1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #if defined(V8_TARGET_ARCH_X64) 31 32 #include "bootstrapper.h" 33 #include "code-stubs.h" 34 #include "regexp-macro-assembler.h" 35 36 namespace v8 { 37 namespace internal { 38 39 #define __ ACCESS_MASM(masm) 40 41 void ToNumberStub::Generate(MacroAssembler* masm) { 42 // The ToNumber stub takes one argument in eax. 43 NearLabel check_heap_number, call_builtin; 44 __ SmiTest(rax); 45 __ j(not_zero, &check_heap_number); 46 __ Ret(); 47 48 __ bind(&check_heap_number); 49 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), 50 Heap::kHeapNumberMapRootIndex); 51 __ j(not_equal, &call_builtin); 52 __ Ret(); 53 54 __ bind(&call_builtin); 55 __ pop(rcx); // Pop return address. 56 __ push(rax); 57 __ push(rcx); // Push return address. 58 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); 59 } 60 61 62 void FastNewClosureStub::Generate(MacroAssembler* masm) { 63 // Create a new closure from the given function info in new 64 // space. Set the context to the current context in rsi. 65 Label gc; 66 __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); 67 68 // Get the function info from the stack. 69 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); 70 71 int map_index = strict_mode_ == kStrictMode 72 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX 73 : Context::FUNCTION_MAP_INDEX; 74 75 // Compute the function map in the current global context and set that 76 // as the map of the allocated object. 77 __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); 78 __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); 79 __ movq(rcx, Operand(rcx, Context::SlotOffset(map_index))); 80 __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); 81 82 // Initialize the rest of the function. We don't have to update the 83 // write barrier because the allocated object is in new space. 84 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); 85 __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); 86 __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); 87 __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); 88 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); 89 __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); 90 __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); 91 __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); 92 __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); 93 __ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdi); 94 95 // Initialize the code pointer in the function to be the one 96 // found in the shared function info object. 97 __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); 98 __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); 99 __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); 100 101 102 // Return and remove the on-stack parameter. 103 __ ret(1 * kPointerSize); 104 105 // Create a new closure through the slower runtime call. 106 __ bind(&gc); 107 __ pop(rcx); // Temporarily remove return address. 108 __ pop(rdx); 109 __ push(rsi); 110 __ push(rdx); 111 __ PushRoot(Heap::kFalseValueRootIndex); 112 __ push(rcx); // Restore return address. 113 __ TailCallRuntime(Runtime::kNewClosure, 3, 1); 114 } 115 116 117 void FastNewContextStub::Generate(MacroAssembler* masm) { 118 // Try to allocate the context in new space. 119 Label gc; 120 int length = slots_ + Context::MIN_CONTEXT_SLOTS; 121 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, 122 rax, rbx, rcx, &gc, TAG_OBJECT); 123 124 // Get the function from the stack. 125 __ movq(rcx, Operand(rsp, 1 * kPointerSize)); 126 127 // Setup the object header. 128 __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); 129 __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); 130 __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); 131 132 // Setup the fixed slots. 133 __ Set(rbx, 0); // Set to NULL. 134 __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); 135 __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); 136 __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); 137 __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); 138 139 // Copy the global object from the surrounding context. 140 __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); 141 __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); 142 143 // Initialize the rest of the slots to undefined. 144 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); 145 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { 146 __ movq(Operand(rax, Context::SlotOffset(i)), rbx); 147 } 148 149 // Return and remove the on-stack parameter. 150 __ movq(rsi, rax); 151 __ ret(1 * kPointerSize); 152 153 // Need to collect. Call into runtime system. 154 __ bind(&gc); 155 __ TailCallRuntime(Runtime::kNewContext, 1, 1); 156 } 157 158 159 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { 160 // Stack layout on entry: 161 // 162 // [rsp + kPointerSize]: constant elements. 163 // [rsp + (2 * kPointerSize)]: literal index. 164 // [rsp + (3 * kPointerSize)]: literals array. 165 166 // All sizes here are multiples of kPointerSize. 167 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; 168 int size = JSArray::kSize + elements_size; 169 170 // Load boilerplate object into rcx and check if we need to create a 171 // boilerplate. 172 Label slow_case; 173 __ movq(rcx, Operand(rsp, 3 * kPointerSize)); 174 __ movq(rax, Operand(rsp, 2 * kPointerSize)); 175 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); 176 __ movq(rcx, 177 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); 178 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); 179 __ j(equal, &slow_case); 180 181 if (FLAG_debug_code) { 182 const char* message; 183 Heap::RootListIndex expected_map_index; 184 if (mode_ == CLONE_ELEMENTS) { 185 message = "Expected (writable) fixed array"; 186 expected_map_index = Heap::kFixedArrayMapRootIndex; 187 } else { 188 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); 189 message = "Expected copy-on-write fixed array"; 190 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; 191 } 192 __ push(rcx); 193 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); 194 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), 195 expected_map_index); 196 __ Assert(equal, message); 197 __ pop(rcx); 198 } 199 200 // Allocate both the JS array and the elements array in one big 201 // allocation. This avoids multiple limit checks. 202 __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); 203 204 // Copy the JS array part. 205 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { 206 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { 207 __ movq(rbx, FieldOperand(rcx, i)); 208 __ movq(FieldOperand(rax, i), rbx); 209 } 210 } 211 212 if (length_ > 0) { 213 // Get hold of the elements array of the boilerplate and setup the 214 // elements pointer in the resulting object. 215 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); 216 __ lea(rdx, Operand(rax, JSArray::kSize)); 217 __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); 218 219 // Copy the elements array. 220 for (int i = 0; i < elements_size; i += kPointerSize) { 221 __ movq(rbx, FieldOperand(rcx, i)); 222 __ movq(FieldOperand(rdx, i), rbx); 223 } 224 } 225 226 // Return and remove the on-stack parameters. 227 __ ret(3 * kPointerSize); 228 229 __ bind(&slow_case); 230 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); 231 } 232 233 234 void ToBooleanStub::Generate(MacroAssembler* masm) { 235 NearLabel false_result, true_result, not_string; 236 __ movq(rax, Operand(rsp, 1 * kPointerSize)); 237 238 // 'null' => false. 239 __ CompareRoot(rax, Heap::kNullValueRootIndex); 240 __ j(equal, &false_result); 241 242 // Get the map and type of the heap object. 243 // We don't use CmpObjectType because we manipulate the type field. 244 __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); 245 __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); 246 247 // Undetectable => false. 248 __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); 249 __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); 250 __ j(not_zero, &false_result); 251 252 // JavaScript object => true. 253 __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); 254 __ j(above_equal, &true_result); 255 256 // String value => false iff empty. 257 __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); 258 __ j(above_equal, ¬_string); 259 __ movq(rdx, FieldOperand(rax, String::kLengthOffset)); 260 __ SmiTest(rdx); 261 __ j(zero, &false_result); 262 __ jmp(&true_result); 263 264 __ bind(¬_string); 265 __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); 266 __ j(not_equal, &true_result); 267 // HeapNumber => false iff +0, -0, or NaN. 268 // These three cases set the zero flag when compared to zero using ucomisd. 269 __ xorpd(xmm0, xmm0); 270 __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); 271 __ j(zero, &false_result); 272 // Fall through to |true_result|. 273 274 // Return 1/0 for true/false in rax. 275 __ bind(&true_result); 276 __ Set(rax, 1); 277 __ ret(1 * kPointerSize); 278 __ bind(&false_result); 279 __ Set(rax, 0); 280 __ ret(1 * kPointerSize); 281 } 282 283 284 class FloatingPointHelper : public AllStatic { 285 public: 286 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. 287 // If the operands are not both numbers, jump to not_numbers. 288 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. 289 // NumberOperands assumes both are smis or heap numbers. 290 static void LoadSSE2SmiOperands(MacroAssembler* masm); 291 static void LoadSSE2NumberOperands(MacroAssembler* masm); 292 static void LoadSSE2UnknownOperands(MacroAssembler* masm, 293 Label* not_numbers); 294 295 // Takes the operands in rdx and rax and loads them as integers in rax 296 // and rcx. 297 static void LoadAsIntegers(MacroAssembler* masm, 298 Label* operand_conversion_failure, 299 Register heap_number_map); 300 // As above, but we know the operands to be numbers. In that case, 301 // conversion can't fail. 302 static void LoadNumbersAsIntegers(MacroAssembler* masm); 303 304 // Tries to convert two values to smis losslessly. 305 // This fails if either argument is not a Smi nor a HeapNumber, 306 // or if it's a HeapNumber with a value that can't be converted 307 // losslessly to a Smi. In that case, control transitions to the 308 // on_not_smis label. 309 // On success, either control goes to the on_success label (if one is 310 // provided), or it falls through at the end of the code (if on_success 311 // is NULL). 312 // On success, both first and second holds Smi tagged values. 313 // One of first or second must be non-Smi when entering. 314 static void NumbersToSmis(MacroAssembler* masm, 315 Register first, 316 Register second, 317 Register scratch1, 318 Register scratch2, 319 Register scratch3, 320 Label* on_success, 321 Label* on_not_smis); 322 }; 323 324 325 Handle<Code> GetTypeRecordingBinaryOpStub(int key, 326 TRBinaryOpIC::TypeInfo type_info, 327 TRBinaryOpIC::TypeInfo result_type_info) { 328 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); 329 return stub.GetCode(); 330 } 331 332 333 void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { 334 __ pop(rcx); // Save return address. 335 __ push(rdx); 336 __ push(rax); 337 // Left and right arguments are now on top. 338 // Push this stub's key. Although the operation and the type info are 339 // encoded into the key, the encoding is opaque, so push them too. 340 __ Push(Smi::FromInt(MinorKey())); 341 __ Push(Smi::FromInt(op_)); 342 __ Push(Smi::FromInt(operands_type_)); 343 344 __ push(rcx); // Push return address. 345 346 // Patch the caller to an appropriate specialized stub and return the 347 // operation result to the caller of the stub. 348 __ TailCallExternalReference( 349 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch), 350 masm->isolate()), 351 5, 352 1); 353 } 354 355 356 void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { 357 switch (operands_type_) { 358 case TRBinaryOpIC::UNINITIALIZED: 359 GenerateTypeTransition(masm); 360 break; 361 case TRBinaryOpIC::SMI: 362 GenerateSmiStub(masm); 363 break; 364 case TRBinaryOpIC::INT32: 365 UNREACHABLE(); 366 // The int32 case is identical to the Smi case. We avoid creating this 367 // ic state on x64. 368 break; 369 case TRBinaryOpIC::HEAP_NUMBER: 370 GenerateHeapNumberStub(masm); 371 break; 372 case TRBinaryOpIC::ODDBALL: 373 GenerateOddballStub(masm); 374 break; 375 case TRBinaryOpIC::STRING: 376 GenerateStringStub(masm); 377 break; 378 case TRBinaryOpIC::GENERIC: 379 GenerateGeneric(masm); 380 break; 381 default: 382 UNREACHABLE(); 383 } 384 } 385 386 387 const char* TypeRecordingBinaryOpStub::GetName() { 388 if (name_ != NULL) return name_; 389 const int kMaxNameLength = 100; 390 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 391 kMaxNameLength); 392 if (name_ == NULL) return "OOM"; 393 const char* op_name = Token::Name(op_); 394 const char* overwrite_name; 395 switch (mode_) { 396 case NO_OVERWRITE: overwrite_name = "Alloc"; break; 397 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; 398 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; 399 default: overwrite_name = "UnknownOverwrite"; break; 400 } 401 402 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 403 "TypeRecordingBinaryOpStub_%s_%s_%s", 404 op_name, 405 overwrite_name, 406 TRBinaryOpIC::GetName(operands_type_)); 407 return name_; 408 } 409 410 411 void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, 412 Label* slow, 413 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { 414 415 // Arguments to TypeRecordingBinaryOpStub are in rdx and rax. 416 Register left = rdx; 417 Register right = rax; 418 419 // We only generate heapnumber answers for overflowing calculations 420 // for the four basic arithmetic operations and logical right shift by 0. 421 bool generate_inline_heapnumber_results = 422 (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) && 423 (op_ == Token::ADD || op_ == Token::SUB || 424 op_ == Token::MUL || op_ == Token::DIV || op_ == Token::SHR); 425 426 // Smi check of both operands. If op is BIT_OR, the check is delayed 427 // until after the OR operation. 428 Label not_smis; 429 Label use_fp_on_smis; 430 Label fail; 431 432 if (op_ != Token::BIT_OR) { 433 Comment smi_check_comment(masm, "-- Smi check arguments"); 434 __ JumpIfNotBothSmi(left, right, ¬_smis); 435 } 436 437 Label smi_values; 438 __ bind(&smi_values); 439 // Perform the operation. 440 Comment perform_smi(masm, "-- Perform smi operation"); 441 switch (op_) { 442 case Token::ADD: 443 ASSERT(right.is(rax)); 444 __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. 445 break; 446 447 case Token::SUB: 448 __ SmiSub(left, left, right, &use_fp_on_smis); 449 __ movq(rax, left); 450 break; 451 452 case Token::MUL: 453 ASSERT(right.is(rax)); 454 __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. 455 break; 456 457 case Token::DIV: 458 // SmiDiv will not accept left in rdx or right in rax. 459 left = rcx; 460 right = rbx; 461 __ movq(rbx, rax); 462 __ movq(rcx, rdx); 463 __ SmiDiv(rax, left, right, &use_fp_on_smis); 464 break; 465 466 case Token::MOD: 467 // SmiMod will not accept left in rdx or right in rax. 468 left = rcx; 469 right = rbx; 470 __ movq(rbx, rax); 471 __ movq(rcx, rdx); 472 __ SmiMod(rax, left, right, &use_fp_on_smis); 473 break; 474 475 case Token::BIT_OR: { 476 ASSERT(right.is(rax)); 477 __ SmiOrIfSmis(right, right, left, ¬_smis); // BIT_OR is commutative. 478 break; 479 } 480 case Token::BIT_XOR: 481 ASSERT(right.is(rax)); 482 __ SmiXor(right, right, left); // BIT_XOR is commutative. 483 break; 484 485 case Token::BIT_AND: 486 ASSERT(right.is(rax)); 487 __ SmiAnd(right, right, left); // BIT_AND is commutative. 488 break; 489 490 case Token::SHL: 491 __ SmiShiftLeft(left, left, right); 492 __ movq(rax, left); 493 break; 494 495 case Token::SAR: 496 __ SmiShiftArithmeticRight(left, left, right); 497 __ movq(rax, left); 498 break; 499 500 case Token::SHR: 501 __ SmiShiftLogicalRight(left, left, right, &use_fp_on_smis); 502 __ movq(rax, left); 503 break; 504 505 default: 506 UNREACHABLE(); 507 } 508 509 // 5. Emit return of result in rax. Some operations have registers pushed. 510 __ ret(0); 511 512 if (use_fp_on_smis.is_linked()) { 513 // 6. For some operations emit inline code to perform floating point 514 // operations on known smis (e.g., if the result of the operation 515 // overflowed the smi range). 516 __ bind(&use_fp_on_smis); 517 if (op_ == Token::DIV || op_ == Token::MOD) { 518 // Restore left and right to rdx and rax. 519 __ movq(rdx, rcx); 520 __ movq(rax, rbx); 521 } 522 523 if (generate_inline_heapnumber_results) { 524 __ AllocateHeapNumber(rcx, rbx, slow); 525 Comment perform_float(masm, "-- Perform float operation on smis"); 526 if (op_ == Token::SHR) { 527 __ SmiToInteger32(left, left); 528 __ cvtqsi2sd(xmm0, left); 529 } else { 530 FloatingPointHelper::LoadSSE2SmiOperands(masm); 531 switch (op_) { 532 case Token::ADD: __ addsd(xmm0, xmm1); break; 533 case Token::SUB: __ subsd(xmm0, xmm1); break; 534 case Token::MUL: __ mulsd(xmm0, xmm1); break; 535 case Token::DIV: __ divsd(xmm0, xmm1); break; 536 default: UNREACHABLE(); 537 } 538 } 539 __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0); 540 __ movq(rax, rcx); 541 __ ret(0); 542 } else { 543 __ jmp(&fail); 544 } 545 } 546 547 // 7. Non-smi operands reach the end of the code generated by 548 // GenerateSmiCode, and fall through to subsequent code, 549 // with the operands in rdx and rax. 550 // But first we check if non-smi values are HeapNumbers holding 551 // values that could be smi. 552 __ bind(¬_smis); 553 Comment done_comment(masm, "-- Enter non-smi code"); 554 FloatingPointHelper::NumbersToSmis(masm, left, right, rbx, rdi, rcx, 555 &smi_values, &fail); 556 __ jmp(&smi_values); 557 __ bind(&fail); 558 } 559 560 561 void TypeRecordingBinaryOpStub::GenerateFloatingPointCode( 562 MacroAssembler* masm, 563 Label* allocation_failure, 564 Label* non_numeric_failure) { 565 switch (op_) { 566 case Token::ADD: 567 case Token::SUB: 568 case Token::MUL: 569 case Token::DIV: { 570 FloatingPointHelper::LoadSSE2UnknownOperands(masm, non_numeric_failure); 571 572 switch (op_) { 573 case Token::ADD: __ addsd(xmm0, xmm1); break; 574 case Token::SUB: __ subsd(xmm0, xmm1); break; 575 case Token::MUL: __ mulsd(xmm0, xmm1); break; 576 case Token::DIV: __ divsd(xmm0, xmm1); break; 577 default: UNREACHABLE(); 578 } 579 GenerateHeapResultAllocation(masm, allocation_failure); 580 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); 581 __ ret(0); 582 break; 583 } 584 case Token::MOD: { 585 // For MOD we jump to the allocation_failure label, to call runtime. 586 __ jmp(allocation_failure); 587 break; 588 } 589 case Token::BIT_OR: 590 case Token::BIT_AND: 591 case Token::BIT_XOR: 592 case Token::SAR: 593 case Token::SHL: 594 case Token::SHR: { 595 Label non_smi_shr_result; 596 Register heap_number_map = r9; 597 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 598 FloatingPointHelper::LoadAsIntegers(masm, non_numeric_failure, 599 heap_number_map); 600 switch (op_) { 601 case Token::BIT_OR: __ orl(rax, rcx); break; 602 case Token::BIT_AND: __ andl(rax, rcx); break; 603 case Token::BIT_XOR: __ xorl(rax, rcx); break; 604 case Token::SAR: __ sarl_cl(rax); break; 605 case Token::SHL: __ shll_cl(rax); break; 606 case Token::SHR: { 607 __ shrl_cl(rax); 608 // Check if result is negative. This can only happen for a shift 609 // by zero. 610 __ testl(rax, rax); 611 __ j(negative, &non_smi_shr_result); 612 break; 613 } 614 default: UNREACHABLE(); 615 } 616 STATIC_ASSERT(kSmiValueSize == 32); 617 // Tag smi result and return. 618 __ Integer32ToSmi(rax, rax); 619 __ Ret(); 620 621 // Logical shift right can produce an unsigned int32 that is not 622 // an int32, and so is not in the smi range. Allocate a heap number 623 // in that case. 624 if (op_ == Token::SHR) { 625 __ bind(&non_smi_shr_result); 626 Label allocation_failed; 627 __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). 628 // Allocate heap number in new space. 629 // Not using AllocateHeapNumber macro in order to reuse 630 // already loaded heap_number_map. 631 __ AllocateInNewSpace(HeapNumber::kSize, 632 rax, 633 rdx, 634 no_reg, 635 &allocation_failed, 636 TAG_OBJECT); 637 // Set the map. 638 if (FLAG_debug_code) { 639 __ AbortIfNotRootValue(heap_number_map, 640 Heap::kHeapNumberMapRootIndex, 641 "HeapNumberMap register clobbered."); 642 } 643 __ movq(FieldOperand(rax, HeapObject::kMapOffset), 644 heap_number_map); 645 __ cvtqsi2sd(xmm0, rbx); 646 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); 647 __ Ret(); 648 649 __ bind(&allocation_failed); 650 // We need tagged values in rdx and rax for the following code, 651 // not int32 in rax and rcx. 652 __ Integer32ToSmi(rax, rcx); 653 __ Integer32ToSmi(rdx, rbx); 654 __ jmp(allocation_failure); 655 } 656 break; 657 } 658 default: UNREACHABLE(); break; 659 } 660 // No fall-through from this generated code. 661 if (FLAG_debug_code) { 662 __ Abort("Unexpected fall-through in " 663 "TypeRecordingBinaryStub::GenerateFloatingPointCode."); 664 } 665 } 666 667 668 void TypeRecordingBinaryOpStub::GenerateStringAddCode(MacroAssembler* masm) { 669 ASSERT(op_ == Token::ADD); 670 NearLabel left_not_string, call_runtime; 671 672 // Registers containing left and right operands respectively. 673 Register left = rdx; 674 Register right = rax; 675 676 // Test if left operand is a string. 677 __ JumpIfSmi(left, &left_not_string); 678 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx); 679 __ j(above_equal, &left_not_string); 680 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); 681 GenerateRegisterArgsPush(masm); 682 __ TailCallStub(&string_add_left_stub); 683 684 // Left operand is not a string, test right. 685 __ bind(&left_not_string); 686 __ JumpIfSmi(right, &call_runtime); 687 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx); 688 __ j(above_equal, &call_runtime); 689 690 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); 691 GenerateRegisterArgsPush(masm); 692 __ TailCallStub(&string_add_right_stub); 693 694 // Neither argument is a string. 695 __ bind(&call_runtime); 696 } 697 698 699 void TypeRecordingBinaryOpStub::GenerateCallRuntimeCode(MacroAssembler* masm) { 700 GenerateRegisterArgsPush(masm); 701 switch (op_) { 702 case Token::ADD: 703 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); 704 break; 705 case Token::SUB: 706 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); 707 break; 708 case Token::MUL: 709 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); 710 break; 711 case Token::DIV: 712 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); 713 break; 714 case Token::MOD: 715 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); 716 break; 717 case Token::BIT_OR: 718 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); 719 break; 720 case Token::BIT_AND: 721 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); 722 break; 723 case Token::BIT_XOR: 724 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); 725 break; 726 case Token::SAR: 727 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); 728 break; 729 case Token::SHL: 730 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); 731 break; 732 case Token::SHR: 733 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); 734 break; 735 default: 736 UNREACHABLE(); 737 } 738 } 739 740 741 void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { 742 Label call_runtime; 743 if (result_type_ == TRBinaryOpIC::UNINITIALIZED || 744 result_type_ == TRBinaryOpIC::SMI) { 745 // Only allow smi results. 746 GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS); 747 } else { 748 // Allow heap number result and don't make a transition if a heap number 749 // cannot be allocated. 750 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); 751 } 752 753 // Code falls through if the result is not returned as either a smi or heap 754 // number. 755 GenerateTypeTransition(masm); 756 757 if (call_runtime.is_linked()) { 758 __ bind(&call_runtime); 759 GenerateCallRuntimeCode(masm); 760 } 761 } 762 763 764 void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { 765 ASSERT(operands_type_ == TRBinaryOpIC::STRING); 766 ASSERT(op_ == Token::ADD); 767 GenerateStringAddCode(masm); 768 // Try to add arguments as strings, otherwise, transition to the generic 769 // TRBinaryOpIC type. 770 GenerateTypeTransition(masm); 771 } 772 773 774 void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { 775 Label call_runtime; 776 777 if (op_ == Token::ADD) { 778 // Handle string addition here, because it is the only operation 779 // that does not do a ToNumber conversion on the operands. 780 GenerateStringAddCode(masm); 781 } 782 783 // Convert oddball arguments to numbers. 784 NearLabel check, done; 785 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 786 __ j(not_equal, &check); 787 if (Token::IsBitOp(op_)) { 788 __ xor_(rdx, rdx); 789 } else { 790 __ LoadRoot(rdx, Heap::kNanValueRootIndex); 791 } 792 __ jmp(&done); 793 __ bind(&check); 794 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); 795 __ j(not_equal, &done); 796 if (Token::IsBitOp(op_)) { 797 __ xor_(rax, rax); 798 } else { 799 __ LoadRoot(rax, Heap::kNanValueRootIndex); 800 } 801 __ bind(&done); 802 803 GenerateHeapNumberStub(masm); 804 } 805 806 807 void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { 808 Label gc_required, not_number; 809 GenerateFloatingPointCode(masm, &gc_required, ¬_number); 810 811 __ bind(¬_number); 812 GenerateTypeTransition(masm); 813 814 __ bind(&gc_required); 815 GenerateCallRuntimeCode(masm); 816 } 817 818 819 void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { 820 Label call_runtime, call_string_add_or_runtime; 821 822 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); 823 824 GenerateFloatingPointCode(masm, &call_runtime, &call_string_add_or_runtime); 825 826 __ bind(&call_string_add_or_runtime); 827 if (op_ == Token::ADD) { 828 GenerateStringAddCode(masm); 829 } 830 831 __ bind(&call_runtime); 832 GenerateCallRuntimeCode(masm); 833 } 834 835 836 void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( 837 MacroAssembler* masm, 838 Label* alloc_failure) { 839 Label skip_allocation; 840 OverwriteMode mode = mode_; 841 switch (mode) { 842 case OVERWRITE_LEFT: { 843 // If the argument in rdx is already an object, we skip the 844 // allocation of a heap number. 845 __ JumpIfNotSmi(rdx, &skip_allocation); 846 // Allocate a heap number for the result. Keep eax and edx intact 847 // for the possible runtime call. 848 __ AllocateHeapNumber(rbx, rcx, alloc_failure); 849 // Now rdx can be overwritten losing one of the arguments as we are 850 // now done and will not need it any more. 851 __ movq(rdx, rbx); 852 __ bind(&skip_allocation); 853 // Use object in rdx as a result holder 854 __ movq(rax, rdx); 855 break; 856 } 857 case OVERWRITE_RIGHT: 858 // If the argument in rax is already an object, we skip the 859 // allocation of a heap number. 860 __ JumpIfNotSmi(rax, &skip_allocation); 861 // Fall through! 862 case NO_OVERWRITE: 863 // Allocate a heap number for the result. Keep rax and rdx intact 864 // for the possible runtime call. 865 __ AllocateHeapNumber(rbx, rcx, alloc_failure); 866 // Now rax can be overwritten losing one of the arguments as we are 867 // now done and will not need it any more. 868 __ movq(rax, rbx); 869 __ bind(&skip_allocation); 870 break; 871 default: UNREACHABLE(); 872 } 873 } 874 875 876 void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { 877 __ pop(rcx); 878 __ push(rdx); 879 __ push(rax); 880 __ push(rcx); 881 } 882 883 884 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { 885 // TAGGED case: 886 // Input: 887 // rsp[8]: argument (should be number). 888 // rsp[0]: return address. 889 // Output: 890 // rax: tagged double result. 891 // UNTAGGED case: 892 // Input:: 893 // rsp[0]: return address. 894 // xmm1: untagged double input argument 895 // Output: 896 // xmm1: untagged double result. 897 898 Label runtime_call; 899 Label runtime_call_clear_stack; 900 Label skip_cache; 901 const bool tagged = (argument_type_ == TAGGED); 902 if (tagged) { 903 NearLabel input_not_smi; 904 NearLabel loaded; 905 // Test that rax is a number. 906 __ movq(rax, Operand(rsp, kPointerSize)); 907 __ JumpIfNotSmi(rax, &input_not_smi); 908 // Input is a smi. Untag and load it onto the FPU stack. 909 // Then load the bits of the double into rbx. 910 __ SmiToInteger32(rax, rax); 911 __ subq(rsp, Immediate(kDoubleSize)); 912 __ cvtlsi2sd(xmm1, rax); 913 __ movsd(Operand(rsp, 0), xmm1); 914 __ movq(rbx, xmm1); 915 __ movq(rdx, xmm1); 916 __ fld_d(Operand(rsp, 0)); 917 __ addq(rsp, Immediate(kDoubleSize)); 918 __ jmp(&loaded); 919 920 __ bind(&input_not_smi); 921 // Check if input is a HeapNumber. 922 __ LoadRoot(rbx, Heap::kHeapNumberMapRootIndex); 923 __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 924 __ j(not_equal, &runtime_call); 925 // Input is a HeapNumber. Push it on the FPU stack and load its 926 // bits into rbx. 927 __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); 928 __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); 929 __ movq(rdx, rbx); 930 931 __ bind(&loaded); 932 } else { // UNTAGGED. 933 __ movq(rbx, xmm1); 934 __ movq(rdx, xmm1); 935 } 936 937 // ST[0] == double value, if TAGGED. 938 // rbx = bits of double value. 939 // rdx = also bits of double value. 940 // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): 941 // h = h0 = bits ^ (bits >> 32); 942 // h ^= h >> 16; 943 // h ^= h >> 8; 944 // h = h & (cacheSize - 1); 945 // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) 946 __ sar(rdx, Immediate(32)); 947 __ xorl(rdx, rbx); 948 __ movl(rcx, rdx); 949 __ movl(rax, rdx); 950 __ movl(rdi, rdx); 951 __ sarl(rdx, Immediate(8)); 952 __ sarl(rcx, Immediate(16)); 953 __ sarl(rax, Immediate(24)); 954 __ xorl(rcx, rdx); 955 __ xorl(rax, rdi); 956 __ xorl(rcx, rax); 957 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); 958 __ andl(rcx, Immediate(TranscendentalCache::SubCache::kCacheSize - 1)); 959 960 // ST[0] == double value. 961 // rbx = bits of double value. 962 // rcx = TranscendentalCache::hash(double value). 963 ExternalReference cache_array = 964 ExternalReference::transcendental_cache_array_address(masm->isolate()); 965 __ movq(rax, cache_array); 966 int cache_array_index = 967 type_ * sizeof(Isolate::Current()->transcendental_cache()->caches_[0]); 968 __ movq(rax, Operand(rax, cache_array_index)); 969 // rax points to the cache for the type type_. 970 // If NULL, the cache hasn't been initialized yet, so go through runtime. 971 __ testq(rax, rax); 972 __ j(zero, &runtime_call_clear_stack); // Only clears stack if TAGGED. 973 #ifdef DEBUG 974 // Check that the layout of cache elements match expectations. 975 { // NOLINT - doesn't like a single brace on a line. 976 TranscendentalCache::SubCache::Element test_elem[2]; 977 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); 978 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); 979 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); 980 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); 981 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); 982 // Two uint_32's and a pointer per element. 983 CHECK_EQ(16, static_cast<int>(elem2_start - elem_start)); 984 CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start)); 985 CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start)); 986 CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start)); 987 } 988 #endif 989 // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. 990 __ addl(rcx, rcx); 991 __ lea(rcx, Operand(rax, rcx, times_8, 0)); 992 // Check if cache matches: Double value is stored in uint32_t[2] array. 993 NearLabel cache_miss; 994 __ cmpq(rbx, Operand(rcx, 0)); 995 __ j(not_equal, &cache_miss); 996 // Cache hit! 997 __ movq(rax, Operand(rcx, 2 * kIntSize)); 998 if (tagged) { 999 __ fstp(0); // Clear FPU stack. 1000 __ ret(kPointerSize); 1001 } else { // UNTAGGED. 1002 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1003 __ Ret(); 1004 } 1005 1006 __ bind(&cache_miss); 1007 // Update cache with new value. 1008 if (tagged) { 1009 __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); 1010 } else { // UNTAGGED. 1011 __ AllocateHeapNumber(rax, rdi, &skip_cache); 1012 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1); 1013 __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); 1014 } 1015 GenerateOperation(masm); 1016 __ movq(Operand(rcx, 0), rbx); 1017 __ movq(Operand(rcx, 2 * kIntSize), rax); 1018 __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); 1019 if (tagged) { 1020 __ ret(kPointerSize); 1021 } else { // UNTAGGED. 1022 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1023 __ Ret(); 1024 1025 // Skip cache and return answer directly, only in untagged case. 1026 __ bind(&skip_cache); 1027 __ subq(rsp, Immediate(kDoubleSize)); 1028 __ movsd(Operand(rsp, 0), xmm1); 1029 __ fld_d(Operand(rsp, 0)); 1030 GenerateOperation(masm); 1031 __ fstp_d(Operand(rsp, 0)); 1032 __ movsd(xmm1, Operand(rsp, 0)); 1033 __ addq(rsp, Immediate(kDoubleSize)); 1034 // We return the value in xmm1 without adding it to the cache, but 1035 // we cause a scavenging GC so that future allocations will succeed. 1036 __ EnterInternalFrame(); 1037 // Allocate an unused object bigger than a HeapNumber. 1038 __ Push(Smi::FromInt(2 * kDoubleSize)); 1039 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); 1040 __ LeaveInternalFrame(); 1041 __ Ret(); 1042 } 1043 1044 // Call runtime, doing whatever allocation and cleanup is necessary. 1045 if (tagged) { 1046 __ bind(&runtime_call_clear_stack); 1047 __ fstp(0); 1048 __ bind(&runtime_call); 1049 __ TailCallExternalReference( 1050 ExternalReference(RuntimeFunction(), masm->isolate()), 1, 1); 1051 } else { // UNTAGGED. 1052 __ bind(&runtime_call_clear_stack); 1053 __ bind(&runtime_call); 1054 __ AllocateHeapNumber(rax, rdi, &skip_cache); 1055 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1); 1056 __ EnterInternalFrame(); 1057 __ push(rax); 1058 __ CallRuntime(RuntimeFunction(), 1); 1059 __ LeaveInternalFrame(); 1060 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1061 __ Ret(); 1062 } 1063 } 1064 1065 1066 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { 1067 switch (type_) { 1068 // Add more cases when necessary. 1069 case TranscendentalCache::SIN: return Runtime::kMath_sin; 1070 case TranscendentalCache::COS: return Runtime::kMath_cos; 1071 case TranscendentalCache::LOG: return Runtime::kMath_log; 1072 default: 1073 UNIMPLEMENTED(); 1074 return Runtime::kAbort; 1075 } 1076 } 1077 1078 1079 void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { 1080 // Registers: 1081 // rax: Newly allocated HeapNumber, which must be preserved. 1082 // rbx: Bits of input double. Must be preserved. 1083 // rcx: Pointer to cache entry. Must be preserved. 1084 // st(0): Input double 1085 Label done; 1086 if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) { 1087 // Both fsin and fcos require arguments in the range +/-2^63 and 1088 // return NaN for infinities and NaN. They can share all code except 1089 // the actual fsin/fcos operation. 1090 Label in_range; 1091 // If argument is outside the range -2^63..2^63, fsin/cos doesn't 1092 // work. We must reduce it to the appropriate range. 1093 __ movq(rdi, rbx); 1094 // Move exponent and sign bits to low bits. 1095 __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); 1096 // Remove sign bit. 1097 __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); 1098 int supported_exponent_limit = (63 + HeapNumber::kExponentBias); 1099 __ cmpl(rdi, Immediate(supported_exponent_limit)); 1100 __ j(below, &in_range); 1101 // Check for infinity and NaN. Both return NaN for sin. 1102 __ cmpl(rdi, Immediate(0x7ff)); 1103 NearLabel non_nan_result; 1104 __ j(not_equal, &non_nan_result); 1105 // Input is +/-Infinity or NaN. Result is NaN. 1106 __ fstp(0); 1107 __ LoadRoot(kScratchRegister, Heap::kNanValueRootIndex); 1108 __ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset)); 1109 __ jmp(&done); 1110 1111 __ bind(&non_nan_result); 1112 1113 // Use fpmod to restrict argument to the range +/-2*PI. 1114 __ movq(rdi, rax); // Save rax before using fnstsw_ax. 1115 __ fldpi(); 1116 __ fadd(0); 1117 __ fld(1); 1118 // FPU Stack: input, 2*pi, input. 1119 { 1120 Label no_exceptions; 1121 __ fwait(); 1122 __ fnstsw_ax(); 1123 // Clear if Illegal Operand or Zero Division exceptions are set. 1124 __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. 1125 __ j(zero, &no_exceptions); 1126 __ fnclex(); 1127 __ bind(&no_exceptions); 1128 } 1129 1130 // Compute st(0) % st(1) 1131 { 1132 NearLabel partial_remainder_loop; 1133 __ bind(&partial_remainder_loop); 1134 __ fprem1(); 1135 __ fwait(); 1136 __ fnstsw_ax(); 1137 __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. 1138 // If C2 is set, computation only has partial result. Loop to 1139 // continue computation. 1140 __ j(not_zero, &partial_remainder_loop); 1141 } 1142 // FPU Stack: input, 2*pi, input % 2*pi 1143 __ fstp(2); 1144 // FPU Stack: input % 2*pi, 2*pi, 1145 __ fstp(0); 1146 // FPU Stack: input % 2*pi 1147 __ movq(rax, rdi); // Restore rax, pointer to the new HeapNumber. 1148 __ bind(&in_range); 1149 switch (type_) { 1150 case TranscendentalCache::SIN: 1151 __ fsin(); 1152 break; 1153 case TranscendentalCache::COS: 1154 __ fcos(); 1155 break; 1156 default: 1157 UNREACHABLE(); 1158 } 1159 __ bind(&done); 1160 } else { 1161 ASSERT(type_ == TranscendentalCache::LOG); 1162 __ fldln2(); 1163 __ fxch(); 1164 __ fyl2x(); 1165 } 1166 } 1167 1168 1169 // Get the integer part of a heap number. 1170 // Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. 1171 void IntegerConvert(MacroAssembler* masm, 1172 Register result, 1173 Register source) { 1174 // Result may be rcx. If result and source are the same register, source will 1175 // be overwritten. 1176 ASSERT(!result.is(rdi) && !result.is(rbx)); 1177 // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use 1178 // cvttsd2si (32-bit version) directly. 1179 Register double_exponent = rbx; 1180 Register double_value = rdi; 1181 NearLabel done, exponent_63_plus; 1182 // Get double and extract exponent. 1183 __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); 1184 // Clear result preemptively, in case we need to return zero. 1185 __ xorl(result, result); 1186 __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. 1187 // Double to remove sign bit, shift exponent down to least significant bits. 1188 // and subtract bias to get the unshifted, unbiased exponent. 1189 __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); 1190 __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); 1191 __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); 1192 // Check whether the exponent is too big for a 63 bit unsigned integer. 1193 __ cmpl(double_exponent, Immediate(63)); 1194 __ j(above_equal, &exponent_63_plus); 1195 // Handle exponent range 0..62. 1196 __ cvttsd2siq(result, xmm0); 1197 __ jmp(&done); 1198 1199 __ bind(&exponent_63_plus); 1200 // Exponent negative or 63+. 1201 __ cmpl(double_exponent, Immediate(83)); 1202 // If exponent negative or above 83, number contains no significant bits in 1203 // the range 0..2^31, so result is zero, and rcx already holds zero. 1204 __ j(above, &done); 1205 1206 // Exponent in rage 63..83. 1207 // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely 1208 // the least significant exponent-52 bits. 1209 1210 // Negate low bits of mantissa if value is negative. 1211 __ addq(double_value, double_value); // Move sign bit to carry. 1212 __ sbbl(result, result); // And convert carry to -1 in result register. 1213 // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. 1214 __ addl(double_value, result); 1215 // Do xor in opposite directions depending on where we want the result 1216 // (depending on whether result is rcx or not). 1217 1218 if (result.is(rcx)) { 1219 __ xorl(double_value, result); 1220 // Left shift mantissa by (exponent - mantissabits - 1) to save the 1221 // bits that have positional values below 2^32 (the extra -1 comes from the 1222 // doubling done above to move the sign bit into the carry flag). 1223 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); 1224 __ shll_cl(double_value); 1225 __ movl(result, double_value); 1226 } else { 1227 // As the then-branch, but move double-value to result before shifting. 1228 __ xorl(result, double_value); 1229 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); 1230 __ shll_cl(result); 1231 } 1232 1233 __ bind(&done); 1234 } 1235 1236 1237 // Input: rdx, rax are the left and right objects of a bit op. 1238 // Output: rax, rcx are left and right integers for a bit op. 1239 void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { 1240 // Check float operands. 1241 Label done; 1242 Label rax_is_smi; 1243 Label rax_is_object; 1244 Label rdx_is_object; 1245 1246 __ JumpIfNotSmi(rdx, &rdx_is_object); 1247 __ SmiToInteger32(rdx, rdx); 1248 __ JumpIfSmi(rax, &rax_is_smi); 1249 1250 __ bind(&rax_is_object); 1251 IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. 1252 __ jmp(&done); 1253 1254 __ bind(&rdx_is_object); 1255 IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. 1256 __ JumpIfNotSmi(rax, &rax_is_object); 1257 __ bind(&rax_is_smi); 1258 __ SmiToInteger32(rcx, rax); 1259 1260 __ bind(&done); 1261 __ movl(rax, rdx); 1262 } 1263 1264 1265 // Input: rdx, rax are the left and right objects of a bit op. 1266 // Output: rax, rcx are left and right integers for a bit op. 1267 // Jump to conversion_failure: rdx and rax are unchanged. 1268 void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, 1269 Label* conversion_failure, 1270 Register heap_number_map) { 1271 // Check float operands. 1272 Label arg1_is_object, check_undefined_arg1; 1273 Label arg2_is_object, check_undefined_arg2; 1274 Label load_arg2, done; 1275 1276 __ JumpIfNotSmi(rdx, &arg1_is_object); 1277 __ SmiToInteger32(r8, rdx); 1278 __ jmp(&load_arg2); 1279 1280 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). 1281 __ bind(&check_undefined_arg1); 1282 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 1283 __ j(not_equal, conversion_failure); 1284 __ Set(r8, 0); 1285 __ jmp(&load_arg2); 1286 1287 __ bind(&arg1_is_object); 1288 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); 1289 __ j(not_equal, &check_undefined_arg1); 1290 // Get the untagged integer version of the rdx heap number in rcx. 1291 IntegerConvert(masm, r8, rdx); 1292 1293 // Here r8 has the untagged integer, rax has a Smi or a heap number. 1294 __ bind(&load_arg2); 1295 // Test if arg2 is a Smi. 1296 __ JumpIfNotSmi(rax, &arg2_is_object); 1297 __ SmiToInteger32(rcx, rax); 1298 __ jmp(&done); 1299 1300 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). 1301 __ bind(&check_undefined_arg2); 1302 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); 1303 __ j(not_equal, conversion_failure); 1304 __ Set(rcx, 0); 1305 __ jmp(&done); 1306 1307 __ bind(&arg2_is_object); 1308 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); 1309 __ j(not_equal, &check_undefined_arg2); 1310 // Get the untagged integer version of the rax heap number in rcx. 1311 IntegerConvert(masm, rcx, rax); 1312 __ bind(&done); 1313 __ movl(rax, r8); 1314 } 1315 1316 1317 void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { 1318 __ SmiToInteger32(kScratchRegister, rdx); 1319 __ cvtlsi2sd(xmm0, kScratchRegister); 1320 __ SmiToInteger32(kScratchRegister, rax); 1321 __ cvtlsi2sd(xmm1, kScratchRegister); 1322 } 1323 1324 1325 void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { 1326 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; 1327 // Load operand in rdx into xmm0. 1328 __ JumpIfSmi(rdx, &load_smi_rdx); 1329 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1330 // Load operand in rax into xmm1. 1331 __ JumpIfSmi(rax, &load_smi_rax); 1332 __ bind(&load_nonsmi_rax); 1333 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1334 __ jmp(&done); 1335 1336 __ bind(&load_smi_rdx); 1337 __ SmiToInteger32(kScratchRegister, rdx); 1338 __ cvtlsi2sd(xmm0, kScratchRegister); 1339 __ JumpIfNotSmi(rax, &load_nonsmi_rax); 1340 1341 __ bind(&load_smi_rax); 1342 __ SmiToInteger32(kScratchRegister, rax); 1343 __ cvtlsi2sd(xmm1, kScratchRegister); 1344 1345 __ bind(&done); 1346 } 1347 1348 1349 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, 1350 Label* not_numbers) { 1351 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; 1352 // Load operand in rdx into xmm0, or branch to not_numbers. 1353 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); 1354 __ JumpIfSmi(rdx, &load_smi_rdx); 1355 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); 1356 __ j(not_equal, not_numbers); // Argument in rdx is not a number. 1357 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1358 // Load operand in rax into xmm1, or branch to not_numbers. 1359 __ JumpIfSmi(rax, &load_smi_rax); 1360 1361 __ bind(&load_nonsmi_rax); 1362 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); 1363 __ j(not_equal, not_numbers); 1364 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1365 __ jmp(&done); 1366 1367 __ bind(&load_smi_rdx); 1368 __ SmiToInteger32(kScratchRegister, rdx); 1369 __ cvtlsi2sd(xmm0, kScratchRegister); 1370 __ JumpIfNotSmi(rax, &load_nonsmi_rax); 1371 1372 __ bind(&load_smi_rax); 1373 __ SmiToInteger32(kScratchRegister, rax); 1374 __ cvtlsi2sd(xmm1, kScratchRegister); 1375 __ bind(&done); 1376 } 1377 1378 1379 void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm, 1380 Register first, 1381 Register second, 1382 Register scratch1, 1383 Register scratch2, 1384 Register scratch3, 1385 Label* on_success, 1386 Label* on_not_smis) { 1387 Register heap_number_map = scratch3; 1388 Register smi_result = scratch1; 1389 Label done; 1390 1391 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 1392 1393 NearLabel first_smi, check_second; 1394 __ JumpIfSmi(first, &first_smi); 1395 __ cmpq(FieldOperand(first, HeapObject::kMapOffset), heap_number_map); 1396 __ j(not_equal, on_not_smis); 1397 // Convert HeapNumber to smi if possible. 1398 __ movsd(xmm0, FieldOperand(first, HeapNumber::kValueOffset)); 1399 __ movq(scratch2, xmm0); 1400 __ cvttsd2siq(smi_result, xmm0); 1401 // Check if conversion was successful by converting back and 1402 // comparing to the original double's bits. 1403 __ cvtlsi2sd(xmm1, smi_result); 1404 __ movq(kScratchRegister, xmm1); 1405 __ cmpq(scratch2, kScratchRegister); 1406 __ j(not_equal, on_not_smis); 1407 __ Integer32ToSmi(first, smi_result); 1408 1409 __ bind(&check_second); 1410 __ JumpIfSmi(second, (on_success != NULL) ? on_success : &done); 1411 __ bind(&first_smi); 1412 if (FLAG_debug_code) { 1413 // Second should be non-smi if we get here. 1414 __ AbortIfSmi(second); 1415 } 1416 __ cmpq(FieldOperand(second, HeapObject::kMapOffset), heap_number_map); 1417 __ j(not_equal, on_not_smis); 1418 // Convert second to smi, if possible. 1419 __ movsd(xmm0, FieldOperand(second, HeapNumber::kValueOffset)); 1420 __ movq(scratch2, xmm0); 1421 __ cvttsd2siq(smi_result, xmm0); 1422 __ cvtlsi2sd(xmm1, smi_result); 1423 __ movq(kScratchRegister, xmm1); 1424 __ cmpq(scratch2, kScratchRegister); 1425 __ j(not_equal, on_not_smis); 1426 __ Integer32ToSmi(second, smi_result); 1427 if (on_success != NULL) { 1428 __ jmp(on_success); 1429 } else { 1430 __ bind(&done); 1431 } 1432 } 1433 1434 1435 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { 1436 Label slow, done; 1437 1438 if (op_ == Token::SUB) { 1439 if (include_smi_code_) { 1440 // Check whether the value is a smi. 1441 Label try_float; 1442 __ JumpIfNotSmi(rax, &try_float); 1443 if (negative_zero_ == kIgnoreNegativeZero) { 1444 __ SmiCompare(rax, Smi::FromInt(0)); 1445 __ j(equal, &done); 1446 } 1447 __ SmiNeg(rax, rax, &done); 1448 __ jmp(&slow); // zero, if not handled above, and Smi::kMinValue. 1449 1450 // Try floating point case. 1451 __ bind(&try_float); 1452 } else if (FLAG_debug_code) { 1453 __ AbortIfSmi(rax); 1454 } 1455 1456 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), 1457 Heap::kHeapNumberMapRootIndex); 1458 __ j(not_equal, &slow); 1459 // Operand is a float, negate its value by flipping sign bit. 1460 __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); 1461 __ Set(kScratchRegister, 0x01); 1462 __ shl(kScratchRegister, Immediate(63)); 1463 __ xor_(rdx, kScratchRegister); // Flip sign. 1464 // rdx is value to store. 1465 if (overwrite_ == UNARY_OVERWRITE) { 1466 __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); 1467 } else { 1468 __ AllocateHeapNumber(rcx, rbx, &slow); 1469 // rcx: allocated 'empty' number 1470 __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); 1471 __ movq(rax, rcx); 1472 } 1473 } else if (op_ == Token::BIT_NOT) { 1474 if (include_smi_code_) { 1475 Label try_float; 1476 __ JumpIfNotSmi(rax, &try_float); 1477 __ SmiNot(rax, rax); 1478 __ jmp(&done); 1479 // Try floating point case. 1480 __ bind(&try_float); 1481 } else if (FLAG_debug_code) { 1482 __ AbortIfSmi(rax); 1483 } 1484 1485 // Check if the operand is a heap number. 1486 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), 1487 Heap::kHeapNumberMapRootIndex); 1488 __ j(not_equal, &slow); 1489 1490 // Convert the heap number in rax to an untagged integer in rcx. 1491 IntegerConvert(masm, rax, rax); 1492 1493 // Do the bitwise operation and smi tag the result. 1494 __ notl(rax); 1495 __ Integer32ToSmi(rax, rax); 1496 } 1497 1498 // Return from the stub. 1499 __ bind(&done); 1500 __ StubReturn(1); 1501 1502 // Handle the slow case by jumping to the JavaScript builtin. 1503 __ bind(&slow); 1504 __ pop(rcx); // pop return address 1505 __ push(rax); 1506 __ push(rcx); // push return address 1507 switch (op_) { 1508 case Token::SUB: 1509 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); 1510 break; 1511 case Token::BIT_NOT: 1512 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); 1513 break; 1514 default: 1515 UNREACHABLE(); 1516 } 1517 } 1518 1519 1520 void MathPowStub::Generate(MacroAssembler* masm) { 1521 // Registers are used as follows: 1522 // rdx = base 1523 // rax = exponent 1524 // rcx = temporary, result 1525 1526 Label allocate_return, call_runtime; 1527 1528 // Load input parameters. 1529 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); 1530 __ movq(rax, Operand(rsp, 1 * kPointerSize)); 1531 1532 // Save 1 in xmm3 - we need this several times later on. 1533 __ Set(rcx, 1); 1534 __ cvtlsi2sd(xmm3, rcx); 1535 1536 Label exponent_nonsmi; 1537 Label base_nonsmi; 1538 // If the exponent is a heap number go to that specific case. 1539 __ JumpIfNotSmi(rax, &exponent_nonsmi); 1540 __ JumpIfNotSmi(rdx, &base_nonsmi); 1541 1542 // Optimized version when both exponent and base are smis. 1543 Label powi; 1544 __ SmiToInteger32(rdx, rdx); 1545 __ cvtlsi2sd(xmm0, rdx); 1546 __ jmp(&powi); 1547 // Exponent is a smi and base is a heapnumber. 1548 __ bind(&base_nonsmi); 1549 __ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset), 1550 Heap::kHeapNumberMapRootIndex); 1551 __ j(not_equal, &call_runtime); 1552 1553 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1554 1555 // Optimized version of pow if exponent is a smi. 1556 // xmm0 contains the base. 1557 __ bind(&powi); 1558 __ SmiToInteger32(rax, rax); 1559 1560 // Save exponent in base as we need to check if exponent is negative later. 1561 // We know that base and exponent are in different registers. 1562 __ movq(rdx, rax); 1563 1564 // Get absolute value of exponent. 1565 NearLabel no_neg; 1566 __ cmpl(rax, Immediate(0)); 1567 __ j(greater_equal, &no_neg); 1568 __ negl(rax); 1569 __ bind(&no_neg); 1570 1571 // Load xmm1 with 1. 1572 __ movsd(xmm1, xmm3); 1573 NearLabel while_true; 1574 NearLabel no_multiply; 1575 1576 __ bind(&while_true); 1577 __ shrl(rax, Immediate(1)); 1578 __ j(not_carry, &no_multiply); 1579 __ mulsd(xmm1, xmm0); 1580 __ bind(&no_multiply); 1581 __ mulsd(xmm0, xmm0); 1582 __ j(not_zero, &while_true); 1583 1584 // Base has the original value of the exponent - if the exponent is 1585 // negative return 1/result. 1586 __ testl(rdx, rdx); 1587 __ j(positive, &allocate_return); 1588 // Special case if xmm1 has reached infinity. 1589 __ divsd(xmm3, xmm1); 1590 __ movsd(xmm1, xmm3); 1591 __ xorpd(xmm0, xmm0); 1592 __ ucomisd(xmm0, xmm1); 1593 __ j(equal, &call_runtime); 1594 1595 __ jmp(&allocate_return); 1596 1597 // Exponent (or both) is a heapnumber - no matter what we should now work 1598 // on doubles. 1599 __ bind(&exponent_nonsmi); 1600 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), 1601 Heap::kHeapNumberMapRootIndex); 1602 __ j(not_equal, &call_runtime); 1603 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1604 // Test if exponent is nan. 1605 __ ucomisd(xmm1, xmm1); 1606 __ j(parity_even, &call_runtime); 1607 1608 NearLabel base_not_smi; 1609 NearLabel handle_special_cases; 1610 __ JumpIfNotSmi(rdx, &base_not_smi); 1611 __ SmiToInteger32(rdx, rdx); 1612 __ cvtlsi2sd(xmm0, rdx); 1613 __ jmp(&handle_special_cases); 1614 1615 __ bind(&base_not_smi); 1616 __ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset), 1617 Heap::kHeapNumberMapRootIndex); 1618 __ j(not_equal, &call_runtime); 1619 __ movl(rcx, FieldOperand(rdx, HeapNumber::kExponentOffset)); 1620 __ andl(rcx, Immediate(HeapNumber::kExponentMask)); 1621 __ cmpl(rcx, Immediate(HeapNumber::kExponentMask)); 1622 // base is NaN or +/-Infinity 1623 __ j(greater_equal, &call_runtime); 1624 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1625 1626 // base is in xmm0 and exponent is in xmm1. 1627 __ bind(&handle_special_cases); 1628 NearLabel not_minus_half; 1629 // Test for -0.5. 1630 // Load xmm2 with -0.5. 1631 __ movq(rcx, V8_UINT64_C(0xBFE0000000000000), RelocInfo::NONE); 1632 __ movq(xmm2, rcx); 1633 // xmm2 now has -0.5. 1634 __ ucomisd(xmm2, xmm1); 1635 __ j(not_equal, ¬_minus_half); 1636 1637 // Calculates reciprocal of square root. 1638 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. 1639 __ xorpd(xmm1, xmm1); 1640 __ addsd(xmm1, xmm0); 1641 __ sqrtsd(xmm1, xmm1); 1642 __ divsd(xmm3, xmm1); 1643 __ movsd(xmm1, xmm3); 1644 __ jmp(&allocate_return); 1645 1646 // Test for 0.5. 1647 __ bind(¬_minus_half); 1648 // Load xmm2 with 0.5. 1649 // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. 1650 __ addsd(xmm2, xmm3); 1651 // xmm2 now has 0.5. 1652 __ ucomisd(xmm2, xmm1); 1653 __ j(not_equal, &call_runtime); 1654 // Calculates square root. 1655 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. 1656 __ xorpd(xmm1, xmm1); 1657 __ addsd(xmm1, xmm0); 1658 __ sqrtsd(xmm1, xmm1); 1659 1660 __ bind(&allocate_return); 1661 __ AllocateHeapNumber(rcx, rax, &call_runtime); 1662 __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm1); 1663 __ movq(rax, rcx); 1664 __ ret(2 * kPointerSize); 1665 1666 __ bind(&call_runtime); 1667 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); 1668 } 1669 1670 1671 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { 1672 // The key is in rdx and the parameter count is in rax. 1673 1674 // The displacement is used for skipping the frame pointer on the 1675 // stack. It is the offset of the last parameter (if any) relative 1676 // to the frame pointer. 1677 static const int kDisplacement = 1 * kPointerSize; 1678 1679 // Check that the key is a smi. 1680 Label slow; 1681 __ JumpIfNotSmi(rdx, &slow); 1682 1683 // Check if the calling frame is an arguments adaptor frame. We look at the 1684 // context offset, and if the frame is not a regular one, then we find a 1685 // Smi instead of the context. We can't use SmiCompare here, because that 1686 // only works for comparing two smis. 1687 Label adaptor; 1688 __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 1689 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), 1690 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 1691 __ j(equal, &adaptor); 1692 1693 // Check index against formal parameters count limit passed in 1694 // through register rax. Use unsigned comparison to get negative 1695 // check for free. 1696 __ cmpq(rdx, rax); 1697 __ j(above_equal, &slow); 1698 1699 // Read the argument from the stack and return it. 1700 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); 1701 __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); 1702 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); 1703 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); 1704 __ Ret(); 1705 1706 // Arguments adaptor case: Check index against actual arguments 1707 // limit found in the arguments adaptor frame. Use unsigned 1708 // comparison to get negative check for free. 1709 __ bind(&adaptor); 1710 __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 1711 __ cmpq(rdx, rcx); 1712 __ j(above_equal, &slow); 1713 1714 // Read the argument from the stack and return it. 1715 index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); 1716 __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); 1717 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); 1718 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); 1719 __ Ret(); 1720 1721 // Slow-case: Handle non-smi or out-of-bounds access to arguments 1722 // by calling the runtime system. 1723 __ bind(&slow); 1724 __ pop(rbx); // Return address. 1725 __ push(rdx); 1726 __ push(rbx); 1727 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); 1728 } 1729 1730 1731 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { 1732 // rsp[0] : return address 1733 // rsp[8] : number of parameters 1734 // rsp[16] : receiver displacement 1735 // rsp[24] : function 1736 1737 // The displacement is used for skipping the return address and the 1738 // frame pointer on the stack. It is the offset of the last 1739 // parameter (if any) relative to the frame pointer. 1740 static const int kDisplacement = 2 * kPointerSize; 1741 1742 // Check if the calling frame is an arguments adaptor frame. 1743 Label adaptor_frame, try_allocate, runtime; 1744 __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 1745 __ Cmp(Operand(rdx, StandardFrameConstants::kContextOffset), 1746 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 1747 __ j(equal, &adaptor_frame); 1748 1749 // Get the length from the frame. 1750 __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); 1751 __ jmp(&try_allocate); 1752 1753 // Patch the arguments.length and the parameters pointer. 1754 __ bind(&adaptor_frame); 1755 __ SmiToInteger32(rcx, 1756 Operand(rdx, 1757 ArgumentsAdaptorFrameConstants::kLengthOffset)); 1758 // Space on stack must already hold a smi. 1759 __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); 1760 // Do not clobber the length index for the indexing operation since 1761 // it is used compute the size for allocation later. 1762 __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); 1763 __ movq(Operand(rsp, 2 * kPointerSize), rdx); 1764 1765 // Try the new space allocation. Start out with computing the size of 1766 // the arguments object and the elements array. 1767 Label add_arguments_object; 1768 __ bind(&try_allocate); 1769 __ testl(rcx, rcx); 1770 __ j(zero, &add_arguments_object); 1771 __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); 1772 __ bind(&add_arguments_object); 1773 __ addl(rcx, Immediate(GetArgumentsObjectSize())); 1774 1775 // Do the allocation of both objects in one go. 1776 __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); 1777 1778 // Get the arguments boilerplate from the current (global) context. 1779 __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); 1780 __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); 1781 __ movq(rdi, Operand(rdi, 1782 Context::SlotOffset(GetArgumentsBoilerplateIndex()))); 1783 1784 // Copy the JS object part. 1785 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); 1786 __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); 1787 __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); 1788 __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); 1789 __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); 1790 __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); 1791 __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); 1792 1793 if (type_ == NEW_NON_STRICT) { 1794 // Setup the callee in-object property. 1795 ASSERT(Heap::kArgumentsCalleeIndex == 1); 1796 __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); 1797 __ movq(FieldOperand(rax, JSObject::kHeaderSize + 1798 Heap::kArgumentsCalleeIndex * kPointerSize), 1799 kScratchRegister); 1800 } 1801 1802 // Get the length (smi tagged) and set that as an in-object property too. 1803 ASSERT(Heap::kArgumentsLengthIndex == 0); 1804 __ movq(rcx, Operand(rsp, 1 * kPointerSize)); 1805 __ movq(FieldOperand(rax, JSObject::kHeaderSize + 1806 Heap::kArgumentsLengthIndex * kPointerSize), 1807 rcx); 1808 1809 // If there are no actual arguments, we're done. 1810 Label done; 1811 __ SmiTest(rcx); 1812 __ j(zero, &done); 1813 1814 // Get the parameters pointer from the stack and untag the length. 1815 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); 1816 1817 // Setup the elements pointer in the allocated arguments object and 1818 // initialize the header in the elements fixed array. 1819 __ lea(rdi, Operand(rax, GetArgumentsObjectSize())); 1820 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); 1821 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); 1822 __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); 1823 __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); 1824 __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. 1825 1826 // Copy the fixed array slots. 1827 Label loop; 1828 __ bind(&loop); 1829 __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. 1830 __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); 1831 __ addq(rdi, Immediate(kPointerSize)); 1832 __ subq(rdx, Immediate(kPointerSize)); 1833 __ decl(rcx); 1834 __ j(not_zero, &loop); 1835 1836 // Return and remove the on-stack parameters. 1837 __ bind(&done); 1838 __ ret(3 * kPointerSize); 1839 1840 // Do the runtime call to allocate the arguments object. 1841 __ bind(&runtime); 1842 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); 1843 } 1844 1845 1846 void RegExpExecStub::Generate(MacroAssembler* masm) { 1847 // Just jump directly to runtime if native RegExp is not selected at compile 1848 // time or if regexp entry in generated code is turned off runtime switch or 1849 // at compilation. 1850 #ifdef V8_INTERPRETED_REGEXP 1851 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 1852 #else // V8_INTERPRETED_REGEXP 1853 if (!FLAG_regexp_entry_native) { 1854 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 1855 return; 1856 } 1857 1858 // Stack frame on entry. 1859 // rsp[0]: return address 1860 // rsp[8]: last_match_info (expected JSArray) 1861 // rsp[16]: previous index 1862 // rsp[24]: subject string 1863 // rsp[32]: JSRegExp object 1864 1865 static const int kLastMatchInfoOffset = 1 * kPointerSize; 1866 static const int kPreviousIndexOffset = 2 * kPointerSize; 1867 static const int kSubjectOffset = 3 * kPointerSize; 1868 static const int kJSRegExpOffset = 4 * kPointerSize; 1869 1870 Label runtime; 1871 // Ensure that a RegExp stack is allocated. 1872 Isolate* isolate = masm->isolate(); 1873 ExternalReference address_of_regexp_stack_memory_address = 1874 ExternalReference::address_of_regexp_stack_memory_address(isolate); 1875 ExternalReference address_of_regexp_stack_memory_size = 1876 ExternalReference::address_of_regexp_stack_memory_size(isolate); 1877 __ Load(kScratchRegister, address_of_regexp_stack_memory_size); 1878 __ testq(kScratchRegister, kScratchRegister); 1879 __ j(zero, &runtime); 1880 1881 1882 // Check that the first argument is a JSRegExp object. 1883 __ movq(rax, Operand(rsp, kJSRegExpOffset)); 1884 __ JumpIfSmi(rax, &runtime); 1885 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); 1886 __ j(not_equal, &runtime); 1887 // Check that the RegExp has been compiled (data contains a fixed array). 1888 __ movq(rax, FieldOperand(rax, JSRegExp::kDataOffset)); 1889 if (FLAG_debug_code) { 1890 Condition is_smi = masm->CheckSmi(rax); 1891 __ Check(NegateCondition(is_smi), 1892 "Unexpected type for RegExp data, FixedArray expected"); 1893 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); 1894 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); 1895 } 1896 1897 // rax: RegExp data (FixedArray) 1898 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 1899 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); 1900 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); 1901 __ j(not_equal, &runtime); 1902 1903 // rax: RegExp data (FixedArray) 1904 // Check that the number of captures fit in the static offsets vector buffer. 1905 __ SmiToInteger32(rdx, 1906 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); 1907 // Calculate number of capture registers (number_of_captures + 1) * 2. 1908 __ leal(rdx, Operand(rdx, rdx, times_1, 2)); 1909 // Check that the static offsets vector buffer is large enough. 1910 __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); 1911 __ j(above, &runtime); 1912 1913 // rax: RegExp data (FixedArray) 1914 // rdx: Number of capture registers 1915 // Check that the second argument is a string. 1916 __ movq(rdi, Operand(rsp, kSubjectOffset)); 1917 __ JumpIfSmi(rdi, &runtime); 1918 Condition is_string = masm->IsObjectStringType(rdi, rbx, rbx); 1919 __ j(NegateCondition(is_string), &runtime); 1920 1921 // rdi: Subject string. 1922 // rax: RegExp data (FixedArray). 1923 // rdx: Number of capture registers. 1924 // Check that the third argument is a positive smi less than the string 1925 // length. A negative value will be greater (unsigned comparison). 1926 __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); 1927 __ JumpIfNotSmi(rbx, &runtime); 1928 __ SmiCompare(rbx, FieldOperand(rdi, String::kLengthOffset)); 1929 __ j(above_equal, &runtime); 1930 1931 // rax: RegExp data (FixedArray) 1932 // rdx: Number of capture registers 1933 // Check that the fourth object is a JSArray object. 1934 __ movq(rdi, Operand(rsp, kLastMatchInfoOffset)); 1935 __ JumpIfSmi(rdi, &runtime); 1936 __ CmpObjectType(rdi, JS_ARRAY_TYPE, kScratchRegister); 1937 __ j(not_equal, &runtime); 1938 // Check that the JSArray is in fast case. 1939 __ movq(rbx, FieldOperand(rdi, JSArray::kElementsOffset)); 1940 __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); 1941 __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), 1942 Heap::kFixedArrayMapRootIndex); 1943 __ j(not_equal, &runtime); 1944 // Check that the last match info has space for the capture registers and the 1945 // additional information. Ensure no overflow in add. 1946 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); 1947 __ SmiToInteger32(rdi, FieldOperand(rbx, FixedArray::kLengthOffset)); 1948 __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); 1949 __ cmpl(rdx, rdi); 1950 __ j(greater, &runtime); 1951 1952 // rax: RegExp data (FixedArray) 1953 // Check the representation and encoding of the subject string. 1954 NearLabel seq_ascii_string, seq_two_byte_string, check_code; 1955 __ movq(rdi, Operand(rsp, kSubjectOffset)); 1956 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 1957 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 1958 // First check for flat two byte string. 1959 __ andb(rbx, Immediate( 1960 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); 1961 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); 1962 __ j(zero, &seq_two_byte_string); 1963 // Any other flat string must be a flat ascii string. 1964 __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); 1965 __ j(zero, &seq_ascii_string); 1966 1967 // Check for flat cons string. 1968 // A flat cons string is a cons string where the second part is the empty 1969 // string. In that case the subject string is just the first part of the cons 1970 // string. Also in this case the first part of the cons string is known to be 1971 // a sequential string or an external string. 1972 STATIC_ASSERT(kExternalStringTag !=0); 1973 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); 1974 __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); 1975 __ j(not_zero, &runtime); 1976 // String is a cons string. 1977 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), 1978 Heap::kEmptyStringRootIndex); 1979 __ j(not_equal, &runtime); 1980 __ movq(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); 1981 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 1982 // String is a cons string with empty second part. 1983 // rdi: first part of cons string. 1984 // rbx: map of first part of cons string. 1985 // Is first part a flat two byte string? 1986 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), 1987 Immediate(kStringRepresentationMask | kStringEncodingMask)); 1988 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); 1989 __ j(zero, &seq_two_byte_string); 1990 // Any other flat string must be ascii. 1991 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), 1992 Immediate(kStringRepresentationMask)); 1993 __ j(not_zero, &runtime); 1994 1995 __ bind(&seq_ascii_string); 1996 // rdi: subject string (sequential ascii) 1997 // rax: RegExp data (FixedArray) 1998 __ movq(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset)); 1999 __ Set(rcx, 1); // Type is ascii. 2000 __ jmp(&check_code); 2001 2002 __ bind(&seq_two_byte_string); 2003 // rdi: subject string (flat two-byte) 2004 // rax: RegExp data (FixedArray) 2005 __ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); 2006 __ Set(rcx, 0); // Type is two byte. 2007 2008 __ bind(&check_code); 2009 // Check that the irregexp code has been generated for the actual string 2010 // encoding. If it has, the field contains a code object otherwise it contains 2011 // the hole. 2012 __ CmpObjectType(r11, CODE_TYPE, kScratchRegister); 2013 __ j(not_equal, &runtime); 2014 2015 // rdi: subject string 2016 // rcx: encoding of subject string (1 if ascii, 0 if two_byte); 2017 // r11: code 2018 // Load used arguments before starting to push arguments for call to native 2019 // RegExp code to avoid handling changing stack height. 2020 __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); 2021 2022 // rdi: subject string 2023 // rbx: previous index 2024 // rcx: encoding of subject string (1 if ascii 0 if two_byte); 2025 // r11: code 2026 // All checks done. Now push arguments for native regexp code. 2027 Counters* counters = masm->isolate()->counters(); 2028 __ IncrementCounter(counters->regexp_entry_native(), 1); 2029 2030 // Isolates: note we add an additional parameter here (isolate pointer). 2031 static const int kRegExpExecuteArguments = 8; 2032 int argument_slots_on_stack = 2033 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); 2034 __ EnterApiExitFrame(argument_slots_on_stack); 2035 2036 // Argument 8: Pass current isolate address. 2037 // __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), 2038 // Immediate(ExternalReference::isolate_address())); 2039 __ LoadAddress(kScratchRegister, ExternalReference::isolate_address()); 2040 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), 2041 kScratchRegister); 2042 2043 // Argument 7: Indicate that this is a direct call from JavaScript. 2044 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), 2045 Immediate(1)); 2046 2047 // Argument 6: Start (high end) of backtracking stack memory area. 2048 __ movq(kScratchRegister, address_of_regexp_stack_memory_address); 2049 __ movq(r9, Operand(kScratchRegister, 0)); 2050 __ movq(kScratchRegister, address_of_regexp_stack_memory_size); 2051 __ addq(r9, Operand(kScratchRegister, 0)); 2052 // Argument 6 passed in r9 on Linux and on the stack on Windows. 2053 #ifdef _WIN64 2054 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r9); 2055 #endif 2056 2057 // Argument 5: static offsets vector buffer. 2058 __ LoadAddress(r8, 2059 ExternalReference::address_of_static_offsets_vector(isolate)); 2060 // Argument 5 passed in r8 on Linux and on the stack on Windows. 2061 #ifdef _WIN64 2062 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kPointerSize), r8); 2063 #endif 2064 2065 // First four arguments are passed in registers on both Linux and Windows. 2066 #ifdef _WIN64 2067 Register arg4 = r9; 2068 Register arg3 = r8; 2069 Register arg2 = rdx; 2070 Register arg1 = rcx; 2071 #else 2072 Register arg4 = rcx; 2073 Register arg3 = rdx; 2074 Register arg2 = rsi; 2075 Register arg1 = rdi; 2076 #endif 2077 2078 // Keep track on aliasing between argX defined above and the registers used. 2079 // rdi: subject string 2080 // rbx: previous index 2081 // rcx: encoding of subject string (1 if ascii 0 if two_byte); 2082 // r11: code 2083 2084 // Argument 4: End of string data 2085 // Argument 3: Start of string data 2086 NearLabel setup_two_byte, setup_rest; 2087 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. 2088 __ j(zero, &setup_two_byte); 2089 __ SmiToInteger32(rcx, FieldOperand(rdi, String::kLengthOffset)); 2090 __ lea(arg4, FieldOperand(rdi, rcx, times_1, SeqAsciiString::kHeaderSize)); 2091 __ lea(arg3, FieldOperand(rdi, rbx, times_1, SeqAsciiString::kHeaderSize)); 2092 __ jmp(&setup_rest); 2093 __ bind(&setup_two_byte); 2094 __ SmiToInteger32(rcx, FieldOperand(rdi, String::kLengthOffset)); 2095 __ lea(arg4, FieldOperand(rdi, rcx, times_2, SeqTwoByteString::kHeaderSize)); 2096 __ lea(arg3, FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); 2097 2098 __ bind(&setup_rest); 2099 // Argument 2: Previous index. 2100 __ movq(arg2, rbx); 2101 2102 // Argument 1: Subject string. 2103 #ifdef _WIN64 2104 __ movq(arg1, rdi); 2105 #else 2106 // Already there in AMD64 calling convention. 2107 ASSERT(arg1.is(rdi)); 2108 #endif 2109 2110 // Locate the code entry and call it. 2111 __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); 2112 __ call(r11); 2113 2114 __ LeaveApiExitFrame(); 2115 2116 // Check the result. 2117 NearLabel success; 2118 Label exception; 2119 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); 2120 __ j(equal, &success); 2121 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); 2122 __ j(equal, &exception); 2123 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); 2124 // If none of the above, it can only be retry. 2125 // Handle that in the runtime system. 2126 __ j(not_equal, &runtime); 2127 2128 // For failure return null. 2129 __ LoadRoot(rax, Heap::kNullValueRootIndex); 2130 __ ret(4 * kPointerSize); 2131 2132 // Load RegExp data. 2133 __ bind(&success); 2134 __ movq(rax, Operand(rsp, kJSRegExpOffset)); 2135 __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); 2136 __ SmiToInteger32(rax, 2137 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); 2138 // Calculate number of capture registers (number_of_captures + 1) * 2. 2139 __ leal(rdx, Operand(rax, rax, times_1, 2)); 2140 2141 // rdx: Number of capture registers 2142 // Load last_match_info which is still known to be a fast case JSArray. 2143 __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); 2144 __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); 2145 2146 // rbx: last_match_info backing store (FixedArray) 2147 // rdx: number of capture registers 2148 // Store the capture count. 2149 __ Integer32ToSmi(kScratchRegister, rdx); 2150 __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), 2151 kScratchRegister); 2152 // Store last subject and last input. 2153 __ movq(rax, Operand(rsp, kSubjectOffset)); 2154 __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); 2155 __ movq(rcx, rbx); 2156 __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); 2157 __ movq(rax, Operand(rsp, kSubjectOffset)); 2158 __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); 2159 __ movq(rcx, rbx); 2160 __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); 2161 2162 // Get the static offsets vector filled by the native regexp code. 2163 __ LoadAddress(rcx, 2164 ExternalReference::address_of_static_offsets_vector(isolate)); 2165 2166 // rbx: last_match_info backing store (FixedArray) 2167 // rcx: offsets vector 2168 // rdx: number of capture registers 2169 NearLabel next_capture, done; 2170 // Capture register counter starts from number of capture registers and 2171 // counts down until wraping after zero. 2172 __ bind(&next_capture); 2173 __ subq(rdx, Immediate(1)); 2174 __ j(negative, &done); 2175 // Read the value from the static offsets vector buffer and make it a smi. 2176 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); 2177 __ Integer32ToSmi(rdi, rdi); 2178 // Store the smi value in the last match info. 2179 __ movq(FieldOperand(rbx, 2180 rdx, 2181 times_pointer_size, 2182 RegExpImpl::kFirstCaptureOffset), 2183 rdi); 2184 __ jmp(&next_capture); 2185 __ bind(&done); 2186 2187 // Return last match info. 2188 __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); 2189 __ ret(4 * kPointerSize); 2190 2191 __ bind(&exception); 2192 // Result must now be exception. If there is no pending exception already a 2193 // stack overflow (on the backtrack stack) was detected in RegExp code but 2194 // haven't created the exception yet. Handle that in the runtime system. 2195 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 2196 ExternalReference pending_exception_address( 2197 Isolate::k_pending_exception_address, isolate); 2198 Operand pending_exception_operand = 2199 masm->ExternalOperand(pending_exception_address, rbx); 2200 __ movq(rax, pending_exception_operand); 2201 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 2202 __ cmpq(rax, rdx); 2203 __ j(equal, &runtime); 2204 __ movq(pending_exception_operand, rdx); 2205 2206 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); 2207 NearLabel termination_exception; 2208 __ j(equal, &termination_exception); 2209 __ Throw(rax); 2210 2211 __ bind(&termination_exception); 2212 __ ThrowUncatchable(TERMINATION, rax); 2213 2214 // Do the runtime call to execute the regexp. 2215 __ bind(&runtime); 2216 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 2217 #endif // V8_INTERPRETED_REGEXP 2218 } 2219 2220 2221 void RegExpConstructResultStub::Generate(MacroAssembler* masm) { 2222 const int kMaxInlineLength = 100; 2223 Label slowcase; 2224 Label done; 2225 __ movq(r8, Operand(rsp, kPointerSize * 3)); 2226 __ JumpIfNotSmi(r8, &slowcase); 2227 __ SmiToInteger32(rbx, r8); 2228 __ cmpl(rbx, Immediate(kMaxInlineLength)); 2229 __ j(above, &slowcase); 2230 // Smi-tagging is equivalent to multiplying by 2. 2231 STATIC_ASSERT(kSmiTag == 0); 2232 STATIC_ASSERT(kSmiTagSize == 1); 2233 // Allocate RegExpResult followed by FixedArray with size in rbx. 2234 // JSArray: [Map][empty properties][Elements][Length-smi][index][input] 2235 // Elements: [Map][Length][..elements..] 2236 __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, 2237 times_pointer_size, 2238 rbx, // In: Number of elements. 2239 rax, // Out: Start of allocation (tagged). 2240 rcx, // Out: End of allocation. 2241 rdx, // Scratch register 2242 &slowcase, 2243 TAG_OBJECT); 2244 // rax: Start of allocated area, object-tagged. 2245 // rbx: Number of array elements as int32. 2246 // r8: Number of array elements as smi. 2247 2248 // Set JSArray map to global.regexp_result_map(). 2249 __ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX)); 2250 __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset)); 2251 __ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX)); 2252 __ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx); 2253 2254 // Set empty properties FixedArray. 2255 __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex); 2256 __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister); 2257 2258 // Set elements to point to FixedArray allocated right after the JSArray. 2259 __ lea(rcx, Operand(rax, JSRegExpResult::kSize)); 2260 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx); 2261 2262 // Set input, index and length fields from arguments. 2263 __ movq(r8, Operand(rsp, kPointerSize * 1)); 2264 __ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8); 2265 __ movq(r8, Operand(rsp, kPointerSize * 2)); 2266 __ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8); 2267 __ movq(r8, Operand(rsp, kPointerSize * 3)); 2268 __ movq(FieldOperand(rax, JSArray::kLengthOffset), r8); 2269 2270 // Fill out the elements FixedArray. 2271 // rax: JSArray. 2272 // rcx: FixedArray. 2273 // rbx: Number of elements in array as int32. 2274 2275 // Set map. 2276 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); 2277 __ movq(FieldOperand(rcx, HeapObject::kMapOffset), kScratchRegister); 2278 // Set length. 2279 __ Integer32ToSmi(rdx, rbx); 2280 __ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx); 2281 // Fill contents of fixed-array with the-hole. 2282 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 2283 __ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize)); 2284 // Fill fixed array elements with hole. 2285 // rax: JSArray. 2286 // rbx: Number of elements in array that remains to be filled, as int32. 2287 // rcx: Start of elements in FixedArray. 2288 // rdx: the hole. 2289 Label loop; 2290 __ testl(rbx, rbx); 2291 __ bind(&loop); 2292 __ j(less_equal, &done); // Jump if rcx is negative or zero. 2293 __ subl(rbx, Immediate(1)); 2294 __ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx); 2295 __ jmp(&loop); 2296 2297 __ bind(&done); 2298 __ ret(3 * kPointerSize); 2299 2300 __ bind(&slowcase); 2301 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); 2302 } 2303 2304 2305 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, 2306 Register object, 2307 Register result, 2308 Register scratch1, 2309 Register scratch2, 2310 bool object_is_smi, 2311 Label* not_found) { 2312 // Use of registers. Register result is used as a temporary. 2313 Register number_string_cache = result; 2314 Register mask = scratch1; 2315 Register scratch = scratch2; 2316 2317 // Load the number string cache. 2318 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); 2319 2320 // Make the hash mask from the length of the number string cache. It 2321 // contains two elements (number and string) for each cache entry. 2322 __ SmiToInteger32( 2323 mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); 2324 __ shrl(mask, Immediate(1)); 2325 __ subq(mask, Immediate(1)); // Make mask. 2326 2327 // Calculate the entry in the number string cache. The hash value in the 2328 // number string cache for smis is just the smi value, and the hash for 2329 // doubles is the xor of the upper and lower words. See 2330 // Heap::GetNumberStringCache. 2331 Label is_smi; 2332 Label load_result_from_cache; 2333 if (!object_is_smi) { 2334 __ JumpIfSmi(object, &is_smi); 2335 __ CheckMap(object, FACTORY->heap_number_map(), not_found, true); 2336 2337 STATIC_ASSERT(8 == kDoubleSize); 2338 __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); 2339 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); 2340 GenerateConvertHashCodeToIndex(masm, scratch, mask); 2341 2342 Register index = scratch; 2343 Register probe = mask; 2344 __ movq(probe, 2345 FieldOperand(number_string_cache, 2346 index, 2347 times_1, 2348 FixedArray::kHeaderSize)); 2349 __ JumpIfSmi(probe, not_found); 2350 __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); 2351 __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); 2352 __ ucomisd(xmm0, xmm1); 2353 __ j(parity_even, not_found); // Bail out if NaN is involved. 2354 __ j(not_equal, not_found); // The cache did not contain this value. 2355 __ jmp(&load_result_from_cache); 2356 } 2357 2358 __ bind(&is_smi); 2359 __ SmiToInteger32(scratch, object); 2360 GenerateConvertHashCodeToIndex(masm, scratch, mask); 2361 2362 Register index = scratch; 2363 // Check if the entry is the smi we are looking for. 2364 __ cmpq(object, 2365 FieldOperand(number_string_cache, 2366 index, 2367 times_1, 2368 FixedArray::kHeaderSize)); 2369 __ j(not_equal, not_found); 2370 2371 // Get the result from the cache. 2372 __ bind(&load_result_from_cache); 2373 __ movq(result, 2374 FieldOperand(number_string_cache, 2375 index, 2376 times_1, 2377 FixedArray::kHeaderSize + kPointerSize)); 2378 Counters* counters = masm->isolate()->counters(); 2379 __ IncrementCounter(counters->number_to_string_native(), 1); 2380 } 2381 2382 2383 void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, 2384 Register hash, 2385 Register mask) { 2386 __ and_(hash, mask); 2387 // Each entry in string cache consists of two pointer sized fields, 2388 // but times_twice_pointer_size (multiplication by 16) scale factor 2389 // is not supported by addrmode on x64 platform. 2390 // So we have to premultiply entry index before lookup. 2391 __ shl(hash, Immediate(kPointerSizeLog2 + 1)); 2392 } 2393 2394 2395 void NumberToStringStub::Generate(MacroAssembler* masm) { 2396 Label runtime; 2397 2398 __ movq(rbx, Operand(rsp, kPointerSize)); 2399 2400 // Generate code to lookup number in the number string cache. 2401 GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); 2402 __ ret(1 * kPointerSize); 2403 2404 __ bind(&runtime); 2405 // Handle number to string in the runtime system if not found in the cache. 2406 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); 2407 } 2408 2409 2410 static int NegativeComparisonResult(Condition cc) { 2411 ASSERT(cc != equal); 2412 ASSERT((cc == less) || (cc == less_equal) 2413 || (cc == greater) || (cc == greater_equal)); 2414 return (cc == greater || cc == greater_equal) ? LESS : GREATER; 2415 } 2416 2417 2418 void CompareStub::Generate(MacroAssembler* masm) { 2419 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); 2420 2421 Label check_unequal_objects, done; 2422 2423 // Compare two smis if required. 2424 if (include_smi_compare_) { 2425 Label non_smi, smi_done; 2426 __ JumpIfNotBothSmi(rax, rdx, &non_smi); 2427 __ subq(rdx, rax); 2428 __ j(no_overflow, &smi_done); 2429 __ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. 2430 __ bind(&smi_done); 2431 __ movq(rax, rdx); 2432 __ ret(0); 2433 __ bind(&non_smi); 2434 } else if (FLAG_debug_code) { 2435 Label ok; 2436 __ JumpIfNotSmi(rdx, &ok); 2437 __ JumpIfNotSmi(rax, &ok); 2438 __ Abort("CompareStub: smi operands"); 2439 __ bind(&ok); 2440 } 2441 2442 // The compare stub returns a positive, negative, or zero 64-bit integer 2443 // value in rax, corresponding to result of comparing the two inputs. 2444 // NOTICE! This code is only reached after a smi-fast-case check, so 2445 // it is certain that at least one operand isn't a smi. 2446 2447 // Two identical objects are equal unless they are both NaN or undefined. 2448 { 2449 NearLabel not_identical; 2450 __ cmpq(rax, rdx); 2451 __ j(not_equal, ¬_identical); 2452 2453 if (cc_ != equal) { 2454 // Check for undefined. undefined OP undefined is false even though 2455 // undefined == undefined. 2456 NearLabel check_for_nan; 2457 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 2458 __ j(not_equal, &check_for_nan); 2459 __ Set(rax, NegativeComparisonResult(cc_)); 2460 __ ret(0); 2461 __ bind(&check_for_nan); 2462 } 2463 2464 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), 2465 // so we do the second best thing - test it ourselves. 2466 // Note: if cc_ != equal, never_nan_nan_ is not used. 2467 // We cannot set rax to EQUAL until just before return because 2468 // rax must be unchanged on jump to not_identical. 2469 2470 if (never_nan_nan_ && (cc_ == equal)) { 2471 __ Set(rax, EQUAL); 2472 __ ret(0); 2473 } else { 2474 NearLabel heap_number; 2475 // If it's not a heap number, then return equal for (in)equality operator. 2476 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), 2477 FACTORY->heap_number_map()); 2478 __ j(equal, &heap_number); 2479 if (cc_ != equal) { 2480 // Call runtime on identical JSObjects. Otherwise return equal. 2481 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); 2482 __ j(above_equal, ¬_identical); 2483 } 2484 __ Set(rax, EQUAL); 2485 __ ret(0); 2486 2487 __ bind(&heap_number); 2488 // It is a heap number, so return equal if it's not NaN. 2489 // For NaN, return 1 for every condition except greater and 2490 // greater-equal. Return -1 for them, so the comparison yields 2491 // false for all conditions except not-equal. 2492 __ Set(rax, EQUAL); 2493 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 2494 __ ucomisd(xmm0, xmm0); 2495 __ setcc(parity_even, rax); 2496 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. 2497 if (cc_ == greater_equal || cc_ == greater) { 2498 __ neg(rax); 2499 } 2500 __ ret(0); 2501 } 2502 2503 __ bind(¬_identical); 2504 } 2505 2506 if (cc_ == equal) { // Both strict and non-strict. 2507 Label slow; // Fallthrough label. 2508 2509 // If we're doing a strict equality comparison, we don't have to do 2510 // type conversion, so we generate code to do fast comparison for objects 2511 // and oddballs. Non-smi numbers and strings still go through the usual 2512 // slow-case code. 2513 if (strict_) { 2514 // If either is a Smi (we know that not both are), then they can only 2515 // be equal if the other is a HeapNumber. If so, use the slow case. 2516 { 2517 Label not_smis; 2518 __ SelectNonSmi(rbx, rax, rdx, ¬_smis); 2519 2520 // Check if the non-smi operand is a heap number. 2521 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), 2522 FACTORY->heap_number_map()); 2523 // If heap number, handle it in the slow case. 2524 __ j(equal, &slow); 2525 // Return non-equal. ebx (the lower half of rbx) is not zero. 2526 __ movq(rax, rbx); 2527 __ ret(0); 2528 2529 __ bind(¬_smis); 2530 } 2531 2532 // If either operand is a JSObject or an oddball value, then they are not 2533 // equal since their pointers are different 2534 // There is no test for undetectability in strict equality. 2535 2536 // If the first object is a JS object, we have done pointer comparison. 2537 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); 2538 NearLabel first_non_object; 2539 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); 2540 __ j(below, &first_non_object); 2541 // Return non-zero (eax (not rax) is not zero) 2542 Label return_not_equal; 2543 STATIC_ASSERT(kHeapObjectTag != 0); 2544 __ bind(&return_not_equal); 2545 __ ret(0); 2546 2547 __ bind(&first_non_object); 2548 // Check for oddballs: true, false, null, undefined. 2549 __ CmpInstanceType(rcx, ODDBALL_TYPE); 2550 __ j(equal, &return_not_equal); 2551 2552 __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); 2553 __ j(above_equal, &return_not_equal); 2554 2555 // Check for oddballs: true, false, null, undefined. 2556 __ CmpInstanceType(rcx, ODDBALL_TYPE); 2557 __ j(equal, &return_not_equal); 2558 2559 // Fall through to the general case. 2560 } 2561 __ bind(&slow); 2562 } 2563 2564 // Generate the number comparison code. 2565 if (include_number_compare_) { 2566 Label non_number_comparison; 2567 NearLabel unordered; 2568 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); 2569 __ xorl(rax, rax); 2570 __ xorl(rcx, rcx); 2571 __ ucomisd(xmm0, xmm1); 2572 2573 // Don't base result on EFLAGS when a NaN is involved. 2574 __ j(parity_even, &unordered); 2575 // Return a result of -1, 0, or 1, based on EFLAGS. 2576 __ setcc(above, rax); 2577 __ setcc(below, rcx); 2578 __ subq(rax, rcx); 2579 __ ret(0); 2580 2581 // If one of the numbers was NaN, then the result is always false. 2582 // The cc is never not-equal. 2583 __ bind(&unordered); 2584 ASSERT(cc_ != not_equal); 2585 if (cc_ == less || cc_ == less_equal) { 2586 __ Set(rax, 1); 2587 } else { 2588 __ Set(rax, -1); 2589 } 2590 __ ret(0); 2591 2592 // The number comparison code did not provide a valid result. 2593 __ bind(&non_number_comparison); 2594 } 2595 2596 // Fast negative check for symbol-to-symbol equality. 2597 Label check_for_strings; 2598 if (cc_ == equal) { 2599 BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); 2600 BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); 2601 2602 // We've already checked for object identity, so if both operands 2603 // are symbols they aren't equal. Register eax (not rax) already holds a 2604 // non-zero value, which indicates not equal, so just return. 2605 __ ret(0); 2606 } 2607 2608 __ bind(&check_for_strings); 2609 2610 __ JumpIfNotBothSequentialAsciiStrings( 2611 rdx, rax, rcx, rbx, &check_unequal_objects); 2612 2613 // Inline comparison of ascii strings. 2614 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, 2615 rdx, 2616 rax, 2617 rcx, 2618 rbx, 2619 rdi, 2620 r8); 2621 2622 #ifdef DEBUG 2623 __ Abort("Unexpected fall-through from string comparison"); 2624 #endif 2625 2626 __ bind(&check_unequal_objects); 2627 if (cc_ == equal && !strict_) { 2628 // Not strict equality. Objects are unequal if 2629 // they are both JSObjects and not undetectable, 2630 // and their pointers are different. 2631 NearLabel not_both_objects, return_unequal; 2632 // At most one is a smi, so we can test for smi by adding the two. 2633 // A smi plus a heap object has the low bit set, a heap object plus 2634 // a heap object has the low bit clear. 2635 STATIC_ASSERT(kSmiTag == 0); 2636 STATIC_ASSERT(kSmiTagMask == 1); 2637 __ lea(rcx, Operand(rax, rdx, times_1, 0)); 2638 __ testb(rcx, Immediate(kSmiTagMask)); 2639 __ j(not_zero, ¬_both_objects); 2640 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); 2641 __ j(below, ¬_both_objects); 2642 __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); 2643 __ j(below, ¬_both_objects); 2644 __ testb(FieldOperand(rbx, Map::kBitFieldOffset), 2645 Immediate(1 << Map::kIsUndetectable)); 2646 __ j(zero, &return_unequal); 2647 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 2648 Immediate(1 << Map::kIsUndetectable)); 2649 __ j(zero, &return_unequal); 2650 // The objects are both undetectable, so they both compare as the value 2651 // undefined, and are equal. 2652 __ Set(rax, EQUAL); 2653 __ bind(&return_unequal); 2654 // Return non-equal by returning the non-zero object pointer in rax, 2655 // or return equal if we fell through to here. 2656 __ ret(0); 2657 __ bind(¬_both_objects); 2658 } 2659 2660 // Push arguments below the return address to prepare jump to builtin. 2661 __ pop(rcx); 2662 __ push(rdx); 2663 __ push(rax); 2664 2665 // Figure out which native to call and setup the arguments. 2666 Builtins::JavaScript builtin; 2667 if (cc_ == equal) { 2668 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; 2669 } else { 2670 builtin = Builtins::COMPARE; 2671 __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); 2672 } 2673 2674 // Restore return address on the stack. 2675 __ push(rcx); 2676 2677 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) 2678 // tagged as a small integer. 2679 __ InvokeBuiltin(builtin, JUMP_FUNCTION); 2680 } 2681 2682 2683 void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, 2684 Label* label, 2685 Register object, 2686 Register scratch) { 2687 __ JumpIfSmi(object, label); 2688 __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); 2689 __ movzxbq(scratch, 2690 FieldOperand(scratch, Map::kInstanceTypeOffset)); 2691 // Ensure that no non-strings have the symbol bit set. 2692 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); 2693 STATIC_ASSERT(kSymbolTag != 0); 2694 __ testb(scratch, Immediate(kIsSymbolMask)); 2695 __ j(zero, label); 2696 } 2697 2698 2699 void StackCheckStub::Generate(MacroAssembler* masm) { 2700 __ TailCallRuntime(Runtime::kStackGuard, 0, 1); 2701 } 2702 2703 2704 void CallFunctionStub::Generate(MacroAssembler* masm) { 2705 Label slow; 2706 2707 // If the receiver might be a value (string, number or boolean) check for this 2708 // and box it if it is. 2709 if (ReceiverMightBeValue()) { 2710 // Get the receiver from the stack. 2711 // +1 ~ return address 2712 Label receiver_is_value, receiver_is_js_object; 2713 __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); 2714 2715 // Check if receiver is a smi (which is a number value). 2716 __ JumpIfSmi(rax, &receiver_is_value); 2717 2718 // Check if the receiver is a valid JS object. 2719 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); 2720 __ j(above_equal, &receiver_is_js_object); 2721 2722 // Call the runtime to box the value. 2723 __ bind(&receiver_is_value); 2724 __ EnterInternalFrame(); 2725 __ push(rax); 2726 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); 2727 __ LeaveInternalFrame(); 2728 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); 2729 2730 __ bind(&receiver_is_js_object); 2731 } 2732 2733 // Get the function to call from the stack. 2734 // +2 ~ receiver, return address 2735 __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); 2736 2737 // Check that the function really is a JavaScript function. 2738 __ JumpIfSmi(rdi, &slow); 2739 // Goto slow case if we do not have a function. 2740 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); 2741 __ j(not_equal, &slow); 2742 2743 // Fast-case: Just invoke the function. 2744 ParameterCount actual(argc_); 2745 __ InvokeFunction(rdi, actual, JUMP_FUNCTION); 2746 2747 // Slow-case: Non-function called. 2748 __ bind(&slow); 2749 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead 2750 // of the original receiver from the call site). 2751 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); 2752 __ Set(rax, argc_); 2753 __ Set(rbx, 0); 2754 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); 2755 Handle<Code> adaptor = 2756 Isolate::Current()->builtins()->ArgumentsAdaptorTrampoline(); 2757 __ Jump(adaptor, RelocInfo::CODE_TARGET); 2758 } 2759 2760 2761 bool CEntryStub::NeedsImmovableCode() { 2762 return false; 2763 } 2764 2765 2766 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { 2767 // Throw exception in eax. 2768 __ Throw(rax); 2769 } 2770 2771 2772 void CEntryStub::GenerateCore(MacroAssembler* masm, 2773 Label* throw_normal_exception, 2774 Label* throw_termination_exception, 2775 Label* throw_out_of_memory_exception, 2776 bool do_gc, 2777 bool always_allocate_scope) { 2778 // rax: result parameter for PerformGC, if any. 2779 // rbx: pointer to C function (C callee-saved). 2780 // rbp: frame pointer (restored after C call). 2781 // rsp: stack pointer (restored after C call). 2782 // r14: number of arguments including receiver (C callee-saved). 2783 // r15: pointer to the first argument (C callee-saved). 2784 // This pointer is reused in LeaveExitFrame(), so it is stored in a 2785 // callee-saved register. 2786 2787 // Simple results returned in rax (both AMD64 and Win64 calling conventions). 2788 // Complex results must be written to address passed as first argument. 2789 // AMD64 calling convention: a struct of two pointers in rax+rdx 2790 2791 // Check stack alignment. 2792 if (FLAG_debug_code) { 2793 __ CheckStackAlignment(); 2794 } 2795 2796 if (do_gc) { 2797 // Pass failure code returned from last attempt as first argument to 2798 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the 2799 // stack is known to be aligned. This function takes one argument which is 2800 // passed in register. 2801 #ifdef _WIN64 2802 __ movq(rcx, rax); 2803 #else // _WIN64 2804 __ movq(rdi, rax); 2805 #endif 2806 __ movq(kScratchRegister, 2807 FUNCTION_ADDR(Runtime::PerformGC), 2808 RelocInfo::RUNTIME_ENTRY); 2809 __ call(kScratchRegister); 2810 } 2811 2812 ExternalReference scope_depth = 2813 ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); 2814 if (always_allocate_scope) { 2815 Operand scope_depth_operand = masm->ExternalOperand(scope_depth); 2816 __ incl(scope_depth_operand); 2817 } 2818 2819 // Call C function. 2820 #ifdef _WIN64 2821 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 2822 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. 2823 __ movq(StackSpaceOperand(0), r14); // argc. 2824 __ movq(StackSpaceOperand(1), r15); // argv. 2825 if (result_size_ < 2) { 2826 // Pass a pointer to the Arguments object as the first argument. 2827 // Return result in single register (rax). 2828 __ lea(rcx, StackSpaceOperand(0)); 2829 __ LoadAddress(rdx, ExternalReference::isolate_address()); 2830 } else { 2831 ASSERT_EQ(2, result_size_); 2832 // Pass a pointer to the result location as the first argument. 2833 __ lea(rcx, StackSpaceOperand(2)); 2834 // Pass a pointer to the Arguments object as the second argument. 2835 __ lea(rdx, StackSpaceOperand(0)); 2836 __ LoadAddress(r8, ExternalReference::isolate_address()); 2837 } 2838 2839 #else // _WIN64 2840 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. 2841 __ movq(rdi, r14); // argc. 2842 __ movq(rsi, r15); // argv. 2843 __ movq(rdx, ExternalReference::isolate_address()); 2844 #endif 2845 __ call(rbx); 2846 // Result is in rax - do not destroy this register! 2847 2848 if (always_allocate_scope) { 2849 Operand scope_depth_operand = masm->ExternalOperand(scope_depth); 2850 __ decl(scope_depth_operand); 2851 } 2852 2853 // Check for failure result. 2854 Label failure_returned; 2855 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); 2856 #ifdef _WIN64 2857 // If return value is on the stack, pop it to registers. 2858 if (result_size_ > 1) { 2859 ASSERT_EQ(2, result_size_); 2860 // Read result values stored on stack. Result is stored 2861 // above the four argument mirror slots and the two 2862 // Arguments object slots. 2863 __ movq(rax, Operand(rsp, 6 * kPointerSize)); 2864 __ movq(rdx, Operand(rsp, 7 * kPointerSize)); 2865 } 2866 #endif 2867 __ lea(rcx, Operand(rax, 1)); 2868 // Lower 2 bits of rcx are 0 iff rax has failure tag. 2869 __ testl(rcx, Immediate(kFailureTagMask)); 2870 __ j(zero, &failure_returned); 2871 2872 // Exit the JavaScript to C++ exit frame. 2873 __ LeaveExitFrame(save_doubles_); 2874 __ ret(0); 2875 2876 // Handling of failure. 2877 __ bind(&failure_returned); 2878 2879 NearLabel retry; 2880 // If the returned exception is RETRY_AFTER_GC continue at retry label 2881 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); 2882 __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); 2883 __ j(zero, &retry); 2884 2885 // Special handling of out of memory exceptions. 2886 __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); 2887 __ cmpq(rax, kScratchRegister); 2888 __ j(equal, throw_out_of_memory_exception); 2889 2890 // Retrieve the pending exception and clear the variable. 2891 ExternalReference pending_exception_address( 2892 Isolate::k_pending_exception_address, masm->isolate()); 2893 Operand pending_exception_operand = 2894 masm->ExternalOperand(pending_exception_address); 2895 __ movq(rax, pending_exception_operand); 2896 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 2897 __ movq(pending_exception_operand, rdx); 2898 2899 // Special handling of termination exceptions which are uncatchable 2900 // by javascript code. 2901 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); 2902 __ j(equal, throw_termination_exception); 2903 2904 // Handle normal exception. 2905 __ jmp(throw_normal_exception); 2906 2907 // Retry. 2908 __ bind(&retry); 2909 } 2910 2911 2912 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, 2913 UncatchableExceptionType type) { 2914 __ ThrowUncatchable(type, rax); 2915 } 2916 2917 2918 void CEntryStub::Generate(MacroAssembler* masm) { 2919 // rax: number of arguments including receiver 2920 // rbx: pointer to C function (C callee-saved) 2921 // rbp: frame pointer of calling JS frame (restored after C call) 2922 // rsp: stack pointer (restored after C call) 2923 // rsi: current context (restored) 2924 2925 // NOTE: Invocations of builtins may return failure objects 2926 // instead of a proper result. The builtin entry handles 2927 // this by performing a garbage collection and retrying the 2928 // builtin once. 2929 2930 // Enter the exit frame that transitions from JavaScript to C++. 2931 #ifdef _WIN64 2932 int arg_stack_space = (result_size_ < 2 ? 2 : 4); 2933 #else 2934 int arg_stack_space = 0; 2935 #endif 2936 __ EnterExitFrame(arg_stack_space, save_doubles_); 2937 2938 // rax: Holds the context at this point, but should not be used. 2939 // On entry to code generated by GenerateCore, it must hold 2940 // a failure result if the collect_garbage argument to GenerateCore 2941 // is true. This failure result can be the result of code 2942 // generated by a previous call to GenerateCore. The value 2943 // of rax is then passed to Runtime::PerformGC. 2944 // rbx: pointer to builtin function (C callee-saved). 2945 // rbp: frame pointer of exit frame (restored after C call). 2946 // rsp: stack pointer (restored after C call). 2947 // r14: number of arguments including receiver (C callee-saved). 2948 // r15: argv pointer (C callee-saved). 2949 2950 Label throw_normal_exception; 2951 Label throw_termination_exception; 2952 Label throw_out_of_memory_exception; 2953 2954 // Call into the runtime system. 2955 GenerateCore(masm, 2956 &throw_normal_exception, 2957 &throw_termination_exception, 2958 &throw_out_of_memory_exception, 2959 false, 2960 false); 2961 2962 // Do space-specific GC and retry runtime call. 2963 GenerateCore(masm, 2964 &throw_normal_exception, 2965 &throw_termination_exception, 2966 &throw_out_of_memory_exception, 2967 true, 2968 false); 2969 2970 // Do full GC and retry runtime call one final time. 2971 Failure* failure = Failure::InternalError(); 2972 __ movq(rax, failure, RelocInfo::NONE); 2973 GenerateCore(masm, 2974 &throw_normal_exception, 2975 &throw_termination_exception, 2976 &throw_out_of_memory_exception, 2977 true, 2978 true); 2979 2980 __ bind(&throw_out_of_memory_exception); 2981 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); 2982 2983 __ bind(&throw_termination_exception); 2984 GenerateThrowUncatchable(masm, TERMINATION); 2985 2986 __ bind(&throw_normal_exception); 2987 GenerateThrowTOS(masm); 2988 } 2989 2990 2991 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { 2992 Label invoke, exit; 2993 #ifdef ENABLE_LOGGING_AND_PROFILING 2994 Label not_outermost_js, not_outermost_js_2; 2995 #endif 2996 { // NOLINT. Scope block confuses linter. 2997 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); 2998 // Setup frame. 2999 __ push(rbp); 3000 __ movq(rbp, rsp); 3001 3002 // Push the stack frame type marker twice. 3003 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; 3004 // Scratch register is neither callee-save, nor an argument register on any 3005 // platform. It's free to use at this point. 3006 // Cannot use smi-register for loading yet. 3007 __ movq(kScratchRegister, 3008 reinterpret_cast<uint64_t>(Smi::FromInt(marker)), 3009 RelocInfo::NONE); 3010 __ push(kScratchRegister); // context slot 3011 __ push(kScratchRegister); // function slot 3012 // Save callee-saved registers (X64/Win64 calling conventions). 3013 __ push(r12); 3014 __ push(r13); 3015 __ push(r14); 3016 __ push(r15); 3017 #ifdef _WIN64 3018 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 3019 __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 3020 #endif 3021 __ push(rbx); 3022 // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are 3023 // callee save as well. 3024 3025 // Set up the roots and smi constant registers. 3026 // Needs to be done before any further smi loads. 3027 __ InitializeSmiConstantRegister(); 3028 __ InitializeRootRegister(); 3029 } 3030 3031 Isolate* isolate = masm->isolate(); 3032 3033 // Save copies of the top frame descriptor on the stack. 3034 ExternalReference c_entry_fp(Isolate::k_c_entry_fp_address, isolate); 3035 { 3036 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 3037 __ push(c_entry_fp_operand); 3038 } 3039 3040 #ifdef ENABLE_LOGGING_AND_PROFILING 3041 // If this is the outermost JS call, set js_entry_sp value. 3042 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate); 3043 __ Load(rax, js_entry_sp); 3044 __ testq(rax, rax); 3045 __ j(not_zero, ¬_outermost_js); 3046 __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 3047 __ movq(rax, rbp); 3048 __ Store(js_entry_sp, rax); 3049 Label cont; 3050 __ jmp(&cont); 3051 __ bind(¬_outermost_js); 3052 __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); 3053 __ bind(&cont); 3054 #endif 3055 3056 // Call a faked try-block that does the invoke. 3057 __ call(&invoke); 3058 3059 // Caught exception: Store result (exception) in the pending 3060 // exception field in the JSEnv and return a failure sentinel. 3061 ExternalReference pending_exception(Isolate::k_pending_exception_address, 3062 isolate); 3063 __ Store(pending_exception, rax); 3064 __ movq(rax, Failure::Exception(), RelocInfo::NONE); 3065 __ jmp(&exit); 3066 3067 // Invoke: Link this frame into the handler chain. 3068 __ bind(&invoke); 3069 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); 3070 3071 // Clear any pending exceptions. 3072 __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); 3073 __ Store(pending_exception, rax); 3074 3075 // Fake a receiver (NULL). 3076 __ push(Immediate(0)); // receiver 3077 3078 // Invoke the function by calling through JS entry trampoline 3079 // builtin and pop the faked function when we return. We load the address 3080 // from an external reference instead of inlining the call target address 3081 // directly in the code, because the builtin stubs may not have been 3082 // generated yet at the time this code is generated. 3083 if (is_construct) { 3084 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 3085 isolate); 3086 __ Load(rax, construct_entry); 3087 } else { 3088 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); 3089 __ Load(rax, entry); 3090 } 3091 __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); 3092 __ call(kScratchRegister); 3093 3094 // Unlink this frame from the handler chain. 3095 __ PopTryHandler(); 3096 3097 __ bind(&exit); 3098 #ifdef ENABLE_LOGGING_AND_PROFILING 3099 // Check if the current stack frame is marked as the outermost JS frame. 3100 __ pop(rbx); 3101 __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 3102 __ j(not_equal, ¬_outermost_js_2); 3103 __ movq(kScratchRegister, js_entry_sp); 3104 __ movq(Operand(kScratchRegister, 0), Immediate(0)); 3105 __ bind(¬_outermost_js_2); 3106 #endif 3107 3108 // Restore the top frame descriptor from the stack. 3109 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 3110 __ pop(c_entry_fp_operand); 3111 } 3112 3113 // Restore callee-saved registers (X64 conventions). 3114 __ pop(rbx); 3115 #ifdef _WIN64 3116 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. 3117 __ pop(rsi); 3118 __ pop(rdi); 3119 #endif 3120 __ pop(r15); 3121 __ pop(r14); 3122 __ pop(r13); 3123 __ pop(r12); 3124 __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers 3125 3126 // Restore frame pointer and return. 3127 __ pop(rbp); 3128 __ ret(0); 3129 } 3130 3131 3132 void InstanceofStub::Generate(MacroAssembler* masm) { 3133 // Implements "value instanceof function" operator. 3134 // Expected input state with no inline cache: 3135 // rsp[0] : return address 3136 // rsp[1] : function pointer 3137 // rsp[2] : value 3138 // Expected input state with an inline one-element cache: 3139 // rsp[0] : return address 3140 // rsp[1] : offset from return address to location of inline cache 3141 // rsp[2] : function pointer 3142 // rsp[3] : value 3143 // Returns a bitwise zero to indicate that the value 3144 // is and instance of the function and anything else to 3145 // indicate that the value is not an instance. 3146 3147 static const int kOffsetToMapCheckValue = 2; 3148 static const int kOffsetToResultValue = 18; 3149 // The last 4 bytes of the instruction sequence 3150 // movq(rdi, FieldOperand(rax, HeapObject::kMapOffset)) 3151 // Move(kScratchRegister, FACTORY->the_hole_value()) 3152 // in front of the hole value address. 3153 static const unsigned int kWordBeforeMapCheckValue = 0xBA49FF78; 3154 // The last 4 bytes of the instruction sequence 3155 // __ j(not_equal, &cache_miss); 3156 // __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex); 3157 // before the offset of the hole value in the root array. 3158 static const unsigned int kWordBeforeResultValue = 0x458B4909; 3159 // Only the inline check flag is supported on X64. 3160 ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck()); 3161 int extra_stack_space = HasCallSiteInlineCheck() ? kPointerSize : 0; 3162 3163 // Get the object - go slow case if it's a smi. 3164 Label slow; 3165 3166 __ movq(rax, Operand(rsp, 2 * kPointerSize + extra_stack_space)); 3167 __ JumpIfSmi(rax, &slow); 3168 3169 // Check that the left hand is a JS object. Leave its map in rax. 3170 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); 3171 __ j(below, &slow); 3172 __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); 3173 __ j(above, &slow); 3174 3175 // Get the prototype of the function. 3176 __ movq(rdx, Operand(rsp, 1 * kPointerSize + extra_stack_space)); 3177 // rdx is function, rax is map. 3178 3179 // If there is a call site cache don't look in the global cache, but do the 3180 // real lookup and update the call site cache. 3181 if (!HasCallSiteInlineCheck()) { 3182 // Look up the function and the map in the instanceof cache. 3183 NearLabel miss; 3184 __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); 3185 __ j(not_equal, &miss); 3186 __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); 3187 __ j(not_equal, &miss); 3188 __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); 3189 __ ret(2 * kPointerSize); 3190 __ bind(&miss); 3191 } 3192 3193 __ TryGetFunctionPrototype(rdx, rbx, &slow); 3194 3195 // Check that the function prototype is a JS object. 3196 __ JumpIfSmi(rbx, &slow); 3197 __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); 3198 __ j(below, &slow); 3199 __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); 3200 __ j(above, &slow); 3201 3202 // Register mapping: 3203 // rax is object map. 3204 // rdx is function. 3205 // rbx is function prototype. 3206 if (!HasCallSiteInlineCheck()) { 3207 __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); 3208 __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); 3209 } else { 3210 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); 3211 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); 3212 __ movq(Operand(kScratchRegister, kOffsetToMapCheckValue), rax); 3213 if (FLAG_debug_code) { 3214 __ movl(rdi, Immediate(kWordBeforeMapCheckValue)); 3215 __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi); 3216 __ Assert(equal, "InstanceofStub unexpected call site cache (check)."); 3217 } 3218 } 3219 3220 __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); 3221 3222 // Loop through the prototype chain looking for the function prototype. 3223 NearLabel loop, is_instance, is_not_instance; 3224 __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); 3225 __ bind(&loop); 3226 __ cmpq(rcx, rbx); 3227 __ j(equal, &is_instance); 3228 __ cmpq(rcx, kScratchRegister); 3229 // The code at is_not_instance assumes that kScratchRegister contains a 3230 // non-zero GCable value (the null object in this case). 3231 __ j(equal, &is_not_instance); 3232 __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); 3233 __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); 3234 __ jmp(&loop); 3235 3236 __ bind(&is_instance); 3237 if (!HasCallSiteInlineCheck()) { 3238 __ xorl(rax, rax); 3239 // Store bitwise zero in the cache. This is a Smi in GC terms. 3240 STATIC_ASSERT(kSmiTag == 0); 3241 __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); 3242 } else { 3243 // Store offset of true in the root array at the inline check site. 3244 ASSERT((Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias 3245 == 0xB0 - 0x100); 3246 __ movl(rax, Immediate(0xB0)); // TrueValue is at -10 * kPointerSize. 3247 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); 3248 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); 3249 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); 3250 if (FLAG_debug_code) { 3251 __ movl(rax, Immediate(kWordBeforeResultValue)); 3252 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); 3253 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)."); 3254 } 3255 __ Set(rax, 0); 3256 } 3257 __ ret(2 * kPointerSize + extra_stack_space); 3258 3259 __ bind(&is_not_instance); 3260 if (!HasCallSiteInlineCheck()) { 3261 // We have to store a non-zero value in the cache. 3262 __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); 3263 } else { 3264 // Store offset of false in the root array at the inline check site. 3265 ASSERT((Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias 3266 == 0xB8 - 0x100); 3267 __ movl(rax, Immediate(0xB8)); // FalseValue is at -9 * kPointerSize. 3268 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); 3269 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); 3270 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); 3271 if (FLAG_debug_code) { 3272 __ movl(rax, Immediate(kWordBeforeResultValue)); 3273 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); 3274 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); 3275 } 3276 } 3277 __ ret(2 * kPointerSize + extra_stack_space); 3278 3279 // Slow-case: Go through the JavaScript implementation. 3280 __ bind(&slow); 3281 if (HasCallSiteInlineCheck()) { 3282 // Remove extra value from the stack. 3283 __ pop(rcx); 3284 __ pop(rax); 3285 __ push(rcx); 3286 } 3287 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); 3288 } 3289 3290 3291 // Passing arguments in registers is not supported. 3292 Register InstanceofStub::left() { return no_reg; } 3293 3294 3295 Register InstanceofStub::right() { return no_reg; } 3296 3297 3298 int CompareStub::MinorKey() { 3299 // Encode the three parameters in a unique 16 bit value. To avoid duplicate 3300 // stubs the never NaN NaN condition is only taken into account if the 3301 // condition is equals. 3302 ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); 3303 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); 3304 return ConditionField::encode(static_cast<unsigned>(cc_)) 3305 | RegisterField::encode(false) // lhs_ and rhs_ are not used 3306 | StrictField::encode(strict_) 3307 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) 3308 | IncludeNumberCompareField::encode(include_number_compare_) 3309 | IncludeSmiCompareField::encode(include_smi_compare_); 3310 } 3311 3312 3313 // Unfortunately you have to run without snapshots to see most of these 3314 // names in the profile since most compare stubs end up in the snapshot. 3315 const char* CompareStub::GetName() { 3316 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); 3317 3318 if (name_ != NULL) return name_; 3319 const int kMaxNameLength = 100; 3320 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 3321 kMaxNameLength); 3322 if (name_ == NULL) return "OOM"; 3323 3324 const char* cc_name; 3325 switch (cc_) { 3326 case less: cc_name = "LT"; break; 3327 case greater: cc_name = "GT"; break; 3328 case less_equal: cc_name = "LE"; break; 3329 case greater_equal: cc_name = "GE"; break; 3330 case equal: cc_name = "EQ"; break; 3331 case not_equal: cc_name = "NE"; break; 3332 default: cc_name = "UnknownCondition"; break; 3333 } 3334 3335 const char* strict_name = ""; 3336 if (strict_ && (cc_ == equal || cc_ == not_equal)) { 3337 strict_name = "_STRICT"; 3338 } 3339 3340 const char* never_nan_nan_name = ""; 3341 if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { 3342 never_nan_nan_name = "_NO_NAN"; 3343 } 3344 3345 const char* include_number_compare_name = ""; 3346 if (!include_number_compare_) { 3347 include_number_compare_name = "_NO_NUMBER"; 3348 } 3349 3350 const char* include_smi_compare_name = ""; 3351 if (!include_smi_compare_) { 3352 include_smi_compare_name = "_NO_SMI"; 3353 } 3354 3355 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 3356 "CompareStub_%s%s%s%s", 3357 cc_name, 3358 strict_name, 3359 never_nan_nan_name, 3360 include_number_compare_name, 3361 include_smi_compare_name); 3362 return name_; 3363 } 3364 3365 3366 // ------------------------------------------------------------------------- 3367 // StringCharCodeAtGenerator 3368 3369 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 3370 Label flat_string; 3371 Label ascii_string; 3372 Label got_char_code; 3373 3374 // If the receiver is a smi trigger the non-string case. 3375 __ JumpIfSmi(object_, receiver_not_string_); 3376 3377 // Fetch the instance type of the receiver into result register. 3378 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); 3379 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 3380 // If the receiver is not a string trigger the non-string case. 3381 __ testb(result_, Immediate(kIsNotStringMask)); 3382 __ j(not_zero, receiver_not_string_); 3383 3384 // If the index is non-smi trigger the non-smi case. 3385 __ JumpIfNotSmi(index_, &index_not_smi_); 3386 3387 // Put smi-tagged index into scratch register. 3388 __ movq(scratch_, index_); 3389 __ bind(&got_smi_index_); 3390 3391 // Check for index out of range. 3392 __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset)); 3393 __ j(above_equal, index_out_of_range_); 3394 3395 // We need special handling for non-flat strings. 3396 STATIC_ASSERT(kSeqStringTag == 0); 3397 __ testb(result_, Immediate(kStringRepresentationMask)); 3398 __ j(zero, &flat_string); 3399 3400 // Handle non-flat strings. 3401 __ testb(result_, Immediate(kIsConsStringMask)); 3402 __ j(zero, &call_runtime_); 3403 3404 // ConsString. 3405 // Check whether the right hand side is the empty string (i.e. if 3406 // this is really a flat string in a cons string). If that is not 3407 // the case we would rather go to the runtime system now to flatten 3408 // the string. 3409 __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset), 3410 Heap::kEmptyStringRootIndex); 3411 __ j(not_equal, &call_runtime_); 3412 // Get the first of the two strings and load its instance type. 3413 __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset)); 3414 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); 3415 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 3416 // If the first cons component is also non-flat, then go to runtime. 3417 STATIC_ASSERT(kSeqStringTag == 0); 3418 __ testb(result_, Immediate(kStringRepresentationMask)); 3419 __ j(not_zero, &call_runtime_); 3420 3421 // Check for 1-byte or 2-byte string. 3422 __ bind(&flat_string); 3423 STATIC_ASSERT(kAsciiStringTag != 0); 3424 __ testb(result_, Immediate(kStringEncodingMask)); 3425 __ j(not_zero, &ascii_string); 3426 3427 // 2-byte string. 3428 // Load the 2-byte character code into the result register. 3429 __ SmiToInteger32(scratch_, scratch_); 3430 __ movzxwl(result_, FieldOperand(object_, 3431 scratch_, times_2, 3432 SeqTwoByteString::kHeaderSize)); 3433 __ jmp(&got_char_code); 3434 3435 // ASCII string. 3436 // Load the byte into the result register. 3437 __ bind(&ascii_string); 3438 __ SmiToInteger32(scratch_, scratch_); 3439 __ movzxbl(result_, FieldOperand(object_, 3440 scratch_, times_1, 3441 SeqAsciiString::kHeaderSize)); 3442 __ bind(&got_char_code); 3443 __ Integer32ToSmi(result_, result_); 3444 __ bind(&exit_); 3445 } 3446 3447 3448 void StringCharCodeAtGenerator::GenerateSlow( 3449 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 3450 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); 3451 3452 // Index is not a smi. 3453 __ bind(&index_not_smi_); 3454 // If index is a heap number, try converting it to an integer. 3455 __ CheckMap(index_, FACTORY->heap_number_map(), index_not_number_, true); 3456 call_helper.BeforeCall(masm); 3457 __ push(object_); 3458 __ push(index_); 3459 __ push(index_); // Consumed by runtime conversion function. 3460 if (index_flags_ == STRING_INDEX_IS_NUMBER) { 3461 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); 3462 } else { 3463 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); 3464 // NumberToSmi discards numbers that are not exact integers. 3465 __ CallRuntime(Runtime::kNumberToSmi, 1); 3466 } 3467 if (!scratch_.is(rax)) { 3468 // Save the conversion result before the pop instructions below 3469 // have a chance to overwrite it. 3470 __ movq(scratch_, rax); 3471 } 3472 __ pop(index_); 3473 __ pop(object_); 3474 // Reload the instance type. 3475 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); 3476 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 3477 call_helper.AfterCall(masm); 3478 // If index is still not a smi, it must be out of range. 3479 __ JumpIfNotSmi(scratch_, index_out_of_range_); 3480 // Otherwise, return to the fast path. 3481 __ jmp(&got_smi_index_); 3482 3483 // Call runtime. We get here when the receiver is a string and the 3484 // index is a number, but the code of getting the actual character 3485 // is too complex (e.g., when the string needs to be flattened). 3486 __ bind(&call_runtime_); 3487 call_helper.BeforeCall(masm); 3488 __ push(object_); 3489 __ push(index_); 3490 __ CallRuntime(Runtime::kStringCharCodeAt, 2); 3491 if (!result_.is(rax)) { 3492 __ movq(result_, rax); 3493 } 3494 call_helper.AfterCall(masm); 3495 __ jmp(&exit_); 3496 3497 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); 3498 } 3499 3500 3501 // ------------------------------------------------------------------------- 3502 // StringCharFromCodeGenerator 3503 3504 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 3505 // Fast case of Heap::LookupSingleCharacterStringFromCode. 3506 __ JumpIfNotSmi(code_, &slow_case_); 3507 __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); 3508 __ j(above, &slow_case_); 3509 3510 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 3511 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); 3512 __ movq(result_, FieldOperand(result_, index.reg, index.scale, 3513 FixedArray::kHeaderSize)); 3514 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); 3515 __ j(equal, &slow_case_); 3516 __ bind(&exit_); 3517 } 3518 3519 3520 void StringCharFromCodeGenerator::GenerateSlow( 3521 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 3522 __ Abort("Unexpected fallthrough to CharFromCode slow case"); 3523 3524 __ bind(&slow_case_); 3525 call_helper.BeforeCall(masm); 3526 __ push(code_); 3527 __ CallRuntime(Runtime::kCharFromCode, 1); 3528 if (!result_.is(rax)) { 3529 __ movq(result_, rax); 3530 } 3531 call_helper.AfterCall(masm); 3532 __ jmp(&exit_); 3533 3534 __ Abort("Unexpected fallthrough from CharFromCode slow case"); 3535 } 3536 3537 3538 // ------------------------------------------------------------------------- 3539 // StringCharAtGenerator 3540 3541 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { 3542 char_code_at_generator_.GenerateFast(masm); 3543 char_from_code_generator_.GenerateFast(masm); 3544 } 3545 3546 3547 void StringCharAtGenerator::GenerateSlow( 3548 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 3549 char_code_at_generator_.GenerateSlow(masm, call_helper); 3550 char_from_code_generator_.GenerateSlow(masm, call_helper); 3551 } 3552 3553 3554 void StringAddStub::Generate(MacroAssembler* masm) { 3555 Label string_add_runtime, call_builtin; 3556 Builtins::JavaScript builtin_id = Builtins::ADD; 3557 3558 // Load the two arguments. 3559 __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument (left). 3560 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument (right). 3561 3562 // Make sure that both arguments are strings if not known in advance. 3563 if (flags_ == NO_STRING_ADD_FLAGS) { 3564 Condition is_smi; 3565 is_smi = masm->CheckSmi(rax); 3566 __ j(is_smi, &string_add_runtime); 3567 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); 3568 __ j(above_equal, &string_add_runtime); 3569 3570 // First argument is a a string, test second. 3571 is_smi = masm->CheckSmi(rdx); 3572 __ j(is_smi, &string_add_runtime); 3573 __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); 3574 __ j(above_equal, &string_add_runtime); 3575 } else { 3576 // Here at least one of the arguments is definitely a string. 3577 // We convert the one that is not known to be a string. 3578 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { 3579 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); 3580 GenerateConvertArgument(masm, 2 * kPointerSize, rax, rbx, rcx, rdi, 3581 &call_builtin); 3582 builtin_id = Builtins::STRING_ADD_RIGHT; 3583 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { 3584 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); 3585 GenerateConvertArgument(masm, 1 * kPointerSize, rdx, rbx, rcx, rdi, 3586 &call_builtin); 3587 builtin_id = Builtins::STRING_ADD_LEFT; 3588 } 3589 } 3590 3591 // Both arguments are strings. 3592 // rax: first string 3593 // rdx: second string 3594 // Check if either of the strings are empty. In that case return the other. 3595 NearLabel second_not_zero_length, both_not_zero_length; 3596 __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); 3597 __ SmiTest(rcx); 3598 __ j(not_zero, &second_not_zero_length); 3599 // Second string is empty, result is first string which is already in rax. 3600 Counters* counters = masm->isolate()->counters(); 3601 __ IncrementCounter(counters->string_add_native(), 1); 3602 __ ret(2 * kPointerSize); 3603 __ bind(&second_not_zero_length); 3604 __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); 3605 __ SmiTest(rbx); 3606 __ j(not_zero, &both_not_zero_length); 3607 // First string is empty, result is second string which is in rdx. 3608 __ movq(rax, rdx); 3609 __ IncrementCounter(counters->string_add_native(), 1); 3610 __ ret(2 * kPointerSize); 3611 3612 // Both strings are non-empty. 3613 // rax: first string 3614 // rbx: length of first string 3615 // rcx: length of second string 3616 // rdx: second string 3617 // r8: map of first string (if flags_ == NO_STRING_ADD_FLAGS) 3618 // r9: map of second string (if flags_ == NO_STRING_ADD_FLAGS) 3619 Label string_add_flat_result, longer_than_two; 3620 __ bind(&both_not_zero_length); 3621 3622 // If arguments where known to be strings, maps are not loaded to r8 and r9 3623 // by the code above. 3624 if (flags_ != NO_STRING_ADD_FLAGS) { 3625 __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); 3626 __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); 3627 } 3628 // Get the instance types of the two strings as they will be needed soon. 3629 __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); 3630 __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); 3631 3632 // Look at the length of the result of adding the two strings. 3633 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); 3634 __ SmiAdd(rbx, rbx, rcx); 3635 // Use the symbol table when adding two one character strings, as it 3636 // helps later optimizations to return a symbol here. 3637 __ SmiCompare(rbx, Smi::FromInt(2)); 3638 __ j(not_equal, &longer_than_two); 3639 3640 // Check that both strings are non-external ascii strings. 3641 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, 3642 &string_add_runtime); 3643 3644 // Get the two characters forming the sub string. 3645 __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); 3646 __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); 3647 3648 // Try to lookup two character string in symbol table. If it is not found 3649 // just allocate a new one. 3650 Label make_two_character_string, make_flat_ascii_string; 3651 StringHelper::GenerateTwoCharacterSymbolTableProbe( 3652 masm, rbx, rcx, r14, r11, rdi, r15, &make_two_character_string); 3653 __ IncrementCounter(counters->string_add_native(), 1); 3654 __ ret(2 * kPointerSize); 3655 3656 __ bind(&make_two_character_string); 3657 __ Set(rbx, 2); 3658 __ jmp(&make_flat_ascii_string); 3659 3660 __ bind(&longer_than_two); 3661 // Check if resulting string will be flat. 3662 __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); 3663 __ j(below, &string_add_flat_result); 3664 // Handle exceptionally long strings in the runtime system. 3665 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); 3666 __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); 3667 __ j(above, &string_add_runtime); 3668 3669 // If result is not supposed to be flat, allocate a cons string object. If 3670 // both strings are ascii the result is an ascii cons string. 3671 // rax: first string 3672 // rbx: length of resulting flat string 3673 // rdx: second string 3674 // r8: instance type of first string 3675 // r9: instance type of second string 3676 Label non_ascii, allocated, ascii_data; 3677 __ movl(rcx, r8); 3678 __ and_(rcx, r9); 3679 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); 3680 __ testl(rcx, Immediate(kAsciiStringTag)); 3681 __ j(zero, &non_ascii); 3682 __ bind(&ascii_data); 3683 // Allocate an acsii cons string. 3684 __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); 3685 __ bind(&allocated); 3686 // Fill the fields of the cons string. 3687 __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); 3688 __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), 3689 Immediate(String::kEmptyHashField)); 3690 __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); 3691 __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); 3692 __ movq(rax, rcx); 3693 __ IncrementCounter(counters->string_add_native(), 1); 3694 __ ret(2 * kPointerSize); 3695 __ bind(&non_ascii); 3696 // At least one of the strings is two-byte. Check whether it happens 3697 // to contain only ascii characters. 3698 // rcx: first instance type AND second instance type. 3699 // r8: first instance type. 3700 // r9: second instance type. 3701 __ testb(rcx, Immediate(kAsciiDataHintMask)); 3702 __ j(not_zero, &ascii_data); 3703 __ xor_(r8, r9); 3704 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); 3705 __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); 3706 __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); 3707 __ j(equal, &ascii_data); 3708 // Allocate a two byte cons string. 3709 __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); 3710 __ jmp(&allocated); 3711 3712 // Handle creating a flat result. First check that both strings are not 3713 // external strings. 3714 // rax: first string 3715 // rbx: length of resulting flat string as smi 3716 // rdx: second string 3717 // r8: instance type of first string 3718 // r9: instance type of first string 3719 __ bind(&string_add_flat_result); 3720 __ SmiToInteger32(rbx, rbx); 3721 __ movl(rcx, r8); 3722 __ and_(rcx, Immediate(kStringRepresentationMask)); 3723 __ cmpl(rcx, Immediate(kExternalStringTag)); 3724 __ j(equal, &string_add_runtime); 3725 __ movl(rcx, r9); 3726 __ and_(rcx, Immediate(kStringRepresentationMask)); 3727 __ cmpl(rcx, Immediate(kExternalStringTag)); 3728 __ j(equal, &string_add_runtime); 3729 // Now check if both strings are ascii strings. 3730 // rax: first string 3731 // rbx: length of resulting flat string 3732 // rdx: second string 3733 // r8: instance type of first string 3734 // r9: instance type of second string 3735 Label non_ascii_string_add_flat_result; 3736 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); 3737 __ testl(r8, Immediate(kAsciiStringTag)); 3738 __ j(zero, &non_ascii_string_add_flat_result); 3739 __ testl(r9, Immediate(kAsciiStringTag)); 3740 __ j(zero, &string_add_runtime); 3741 3742 __ bind(&make_flat_ascii_string); 3743 // Both strings are ascii strings. As they are short they are both flat. 3744 __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime); 3745 // rcx: result string 3746 __ movq(rbx, rcx); 3747 // Locate first character of result. 3748 __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 3749 // Locate first character of first argument 3750 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); 3751 __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 3752 // rax: first char of first argument 3753 // rbx: result string 3754 // rcx: first character of result 3755 // rdx: second string 3756 // rdi: length of first argument 3757 StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true); 3758 // Locate first character of second argument. 3759 __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); 3760 __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 3761 // rbx: result string 3762 // rcx: next character of result 3763 // rdx: first char of second argument 3764 // rdi: length of second argument 3765 StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true); 3766 __ movq(rax, rbx); 3767 __ IncrementCounter(counters->string_add_native(), 1); 3768 __ ret(2 * kPointerSize); 3769 3770 // Handle creating a flat two byte result. 3771 // rax: first string - known to be two byte 3772 // rbx: length of resulting flat string 3773 // rdx: second string 3774 // r8: instance type of first string 3775 // r9: instance type of first string 3776 __ bind(&non_ascii_string_add_flat_result); 3777 __ and_(r9, Immediate(kAsciiStringTag)); 3778 __ j(not_zero, &string_add_runtime); 3779 // Both strings are two byte strings. As they are short they are both 3780 // flat. 3781 __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime); 3782 // rcx: result string 3783 __ movq(rbx, rcx); 3784 // Locate first character of result. 3785 __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3786 // Locate first character of first argument. 3787 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); 3788 __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3789 // rax: first char of first argument 3790 // rbx: result string 3791 // rcx: first character of result 3792 // rdx: second argument 3793 // rdi: length of first argument 3794 StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false); 3795 // Locate first character of second argument. 3796 __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); 3797 __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3798 // rbx: result string 3799 // rcx: next character of result 3800 // rdx: first char of second argument 3801 // rdi: length of second argument 3802 StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false); 3803 __ movq(rax, rbx); 3804 __ IncrementCounter(counters->string_add_native(), 1); 3805 __ ret(2 * kPointerSize); 3806 3807 // Just jump to runtime to add the two strings. 3808 __ bind(&string_add_runtime); 3809 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); 3810 3811 if (call_builtin.is_linked()) { 3812 __ bind(&call_builtin); 3813 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); 3814 } 3815 } 3816 3817 3818 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, 3819 int stack_offset, 3820 Register arg, 3821 Register scratch1, 3822 Register scratch2, 3823 Register scratch3, 3824 Label* slow) { 3825 // First check if the argument is already a string. 3826 Label not_string, done; 3827 __ JumpIfSmi(arg, ¬_string); 3828 __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1); 3829 __ j(below, &done); 3830 3831 // Check the number to string cache. 3832 Label not_cached; 3833 __ bind(¬_string); 3834 // Puts the cached result into scratch1. 3835 NumberToStringStub::GenerateLookupNumberStringCache(masm, 3836 arg, 3837 scratch1, 3838 scratch2, 3839 scratch3, 3840 false, 3841 ¬_cached); 3842 __ movq(arg, scratch1); 3843 __ movq(Operand(rsp, stack_offset), arg); 3844 __ jmp(&done); 3845 3846 // Check if the argument is a safe string wrapper. 3847 __ bind(¬_cached); 3848 __ JumpIfSmi(arg, slow); 3849 __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1. 3850 __ j(not_equal, slow); 3851 __ testb(FieldOperand(scratch1, Map::kBitField2Offset), 3852 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); 3853 __ j(zero, slow); 3854 __ movq(arg, FieldOperand(arg, JSValue::kValueOffset)); 3855 __ movq(Operand(rsp, stack_offset), arg); 3856 3857 __ bind(&done); 3858 } 3859 3860 3861 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 3862 Register dest, 3863 Register src, 3864 Register count, 3865 bool ascii) { 3866 Label loop; 3867 __ bind(&loop); 3868 // This loop just copies one character at a time, as it is only used for very 3869 // short strings. 3870 if (ascii) { 3871 __ movb(kScratchRegister, Operand(src, 0)); 3872 __ movb(Operand(dest, 0), kScratchRegister); 3873 __ incq(src); 3874 __ incq(dest); 3875 } else { 3876 __ movzxwl(kScratchRegister, Operand(src, 0)); 3877 __ movw(Operand(dest, 0), kScratchRegister); 3878 __ addq(src, Immediate(2)); 3879 __ addq(dest, Immediate(2)); 3880 } 3881 __ decl(count); 3882 __ j(not_zero, &loop); 3883 } 3884 3885 3886 void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, 3887 Register dest, 3888 Register src, 3889 Register count, 3890 bool ascii) { 3891 // Copy characters using rep movs of doublewords. Align destination on 4 byte 3892 // boundary before starting rep movs. Copy remaining characters after running 3893 // rep movs. 3894 // Count is positive int32, dest and src are character pointers. 3895 ASSERT(dest.is(rdi)); // rep movs destination 3896 ASSERT(src.is(rsi)); // rep movs source 3897 ASSERT(count.is(rcx)); // rep movs count 3898 3899 // Nothing to do for zero characters. 3900 NearLabel done; 3901 __ testl(count, count); 3902 __ j(zero, &done); 3903 3904 // Make count the number of bytes to copy. 3905 if (!ascii) { 3906 STATIC_ASSERT(2 == sizeof(uc16)); 3907 __ addl(count, count); 3908 } 3909 3910 // Don't enter the rep movs if there are less than 4 bytes to copy. 3911 NearLabel last_bytes; 3912 __ testl(count, Immediate(~7)); 3913 __ j(zero, &last_bytes); 3914 3915 // Copy from edi to esi using rep movs instruction. 3916 __ movl(kScratchRegister, count); 3917 __ shr(count, Immediate(3)); // Number of doublewords to copy. 3918 __ repmovsq(); 3919 3920 // Find number of bytes left. 3921 __ movl(count, kScratchRegister); 3922 __ and_(count, Immediate(7)); 3923 3924 // Check if there are more bytes to copy. 3925 __ bind(&last_bytes); 3926 __ testl(count, count); 3927 __ j(zero, &done); 3928 3929 // Copy remaining characters. 3930 Label loop; 3931 __ bind(&loop); 3932 __ movb(kScratchRegister, Operand(src, 0)); 3933 __ movb(Operand(dest, 0), kScratchRegister); 3934 __ incq(src); 3935 __ incq(dest); 3936 __ decl(count); 3937 __ j(not_zero, &loop); 3938 3939 __ bind(&done); 3940 } 3941 3942 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, 3943 Register c1, 3944 Register c2, 3945 Register scratch1, 3946 Register scratch2, 3947 Register scratch3, 3948 Register scratch4, 3949 Label* not_found) { 3950 // Register scratch3 is the general scratch register in this function. 3951 Register scratch = scratch3; 3952 3953 // Make sure that both characters are not digits as such strings has a 3954 // different hash algorithm. Don't try to look for these in the symbol table. 3955 NearLabel not_array_index; 3956 __ leal(scratch, Operand(c1, -'0')); 3957 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); 3958 __ j(above, ¬_array_index); 3959 __ leal(scratch, Operand(c2, -'0')); 3960 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); 3961 __ j(below_equal, not_found); 3962 3963 __ bind(¬_array_index); 3964 // Calculate the two character string hash. 3965 Register hash = scratch1; 3966 GenerateHashInit(masm, hash, c1, scratch); 3967 GenerateHashAddCharacter(masm, hash, c2, scratch); 3968 GenerateHashGetHash(masm, hash, scratch); 3969 3970 // Collect the two characters in a register. 3971 Register chars = c1; 3972 __ shl(c2, Immediate(kBitsPerByte)); 3973 __ orl(chars, c2); 3974 3975 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 3976 // hash: hash of two character string. 3977 3978 // Load the symbol table. 3979 Register symbol_table = c2; 3980 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); 3981 3982 // Calculate capacity mask from the symbol table capacity. 3983 Register mask = scratch2; 3984 __ SmiToInteger32(mask, 3985 FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); 3986 __ decl(mask); 3987 3988 Register map = scratch4; 3989 3990 // Registers 3991 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 3992 // hash: hash of two character string (32-bit int) 3993 // symbol_table: symbol table 3994 // mask: capacity mask (32-bit int) 3995 // map: - 3996 // scratch: - 3997 3998 // Perform a number of probes in the symbol table. 3999 static const int kProbes = 4; 4000 Label found_in_symbol_table; 4001 Label next_probe[kProbes]; 4002 for (int i = 0; i < kProbes; i++) { 4003 // Calculate entry in symbol table. 4004 __ movl(scratch, hash); 4005 if (i > 0) { 4006 __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); 4007 } 4008 __ andl(scratch, mask); 4009 4010 // Load the entry from the symbol table. 4011 Register candidate = scratch; // Scratch register contains candidate. 4012 STATIC_ASSERT(SymbolTable::kEntrySize == 1); 4013 __ movq(candidate, 4014 FieldOperand(symbol_table, 4015 scratch, 4016 times_pointer_size, 4017 SymbolTable::kElementsStartOffset)); 4018 4019 // If entry is undefined no string with this hash can be found. 4020 NearLabel is_string; 4021 __ CmpObjectType(candidate, ODDBALL_TYPE, map); 4022 __ j(not_equal, &is_string); 4023 4024 __ CompareRoot(candidate, Heap::kUndefinedValueRootIndex); 4025 __ j(equal, not_found); 4026 // Must be null (deleted entry). 4027 __ jmp(&next_probe[i]); 4028 4029 __ bind(&is_string); 4030 4031 // If length is not 2 the string is not a candidate. 4032 __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), 4033 Smi::FromInt(2)); 4034 __ j(not_equal, &next_probe[i]); 4035 4036 // We use kScratchRegister as a temporary register in assumption that 4037 // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly 4038 Register temp = kScratchRegister; 4039 4040 // Check that the candidate is a non-external ascii string. 4041 __ movzxbl(temp, FieldOperand(map, Map::kInstanceTypeOffset)); 4042 __ JumpIfInstanceTypeIsNotSequentialAscii( 4043 temp, temp, &next_probe[i]); 4044 4045 // Check if the two characters match. 4046 __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); 4047 __ andl(temp, Immediate(0x0000ffff)); 4048 __ cmpl(chars, temp); 4049 __ j(equal, &found_in_symbol_table); 4050 __ bind(&next_probe[i]); 4051 } 4052 4053 // No matching 2 character string found by probing. 4054 __ jmp(not_found); 4055 4056 // Scratch register contains result when we fall through to here. 4057 Register result = scratch; 4058 __ bind(&found_in_symbol_table); 4059 if (!result.is(rax)) { 4060 __ movq(rax, result); 4061 } 4062 } 4063 4064 4065 void StringHelper::GenerateHashInit(MacroAssembler* masm, 4066 Register hash, 4067 Register character, 4068 Register scratch) { 4069 // hash = character + (character << 10); 4070 __ movl(hash, character); 4071 __ shll(hash, Immediate(10)); 4072 __ addl(hash, character); 4073 // hash ^= hash >> 6; 4074 __ movl(scratch, hash); 4075 __ sarl(scratch, Immediate(6)); 4076 __ xorl(hash, scratch); 4077 } 4078 4079 4080 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, 4081 Register hash, 4082 Register character, 4083 Register scratch) { 4084 // hash += character; 4085 __ addl(hash, character); 4086 // hash += hash << 10; 4087 __ movl(scratch, hash); 4088 __ shll(scratch, Immediate(10)); 4089 __ addl(hash, scratch); 4090 // hash ^= hash >> 6; 4091 __ movl(scratch, hash); 4092 __ sarl(scratch, Immediate(6)); 4093 __ xorl(hash, scratch); 4094 } 4095 4096 4097 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, 4098 Register hash, 4099 Register scratch) { 4100 // hash += hash << 3; 4101 __ leal(hash, Operand(hash, hash, times_8, 0)); 4102 // hash ^= hash >> 11; 4103 __ movl(scratch, hash); 4104 __ sarl(scratch, Immediate(11)); 4105 __ xorl(hash, scratch); 4106 // hash += hash << 15; 4107 __ movl(scratch, hash); 4108 __ shll(scratch, Immediate(15)); 4109 __ addl(hash, scratch); 4110 4111 // if (hash == 0) hash = 27; 4112 Label hash_not_zero; 4113 __ j(not_zero, &hash_not_zero); 4114 __ Set(hash, 27); 4115 __ bind(&hash_not_zero); 4116 } 4117 4118 void SubStringStub::Generate(MacroAssembler* masm) { 4119 Label runtime; 4120 4121 // Stack frame on entry. 4122 // rsp[0]: return address 4123 // rsp[8]: to 4124 // rsp[16]: from 4125 // rsp[24]: string 4126 4127 const int kToOffset = 1 * kPointerSize; 4128 const int kFromOffset = kToOffset + kPointerSize; 4129 const int kStringOffset = kFromOffset + kPointerSize; 4130 const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; 4131 4132 // Make sure first argument is a string. 4133 __ movq(rax, Operand(rsp, kStringOffset)); 4134 STATIC_ASSERT(kSmiTag == 0); 4135 __ testl(rax, Immediate(kSmiTagMask)); 4136 __ j(zero, &runtime); 4137 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); 4138 __ j(NegateCondition(is_string), &runtime); 4139 4140 // rax: string 4141 // rbx: instance type 4142 // Calculate length of sub string using the smi values. 4143 Label result_longer_than_two; 4144 __ movq(rcx, Operand(rsp, kToOffset)); 4145 __ movq(rdx, Operand(rsp, kFromOffset)); 4146 __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime); 4147 4148 __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen. 4149 __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); 4150 Label return_rax; 4151 __ j(equal, &return_rax); 4152 // Special handling of sub-strings of length 1 and 2. One character strings 4153 // are handled in the runtime system (looked up in the single character 4154 // cache). Two character strings are looked for in the symbol cache. 4155 __ SmiToInteger32(rcx, rcx); 4156 __ cmpl(rcx, Immediate(2)); 4157 __ j(greater, &result_longer_than_two); 4158 __ j(less, &runtime); 4159 4160 // Sub string of length 2 requested. 4161 // rax: string 4162 // rbx: instance type 4163 // rcx: sub string length (value is 2) 4164 // rdx: from index (smi) 4165 __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); 4166 4167 // Get the two characters forming the sub string. 4168 __ SmiToInteger32(rdx, rdx); // From index is no longer smi. 4169 __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); 4170 __ movzxbq(rcx, 4171 FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); 4172 4173 // Try to lookup two character string in symbol table. 4174 Label make_two_character_string; 4175 StringHelper::GenerateTwoCharacterSymbolTableProbe( 4176 masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); 4177 __ ret(3 * kPointerSize); 4178 4179 __ bind(&make_two_character_string); 4180 // Setup registers for allocating the two character string. 4181 __ movq(rax, Operand(rsp, kStringOffset)); 4182 __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 4183 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 4184 __ Set(rcx, 2); 4185 4186 __ bind(&result_longer_than_two); 4187 4188 // rax: string 4189 // rbx: instance type 4190 // rcx: result string length 4191 // Check for flat ascii string 4192 Label non_ascii_flat; 4193 __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); 4194 4195 // Allocate the result. 4196 __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); 4197 4198 // rax: result string 4199 // rcx: result string length 4200 __ movq(rdx, rsi); // esi used by following code. 4201 // Locate first character of result. 4202 __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); 4203 // Load string argument and locate character of sub string start. 4204 __ movq(rsi, Operand(rsp, kStringOffset)); 4205 __ movq(rbx, Operand(rsp, kFromOffset)); 4206 { 4207 SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); 4208 __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, 4209 SeqAsciiString::kHeaderSize - kHeapObjectTag)); 4210 } 4211 4212 // rax: result string 4213 // rcx: result length 4214 // rdx: original value of rsi 4215 // rdi: first character of result 4216 // rsi: character of sub string start 4217 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); 4218 __ movq(rsi, rdx); // Restore rsi. 4219 Counters* counters = masm->isolate()->counters(); 4220 __ IncrementCounter(counters->sub_string_native(), 1); 4221 __ ret(kArgumentsSize); 4222 4223 __ bind(&non_ascii_flat); 4224 // rax: string 4225 // rbx: instance type & kStringRepresentationMask | kStringEncodingMask 4226 // rcx: result string length 4227 // Check for sequential two byte string 4228 __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); 4229 __ j(not_equal, &runtime); 4230 4231 // Allocate the result. 4232 __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); 4233 4234 // rax: result string 4235 // rcx: result string length 4236 __ movq(rdx, rsi); // esi used by following code. 4237 // Locate first character of result. 4238 __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); 4239 // Load string argument and locate character of sub string start. 4240 __ movq(rsi, Operand(rsp, kStringOffset)); 4241 __ movq(rbx, Operand(rsp, kFromOffset)); 4242 { 4243 SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); 4244 __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, 4245 SeqAsciiString::kHeaderSize - kHeapObjectTag)); 4246 } 4247 4248 // rax: result string 4249 // rcx: result length 4250 // rdx: original value of rsi 4251 // rdi: first character of result 4252 // rsi: character of sub string start 4253 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); 4254 __ movq(rsi, rdx); // Restore esi. 4255 4256 __ bind(&return_rax); 4257 __ IncrementCounter(counters->sub_string_native(), 1); 4258 __ ret(kArgumentsSize); 4259 4260 // Just jump to runtime to create the sub string. 4261 __ bind(&runtime); 4262 __ TailCallRuntime(Runtime::kSubString, 3, 1); 4263 } 4264 4265 4266 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, 4267 Register left, 4268 Register right, 4269 Register scratch1, 4270 Register scratch2, 4271 Register scratch3, 4272 Register scratch4) { 4273 // Ensure that you can always subtract a string length from a non-negative 4274 // number (e.g. another length). 4275 STATIC_ASSERT(String::kMaxLength < 0x7fffffff); 4276 4277 // Find minimum length and length difference. 4278 __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); 4279 __ movq(scratch4, scratch1); 4280 __ SmiSub(scratch4, 4281 scratch4, 4282 FieldOperand(right, String::kLengthOffset)); 4283 // Register scratch4 now holds left.length - right.length. 4284 const Register length_difference = scratch4; 4285 NearLabel left_shorter; 4286 __ j(less, &left_shorter); 4287 // The right string isn't longer that the left one. 4288 // Get the right string's length by subtracting the (non-negative) difference 4289 // from the left string's length. 4290 __ SmiSub(scratch1, scratch1, length_difference); 4291 __ bind(&left_shorter); 4292 // Register scratch1 now holds Min(left.length, right.length). 4293 const Register min_length = scratch1; 4294 4295 NearLabel compare_lengths; 4296 // If min-length is zero, go directly to comparing lengths. 4297 __ SmiTest(min_length); 4298 __ j(zero, &compare_lengths); 4299 4300 __ SmiToInteger32(min_length, min_length); 4301 4302 // Registers scratch2 and scratch3 are free. 4303 NearLabel result_not_equal; 4304 Label loop; 4305 { 4306 // Check characters 0 .. min_length - 1 in a loop. 4307 // Use scratch3 as loop index, min_length as limit and scratch2 4308 // for computation. 4309 const Register index = scratch3; 4310 __ Set(index, 0); // Index into strings. 4311 __ bind(&loop); 4312 // Compare characters. 4313 // TODO(lrn): Could we load more than one character at a time? 4314 __ movb(scratch2, FieldOperand(left, 4315 index, 4316 times_1, 4317 SeqAsciiString::kHeaderSize)); 4318 // Increment index and use -1 modifier on next load to give 4319 // the previous load extra time to complete. 4320 __ addl(index, Immediate(1)); 4321 __ cmpb(scratch2, FieldOperand(right, 4322 index, 4323 times_1, 4324 SeqAsciiString::kHeaderSize - 1)); 4325 __ j(not_equal, &result_not_equal); 4326 __ cmpl(index, min_length); 4327 __ j(not_equal, &loop); 4328 } 4329 // Completed loop without finding different characters. 4330 // Compare lengths (precomputed). 4331 __ bind(&compare_lengths); 4332 __ SmiTest(length_difference); 4333 __ j(not_zero, &result_not_equal); 4334 4335 // Result is EQUAL. 4336 __ Move(rax, Smi::FromInt(EQUAL)); 4337 __ ret(0); 4338 4339 NearLabel result_greater; 4340 __ bind(&result_not_equal); 4341 // Unequal comparison of left to right, either character or length. 4342 __ j(greater, &result_greater); 4343 4344 // Result is LESS. 4345 __ Move(rax, Smi::FromInt(LESS)); 4346 __ ret(0); 4347 4348 // Result is GREATER. 4349 __ bind(&result_greater); 4350 __ Move(rax, Smi::FromInt(GREATER)); 4351 __ ret(0); 4352 } 4353 4354 4355 void StringCompareStub::Generate(MacroAssembler* masm) { 4356 Label runtime; 4357 4358 // Stack frame on entry. 4359 // rsp[0]: return address 4360 // rsp[8]: right string 4361 // rsp[16]: left string 4362 4363 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left 4364 __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right 4365 4366 // Check for identity. 4367 NearLabel not_same; 4368 __ cmpq(rdx, rax); 4369 __ j(not_equal, ¬_same); 4370 __ Move(rax, Smi::FromInt(EQUAL)); 4371 Counters* counters = masm->isolate()->counters(); 4372 __ IncrementCounter(counters->string_compare_native(), 1); 4373 __ ret(2 * kPointerSize); 4374 4375 __ bind(¬_same); 4376 4377 // Check that both are sequential ASCII strings. 4378 __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); 4379 4380 // Inline comparison of ascii strings. 4381 __ IncrementCounter(counters->string_compare_native(), 1); 4382 // Drop arguments from the stack 4383 __ pop(rcx); 4384 __ addq(rsp, Immediate(2 * kPointerSize)); 4385 __ push(rcx); 4386 GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); 4387 4388 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) 4389 // tagged as a small integer. 4390 __ bind(&runtime); 4391 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); 4392 } 4393 4394 4395 void ICCompareStub::GenerateSmis(MacroAssembler* masm) { 4396 ASSERT(state_ == CompareIC::SMIS); 4397 NearLabel miss; 4398 __ JumpIfNotBothSmi(rdx, rax, &miss); 4399 4400 if (GetCondition() == equal) { 4401 // For equality we do not care about the sign of the result. 4402 __ subq(rax, rdx); 4403 } else { 4404 NearLabel done; 4405 __ subq(rdx, rax); 4406 __ j(no_overflow, &done); 4407 // Correct sign of result in case of overflow. 4408 __ SmiNot(rdx, rdx); 4409 __ bind(&done); 4410 __ movq(rax, rdx); 4411 } 4412 __ ret(0); 4413 4414 __ bind(&miss); 4415 GenerateMiss(masm); 4416 } 4417 4418 4419 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { 4420 ASSERT(state_ == CompareIC::HEAP_NUMBERS); 4421 4422 NearLabel generic_stub; 4423 NearLabel unordered; 4424 NearLabel miss; 4425 Condition either_smi = masm->CheckEitherSmi(rax, rdx); 4426 __ j(either_smi, &generic_stub); 4427 4428 __ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx); 4429 __ j(not_equal, &miss); 4430 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); 4431 __ j(not_equal, &miss); 4432 4433 // Load left and right operand 4434 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 4435 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 4436 4437 // Compare operands 4438 __ ucomisd(xmm0, xmm1); 4439 4440 // Don't base result on EFLAGS when a NaN is involved. 4441 __ j(parity_even, &unordered); 4442 4443 // Return a result of -1, 0, or 1, based on EFLAGS. 4444 // Performing mov, because xor would destroy the flag register. 4445 __ movl(rax, Immediate(0)); 4446 __ movl(rcx, Immediate(0)); 4447 __ setcc(above, rax); // Add one to zero if carry clear and not equal. 4448 __ sbbq(rax, rcx); // Subtract one if below (aka. carry set). 4449 __ ret(0); 4450 4451 __ bind(&unordered); 4452 4453 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); 4454 __ bind(&generic_stub); 4455 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 4456 4457 __ bind(&miss); 4458 GenerateMiss(masm); 4459 } 4460 4461 4462 void ICCompareStub::GenerateObjects(MacroAssembler* masm) { 4463 ASSERT(state_ == CompareIC::OBJECTS); 4464 NearLabel miss; 4465 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 4466 __ j(either_smi, &miss); 4467 4468 __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx); 4469 __ j(not_equal, &miss, not_taken); 4470 __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); 4471 __ j(not_equal, &miss, not_taken); 4472 4473 ASSERT(GetCondition() == equal); 4474 __ subq(rax, rdx); 4475 __ ret(0); 4476 4477 __ bind(&miss); 4478 GenerateMiss(masm); 4479 } 4480 4481 4482 void ICCompareStub::GenerateMiss(MacroAssembler* masm) { 4483 // Save the registers. 4484 __ pop(rcx); 4485 __ push(rdx); 4486 __ push(rax); 4487 __ push(rcx); 4488 4489 // Call the runtime system in a fresh internal frame. 4490 ExternalReference miss = 4491 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); 4492 __ EnterInternalFrame(); 4493 __ push(rdx); 4494 __ push(rax); 4495 __ Push(Smi::FromInt(op_)); 4496 __ CallExternalReference(miss, 3); 4497 __ LeaveInternalFrame(); 4498 4499 // Compute the entry point of the rewritten stub. 4500 __ lea(rdi, FieldOperand(rax, Code::kHeaderSize)); 4501 4502 // Restore registers. 4503 __ pop(rcx); 4504 __ pop(rax); 4505 __ pop(rdx); 4506 __ push(rcx); 4507 4508 // Do a tail call to the rewritten stub. 4509 __ jmp(rdi); 4510 } 4511 4512 4513 #undef __ 4514 4515 } } // namespace v8::internal 4516 4517 #endif // V8_TARGET_ARCH_X64 4518