)
    221         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    222           // Not in current loop? It must be an exit block.
    223           ExitBlocks.push_back(*I);
    224   }
    225 
    226   /// getExitBlock - If getExitBlocks would return exactly one block,
    227   /// return that block. Otherwise return null.
    228   BlockT *getExitBlock() const {
    229     SmallVector<BlockT*, 8> ExitBlocks;
    230     getExitBlocks(ExitBlocks);
    231     if (ExitBlocks.size() == 1)
    232       return ExitBlocks[0];
    233     return 0;
    234   }
    235 
    236   /// Edge type.
    237   typedef std::pair<BlockT*, BlockT*> Edge;
    238 
    239   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    240   template <typename EdgeT>
    241   void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
    242     // Sort the blocks vector so that we can use binary search to do quick
    243     // lookups.
    244     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    245     array_pod_sort(LoopBBs.begin(), LoopBBs.end());
    246 
    247     typedef GraphTraits<BlockT*> BlockTraits;
    248     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    249       for (typename BlockTraits::ChildIteratorType I =
    250            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    251            I != E; ++I)
    252         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    253           // Not in current loop? It must be an exit block.
    254           ExitEdges.push_back(EdgeT(*BI, *I));
    255   }
    256 
    257   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    258   /// loop has a preheader if there is only one edge to the header of the loop
    259   /// from outside of the loop.  If this is the case, the block branching to the
    260   /// header of the loop is the preheader node.
    261   ///
    262   /// This method returns null if there is no preheader for the loop.
    263   ///
    264   BlockT *getLoopPreheader() const {
    265     // Keep track of nodes outside the loop branching to the header...
    266     BlockT *Out = getLoopPredecessor();
    267     if (!Out) return 0;
    268 
    269     // Make sure there is only one exit out of the preheader.
    270     typedef GraphTraits<BlockT*> BlockTraits;
    271     typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    272     ++SI;
    273     if (SI != BlockTraits::child_end(Out))
    274       return 0;  // Multiple exits from the block, must not be a preheader.
    275 
    276     // The predecessor has exactly one successor, so it is a preheader.
    277     return Out;
    278   }
    279 
    280   /// getLoopPredecessor - If the given loop's header has exactly one unique
    281   /// predecessor outside the loop, return it. Otherwise return null.
    282   /// This is less strict that the loop "preheader" concept, which requires
    283   /// the predecessor to have exactly one successor.
    284   ///
    285   BlockT *getLoopPredecessor() const {
    286     // Keep track of nodes outside the loop branching to the header...
    287     BlockT *Out = 0;
    288 
    289     // Loop over the predecessors of the header node...
    290     BlockT *Header = getHeader();
    291     typedef GraphTraits<BlockT*> BlockTraits;
    292     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    293     for (typename InvBlockTraits::ChildIteratorType PI =
    294          InvBlockTraits::child_begin(Header),
    295          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    296       typename InvBlockTraits::NodeType *N = *PI;
    297       if (!contains(N)) {     // If the block is not in the loop...
    298         if (Out && Out != N)
    299           return 0;             // Multiple predecessors outside the loop
    300         Out = N;
    301       }
    302     }
    303 
    304     // Make sure there is only one exit out of the preheader.
    305     assert(Out && "Header of loop has no predecessors from outside loop?");
    306     return Out;
    307   }
    308 
    309   /// getLoopLatch - If there is a single latch block for this loop, return it.
    310   /// A latch block is a block that contains a branch back to the header.
    311   BlockT *getLoopLatch() const {
    312     BlockT *Header = getHeader();
    313     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    314     typename InvBlockTraits::ChildIteratorType PI =
    315                                             InvBlockTraits::child_begin(Header);
    316     typename InvBlockTraits::ChildIteratorType PE =
    317                                               InvBlockTraits::child_end(Header);
    318     BlockT *Latch = 0;
    319     for (; PI != PE; ++PI) {
    320       typename InvBlockTraits::NodeType *N = *PI;
    321       if (contains(N)) {
    322         if (Latch) return 0;
    323         Latch = N;
    324       }
    325     }
    326 
    327     return Latch;
    328   }
    329 
    330   //===--------------------------------------------------------------------===//
    331   // APIs for updating loop information after changing the CFG
    332   //
    333 
    334   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    335   /// information.  NewBB is set to be a new member of the current loop.
    336   /// Because of this, it is added as a member of all parent loops, and is added
    337   /// to the specified LoopInfo object as being in the current basic block.  It
    338   /// is not valid to replace the loop header with this method.
    339   ///
    340   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    341 
    342   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    343   /// the OldChild entry in our children list with NewChild, and updates the
    344   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    345   /// This updates the loop depth of the new child.
    346   void replaceChildLoopWith(LoopT *OldChild,
    347                             LoopT *NewChild) {
    348     assert(OldChild->ParentLoop == this && "This loop is already broken!");
    349     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    350     typename std::vector<LoopT *>::iterator I =
    351                           std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    352     assert(I != SubLoops.end() && "OldChild not in loop!");
    353     *I = NewChild;
    354     OldChild->ParentLoop = 0;
    355     NewChild->ParentLoop = static_cast<LoopT *>(this);
    356   }
    357 
    358   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    359   /// updates the loop depth of the new child.
    360   ///
    361   void addChildLoop(LoopT *NewChild) {
    362     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    363     NewChild->ParentLoop = static_cast<LoopT *>(this);
    364     SubLoops.push_back(NewChild);
    365   }
    366 
    367   /// removeChildLoop - This removes the specified child from being a subloop of
    368   /// this loop.  The loop is not deleted, as it will presumably be inserted
    369   /// into another loop.
    370   LoopT *removeChildLoop(iterator I) {
    371     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    372     LoopT *Child = *I;
    373     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    374     SubLoops.erase(SubLoops.begin()+(I-begin()));
    375     Child->ParentLoop = 0;
    376     return Child;
    377   }
    378 
    379   /// addBlockEntry - This adds a basic block directly to the basic block list.
    380   /// This should only be used by transformations that create new loops.  Other
    381   /// transformations should use addBasicBlockToLoop.
    382   void addBlockEntry(BlockT *BB) {
    383     Blocks.push_back(BB);
    384   }
    385 
    386   /// moveToHeader - This method is used to move BB (which must be part of this
    387   /// loop) to be the loop header of the loop (the block that dominates all
    388   /// others).
    389   void moveToHeader(BlockT *BB) {
    390     if (Blocks[0] == BB) return;
    391     for (unsigned i = 0; ; ++i) {
    392       assert(i != Blocks.size() && "Loop does not contain BB!");
    393       if (Blocks[i] == BB) {
    394         Blocks[i] = Blocks[0];
    395         Blocks[0] = BB;
    396         return;
    397       }
    398     }
    399   }
    400 
    401   /// removeBlockFromLoop - This removes the specified basic block from the
    402   /// current loop, updating the Blocks as appropriate.  This does not update
    403   /// the mapping in the LoopInfo class.
    404   void removeBlockFromLoop(BlockT *BB) {
    405     RemoveFromVector(Blocks, BB);
    406   }
    407 
    408   /// verifyLoop - Verify loop structure
    409   void verifyLoop() const {
    410 #ifndef NDEBUG
    411     assert(!Blocks.empty() && "Loop header is missing");
    412 
    413     // Sort the blocks vector so that we can use binary search to do quick
    414     // lookups.
    415     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    416     std::sort(LoopBBs.begin(), LoopBBs.end());
    417 
    418     // Check the individual blocks.
    419     for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    420       BlockT *BB = *I;
    421       bool HasInsideLoopSuccs = false;
    422       bool HasInsideLoopPreds = false;
    423       SmallVector<BlockT *, 2> OutsideLoopPreds;
    424 
    425       typedef GraphTraits<BlockT*> BlockTraits;
    426       for (typename BlockTraits::ChildIteratorType SI =
    427            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
    428            SI != SE; ++SI)
    429         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
    430           HasInsideLoopSuccs = true;
    431           break;
    432         }
    433       typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    434       for (typename InvBlockTraits::ChildIteratorType PI =
    435            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
    436            PI != PE; ++PI) {
    437         typename InvBlockTraits::NodeType *N = *PI;
    438         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
    439           HasInsideLoopPreds = true;
    440         else
    441           OutsideLoopPreds.push_back(N);
    442       }
    443 
    444       if (BB == getHeader()) {
    445         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    446       } else if (!OutsideLoopPreds.empty()) {
    447         // A non-header loop shouldn't be reachable from outside the loop,
    448         // though it is permitted if the predecessor is not itself actually
    449         // reachable.
    450         BlockT *EntryBB = BB->getParent()->begin();
    451         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
    452              NE = df_end(EntryBB); NI != NE; ++NI)
    453           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    454             assert(*NI != OutsideLoopPreds[i] &&
    455                    "Loop has multiple entry points!");
    456       }
    457       assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    458       assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    459       assert(BB != getHeader()->getParent()->begin() &&
    460              "Loop contains function entry block!");
    461     }
    462 
    463     // Check the subloops.
    464     for (iterator I = begin(), E = end(); I != E; ++I)
    465       // Each block in each subloop should be contained within this loop.
    466       for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    467            BI != BE; ++BI) {
    468         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
    469                "Loop does not contain all the blocks of a subloop!");
    470       }
    471 
    472     // Check the parent loop pointer.
    473     if (ParentLoop) {
    474       assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
    475                ParentLoop->end() &&
    476              "Loop is not a subloop of its parent!");
    477     }
    478 #endif
    479   }
    480 
    481   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    482   void verifyLoopNest() const {
    483     // Verify this loop.
    484     verifyLoop();
    485     // Verify the subloops.
    486     for (iterator I = begin(), E = end(); I != E; ++I)
    487       (*I)->verifyLoopNest();
    488   }
    489 
    490   void print(raw_ostream &OS, unsigned Depth = 0) const {
    491     OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
    492        << " containing: ";
    493 
    494     for (unsigned i = 0; i < getBlocks().size(); ++i) {
    495       if (i) OS << ",";
    496       BlockT *BB = getBlocks()[i];
    497       WriteAsOperand(OS, BB, false);
    498       if (BB == getHeader())    OS << "<header>";
    499       if (BB == getLoopLatch()) OS << "<latch>";
    500       if (isLoopExiting(BB))    OS << "<exiting>";
    501     }
    502     OS << "\n";
    503 
    504     for (iterator I = begin(), E = end(); I != E; ++I)
    505       (*I)->print(OS, Depth+2);
    506   }
    507 
    508 protected:
    509   friend class LoopInfoBase<BlockT, LoopT>;
    510   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    511     Blocks.push_back(BB);
    512   }
    513 };
    514 
    515 template<class BlockT, class LoopT>
    516 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    517   Loop.print(OS);
    518   return OS;
    519 }
    520 
    521 class Loop : public LoopBase<BasicBlock, Loop> {
    522 public:
    523   Loop() {}
    524 
    525   /// isLoopInvariant - Return true if the specified value is loop invariant
    526   ///
    527   bool isLoopInvariant(Value *V) const;
    528 
    529   /// hasLoopInvariantOperands - Return true if all the operands of the
    530   /// specified instruction are loop invariant.
    531   bool hasLoopInvariantOperands(Instruction *I) const;
    532 
    533   /// makeLoopInvariant - If the given value is an instruction inside of the
    534   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    535   /// Return true if the value after any hoisting is loop invariant. This
    536   /// function can be used as a slightly more aggressive replacement for
    537   /// isLoopInvariant.
    538   ///
    539   /// If InsertPt is specified, it is the point to hoist instructions to.
    540   /// If null, the terminator of the loop preheader is used.
    541   ///
    542   bool makeLoopInvariant(Value *V, bool &Changed,
    543                          Instruction *InsertPt = 0) const;
    544 
    545   /// makeLoopInvariant - If the given instruction is inside of the
    546   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    547   /// Return true if the instruction after any hoisting is loop invariant. This
    548   /// function can be used as a slightly more aggressive replacement for
    549   /// isLoopInvariant.
    550   ///
    551   /// If InsertPt is specified, it is the point to hoist instructions to.
    552   /// If null, the terminator of the loop preheader is used.
    553   ///
    554   bool makeLoopInvariant(Instruction *I, bool &Changed,
    555                          Instruction *InsertPt = 0) const;
    556 
    557   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    558   /// induction variable: an integer recurrence that starts at 0 and increments
    559   /// by one each time through the loop.  If so, return the phi node that
    560   /// corresponds to it.
    561   ///
    562   /// The IndVarSimplify pass transforms loops to have a canonical induction
    563   /// variable.
    564   ///
    565   PHINode *getCanonicalInductionVariable() const;
    566 
    567   /// getTripCount - Return a loop-invariant LLVM value indicating the number of
    568   /// times the loop will be executed.  Note that this means that the backedge
    569   /// of the loop executes N-1 times.  If the trip-count cannot be determined,
    570   /// this returns null.
    571   ///
    572   /// The IndVarSimplify pass transforms loops to have a form that this
    573   /// function easily understands.
    574   ///
    575   Value *getTripCount() const;
    576 
    577   /// getSmallConstantTripCount - Returns the trip count of this loop as a
    578   /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
    579   /// of not constant. Will also return 0 if the trip count is very large
    580   /// (>= 2^32)
    581   ///
    582   /// The IndVarSimplify pass transforms loops to have a form that this
    583   /// function easily understands.
    584   ///
    585   unsigned getSmallConstantTripCount() const;
    586 
    587   /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
    588   /// trip count of this loop as a normal unsigned value, if possible. This
    589   /// means that the actual trip count is always a multiple of the returned
    590   /// value (don't forget the trip count could very well be zero as well!).
    591   ///
    592   /// Returns 1 if the trip count is unknown or not guaranteed to be the
    593   /// multiple of a constant (which is also the case if the trip count is simply
    594   /// constant, use getSmallConstantTripCount for that case), Will also return 1
    595   /// if the trip count is very large (>= 2^32).
    596   unsigned getSmallConstantTripMultiple() const;
    597 
    598   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    599   bool isLCSSAForm(DominatorTree &DT) const;
    600 
    601   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    602   /// the LoopSimplify form transforms loops to, which is sometimes called
    603   /// normal form.
    604   bool isLoopSimplifyForm() const;
    605 
    606   /// hasDedicatedExits - Return true if no exit block for the loop
    607   /// has a predecessor that is outside the loop.
    608   bool hasDedicatedExits() const;
    609 
    610   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    611   /// These are the blocks _outside of the current loop_ which are branched to.
    612   /// This assumes that loop exits are in canonical form.
    613   ///
    614   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    615 
    616   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    617   /// block, return that block. Otherwise return null.
    618   BasicBlock *getUniqueExitBlock() const;
    619 
    620   void dump() const;
    621 
    622 private:
    623   friend class LoopInfoBase<BasicBlock, Loop>;
    624   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    625 };
    626 
    627 //===----------------------------------------------------------------------===//
    628 /// LoopInfo - This class builds and contains all of the top level loop
    629 /// structures in the specified function.
    630 ///
    631 
    632 template<class BlockT, class LoopT>
    633 class LoopInfoBase {
    634   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    635   DenseMap<BlockT *, LoopT *> BBMap;
    636   std::vector<LoopT *> TopLevelLoops;
    637   friend class LoopBase<BlockT, LoopT>;
    638 
    639   void operator=(const LoopInfoBase &); // do not implement
    640   LoopInfoBase(const LoopInfo &);       // do not implement
    641 public:
    642   LoopInfoBase() { }
    643   ~LoopInfoBase() { releaseMemory(); }
    644 
    645   void releaseMemory() {
    646     for (typename std::vector<LoopT *>::iterator I =
    647          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    648       delete *I;   // Delete all of the loops...
    649 
    650     BBMap.clear();                           // Reset internal state of analysis
    651     TopLevelLoops.clear();
    652   }
    653 
    654   /// iterator/begin/end - The interface to the top-level loops in the current
    655   /// function.
    656   ///
    657   typedef typename std::vector<LoopT *>::const_iterator iterator;
    658   iterator begin() const { return TopLevelLoops.begin(); }
    659   iterator end() const { return TopLevelLoops.end(); }
    660   bool empty() const { return TopLevelLoops.empty(); }
    661 
    662   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    663   /// block is in no loop (for example the entry node), null is returned.
    664   ///
    665   LoopT *getLoopFor(const BlockT *BB) const {
    666     typename DenseMap<BlockT *, LoopT *>::const_iterator I=
    667       BBMap.find(const_cast<BlockT*>(BB));
    668     return I != BBMap.end() ? I->second : 0;
    669   }
    670 
    671   /// operator[] - same as getLoopFor...
    672   ///
    673   const LoopT *operator[](const BlockT *BB) const {
    674     return getLoopFor(BB);
    675   }
    676 
    677   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    678   /// depth of 0 means the block is not inside any loop.
    679   ///
    680   unsigned getLoopDepth(const BlockT *BB) const {
    681     const LoopT *L = getLoopFor(BB);
    682     return L ? L->getLoopDepth() : 0;
    683   }
    684 
    685   // isLoopHeader - True if the block is a loop header node
    686   bool isLoopHeader(BlockT *BB) const {
    687     const LoopT *L = getLoopFor(BB);
    688     return L && L->getHeader() == BB;
    689   }
    690 
    691   /// removeLoop - This removes the specified top-level loop from this loop info
    692   /// object.  The loop is not deleted, as it will presumably be inserted into
    693   /// another loop.
    694   LoopT *removeLoop(iterator I) {
    695     assert(I != end() && "Cannot remove end iterator!");
    696     LoopT *L = *I;
    697     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    698     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    699     return L;
    700   }
    701 
    702   /// changeLoopFor - Change the top-level loop that contains BB to the
    703   /// specified loop.  This should be used by transformations that restructure
    704   /// the loop hierarchy tree.
    705   void changeLoopFor(BlockT *BB, LoopT *L) {
    706     LoopT *&OldLoop = BBMap[BB];
    707     assert(OldLoop && "Block not in a loop yet!");
    708     OldLoop = L;
    709   }
    710 
    711   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    712   /// list with the indicated loop.
    713   void changeTopLevelLoop(LoopT *OldLoop,
    714                           LoopT *NewLoop) {
    715     typename std::vector<LoopT *>::iterator I =
    716                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    717     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    718     *I = NewLoop;
    719     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
    720            "Loops already embedded into a subloop!");
    721   }
    722 
    723   /// addTopLevelLoop - This adds the specified loop to the collection of
    724   /// top-level loops.
    725   void addTopLevelLoop(LoopT *New) {
    726     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    727     TopLevelLoops.push_back(New);
    728   }
    729 
    730   /// removeBlock - This method completely removes BB from all data structures,
    731   /// including all of the Loop objects it is nested in and our mapping from
    732   /// BasicBlocks to loops.
    733   void removeBlock(BlockT *BB) {
    734     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    735     if (I != BBMap.end()) {
    736       for (LoopT *L = I->second; L; L = L->getParentLoop())
    737         L->removeBlockFromLoop(BB);
    738 
    739       BBMap.erase(I);
    740     }
    741   }
    742 
    743   // Internals
    744 
    745   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    746                                       const LoopT *ParentLoop) {
    747     if (SubLoop == 0) return true;
    748     if (SubLoop == ParentLoop) return false;
    749     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    750   }
    751 
    752   void Calculate(DominatorTreeBase<BlockT> &DT) {
    753     BlockT *RootNode = DT.getRootNode()->getBlock();
    754 
    755     for (df_iterator<BlockT*> NI = df_begin(RootNode),
    756            NE = df_end(RootNode); NI != NE; ++NI)
    757       if (LoopT *L = ConsiderForLoop(*NI, DT))
    758         TopLevelLoops.push_back(L);
    759   }
    760 
    761   LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
    762     if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
    763 
    764     std::vector<BlockT *> TodoStack;
    765 
    766     // Scan the predecessors of BB, checking to see if BB dominates any of
    767     // them.  This identifies backedges which target this node...
    768     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    769     for (typename InvBlockTraits::ChildIteratorType I =
    770          InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
    771          I != E; ++I) {
    772       typename InvBlockTraits::NodeType *N = *I;
    773       if (DT.dominates(BB, N))   // If BB dominates its predecessor...
    774           TodoStack.push_back(N);
    775     }
    776 
    777     if (TodoStack.empty()) return 0;  // No backedges to this block...
    778 
    779     // Create a new loop to represent this basic block...
    780     LoopT *L = new LoopT(BB);
    781     BBMap[BB] = L;
    782 
    783     BlockT *EntryBlock = BB->getParent()->begin();
    784 
    785     while (!TodoStack.empty()) {  // Process all the nodes in the loop
    786       BlockT *X = TodoStack.back();
    787       TodoStack.pop_back();
    788 
    789       if (!L->contains(X) &&         // As of yet unprocessed??
    790           DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
    791         // Check to see if this block already belongs to a loop.  If this occurs
    792         // then we have a case where a loop that is supposed to be a child of
    793         // the current loop was processed before the current loop.  When this
    794         // occurs, this child loop gets added to a part of the current loop,
    795         // making it a sibling to the current loop.  We have to reparent this
    796         // loop.
    797         if (LoopT *SubLoop =
    798             const_cast<LoopT *>(getLoopFor(X)))
    799           if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
    800             // Remove the subloop from its current parent...
    801             assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
    802             LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
    803             typename std::vector<LoopT *>::iterator I =
    804               std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
    805             assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
    806             SLP->SubLoops.erase(I);   // Remove from parent...
    807 
    808             // Add the subloop to THIS loop...
    809             SubLoop->ParentLoop = L;
    810             L->SubLoops.push_back(SubLoop);
    811           }
    812 
    813         // Normal case, add the block to our loop...
    814         L->Blocks.push_back(X);
    815 
    816         typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    817 
    818         // Add all of the predecessors of X to the end of the work stack...
    819         TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
    820                          InvBlockTraits::child_end(X));
    821       }
    822     }
    823 
    824     // If there are any loops nested within this loop, create them now!
    825     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    826          E = L->Blocks.end(); I != E; ++I)
    827       if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
    828         L->SubLoops.push_back(NewLoop);
    829         NewLoop->ParentLoop = L;
    830       }
    831 
    832     // Add the basic blocks that comprise this loop to the BBMap so that this
    833     // loop can be found for them.
    834     //
    835     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    836            E = L->Blocks.end(); I != E; ++I)
    837       BBMap.insert(std::make_pair(*I, L));
    838 
    839     // Now that we have a list of all of the child loops of this loop, check to
    840     // see if any of them should actually be nested inside of each other.  We
    841     // can accidentally pull loops our of their parents, so we must make sure to
    842     // organize the loop nests correctly now.
    843     {
    844       std::map<BlockT *, LoopT *> ContainingLoops;
    845       for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
    846         LoopT *Child = L->SubLoops[i];
    847         assert(Child->getParentLoop() == L && "Not proper child loop?");
    848 
    849         if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
    850           // If there is already a loop which contains this loop, move this loop
    851           // into the containing loop.
    852           MoveSiblingLoopInto(Child, ContainingLoop);
    853           --i;  // The loop got removed from the SubLoops list.
    854         } else {
    855           // This is currently considered to be a top-level loop.  Check to see
    856           // if any of the contained blocks are loop headers for subloops we
    857           // have already processed.
    858           for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
    859             LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
    860             if (BlockLoop == 0) {   // Child block not processed yet...
    861               BlockLoop = Child;
    862             } else if (BlockLoop != Child) {
    863               LoopT *SubLoop = BlockLoop;
    864               // Reparent all of the blocks which used to belong to BlockLoops
    865               for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
    866                 ContainingLoops[SubLoop->Blocks[j]] = Child;
    867 
    868               // There is already a loop which contains this block, that means
    869               // that we should reparent the loop which the block is currently
    870               // considered to belong to to be a child of this loop.
    871               MoveSiblingLoopInto(SubLoop, Child);
    872               --i;  // We just shrunk the SubLoops list.
    873             }
    874           }
    875         }
    876       }
    877     }
    878 
    879     return L;
    880   }
    881 
    882   /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
    883   /// of the NewParent Loop, instead of being a sibling of it.
    884   void MoveSiblingLoopInto(LoopT *NewChild,
    885                            LoopT *NewParent) {
    886     LoopT *OldParent = NewChild->getParentLoop();
    887     assert(OldParent && OldParent == NewParent->getParentLoop() &&
    888            NewChild != NewParent && "Not sibling loops!");
    889 
    890     // Remove NewChild from being a child of OldParent
    891     typename std::vector<LoopT *>::iterator I =
    892       std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
    893                 NewChild);
    894     assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
    895     OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
    896     NewChild->ParentLoop = 0;
    897 
    898     InsertLoopInto(NewChild, NewParent);
    899   }
    900 
    901   /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
    902   /// the parent loop contains a loop which should contain L, the loop gets
    903   /// inserted into L instead.
    904   void InsertLoopInto(LoopT *L, LoopT *Parent) {
    905     BlockT *LHeader = L->getHeader();
    906     assert(Parent->contains(LHeader) &&
    907            "This loop should not be inserted here!");
    908 
    909     // Check to see if it belongs in a child loop...
    910     for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
    911          i != e; ++i)
    912       if (Parent->SubLoops[i]->contains(LHeader)) {
    913         InsertLoopInto(L, Parent->SubLoops[i]);
    914         return;
    915       }
    916 
    917     // If not, insert it here!
    918     Parent->SubLoops.push_back(L);
    919     L->ParentLoop = Parent;
    920   }
    921 
    922   // Debugging
    923 
    924   void print(raw_ostream &OS) const {
    925     for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    926       TopLevelLoops[i]->print(OS);
    927   #if 0
    928     for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    929            E = BBMap.end(); I != E; ++I)
    930       OS << "BB '" << I->first->getName() << "' level = "
    931          << I->second->getLoopDepth() << "\n";
    932   #endif
    933   }
    934 };
    935 
    936 class LoopInfo : public FunctionPass {
    937   LoopInfoBase<BasicBlock, Loop> LI;
    938   friend class LoopBase<BasicBlock, Loop>;
    939 
    940   void operator=(const LoopInfo &); // do not implement
    941   LoopInfo(const LoopInfo &);       // do not implement
    942 public:
    943   static char ID; // Pass identification, replacement for typeid
    944 
    945   LoopInfo() : FunctionPass(ID) {
    946     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    947   }
    948 
    949   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    950 
    951   /// iterator/begin/end - The interface to the top-level loops in the current
    952   /// function.
    953   ///
    954   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    955   inline iterator begin() const { return LI.begin(); }
    956   inline iterator end() const { return LI.end(); }
    957   bool empty() const { return LI.empty(); }
    958 
    959   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    960   /// block is in no loop (for example the entry node), null is returned.
    961   ///
    962   inline Loop *getLoopFor(const BasicBlock *BB) const {
    963     return LI.getLoopFor(BB);
    964   }
    965 
    966   /// operator[] - same as getLoopFor...
    967   ///
    968   inline const Loop *operator[](const BasicBlock *BB) const {
    969     return LI.getLoopFor(BB);
    970   }
    971 
    972   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    973   /// depth of 0 means the block is not inside any loop.
    974   ///
    975   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    976     return LI.getLoopDepth(BB);
    977   }
    978 
    979   // isLoopHeader - True if the block is a loop header node
    980   inline bool isLoopHeader(BasicBlock *BB) const {
    981     return LI.isLoopHeader(BB);
    982   }
    983 
    984   /// runOnFunction - Calculate the natural loop information.
    985   ///
    986   virtual bool runOnFunction(Function &F);
    987 
    988   virtual void verifyAnalysis() const;
    989 
    990   virtual void releaseMemory() { LI.releaseMemory(); }
    991 
    992   virtual void print(raw_ostream &O, const Module* M = 0) const;
    993 
    994   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    995 
    996   /// removeLoop - This removes the specified top-level loop from this loop info
    997   /// object.  The loop is not deleted, as it will presumably be inserted into
    998   /// another loop.
    999   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
   1000 
   1001   /// changeLoopFor - Change the top-level loop that contains BB to the
   1002   /// specified loop.  This should be used by transformations that restructure
   1003   /// the loop hierarchy tree.
   1004   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
   1005     LI.changeLoopFor(BB, L);
   1006   }
   1007 
   1008   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
   1009   /// list with the indicated loop.
   1010   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
   1011     LI.changeTopLevelLoop(OldLoop, NewLoop);
   1012   }
   1013 
   1014   /// addTopLevelLoop - This adds the specified loop to the collection of
   1015   /// top-level loops.
   1016   inline void addTopLevelLoop(Loop *New) {
   1017     LI.addTopLevelLoop(New);
   1018   }
   1019 
   1020   /// removeBlock - This method completely removes BB from all data structures,
   1021   /// including all of the Loop objects it is nested in and our mapping from
   1022   /// BasicBlocks to loops.
   1023   void removeBlock(BasicBlock *BB) {
   1024     LI.removeBlock(BB);
   1025   }
   1026 
   1027   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
   1028   /// everywhere is guaranteed to preserve LCSSA form.
   1029   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
   1030     // Preserving LCSSA form is only problematic if the replacing value is an
   1031     // instruction.
   1032     Instruction *I = dyn_cast<Instruction>(To);
   1033     if (!I) return true;
   1034     // If both instructions are defined in the same basic block then replacement
   1035     // cannot break LCSSA form.
   1036     if (I->getParent() == From->getParent())
   1037       return true;
   1038     // If the instruction is not defined in a loop then it can safely replace
   1039     // anything.
   1040     Loop *ToLoop = getLoopFor(I->getParent());
   1041     if (!ToLoop) return true;
   1042     // If the replacing instruction is defined in the same loop as the original
   1043     // instruction, or in a loop that contains it as an inner loop, then using
   1044     // it as a replacement will not break LCSSA form.
   1045     return ToLoop->contains(getLoopFor(From->getParent()));
   1046   }
   1047 };
   1048 
   1049 
   1050 // Allow clients to walk the list of nested loops...
   1051 template <> struct GraphTraits<const Loop*> {
   1052   typedef const Loop NodeType;
   1053   typedef LoopInfo::iterator ChildIteratorType;
   1054 
   1055   static NodeType *getEntryNode(const Loop *L) { return L; }
   1056   static inline ChildIteratorType child_begin(NodeType *N) {
   1057     return N->begin();
   1058   }
   1059   static inline ChildIteratorType child_end(NodeType *N) {
   1060     return N->end();
   1061   }
   1062 };
   1063 
   1064 template <> struct GraphTraits<Loop*> {
   1065   typedef Loop NodeType;
   1066   typedef LoopInfo::iterator ChildIteratorType;
   1067 
   1068   static NodeType *getEntryNode(Loop *L) { return L; }
   1069   static inline ChildIteratorType child_begin(NodeType *N) {
   1070     return N->begin();
   1071   }
   1072   static inline ChildIteratorType child_end(NodeType *N) {
   1073     return N->end();
   1074   }
   1075 };
   1076 
   1077 template<class BlockT, class LoopT>
   1078 void
   1079 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
   1080                                              LoopInfoBase<BlockT, LoopT> &LIB) {
   1081   assert((Blocks.empty() || LIB[getHeader()] == this) &&
   1082          "Incorrect LI specified for this loop!");
   1083   assert(NewBB && "Cannot add a null basic block to the loop!");
   1084   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
   1085 
   1086   LoopT *L = static_cast<LoopT *>(this);
   1087 
   1088   // Add the loop mapping to the LoopInfo object...
   1089   LIB.BBMap[NewBB] = L;
   1090 
   1091   // Add the basic block to this loop and all parent loops...
   1092   while (L) {
   1093     L->Blocks.push_back(NewBB);
   1094     L = L->getParentLoop();
   1095   }
   1096 }
   1097 
   1098 } // End llvm namespace
   1099 
   1100 #endif
   1101