1 /* 2 ** 3 ** Copyright 2010, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 #include <assert.h> 19 #include <string.h> 20 21 #define LOG_TAG "LatinIME: unigram_dictionary.cpp" 22 23 #include "char_utils.h" 24 #include "dictionary.h" 25 #include "unigram_dictionary.h" 26 27 #include "binary_format.h" 28 29 namespace latinime { 30 31 const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = 32 { { 'a', 'e' }, 33 { 'o', 'e' }, 34 { 'u', 'e' } }; 35 36 // TODO: check the header 37 UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, 38 int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, 39 const bool isLatestDictVersion) 40 : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), 41 MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), 42 MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), 43 TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), 44 // TODO : remove this variable. 45 ROOT_POS(0), 46 BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), 47 MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { 48 if (DEBUG_DICT) { 49 LOGI("UnigramDictionary - constructor"); 50 } 51 mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier); 52 } 53 54 UnigramDictionary::~UnigramDictionary() { 55 delete mCorrection; 56 } 57 58 static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, 59 const int MAX_PROXIMITY_CHARS) { 60 return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; 61 } 62 63 bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { 64 65 // There can't be a digraph if we don't have at least 2 characters to examine 66 if (i + 2 > codesSize) return false; 67 68 // Search for the first char of some digraph 69 int lastDigraphIndex = -1; 70 const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; 71 for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; 72 lastDigraphIndex >= 0; --lastDigraphIndex) { 73 if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; 74 } 75 // No match: return early 76 if (lastDigraphIndex < 0) return false; 77 78 // It's an interesting digraph if the second char matches too. 79 return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; 80 } 81 82 // Mostly the same arguments as the non-recursive version, except: 83 // codes is the original value. It points to the start of the work buffer, and gets passed as is. 84 // codesSize is the size of the user input (thus, it is the size of codesSrc). 85 // codesDest is the current point in the work buffer. 86 // codesSrc is the current point in the user-input, original, content-unmodified buffer. 87 // codesRemain is the remaining size in codesSrc. 88 void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, 89 const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, 90 const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, 91 const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { 92 93 if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { 94 for (int i = 0; i < codesRemain; ++i) { 95 if (isDigraph(codesSrc, i, codesRemain)) { 96 // Found a digraph. We will try both spellings. eg. the word is "pruefen" 97 98 // Copy the word up to the first char of the digraph, then continue processing 99 // on the remaining part of the word, skipping the second char of the digraph. 100 // In our example, copy "pru" and continue running on "fen" 101 // Make i the index of the second char of the digraph for simplicity. Forgetting 102 // to do that results in an infinite recursion so take care! 103 ++i; 104 memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); 105 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, 106 codesBuffer, codesBufferSize, flags, 107 codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, 108 currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, 109 frequencies); 110 111 // Copy the second char of the digraph in place, then continue processing on 112 // the remaining part of the word. 113 // In our example, after "pru" in the buffer copy the "e", and continue on "fen" 114 memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, 115 BYTES_IN_ONE_CHAR); 116 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, 117 codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, 118 codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, 119 outWords, frequencies); 120 return; 121 } 122 } 123 } 124 125 // If we come here, we hit the end of the word: let's check it against the dictionary. 126 // In our example, we'll come here once for "prufen" and then once for "pruefen". 127 // If the word contains several digraphs, we'll come it for the product of them. 128 // eg. if the word is "ueberpruefen" we'll test, in order, against 129 // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". 130 const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; 131 if (0 != remainingBytes) 132 memcpy(codesDest, codesSrc, remainingBytes); 133 134 getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, 135 (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies, 136 flags); 137 } 138 139 int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, 140 const int *ycoordinates, const int *codes, const int codesSize, const int flags, 141 unsigned short *outWords, int *frequencies) { 142 143 if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) 144 { // Incrementally tune the word and try all possibilities 145 int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; 146 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, 147 codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); 148 } else { // Normal processing 149 getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, 150 outWords, frequencies, flags); 151 } 152 153 PROF_START(20); 154 // Get the word count 155 int suggestedWordsCount = 0; 156 while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { 157 suggestedWordsCount++; 158 } 159 160 if (DEBUG_DICT) { 161 LOGI("Returning %d words", suggestedWordsCount); 162 /// Print the returned words 163 for (int j = 0; j < suggestedWordsCount; ++j) { 164 #ifdef FLAG_DBG 165 short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; 166 char s[MAX_WORD_LENGTH]; 167 for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; 168 LOGI("%s %i", s, mFrequencies[j]); 169 #endif 170 } 171 } 172 PROF_END(20); 173 PROF_CLOSE; 174 return suggestedWordsCount; 175 } 176 177 void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, 178 const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, 179 unsigned short *outWords, int *frequencies, const int flags) { 180 181 PROF_OPEN; 182 PROF_START(0); 183 initSuggestions( 184 proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); 185 if (DEBUG_DICT) assert(codesSize == mInputLength); 186 187 const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); 188 mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth); 189 PROF_END(0); 190 191 const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags; 192 // TODO: remove 193 PROF_START(1); 194 getSuggestionCandidates(useFullEditDistance); 195 PROF_END(1); 196 197 PROF_START(2); 198 // Note: This line is intentionally left blank 199 PROF_END(2); 200 201 PROF_START(3); 202 // Note: This line is intentionally left blank 203 PROF_END(3); 204 205 PROF_START(4); 206 // Note: This line is intentionally left blank 207 PROF_END(4); 208 209 PROF_START(5); 210 // Suggestions with missing space 211 if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER 212 && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { 213 for (int i = 1; i < codesSize; ++i) { 214 if (DEBUG_DICT) { 215 LOGI("--- Suggest missing space characters %d", i); 216 } 217 getMissingSpaceWords(mInputLength, i, mCorrection, useFullEditDistance); 218 } 219 } 220 PROF_END(5); 221 222 PROF_START(6); 223 if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { 224 // The first and last "mistyped spaces" are taken care of by excessive character handling 225 for (int i = 1; i < codesSize - 1; ++i) { 226 if (DEBUG_DICT) { 227 LOGI("--- Suggest words with proximity space %d", i); 228 } 229 const int x = xcoordinates[i]; 230 const int y = ycoordinates[i]; 231 if (DEBUG_PROXIMITY_INFO) { 232 LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", 233 i, x, y, proximityInfo->hasSpaceProximity(x, y)); 234 } 235 if (proximityInfo->hasSpaceProximity(x, y)) { 236 getMistypedSpaceWords(mInputLength, i, mCorrection, useFullEditDistance); 237 } 238 } 239 } 240 PROF_END(6); 241 } 242 243 void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates, 244 const int *yCoordinates, const int *codes, const int codesSize, 245 unsigned short *outWords, int *frequencies) { 246 if (DEBUG_DICT) { 247 LOGI("initSuggest"); 248 } 249 mFrequencies = frequencies; 250 mOutputChars = outWords; 251 mInputLength = codesSize; 252 proximityInfo->setInputParams(codes, codesSize, xCoordinates, yCoordinates); 253 mProximityInfo = proximityInfo; 254 } 255 256 static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { 257 if (c < nextLettersSize) { 258 nextLetters[c]++; 259 } 260 } 261 262 // TODO: We need to optimize addWord by using STL or something 263 // TODO: This needs to take an const unsigned short* and not tinker with its contents 264 bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { 265 word[length] = 0; 266 if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { 267 #ifdef FLAG_DBG 268 char s[length + 1]; 269 for (int i = 0; i <= length; i++) s[i] = word[i]; 270 LOGI("Found word = %s, freq = %d", s, frequency); 271 #endif 272 } 273 if (length > MAX_WORD_LENGTH) { 274 if (DEBUG_DICT) { 275 LOGI("Exceeded max word length."); 276 } 277 return false; 278 } 279 280 // Find the right insertion point 281 int insertAt = 0; 282 while (insertAt < MAX_WORDS) { 283 // TODO: How should we sort words with the same frequency? 284 if (frequency > mFrequencies[insertAt]) { 285 break; 286 } 287 insertAt++; 288 } 289 if (insertAt < MAX_WORDS) { 290 if (DEBUG_DICT) { 291 #ifdef FLAG_DBG 292 char s[length + 1]; 293 for (int i = 0; i <= length; i++) s[i] = word[i]; 294 LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); 295 #endif 296 } 297 memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), 298 (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), 299 (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); 300 mFrequencies[insertAt] = frequency; 301 memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), 302 (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), 303 (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); 304 unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; 305 while (length--) { 306 *dest++ = *word++; 307 } 308 *dest = 0; // NULL terminate 309 if (DEBUG_DICT) { 310 LOGI("Added word at %d", insertAt); 311 } 312 return true; 313 } 314 return false; 315 } 316 317 static const char QUOTE = '\''; 318 static const char SPACE = ' '; 319 320 void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance) { 321 // TODO: Remove setCorrectionParams 322 mCorrection->setCorrectionParams(0, 0, 0, 323 -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance); 324 int rootPosition = ROOT_POS; 325 // Get the number of children of root, then increment the position 326 int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); 327 int outputIndex = 0; 328 329 mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0)); 330 331 // Depth first search 332 while (outputIndex >= 0) { 333 if (mCorrection->initProcessState(outputIndex)) { 334 int siblingPos = mCorrection->getTreeSiblingPos(outputIndex); 335 int firstChildPos; 336 337 const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, 338 mCorrection, &childCount, &firstChildPos, &siblingPos); 339 // Update next sibling pos 340 mCorrection->setTreeSiblingPos(outputIndex, siblingPos); 341 342 if (needsToTraverseChildrenNodes) { 343 // Goes to child node 344 outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos); 345 } 346 } else { 347 // Goes to parent sibling node 348 outputIndex = mCorrection->getTreeParentIndex(outputIndex); 349 } 350 } 351 } 352 353 void UnigramDictionary::getMissingSpaceWords( 354 const int inputLength, const int missingSpacePos, Correction *correction, 355 const bool useFullEditDistance) { 356 correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, 357 -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos, 358 useFullEditDistance); 359 getSplitTwoWordsSuggestion(inputLength, correction); 360 } 361 362 void UnigramDictionary::getMistypedSpaceWords( 363 const int inputLength, const int spaceProximityPos, Correction *correction, 364 const bool useFullEditDistance) { 365 correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, 366 -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */, 367 useFullEditDistance); 368 getSplitTwoWordsSuggestion(inputLength, correction); 369 } 370 371 inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, 372 const int inputIndex, const int skipPos, const int depth) { 373 const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); 374 // Skip the ' or other letter and continue deeper 375 return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; 376 } 377 378 inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) { 379 int wordLength; 380 unsigned short* wordPointer; 381 const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); 382 if (finalFreq >= 0) { 383 addWord(wordPointer, wordLength, finalFreq); 384 } 385 } 386 387 void UnigramDictionary::getSplitTwoWordsSuggestion( 388 const int inputLength, Correction* correction) { 389 const int spaceProximityPos = correction->getSpaceProximityPos(); 390 const int missingSpacePos = correction->getMissingSpacePos(); 391 if (DEBUG_DICT) { 392 int inputCount = 0; 393 if (spaceProximityPos >= 0) ++inputCount; 394 if (missingSpacePos >= 0) ++inputCount; 395 assert(inputCount <= 1); 396 } 397 const bool isSpaceProximity = spaceProximityPos >= 0; 398 const int firstWordStartPos = 0; 399 const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; 400 const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; 401 const int secondWordLength = isSpaceProximity 402 ? (inputLength - spaceProximityPos - 1) 403 : (inputLength - missingSpacePos); 404 405 if (inputLength >= MAX_WORD_LENGTH) return; 406 if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos 407 || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) 408 return; 409 410 const int newWordLength = firstWordLength + secondWordLength + 1; 411 // Allocating variable length array on stack 412 unsigned short word[newWordLength]; 413 const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); 414 if (DEBUG_DICT) { 415 LOGI("First freq: %d", firstFreq); 416 } 417 if (firstFreq <= 0) return; 418 419 for (int i = 0; i < firstWordLength; ++i) { 420 word[i] = mWord[i]; 421 } 422 423 const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); 424 if (DEBUG_DICT) { 425 LOGI("Second freq: %d", secondFreq); 426 } 427 if (secondFreq <= 0) return; 428 429 word[firstWordLength] = SPACE; 430 for (int i = (firstWordLength + 1); i < newWordLength; ++i) { 431 word[i] = mWord[i - firstWordLength - 1]; 432 } 433 434 const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq, word); 435 if (DEBUG_DICT) { 436 LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); 437 } 438 addWord(word, newWordLength, pairFreq); 439 return; 440 } 441 442 // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous 443 // interface. 444 inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, 445 const int inputLength, unsigned short *word) { 446 uint16_t inWord[inputLength]; 447 448 for (int i = 0; i < inputLength; ++i) { 449 inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); 450 } 451 return getMostFrequentWordLikeInner(inWord, inputLength, word); 452 } 453 454 // This function will take the position of a character array within a CharGroup, 455 // and check it actually like-matches the word in inWord starting at startInputIndex, 456 // that is, it matches it with case and accents squashed. 457 // The function returns true if there was a full match, false otherwise. 458 // The function will copy on-the-fly the characters in the CharGroup to outNewWord. 459 // It will also place the end position of the array in outPos; in outInputIndex, 460 // it will place the index of the first char AFTER the match if there was a match, 461 // and the initial position if there was not. It makes sense because if there was 462 // a match we want to continue searching, but if there was not, we want to go to 463 // the next CharGroup. 464 // In and out parameters may point to the same location. This function takes care 465 // not to use any input parameters after it wrote into its outputs. 466 static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, 467 const uint8_t* const root, const int startPos, 468 const uint16_t* const inWord, const int startInputIndex, 469 int32_t* outNewWord, int* outInputIndex, int* outPos) { 470 const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); 471 int pos = startPos; 472 int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); 473 int32_t baseChar = Dictionary::toBaseLowerCase(character); 474 const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); 475 476 if (baseChar != wChar) { 477 *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; 478 *outInputIndex = startInputIndex; 479 return false; 480 } 481 int inputIndex = startInputIndex; 482 outNewWord[inputIndex] = character; 483 if (hasMultipleChars) { 484 character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); 485 while (NOT_A_CHARACTER != character) { 486 baseChar = Dictionary::toBaseLowerCase(character); 487 if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { 488 *outPos = BinaryFormat::skipOtherCharacters(root, pos); 489 *outInputIndex = startInputIndex; 490 return false; 491 } 492 outNewWord[inputIndex] = character; 493 character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); 494 } 495 } 496 *outInputIndex = inputIndex + 1; 497 *outPos = pos; 498 return true; 499 } 500 501 // This function is invoked when a word like the word searched for is found. 502 // It will compare the frequency to the max frequency, and if greater, will 503 // copy the word into the output buffer. In output value maxFreq, it will 504 // write the new maximum frequency if it changed. 505 static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, 506 short unsigned int* outWord, int* maxFreq) { 507 if (freq > *maxFreq) { 508 for (int q = 0; q < length; ++q) 509 outWord[q] = newWord[q]; 510 outWord[length] = 0; 511 *maxFreq = freq; 512 } 513 } 514 515 // Will find the highest frequency of the words like the one passed as an argument, 516 // that is, everything that only differs by case/accents. 517 int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, 518 const int length, short unsigned int* outWord) { 519 int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; 520 int depth = 0; 521 int maxFreq = -1; 522 const uint8_t* const root = DICT_ROOT; 523 524 mStackChildCount[0] = root[0]; 525 mStackInputIndex[0] = 0; 526 mStackSiblingPos[0] = 1; 527 while (depth >= 0) { 528 const int charGroupCount = mStackChildCount[depth]; 529 int pos = mStackSiblingPos[depth]; 530 for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { 531 int inputIndex = mStackInputIndex[depth]; 532 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); 533 // Test whether all chars in this group match with the word we are searching for. If so, 534 // we want to traverse its children (or if the length match, evaluate its frequency). 535 // Note that this function will output the position regardless, but will only write 536 // into inputIndex if there is a match. 537 const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, 538 inputIndex, newWord, &inputIndex, &pos); 539 if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { 540 const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); 541 onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); 542 } 543 pos = BinaryFormat::skipFrequency(flags, pos); 544 const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); 545 const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); 546 // If we had a match and the word has children, we want to traverse them. We don't have 547 // to traverse words longer than the one we are searching for, since they will not match 548 // anyway, so don't traverse unless inputIndex < length. 549 if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { 550 // Save position for this depth, to get back to this once children are done 551 mStackChildCount[depth] = charGroupIndex; 552 mStackSiblingPos[depth] = siblingPos; 553 // Prepare stack values for next depth 554 ++depth; 555 int childrenPos = childrenNodePos; 556 mStackChildCount[depth] = 557 BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); 558 mStackSiblingPos[depth] = childrenPos; 559 mStackInputIndex[depth] = inputIndex; 560 pos = childrenPos; 561 // Go to the next depth level. 562 ++depth; 563 break; 564 } else { 565 // No match, or no children, or word too long to ever match: go the next sibling. 566 pos = siblingPos; 567 } 568 } 569 --depth; 570 } 571 return maxFreq; 572 } 573 574 bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { 575 return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); 576 } 577 578 // TODO: remove this function. 579 int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, 580 int length) const { 581 return -1; 582 } 583 584 // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. 585 // If the return value is false, then the caller should read in the output "nextSiblingPosition" 586 // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. 587 // It is worthy to note that when false is returned, the output values other than 588 // nextSiblingPosition are undefined. 589 // If the return value is true, then the caller must proceed to traverse the children of this 590 // node. processCurrentNode will output the information about the children: their count in 591 // newCount, their position in newChildrenPosition, the traverseAllNodes flag in 592 // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the 593 // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into 594 // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when 595 // there aren't any more nodes at this level, it merely returns the address of the first byte after 596 // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any 597 // given level, as output into newCount when traversing this level's parent. 598 inline bool UnigramDictionary::processCurrentNode(const int initialPos, 599 Correction *correction, int *newCount, 600 int *newChildrenPosition, int *nextSiblingPosition) { 601 if (DEBUG_DICT) { 602 correction->checkState(); 603 } 604 int pos = initialPos; 605 606 // Flags contain the following information: 607 // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: 608 // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address 609 // is on the specified number of bytes. 610 // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. 611 // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. 612 // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) 613 // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not 614 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); 615 const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); 616 const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); 617 618 bool needsToInvokeOnTerminal = false; 619 620 // This gets only ONE character from the stream. Next there will be: 621 // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node 622 // else if FLAG_IS_TERMINAL: the frequency 623 // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address 624 // Note that you can't have a node that both is not a terminal and has no children. 625 int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); 626 assert(NOT_A_CHARACTER != c); 627 628 // We are going to loop through each character and make it look like it's a different 629 // node each time. To do that, we will process characters in this node in order until 630 // we find the character terminator. This is signalled by getCharCode* returning 631 // NOT_A_CHARACTER. 632 // As a special case, if there is only one character in this node, we must not read the 633 // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. 634 // This way, each loop run will look like a "virtual node". 635 do { 636 // We prefetch the next char. If 'c' is the last char of this node, we will have 637 // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node 638 // should behave as a terminal or not and whether we have children. 639 const int32_t nextc = hasMultipleChars 640 ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; 641 const bool isLastChar = (NOT_A_CHARACTER == nextc); 642 // If there are more chars in this nodes, then this virtual node is not a terminal. 643 // If we are on the last char, this virtual node is a terminal if this node is. 644 const bool isTerminal = isLastChar && isTerminalNode; 645 646 Correction::CorrectionType stateType = correction->processCharAndCalcState( 647 c, isTerminal); 648 if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL 649 || stateType == Correction::ON_TERMINAL) { 650 needsToInvokeOnTerminal = true; 651 } else if (stateType == Correction::UNRELATED) { 652 // We found that this is an unrelated character, so we should give up traversing 653 // this node and its children entirely. 654 // However we may not be on the last virtual node yet so we skip the remaining 655 // characters in this node, the frequency if it's there, read the next sibling 656 // position to output it, then return false. 657 // We don't have to output other values because we return false, as in 658 // "don't traverse children". 659 if (!isLastChar) { 660 pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); 661 } 662 pos = BinaryFormat::skipFrequency(flags, pos); 663 *nextSiblingPosition = 664 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); 665 return false; 666 } 667 668 // Prepare for the next character. Promote the prefetched char to current char - the loop 669 // will take care of prefetching the next. If we finally found our last char, nextc will 670 // contain NOT_A_CHARACTER. 671 c = nextc; 672 } while (NOT_A_CHARACTER != c); 673 674 if (isTerminalNode) { 675 if (needsToInvokeOnTerminal) { 676 // The frequency should be here, because we come here only if this is actually 677 // a terminal node, and we are on its last char. 678 const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); 679 onTerminal(freq, mCorrection); 680 } 681 682 // If there are more chars in this node, then this virtual node has children. 683 // If we are on the last char, this virtual node has children if this node has. 684 const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); 685 686 // This character matched the typed character (enough to traverse the node at least) 687 // so we just evaluated it. Now we should evaluate this virtual node's children - that 688 // is, if it has any. If it has no children, we're done here - so we skip the end of 689 // the node, output the siblings position, and return false "don't traverse children". 690 // Note that !hasChildren implies isLastChar, so we know we don't have to skip any 691 // remaining char in this group for there can't be any. 692 if (!hasChildren) { 693 pos = BinaryFormat::skipFrequency(flags, pos); 694 *nextSiblingPosition = 695 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); 696 return false; 697 } 698 699 // Optimization: Prune out words that are too long compared to how much was typed. 700 if (correction->needsToPrune()) { 701 pos = BinaryFormat::skipFrequency(flags, pos); 702 *nextSiblingPosition = 703 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); 704 if (DEBUG_DICT_FULL) { 705 LOGI("Traversing was pruned."); 706 } 707 return false; 708 } 709 } 710 711 // Now we finished processing this node, and we want to traverse children. If there are no 712 // children, we can't come here. 713 assert(BinaryFormat::hasChildrenInFlags(flags)); 714 715 // If this node was a terminal it still has the frequency under the pointer (it may have been 716 // read, but not skipped - see readFrequencyWithoutMovingPointer). 717 // Next come the children position, then possibly attributes (attributes are bigrams only for 718 // now, maybe something related to shortcuts in the future). 719 // Once this is read, we still need to output the number of nodes in the immediate children of 720 // this node, so we read and output it before returning true, as in "please traverse children". 721 pos = BinaryFormat::skipFrequency(flags, pos); 722 int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); 723 *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); 724 *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); 725 *newChildrenPosition = childrenPos; 726 return true; 727 } 728 729 } // namespace latinime 730