Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes how to lower LLVM code to machine code.  This has two
     11 // main components:
     12 //
     13 //  1. Which ValueTypes are natively supported by the target.
     14 //  2. Which operations are supported for supported ValueTypes.
     15 //  3. Cost thresholds for alternative implementations of certain operations.
     16 //
     17 // In addition it has a few other components, like information about FP
     18 // immediates.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_TARGET_TARGETLOWERING_H
     23 #define LLVM_TARGET_TARGETLOWERING_H
     24 
     25 #include "llvm/CallingConv.h"
     26 #include "llvm/InlineAsm.h"
     27 #include "llvm/Attributes.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/CodeGen/RuntimeLibcalls.h"
     31 #include "llvm/Support/DebugLoc.h"
     32 #include "llvm/Target/TargetCallingConv.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include <climits>
     35 #include <map>
     36 #include <vector>
     37 
     38 namespace llvm {
     39   class AllocaInst;
     40   class APFloat;
     41   class CallInst;
     42   class CCState;
     43   class Function;
     44   class FastISel;
     45   class FunctionLoweringInfo;
     46   class ImmutableCallSite;
     47   class MachineBasicBlock;
     48   class MachineFunction;
     49   class MachineFrameInfo;
     50   class MachineInstr;
     51   class MachineJumpTableInfo;
     52   class MCContext;
     53   class MCExpr;
     54   class SDNode;
     55   class SDValue;
     56   class SelectionDAG;
     57   template<typename T> class SmallVectorImpl;
     58   class TargetData;
     59   class TargetMachine;
     60   class TargetRegisterClass;
     61   class TargetLoweringObjectFile;
     62   class Value;
     63 
     64   // FIXME: should this be here?
     65   namespace TLSModel {
     66     enum Model {
     67       GeneralDynamic,
     68       LocalDynamic,
     69       InitialExec,
     70       LocalExec
     71     };
     72   }
     73   TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
     74 
     75 
     76 //===----------------------------------------------------------------------===//
     77 /// TargetLowering - This class defines information used to lower LLVM code to
     78 /// legal SelectionDAG operators that the target instruction selector can accept
     79 /// natively.
     80 ///
     81 /// This class also defines callbacks that targets must implement to lower
     82 /// target-specific constructs to SelectionDAG operators.
     83 ///
     84 class TargetLowering {
     85   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
     86   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
     87 public:
     88   /// LegalizeAction - This enum indicates whether operations are valid for a
     89   /// target, and if not, what action should be used to make them valid.
     90   enum LegalizeAction {
     91     Legal,      // The target natively supports this operation.
     92     Promote,    // This operation should be executed in a larger type.
     93     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     94     Custom      // Use the LowerOperation hook to implement custom lowering.
     95   };
     96 
     97   /// LegalizeAction - This enum indicates whether a types are legal for a
     98   /// target, and if not, what action should be used to make them valid.
     99   enum LegalizeTypeAction {
    100     TypeLegal,           // The target natively supports this type.
    101     TypePromoteInteger,  // Replace this integer with a larger one.
    102     TypeExpandInteger,   // Split this integer into two of half the size.
    103     TypeSoftenFloat,     // Convert this float to a same size integer type.
    104     TypeExpandFloat,     // Split this float into two of half the size.
    105     TypeScalarizeVector, // Replace this one-element vector with its element.
    106     TypeSplitVector,     // Split this vector into two of half the size.
    107     TypeWidenVector      // This vector should be widened into a larger vector.
    108   };
    109 
    110   enum BooleanContent { // How the target represents true/false values.
    111     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    112     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    113     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    114   };
    115 
    116   /// NOTE: The constructor takes ownership of TLOF.
    117   explicit TargetLowering(const TargetMachine &TM,
    118                           const TargetLoweringObjectFile *TLOF);
    119   virtual ~TargetLowering();
    120 
    121   const TargetMachine &getTargetMachine() const { return TM; }
    122   const TargetData *getTargetData() const { return TD; }
    123   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
    124 
    125   bool isBigEndian() const { return !IsLittleEndian; }
    126   bool isLittleEndian() const { return IsLittleEndian; }
    127   MVT getPointerTy() const { return PointerTy; }
    128   virtual MVT getShiftAmountTy(EVT LHSTy) const;
    129 
    130   /// isSelectExpensive - Return true if the select operation is expensive for
    131   /// this target.
    132   bool isSelectExpensive() const { return SelectIsExpensive; }
    133 
    134   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
    135   /// a sequence of several shifts, adds, and multiplies for this target.
    136   bool isIntDivCheap() const { return IntDivIsCheap; }
    137 
    138   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
    139   /// srl/add/sra.
    140   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
    141 
    142   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
    143   /// that should be avoided.
    144   bool isJumpExpensive() const { return JumpIsExpensive; }
    145 
    146   /// getSetCCResultType - Return the ValueType of the result of SETCC
    147   /// operations.  Also used to obtain the target's preferred type for
    148   /// the condition operand of SELECT and BRCOND nodes.  In the case of
    149   /// BRCOND the argument passed is MVT::Other since there are no other
    150   /// operands to get a type hint from.
    151   virtual
    152   MVT::SimpleValueType getSetCCResultType(EVT VT) const;
    153 
    154   /// getCmpLibcallReturnType - Return the ValueType for comparison
    155   /// libcalls. Comparions libcalls include floating point comparion calls,
    156   /// and Ordered/Unordered check calls on floating point numbers.
    157   virtual
    158   MVT::SimpleValueType getCmpLibcallReturnType() const;
    159 
    160   /// getBooleanContents - For targets without i1 registers, this gives the
    161   /// nature of the high-bits of boolean values held in types wider than i1.
    162   /// "Boolean values" are special true/false values produced by nodes like
    163   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    164   /// Not to be confused with general values promoted from i1.
    165   BooleanContent getBooleanContents() const { return BooleanContents;}
    166 
    167   /// getSchedulingPreference - Return target scheduling preference.
    168   Sched::Preference getSchedulingPreference() const {
    169     return SchedPreferenceInfo;
    170   }
    171 
    172   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
    173   /// different scheduling heuristics for different nodes. This function returns
    174   /// the preference (or none) for the given node.
    175   virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
    176     return Sched::None;
    177   }
    178 
    179   /// getRegClassFor - Return the register class that should be used for the
    180   /// specified value type.
    181   virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
    182     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
    183     TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    184     assert(RC && "This value type is not natively supported!");
    185     return RC;
    186   }
    187 
    188   /// getRepRegClassFor - Return the 'representative' register class for the
    189   /// specified value type. The 'representative' register class is the largest
    190   /// legal super-reg register class for the register class of the value type.
    191   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
    192   /// while the rep register class is GR64 on x86_64.
    193   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
    194     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
    195     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
    196     return RC;
    197   }
    198 
    199   /// getRepRegClassCostFor - Return the cost of the 'representative' register
    200   /// class for the specified value type.
    201   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
    202     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
    203     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
    204   }
    205 
    206   /// isTypeLegal - Return true if the target has native support for the
    207   /// specified value type.  This means that it has a register that directly
    208   /// holds it without promotions or expansions.
    209   bool isTypeLegal(EVT VT) const {
    210     assert(!VT.isSimple() ||
    211            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    212     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
    213   }
    214 
    215   class ValueTypeActionImpl {
    216     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    217     /// that indicates how instruction selection should deal with the type.
    218     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    219 
    220   public:
    221     ValueTypeActionImpl() {
    222       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
    223     }
    224 
    225     LegalizeTypeAction getTypeAction(MVT VT) const {
    226       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    227     }
    228 
    229     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
    230       unsigned I = VT.getSimpleVT().SimpleTy;
    231       ValueTypeActions[I] = Action;
    232     }
    233   };
    234 
    235   const ValueTypeActionImpl &getValueTypeActions() const {
    236     return ValueTypeActions;
    237   }
    238 
    239   /// getTypeAction - Return how we should legalize values of this type, either
    240   /// it is already legal (return 'Legal') or we need to promote it to a larger
    241   /// type (return 'Promote'), or we need to expand it into multiple registers
    242   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
    243   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    244     return getTypeConversion(Context, VT).first;
    245   }
    246   LegalizeTypeAction getTypeAction(MVT VT) const {
    247     return ValueTypeActions.getTypeAction(VT);
    248   }
    249 
    250   /// getTypeToTransformTo - For types supported by the target, this is an
    251   /// identity function.  For types that must be promoted to larger types, this
    252   /// returns the larger type to promote to.  For integer types that are larger
    253   /// than the largest integer register, this contains one step in the expansion
    254   /// to get to the smaller register. For illegal floating point types, this
    255   /// returns the integer type to transform to.
    256   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    257     return getTypeConversion(Context, VT).second;
    258   }
    259 
    260   /// getTypeToExpandTo - For types supported by the target, this is an
    261   /// identity function.  For types that must be expanded (i.e. integer types
    262   /// that are larger than the largest integer register or illegal floating
    263   /// point types), this returns the largest legal type it will be expanded to.
    264   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    265     assert(!VT.isVector());
    266     while (true) {
    267       switch (getTypeAction(Context, VT)) {
    268       case Legal:
    269         return VT;
    270       case Expand:
    271         VT = getTypeToTransformTo(Context, VT);
    272         break;
    273       default:
    274         assert(false && "Type is not legal nor is it to be expanded!");
    275         return VT;
    276       }
    277     }
    278     return VT;
    279   }
    280 
    281   /// getVectorTypeBreakdown - Vector types are broken down into some number of
    282   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
    283   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
    284   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
    285   ///
    286   /// This method returns the number of registers needed, and the VT for each
    287   /// register.  It also returns the VT and quantity of the intermediate values
    288   /// before they are promoted/expanded.
    289   ///
    290   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    291                                   EVT &IntermediateVT,
    292                                   unsigned &NumIntermediates,
    293                                   EVT &RegisterVT) const;
    294 
    295   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
    296   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
    297   /// this is the case, it returns true and store the intrinsic
    298   /// information into the IntrinsicInfo that was passed to the function.
    299   struct IntrinsicInfo {
    300     unsigned     opc;         // target opcode
    301     EVT          memVT;       // memory VT
    302     const Value* ptrVal;      // value representing memory location
    303     int          offset;      // offset off of ptrVal
    304     unsigned     align;       // alignment
    305     bool         vol;         // is volatile?
    306     bool         readMem;     // reads memory?
    307     bool         writeMem;    // writes memory?
    308   };
    309 
    310   virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
    311                                   const CallInst &I, unsigned Intrinsic) const {
    312     return false;
    313   }
    314 
    315   /// isFPImmLegal - Returns true if the target can instruction select the
    316   /// specified FP immediate natively. If false, the legalizer will materialize
    317   /// the FP immediate as a load from a constant pool.
    318   virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
    319     return false;
    320   }
    321 
    322   /// isShuffleMaskLegal - Targets can use this to indicate that they only
    323   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    324   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
    325   /// are assumed to be legal.
    326   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    327                                   EVT VT) const {
    328     return true;
    329   }
    330 
    331   /// canOpTrap - Returns true if the operation can trap for the value type.
    332   /// VT must be a legal type. By default, we optimistically assume most
    333   /// operations don't trap except for divide and remainder.
    334   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    335 
    336   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    337   /// used by Targets can use this to indicate if there is a suitable
    338   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    339   /// pool entry.
    340   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    341                                       EVT VT) const {
    342     return false;
    343   }
    344 
    345   /// getOperationAction - Return how this operation should be treated: either
    346   /// it is legal, needs to be promoted to a larger size, needs to be
    347   /// expanded to some other code sequence, or the target has a custom expander
    348   /// for it.
    349   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    350     if (VT.isExtended()) return Expand;
    351     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
    352     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    353     return (LegalizeAction)OpActions[I][Op];
    354   }
    355 
    356   /// isOperationLegalOrCustom - Return true if the specified operation is
    357   /// legal on this target or can be made legal with custom lowering. This
    358   /// is used to help guide high-level lowering decisions.
    359   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    360     return (VT == MVT::Other || isTypeLegal(VT)) &&
    361       (getOperationAction(Op, VT) == Legal ||
    362        getOperationAction(Op, VT) == Custom);
    363   }
    364 
    365   /// isOperationLegal - Return true if the specified operation is legal on this
    366   /// target.
    367   bool isOperationLegal(unsigned Op, EVT VT) const {
    368     return (VT == MVT::Other || isTypeLegal(VT)) &&
    369            getOperationAction(Op, VT) == Legal;
    370   }
    371 
    372   /// getLoadExtAction - Return how this load with extension should be treated:
    373   /// either it is legal, needs to be promoted to a larger size, needs to be
    374   /// expanded to some other code sequence, or the target has a custom expander
    375   /// for it.
    376   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
    377     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
    378            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    379            "Table isn't big enough!");
    380     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
    381   }
    382 
    383   /// isLoadExtLegal - Return true if the specified load with extension is legal
    384   /// on this target.
    385   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    386     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
    387   }
    388 
    389   /// getTruncStoreAction - Return how this store with truncation should be
    390   /// treated: either it is legal, needs to be promoted to a larger size, needs
    391   /// to be expanded to some other code sequence, or the target has a custom
    392   /// expander for it.
    393   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    394     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    395            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    396            "Table isn't big enough!");
    397     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
    398                                             [MemVT.getSimpleVT().SimpleTy];
    399   }
    400 
    401   /// isTruncStoreLegal - Return true if the specified store with truncation is
    402   /// legal on this target.
    403   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    404     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    405            getTruncStoreAction(ValVT, MemVT) == Legal;
    406   }
    407 
    408   /// getIndexedLoadAction - Return how the indexed load should be treated:
    409   /// either it is legal, needs to be promoted to a larger size, needs to be
    410   /// expanded to some other code sequence, or the target has a custom expander
    411   /// for it.
    412   LegalizeAction
    413   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
    414     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    415            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    416            "Table isn't big enough!");
    417     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    418     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    419   }
    420 
    421   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
    422   /// on this target.
    423   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    424     return VT.isSimple() &&
    425       (getIndexedLoadAction(IdxMode, VT) == Legal ||
    426        getIndexedLoadAction(IdxMode, VT) == Custom);
    427   }
    428 
    429   /// getIndexedStoreAction - Return how the indexed store should be treated:
    430   /// either it is legal, needs to be promoted to a larger size, needs to be
    431   /// expanded to some other code sequence, or the target has a custom expander
    432   /// for it.
    433   LegalizeAction
    434   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
    435     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    436            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    437            "Table isn't big enough!");
    438     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    439     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    440   }
    441 
    442   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
    443   /// on this target.
    444   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    445     return VT.isSimple() &&
    446       (getIndexedStoreAction(IdxMode, VT) == Legal ||
    447        getIndexedStoreAction(IdxMode, VT) == Custom);
    448   }
    449 
    450   /// getCondCodeAction - Return how the condition code should be treated:
    451   /// either it is legal, needs to be expanded to some other code sequence,
    452   /// or the target has a custom expander for it.
    453   LegalizeAction
    454   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
    455     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    456            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
    457            "Table isn't big enough!");
    458     LegalizeAction Action = (LegalizeAction)
    459       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
    460     assert(Action != Promote && "Can't promote condition code!");
    461     return Action;
    462   }
    463 
    464   /// isCondCodeLegal - Return true if the specified condition code is legal
    465   /// on this target.
    466   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
    467     return getCondCodeAction(CC, VT) == Legal ||
    468            getCondCodeAction(CC, VT) == Custom;
    469   }
    470 
    471 
    472   /// getTypeToPromoteTo - If the action for this operation is to promote, this
    473   /// method returns the ValueType to promote to.
    474   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
    475     assert(getOperationAction(Op, VT) == Promote &&
    476            "This operation isn't promoted!");
    477 
    478     // See if this has an explicit type specified.
    479     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    480              MVT::SimpleValueType>::const_iterator PTTI =
    481       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
    482     if (PTTI != PromoteToType.end()) return PTTI->second;
    483 
    484     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    485            "Cannot autopromote this type, add it with AddPromotedToType.");
    486 
    487     EVT NVT = VT;
    488     do {
    489       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
    490       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    491              "Didn't find type to promote to!");
    492     } while (!isTypeLegal(NVT) ||
    493               getOperationAction(Op, NVT) == Promote);
    494     return NVT;
    495   }
    496 
    497   /// getValueType - Return the EVT corresponding to this LLVM type.
    498   /// This is fixed by the LLVM operations except for the pointer size.  If
    499   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
    500   /// counterpart (e.g. structs), otherwise it will assert.
    501   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    502     EVT VT = EVT::getEVT(Ty, AllowUnknown);
    503     return VT == MVT::iPTR ? PointerTy : VT;
    504   }
    505 
    506   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    507   /// function arguments in the caller parameter area.  This is the actual
    508   /// alignment, not its logarithm.
    509   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    510 
    511   /// getRegisterType - Return the type of registers that this ValueType will
    512   /// eventually require.
    513   EVT getRegisterType(MVT VT) const {
    514     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    515     return RegisterTypeForVT[VT.SimpleTy];
    516   }
    517 
    518   /// getRegisterType - Return the type of registers that this ValueType will
    519   /// eventually require.
    520   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
    521     if (VT.isSimple()) {
    522       assert((unsigned)VT.getSimpleVT().SimpleTy <
    523                 array_lengthof(RegisterTypeForVT));
    524       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    525     }
    526     if (VT.isVector()) {
    527       EVT VT1, RegisterVT;
    528       unsigned NumIntermediates;
    529       (void)getVectorTypeBreakdown(Context, VT, VT1,
    530                                    NumIntermediates, RegisterVT);
    531       return RegisterVT;
    532     }
    533     if (VT.isInteger()) {
    534       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    535     }
    536     assert(0 && "Unsupported extended type!");
    537     return EVT(MVT::Other); // Not reached
    538   }
    539 
    540   /// getNumRegisters - Return the number of registers that this ValueType will
    541   /// eventually require.  This is one for any types promoted to live in larger
    542   /// registers, but may be more than one for types (like i64) that are split
    543   /// into pieces.  For types like i140, which are first promoted then expanded,
    544   /// it is the number of registers needed to hold all the bits of the original
    545   /// type.  For an i140 on a 32 bit machine this means 5 registers.
    546   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    547     if (VT.isSimple()) {
    548       assert((unsigned)VT.getSimpleVT().SimpleTy <
    549                 array_lengthof(NumRegistersForVT));
    550       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    551     }
    552     if (VT.isVector()) {
    553       EVT VT1, VT2;
    554       unsigned NumIntermediates;
    555       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    556     }
    557     if (VT.isInteger()) {
    558       unsigned BitWidth = VT.getSizeInBits();
    559       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    560       return (BitWidth + RegWidth - 1) / RegWidth;
    561     }
    562     assert(0 && "Unsupported extended type!");
    563     return 0; // Not reached
    564   }
    565 
    566   /// ShouldShrinkFPConstant - If true, then instruction selection should
    567   /// seek to shrink the FP constant of the specified type to a smaller type
    568   /// in order to save space and / or reduce runtime.
    569   virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
    570 
    571   /// hasTargetDAGCombine - If true, the target has custom DAG combine
    572   /// transformations that it can perform for the specified node.
    573   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    574     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    575     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    576   }
    577 
    578   /// This function returns the maximum number of store operations permitted
    579   /// to replace a call to llvm.memset. The value is set by the target at the
    580   /// performance threshold for such a replacement. If OptSize is true,
    581   /// return the limit for functions that have OptSize attribute.
    582   /// @brief Get maximum # of store operations permitted for llvm.memset
    583   unsigned getMaxStoresPerMemset(bool OptSize) const {
    584     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
    585   }
    586 
    587   /// This function returns the maximum number of store operations permitted
    588   /// to replace a call to llvm.memcpy. The value is set by the target at the
    589   /// performance threshold for such a replacement. If OptSize is true,
    590   /// return the limit for functions that have OptSize attribute.
    591   /// @brief Get maximum # of store operations permitted for llvm.memcpy
    592   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    593     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
    594   }
    595 
    596   /// This function returns the maximum number of store operations permitted
    597   /// to replace a call to llvm.memmove. The value is set by the target at the
    598   /// performance threshold for such a replacement. If OptSize is true,
    599   /// return the limit for functions that have OptSize attribute.
    600   /// @brief Get maximum # of store operations permitted for llvm.memmove
    601   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    602     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
    603   }
    604 
    605   /// This function returns true if the target allows unaligned memory accesses.
    606   /// of the specified type. This is used, for example, in situations where an
    607   /// array copy/move/set is  converted to a sequence of store operations. It's
    608   /// use helps to ensure that such replacements don't generate code that causes
    609   /// an alignment error  (trap) on the target machine.
    610   /// @brief Determine if the target supports unaligned memory accesses.
    611   virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
    612     return false;
    613   }
    614 
    615   /// This function returns true if the target would benefit from code placement
    616   /// optimization.
    617   /// @brief Determine if the target should perform code placement optimization.
    618   bool shouldOptimizeCodePlacement() const {
    619     return benefitFromCodePlacementOpt;
    620   }
    621 
    622   /// getOptimalMemOpType - Returns the target specific optimal type for load
    623   /// and store operations as a result of memset, memcpy, and memmove
    624   /// lowering. If DstAlign is zero that means it's safe to destination
    625   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    626   /// means there isn't a need to check it against alignment requirement,
    627   /// probably because the source does not need to be loaded. If
    628   /// 'NonScalarIntSafe' is true, that means it's safe to return a
    629   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    630   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    631   /// constant so it does not need to be loaded.
    632   /// It returns EVT::Other if the type should be determined using generic
    633   /// target-independent logic.
    634   virtual EVT getOptimalMemOpType(uint64_t Size,
    635                                   unsigned DstAlign, unsigned SrcAlign,
    636                                   bool NonScalarIntSafe, bool MemcpyStrSrc,
    637                                   MachineFunction &MF) const {
    638     return MVT::Other;
    639   }
    640 
    641   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
    642   /// to implement llvm.setjmp.
    643   bool usesUnderscoreSetJmp() const {
    644     return UseUnderscoreSetJmp;
    645   }
    646 
    647   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
    648   /// to implement llvm.longjmp.
    649   bool usesUnderscoreLongJmp() const {
    650     return UseUnderscoreLongJmp;
    651   }
    652 
    653   /// getStackPointerRegisterToSaveRestore - If a physical register, this
    654   /// specifies the register that llvm.savestack/llvm.restorestack should save
    655   /// and restore.
    656   unsigned getStackPointerRegisterToSaveRestore() const {
    657     return StackPointerRegisterToSaveRestore;
    658   }
    659 
    660   /// getExceptionAddressRegister - If a physical register, this returns
    661   /// the register that receives the exception address on entry to a landing
    662   /// pad.
    663   unsigned getExceptionAddressRegister() const {
    664     return ExceptionPointerRegister;
    665   }
    666 
    667   /// getExceptionSelectorRegister - If a physical register, this returns
    668   /// the register that receives the exception typeid on entry to a landing
    669   /// pad.
    670   unsigned getExceptionSelectorRegister() const {
    671     return ExceptionSelectorRegister;
    672   }
    673 
    674   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
    675   /// set, the default is 200)
    676   unsigned getJumpBufSize() const {
    677     return JumpBufSize;
    678   }
    679 
    680   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
    681   /// (if never set, the default is 0)
    682   unsigned getJumpBufAlignment() const {
    683     return JumpBufAlignment;
    684   }
    685 
    686   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
    687   /// argument.
    688   unsigned getMinStackArgumentAlignment() const {
    689     return MinStackArgumentAlignment;
    690   }
    691 
    692   /// getMinFunctionAlignment - return the minimum function alignment.
    693   ///
    694   unsigned getMinFunctionAlignment() const {
    695     return MinFunctionAlignment;
    696   }
    697 
    698   /// getPrefFunctionAlignment - return the preferred function alignment.
    699   ///
    700   unsigned getPrefFunctionAlignment() const {
    701     return PrefFunctionAlignment;
    702   }
    703 
    704   /// getPrefLoopAlignment - return the preferred loop alignment.
    705   ///
    706   unsigned getPrefLoopAlignment() const {
    707     return PrefLoopAlignment;
    708   }
    709 
    710   /// getShouldFoldAtomicFences - return whether the combiner should fold
    711   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
    712   ///
    713   bool getShouldFoldAtomicFences() const {
    714     return ShouldFoldAtomicFences;
    715   }
    716 
    717   /// getPreIndexedAddressParts - returns true by value, base pointer and
    718   /// offset pointer and addressing mode by reference if the node's address
    719   /// can be legally represented as pre-indexed load / store address.
    720   virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    721                                          SDValue &Offset,
    722                                          ISD::MemIndexedMode &AM,
    723                                          SelectionDAG &DAG) const {
    724     return false;
    725   }
    726 
    727   /// getPostIndexedAddressParts - returns true by value, base pointer and
    728   /// offset pointer and addressing mode by reference if this node can be
    729   /// combined with a load / store to form a post-indexed load / store.
    730   virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
    731                                           SDValue &Base, SDValue &Offset,
    732                                           ISD::MemIndexedMode &AM,
    733                                           SelectionDAG &DAG) const {
    734     return false;
    735   }
    736 
    737   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    738   /// current function.  The returned value is a member of the
    739   /// MachineJumpTableInfo::JTEntryKind enum.
    740   virtual unsigned getJumpTableEncoding() const;
    741 
    742   virtual const MCExpr *
    743   LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    744                             const MachineBasicBlock *MBB, unsigned uid,
    745                             MCContext &Ctx) const {
    746     assert(0 && "Need to implement this hook if target has custom JTIs");
    747     return 0;
    748   }
    749 
    750   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    751   /// jumptable.
    752   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    753                                            SelectionDAG &DAG) const;
    754 
    755   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    756   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    757   /// MCExpr.
    758   virtual const MCExpr *
    759   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    760                                unsigned JTI, MCContext &Ctx) const;
    761 
    762   /// isOffsetFoldingLegal - Return true if folding a constant offset
    763   /// with the given GlobalAddress is legal.  It is frequently not legal in
    764   /// PIC relocation models.
    765   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    766 
    767   /// getStackCookieLocation - Return true if the target stores stack
    768   /// protector cookies at a fixed offset in some non-standard address
    769   /// space, and populates the address space and offset as
    770   /// appropriate.
    771   virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
    772     return false;
    773   }
    774 
    775   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
    776   /// used for loads / stores from the global.
    777   virtual unsigned getMaximalGlobalOffset() const {
    778     return 0;
    779   }
    780 
    781   //===--------------------------------------------------------------------===//
    782   // TargetLowering Optimization Methods
    783   //
    784 
    785   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
    786   /// SDValues for returning information from TargetLowering to its clients
    787   /// that want to combine
    788   struct TargetLoweringOpt {
    789     SelectionDAG &DAG;
    790     bool LegalTys;
    791     bool LegalOps;
    792     SDValue Old;
    793     SDValue New;
    794 
    795     explicit TargetLoweringOpt(SelectionDAG &InDAG,
    796                                bool LT, bool LO) :
    797       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
    798 
    799     bool LegalTypes() const { return LegalTys; }
    800     bool LegalOperations() const { return LegalOps; }
    801 
    802     bool CombineTo(SDValue O, SDValue N) {
    803       Old = O;
    804       New = N;
    805       return true;
    806     }
    807 
    808     /// ShrinkDemandedConstant - Check to see if the specified operand of the
    809     /// specified instruction is a constant integer.  If so, check to see if
    810     /// there are any bits set in the constant that are not demanded.  If so,
    811     /// shrink the constant and return true.
    812     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
    813 
    814     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    815     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    816     /// cast, but it could be generalized for targets with other types of
    817     /// implicit widening casts.
    818     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
    819                           DebugLoc dl);
    820   };
    821 
    822   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    823   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    824   /// use this information to simplify Op, create a new simplified DAG node and
    825   /// return true, returning the original and new nodes in Old and New.
    826   /// Otherwise, analyze the expression and return a mask of KnownOne and
    827   /// KnownZero bits for the expression (used to simplify the caller).
    828   /// The KnownZero/One bits may only be accurate for those bits in the
    829   /// DemandedMask.
    830   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
    831                             APInt &KnownZero, APInt &KnownOne,
    832                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
    833 
    834   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
    835   /// Mask are known to be either zero or one and return them in the
    836   /// KnownZero/KnownOne bitsets.
    837   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    838                                               const APInt &Mask,
    839                                               APInt &KnownZero,
    840                                               APInt &KnownOne,
    841                                               const SelectionDAG &DAG,
    842                                               unsigned Depth = 0) const;
    843 
    844   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
    845   /// targets that want to expose additional information about sign bits to the
    846   /// DAG Combiner.
    847   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    848                                                    unsigned Depth = 0) const;
    849 
    850   struct DAGCombinerInfo {
    851     void *DC;  // The DAG Combiner object.
    852     bool BeforeLegalize;
    853     bool BeforeLegalizeOps;
    854     bool CalledByLegalizer;
    855   public:
    856     SelectionDAG &DAG;
    857 
    858     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
    859       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
    860         CalledByLegalizer(cl), DAG(dag) {}
    861 
    862     bool isBeforeLegalize() const { return BeforeLegalize; }
    863     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
    864     bool isCalledByLegalizer() const { return CalledByLegalizer; }
    865 
    866     void AddToWorklist(SDNode *N);
    867     void RemoveFromWorklist(SDNode *N);
    868     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
    869                       bool AddTo = true);
    870     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
    871     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
    872 
    873     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
    874   };
    875 
    876   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
    877   /// and cc. If it is unable to simplify it, return a null SDValue.
    878   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
    879                           ISD::CondCode Cond, bool foldBooleans,
    880                           DAGCombinerInfo &DCI, DebugLoc dl) const;
    881 
    882   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
    883   /// node is a GlobalAddress + offset.
    884   virtual bool
    885   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    886 
    887   /// PerformDAGCombine - This method will be invoked for all target nodes and
    888   /// for any target-independent nodes that the target has registered with
    889   /// invoke it for.
    890   ///
    891   /// The semantics are as follows:
    892   /// Return Value:
    893   ///   SDValue.Val == 0   - No change was made
    894   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
    895   ///   otherwise          - N should be replaced by the returned Operand.
    896   ///
    897   /// In addition, methods provided by DAGCombinerInfo may be used to perform
    898   /// more complex transformations.
    899   ///
    900   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    901 
    902   /// isTypeDesirableForOp - Return true if the target has native support for
    903   /// the specified value type and it is 'desirable' to use the type for the
    904   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    905   /// instruction encodings are longer and some i16 instructions are slow.
    906   virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
    907     // By default, assume all legal types are desirable.
    908     return isTypeLegal(VT);
    909   }
    910 
    911   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
    912   /// to transform a floating point op of specified opcode to a equivalent op of
    913   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
    914   virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
    915     return false;
    916   }
    917 
    918   /// IsDesirableToPromoteOp - This method query the target whether it is
    919   /// beneficial for dag combiner to promote the specified node. If true, it
    920   /// should return the desired promotion type by reference.
    921   virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
    922     return false;
    923   }
    924 
    925   //===--------------------------------------------------------------------===//
    926   // TargetLowering Configuration Methods - These methods should be invoked by
    927   // the derived class constructor to configure this object for the target.
    928   //
    929 
    930 protected:
    931   /// setBooleanContents - Specify how the target extends the result of a
    932   /// boolean value from i1 to a wider type.  See getBooleanContents.
    933   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
    934 
    935   /// setSchedulingPreference - Specify the target scheduling preference.
    936   void setSchedulingPreference(Sched::Preference Pref) {
    937     SchedPreferenceInfo = Pref;
    938   }
    939 
    940   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
    941   /// use _setjmp to implement llvm.setjmp or the non _ version.
    942   /// Defaults to false.
    943   void setUseUnderscoreSetJmp(bool Val) {
    944     UseUnderscoreSetJmp = Val;
    945   }
    946 
    947   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
    948   /// use _longjmp to implement llvm.longjmp or the non _ version.
    949   /// Defaults to false.
    950   void setUseUnderscoreLongJmp(bool Val) {
    951     UseUnderscoreLongJmp = Val;
    952   }
    953 
    954   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
    955   /// specifies the register that llvm.savestack/llvm.restorestack should save
    956   /// and restore.
    957   void setStackPointerRegisterToSaveRestore(unsigned R) {
    958     StackPointerRegisterToSaveRestore = R;
    959   }
    960 
    961   /// setExceptionPointerRegister - If set to a physical register, this sets
    962   /// the register that receives the exception address on entry to a landing
    963   /// pad.
    964   void setExceptionPointerRegister(unsigned R) {
    965     ExceptionPointerRegister = R;
    966   }
    967 
    968   /// setExceptionSelectorRegister - If set to a physical register, this sets
    969   /// the register that receives the exception typeid on entry to a landing
    970   /// pad.
    971   void setExceptionSelectorRegister(unsigned R) {
    972     ExceptionSelectorRegister = R;
    973   }
    974 
    975   /// SelectIsExpensive - Tells the code generator not to expand operations
    976   /// into sequences that use the select operations if possible.
    977   void setSelectIsExpensive(bool isExpensive = true) {
    978     SelectIsExpensive = isExpensive;
    979   }
    980 
    981   /// JumpIsExpensive - Tells the code generator not to expand sequence of
    982   /// operations into a separate sequences that increases the amount of
    983   /// flow control.
    984   void setJumpIsExpensive(bool isExpensive = true) {
    985     JumpIsExpensive = isExpensive;
    986   }
    987 
    988   /// setIntDivIsCheap - Tells the code generator that integer divide is
    989   /// expensive, and if possible, should be replaced by an alternate sequence
    990   /// of instructions not containing an integer divide.
    991   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
    992 
    993   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
    994   /// srl/add/sra for a signed divide by power of two, and let the target handle
    995   /// it.
    996   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
    997 
    998   /// addRegisterClass - Add the specified register class as an available
    999   /// regclass for the specified value type.  This indicates the selector can
   1000   /// handle values of that class natively.
   1001   void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
   1002     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
   1003     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1004     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
   1005   }
   1006 
   1007   /// findRepresentativeClass - Return the largest legal super-reg register class
   1008   /// of the register class for the specified type and its associated "cost".
   1009   virtual std::pair<const TargetRegisterClass*, uint8_t>
   1010   findRepresentativeClass(EVT VT) const;
   1011 
   1012   /// computeRegisterProperties - Once all of the register classes are added,
   1013   /// this allows us to compute derived properties we expose.
   1014   void computeRegisterProperties();
   1015 
   1016   /// setOperationAction - Indicate that the specified operation does not work
   1017   /// with the specified type and indicate what to do about it.
   1018   void setOperationAction(unsigned Op, MVT VT,
   1019                           LegalizeAction Action) {
   1020     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1021     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1022   }
   1023 
   1024   /// setLoadExtAction - Indicate that the specified load with extension does
   1025   /// not work with the specified type and indicate what to do about it.
   1026   void setLoadExtAction(unsigned ExtType, MVT VT,
   1027                         LegalizeAction Action) {
   1028     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
   1029            "Table isn't big enough!");
   1030     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
   1031   }
   1032 
   1033   /// setTruncStoreAction - Indicate that the specified truncating store does
   1034   /// not work with the specified type and indicate what to do about it.
   1035   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1036                            LegalizeAction Action) {
   1037     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
   1038            "Table isn't big enough!");
   1039     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1040   }
   1041 
   1042   /// setIndexedLoadAction - Indicate that the specified indexed load does or
   1043   /// does not work with the specified type and indicate what to do abort
   1044   /// it. NOTE: All indexed mode loads are initialized to Expand in
   1045   /// TargetLowering.cpp
   1046   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1047                             LegalizeAction Action) {
   1048     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1049            (unsigned)Action < 0xf && "Table isn't big enough!");
   1050     // Load action are kept in the upper half.
   1051     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1052     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1053   }
   1054 
   1055   /// setIndexedStoreAction - Indicate that the specified indexed store does or
   1056   /// does not work with the specified type and indicate what to do about
   1057   /// it. NOTE: All indexed mode stores are initialized to Expand in
   1058   /// TargetLowering.cpp
   1059   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1060                              LegalizeAction Action) {
   1061     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1062            (unsigned)Action < 0xf && "Table isn't big enough!");
   1063     // Store action are kept in the lower half.
   1064     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1065     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1066   }
   1067 
   1068   /// setCondCodeAction - Indicate that the specified condition code is or isn't
   1069   /// supported on the target and indicate what to do about it.
   1070   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1071                          LegalizeAction Action) {
   1072     assert(VT < MVT::LAST_VALUETYPE &&
   1073            (unsigned)CC < array_lengthof(CondCodeActions) &&
   1074            "Table isn't big enough!");
   1075     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
   1076     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
   1077   }
   1078 
   1079   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
   1080   /// promotion code defaults to trying a larger integer/fp until it can find
   1081   /// one that works.  If that default is insufficient, this method can be used
   1082   /// by the target to override the default.
   1083   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1084     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1085   }
   1086 
   1087   /// setTargetDAGCombine - Targets should invoke this method for each target
   1088   /// independent node that they want to provide a custom DAG combiner for by
   1089   /// implementing the PerformDAGCombine virtual method.
   1090   void setTargetDAGCombine(ISD::NodeType NT) {
   1091     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1092     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1093   }
   1094 
   1095   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
   1096   /// bytes); default is 200
   1097   void setJumpBufSize(unsigned Size) {
   1098     JumpBufSize = Size;
   1099   }
   1100 
   1101   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
   1102   /// alignment (in bytes); default is 0
   1103   void setJumpBufAlignment(unsigned Align) {
   1104     JumpBufAlignment = Align;
   1105   }
   1106 
   1107   /// setMinFunctionAlignment - Set the target's minimum function alignment.
   1108   void setMinFunctionAlignment(unsigned Align) {
   1109     MinFunctionAlignment = Align;
   1110   }
   1111 
   1112   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
   1113   /// This should be set if there is a performance benefit to
   1114   /// higher-than-minimum alignment
   1115   void setPrefFunctionAlignment(unsigned Align) {
   1116     PrefFunctionAlignment = Align;
   1117   }
   1118 
   1119   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
   1120   /// alignment is zero, it means the target does not care about loop alignment.
   1121   void setPrefLoopAlignment(unsigned Align) {
   1122     PrefLoopAlignment = Align;
   1123   }
   1124 
   1125   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
   1126   /// argument.
   1127   void setMinStackArgumentAlignment(unsigned Align) {
   1128     MinStackArgumentAlignment = Align;
   1129   }
   1130 
   1131   /// setShouldFoldAtomicFences - Set if the target's implementation of the
   1132   /// atomic operation intrinsics includes locking. Default is false.
   1133   void setShouldFoldAtomicFences(bool fold) {
   1134     ShouldFoldAtomicFences = fold;
   1135   }
   1136 
   1137 public:
   1138   //===--------------------------------------------------------------------===//
   1139   // Lowering methods - These methods must be implemented by targets so that
   1140   // the SelectionDAGLowering code knows how to lower these.
   1141   //
   1142 
   1143   /// LowerFormalArguments - This hook must be implemented to lower the
   1144   /// incoming (formal) arguments, described by the Ins array, into the
   1145   /// specified DAG. The implementation should fill in the InVals array
   1146   /// with legal-type argument values, and return the resulting token
   1147   /// chain value.
   1148   ///
   1149   virtual SDValue
   1150     LowerFormalArguments(SDValue Chain,
   1151                          CallingConv::ID CallConv, bool isVarArg,
   1152                          const SmallVectorImpl<ISD::InputArg> &Ins,
   1153                          DebugLoc dl, SelectionDAG &DAG,
   1154                          SmallVectorImpl<SDValue> &InVals) const {
   1155     assert(0 && "Not Implemented");
   1156     return SDValue();    // this is here to silence compiler errors
   1157   }
   1158 
   1159   /// LowerCallTo - This function lowers an abstract call to a function into an
   1160   /// actual call.  This returns a pair of operands.  The first element is the
   1161   /// return value for the function (if RetTy is not VoidTy).  The second
   1162   /// element is the outgoing token chain. It calls LowerCall to do the actual
   1163   /// lowering.
   1164   struct ArgListEntry {
   1165     SDValue Node;
   1166     Type* Ty;
   1167     bool isSExt  : 1;
   1168     bool isZExt  : 1;
   1169     bool isInReg : 1;
   1170     bool isSRet  : 1;
   1171     bool isNest  : 1;
   1172     bool isByVal : 1;
   1173     uint16_t Alignment;
   1174 
   1175     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   1176       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
   1177   };
   1178   typedef std::vector<ArgListEntry> ArgListTy;
   1179   std::pair<SDValue, SDValue>
   1180   LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
   1181               bool isVarArg, bool isInreg, unsigned NumFixedArgs,
   1182               CallingConv::ID CallConv, bool isTailCall,
   1183               bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
   1184               SelectionDAG &DAG, DebugLoc dl) const;
   1185 
   1186   /// LowerCall - This hook must be implemented to lower calls into the
   1187   /// the specified DAG. The outgoing arguments to the call are described
   1188   /// by the Outs array, and the values to be returned by the call are
   1189   /// described by the Ins array. The implementation should fill in the
   1190   /// InVals array with legal-type return values from the call, and return
   1191   /// the resulting token chain value.
   1192   virtual SDValue
   1193     LowerCall(SDValue Chain, SDValue Callee,
   1194               CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
   1195               const SmallVectorImpl<ISD::OutputArg> &Outs,
   1196               const SmallVectorImpl<SDValue> &OutVals,
   1197               const SmallVectorImpl<ISD::InputArg> &Ins,
   1198               DebugLoc dl, SelectionDAG &DAG,
   1199               SmallVectorImpl<SDValue> &InVals) const {
   1200     assert(0 && "Not Implemented");
   1201     return SDValue();    // this is here to silence compiler errors
   1202   }
   1203 
   1204   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
   1205   virtual void HandleByVal(CCState *, unsigned &) const {}
   1206 
   1207   /// CanLowerReturn - This hook should be implemented to check whether the
   1208   /// return values described by the Outs array can fit into the return
   1209   /// registers.  If false is returned, an sret-demotion is performed.
   1210   ///
   1211   virtual bool CanLowerReturn(CallingConv::ID CallConv,
   1212 			      MachineFunction &MF, bool isVarArg,
   1213                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1214                LLVMContext &Context) const
   1215   {
   1216     // Return true by default to get preexisting behavior.
   1217     return true;
   1218   }
   1219 
   1220   /// LowerReturn - This hook must be implemented to lower outgoing
   1221   /// return values, described by the Outs array, into the specified
   1222   /// DAG. The implementation should return the resulting token chain
   1223   /// value.
   1224   ///
   1225   virtual SDValue
   1226     LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   1227                 const SmallVectorImpl<ISD::OutputArg> &Outs,
   1228                 const SmallVectorImpl<SDValue> &OutVals,
   1229                 DebugLoc dl, SelectionDAG &DAG) const {
   1230     assert(0 && "Not Implemented");
   1231     return SDValue();    // this is here to silence compiler errors
   1232   }
   1233 
   1234   /// isUsedByReturnOnly - Return true if result of the specified node is used
   1235   /// by a return node only. This is used to determine whether it is possible
   1236   /// to codegen a libcall as tail call at legalization time.
   1237   virtual bool isUsedByReturnOnly(SDNode *N) const {
   1238     return false;
   1239   }
   1240 
   1241   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
   1242   /// call instruction as a tail call. This is used by optimization passes to
   1243   /// determine if it's profitable to duplicate return instructions to enable
   1244   /// tailcall optimization.
   1245   virtual bool mayBeEmittedAsTailCall(CallInst *CI) const {
   1246     return false;
   1247   }
   1248 
   1249   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
   1250   /// sign extend a zeroext/signext integer argument or return value.
   1251   /// FIXME: Most C calling convention requires the return type to be promoted,
   1252   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
   1253   /// necessary for non-C calling conventions. The frontend should handle this
   1254   /// and include all of the necessary information.
   1255   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1256                                        ISD::NodeType ExtendKind) const {
   1257     EVT MinVT = getRegisterType(Context, MVT::i32);
   1258     return VT.bitsLT(MinVT) ? MinVT : VT;
   1259   }
   1260 
   1261   /// LowerOperationWrapper - This callback is invoked by the type legalizer
   1262   /// to legalize nodes with an illegal operand type but legal result types.
   1263   /// It replaces the LowerOperation callback in the type Legalizer.
   1264   /// The reason we can not do away with LowerOperation entirely is that
   1265   /// LegalizeDAG isn't yet ready to use this callback.
   1266   /// TODO: Consider merging with ReplaceNodeResults.
   1267 
   1268   /// The target places new result values for the node in Results (their number
   1269   /// and types must exactly match those of the original return values of
   1270   /// the node), or leaves Results empty, which indicates that the node is not
   1271   /// to be custom lowered after all.
   1272   /// The default implementation calls LowerOperation.
   1273   virtual void LowerOperationWrapper(SDNode *N,
   1274                                      SmallVectorImpl<SDValue> &Results,
   1275                                      SelectionDAG &DAG) const;
   1276 
   1277   /// LowerOperation - This callback is invoked for operations that are
   1278   /// unsupported by the target, which are registered to use 'custom' lowering,
   1279   /// and whose defined values are all legal.
   1280   /// If the target has no operations that require custom lowering, it need not
   1281   /// implement this.  The default implementation of this aborts.
   1282   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   1283 
   1284   /// ReplaceNodeResults - This callback is invoked when a node result type is
   1285   /// illegal for the target, and the operation was registered to use 'custom'
   1286   /// lowering for that result type.  The target places new result values for
   1287   /// the node in Results (their number and types must exactly match those of
   1288   /// the original return values of the node), or leaves Results empty, which
   1289   /// indicates that the node is not to be custom lowered after all.
   1290   ///
   1291   /// If the target has no operations that require custom lowering, it need not
   1292   /// implement this.  The default implementation aborts.
   1293   virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
   1294                                   SelectionDAG &DAG) const {
   1295     assert(0 && "ReplaceNodeResults not implemented for this target!");
   1296   }
   1297 
   1298   /// getTargetNodeName() - This method returns the name of a target specific
   1299   /// DAG node.
   1300   virtual const char *getTargetNodeName(unsigned Opcode) const;
   1301 
   1302   /// createFastISel - This method returns a target specific FastISel object,
   1303   /// or null if the target does not support "fast" ISel.
   1304   virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
   1305     return 0;
   1306   }
   1307 
   1308   //===--------------------------------------------------------------------===//
   1309   // Inline Asm Support hooks
   1310   //
   1311 
   1312   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
   1313   /// call to be explicit llvm code if it wants to.  This is useful for
   1314   /// turning simple inline asms into LLVM intrinsics, which gives the
   1315   /// compiler more information about the behavior of the code.
   1316   virtual bool ExpandInlineAsm(CallInst *CI) const {
   1317     return false;
   1318   }
   1319 
   1320   enum ConstraintType {
   1321     C_Register,            // Constraint represents specific register(s).
   1322     C_RegisterClass,       // Constraint represents any of register(s) in class.
   1323     C_Memory,              // Memory constraint.
   1324     C_Other,               // Something else.
   1325     C_Unknown              // Unsupported constraint.
   1326   };
   1327 
   1328   enum ConstraintWeight {
   1329     // Generic weights.
   1330     CW_Invalid  = -1,     // No match.
   1331     CW_Okay     = 0,      // Acceptable.
   1332     CW_Good     = 1,      // Good weight.
   1333     CW_Better   = 2,      // Better weight.
   1334     CW_Best     = 3,      // Best weight.
   1335 
   1336     // Well-known weights.
   1337     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   1338     CW_Register     = CW_Good,    // Register operands.
   1339     CW_Memory       = CW_Better,  // Memory operands.
   1340     CW_Constant     = CW_Best,    // Constant operand.
   1341     CW_Default      = CW_Okay     // Default or don't know type.
   1342   };
   1343 
   1344   /// AsmOperandInfo - This contains information for each constraint that we are
   1345   /// lowering.
   1346   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   1347     /// ConstraintCode - This contains the actual string for the code, like "m".
   1348     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
   1349     /// most closely matches the operand.
   1350     std::string ConstraintCode;
   1351 
   1352     /// ConstraintType - Information about the constraint code, e.g. Register,
   1353     /// RegisterClass, Memory, Other, Unknown.
   1354     TargetLowering::ConstraintType ConstraintType;
   1355 
   1356     /// CallOperandval - If this is the result output operand or a
   1357     /// clobber, this is null, otherwise it is the incoming operand to the
   1358     /// CallInst.  This gets modified as the asm is processed.
   1359     Value *CallOperandVal;
   1360 
   1361     /// ConstraintVT - The ValueType for the operand value.
   1362     EVT ConstraintVT;
   1363 
   1364     /// isMatchingInputConstraint - Return true of this is an input operand that
   1365     /// is a matching constraint like "4".
   1366     bool isMatchingInputConstraint() const;
   1367 
   1368     /// getMatchedOperand - If this is an input matching constraint, this method
   1369     /// returns the output operand it matches.
   1370     unsigned getMatchedOperand() const;
   1371 
   1372     /// Copy constructor for copying from an AsmOperandInfo.
   1373     AsmOperandInfo(const AsmOperandInfo &info)
   1374       : InlineAsm::ConstraintInfo(info),
   1375         ConstraintCode(info.ConstraintCode),
   1376         ConstraintType(info.ConstraintType),
   1377         CallOperandVal(info.CallOperandVal),
   1378         ConstraintVT(info.ConstraintVT) {
   1379     }
   1380 
   1381     /// Copy constructor for copying from a ConstraintInfo.
   1382     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
   1383       : InlineAsm::ConstraintInfo(info),
   1384         ConstraintType(TargetLowering::C_Unknown),
   1385         CallOperandVal(0), ConstraintVT(MVT::Other) {
   1386     }
   1387   };
   1388 
   1389   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   1390 
   1391   /// ParseConstraints - Split up the constraint string from the inline
   1392   /// assembly value into the specific constraints and their prefixes,
   1393   /// and also tie in the associated operand values.
   1394   /// If this returns an empty vector, and if the constraint string itself
   1395   /// isn't empty, there was an error parsing.
   1396   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
   1397 
   1398   /// Examine constraint type and operand type and determine a weight value.
   1399   /// The operand object must already have been set up with the operand type.
   1400   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   1401       AsmOperandInfo &info, int maIndex) const;
   1402 
   1403   /// Examine constraint string and operand type and determine a weight value.
   1404   /// The operand object must already have been set up with the operand type.
   1405   virtual ConstraintWeight getSingleConstraintMatchWeight(
   1406       AsmOperandInfo &info, const char *constraint) const;
   1407 
   1408   /// ComputeConstraintToUse - Determines the constraint code and constraint
   1409   /// type to use for the specific AsmOperandInfo, setting
   1410   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
   1411   /// being passed in is available, it can be passed in as Op, otherwise an
   1412   /// empty SDValue can be passed.
   1413   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   1414                                       SDValue Op,
   1415                                       SelectionDAG *DAG = 0) const;
   1416 
   1417   /// getConstraintType - Given a constraint, return the type of constraint it
   1418   /// is for this target.
   1419   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   1420 
   1421   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
   1422   /// {edx}), return the register number and the register class for the
   1423   /// register.
   1424   ///
   1425   /// Given a register class constraint, like 'r', if this corresponds directly
   1426   /// to an LLVM register class, return a register of 0 and the register class
   1427   /// pointer.
   1428   ///
   1429   /// This should only be used for C_Register constraints.  On error,
   1430   /// this returns a register number of 0 and a null register class pointer..
   1431   virtual std::pair<unsigned, const TargetRegisterClass*>
   1432     getRegForInlineAsmConstraint(const std::string &Constraint,
   1433                                  EVT VT) const;
   1434 
   1435   /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1436   /// with another that has more specific requirements based on the type of the
   1437   /// corresponding operand.  This returns null if there is no replacement to
   1438   /// make.
   1439   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   1440 
   1441   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1442   /// vector.  If it is invalid, don't add anything to Ops.
   1443   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   1444                                             std::vector<SDValue> &Ops,
   1445                                             SelectionDAG &DAG) const;
   1446 
   1447   //===--------------------------------------------------------------------===//
   1448   // Instruction Emitting Hooks
   1449   //
   1450 
   1451   // EmitInstrWithCustomInserter - This method should be implemented by targets
   1452   // that mark instructions with the 'usesCustomInserter' flag.  These
   1453   // instructions are special in various ways, which require special support to
   1454   // insert.  The specified MachineInstr is created but not inserted into any
   1455   // basic blocks, and this method is called to expand it into a sequence of
   1456   // instructions, potentially also creating new basic blocks and control flow.
   1457   virtual MachineBasicBlock *
   1458     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1459 
   1460   //===--------------------------------------------------------------------===//
   1461   // Addressing mode description hooks (used by LSR etc).
   1462   //
   1463 
   1464   /// AddrMode - This represents an addressing mode of:
   1465   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1466   /// If BaseGV is null,  there is no BaseGV.
   1467   /// If BaseOffs is zero, there is no base offset.
   1468   /// If HasBaseReg is false, there is no base register.
   1469   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1470   /// no scale.
   1471   ///
   1472   struct AddrMode {
   1473     GlobalValue *BaseGV;
   1474     int64_t      BaseOffs;
   1475     bool         HasBaseReg;
   1476     int64_t      Scale;
   1477     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1478   };
   1479 
   1480   /// isLegalAddressingMode - Return true if the addressing mode represented by
   1481   /// AM is legal for this target, for a load/store of the specified type.
   1482   /// The type may be VoidTy, in which case only return true if the addressing
   1483   /// mode is legal for a load/store of any legal type.
   1484   /// TODO: Handle pre/postinc as well.
   1485   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1486 
   1487   /// isTruncateFree - Return true if it's free to truncate a value of
   1488   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
   1489   /// register EAX to i16 by referencing its sub-register AX.
   1490   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const {
   1491     return false;
   1492   }
   1493 
   1494   virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
   1495     return false;
   1496   }
   1497 
   1498   /// isZExtFree - Return true if any actual instruction that defines a
   1499   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
   1500   /// register. This does not necessarily include registers defined in
   1501   /// unknown ways, such as incoming arguments, or copies from unknown
   1502   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
   1503   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
   1504   /// all instructions that define 32-bit values implicit zero-extend the
   1505   /// result out to 64 bits.
   1506   virtual bool isZExtFree(Type *Ty1, Type *Ty2) const {
   1507     return false;
   1508   }
   1509 
   1510   virtual bool isZExtFree(EVT VT1, EVT VT2) const {
   1511     return false;
   1512   }
   1513 
   1514   /// isNarrowingProfitable - Return true if it's profitable to narrow
   1515   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
   1516   /// from i32 to i8 but not from i32 to i16.
   1517   virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
   1518     return false;
   1519   }
   1520 
   1521   /// isLegalICmpImmediate - Return true if the specified immediate is legal
   1522   /// icmp immediate, that is the target has icmp instructions which can compare
   1523   /// a register against the immediate without having to materialize the
   1524   /// immediate into a register.
   1525   virtual bool isLegalICmpImmediate(int64_t Imm) const {
   1526     return true;
   1527   }
   1528 
   1529   /// isLegalAddImmediate - Return true if the specified immediate is legal
   1530   /// add immediate, that is the target has add instructions which can add
   1531   /// a register with the immediate without having to materialize the
   1532   /// immediate into a register.
   1533   virtual bool isLegalAddImmediate(int64_t Imm) const {
   1534     return true;
   1535   }
   1536 
   1537   //===--------------------------------------------------------------------===//
   1538   // Div utility functions
   1539   //
   1540   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   1541                          SelectionDAG &DAG) const;
   1542   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
   1543                       std::vector<SDNode*>* Created) const;
   1544   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
   1545                       std::vector<SDNode*>* Created) const;
   1546 
   1547 
   1548   //===--------------------------------------------------------------------===//
   1549   // Runtime Library hooks
   1550   //
   1551 
   1552   /// setLibcallName - Rename the default libcall routine name for the specified
   1553   /// libcall.
   1554   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1555     LibcallRoutineNames[Call] = Name;
   1556   }
   1557 
   1558   /// getLibcallName - Get the libcall routine name for the specified libcall.
   1559   ///
   1560   const char *getLibcallName(RTLIB::Libcall Call) const {
   1561     return LibcallRoutineNames[Call];
   1562   }
   1563 
   1564   /// setCmpLibcallCC - Override the default CondCode to be used to test the
   1565   /// result of the comparison libcall against zero.
   1566   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1567     CmpLibcallCCs[Call] = CC;
   1568   }
   1569 
   1570   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
   1571   /// the comparison libcall against zero.
   1572   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1573     return CmpLibcallCCs[Call];
   1574   }
   1575 
   1576   /// setLibcallCallingConv - Set the CallingConv that should be used for the
   1577   /// specified libcall.
   1578   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1579     LibcallCallingConvs[Call] = CC;
   1580   }
   1581 
   1582   /// getLibcallCallingConv - Get the CallingConv that should be used for the
   1583   /// specified libcall.
   1584   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1585     return LibcallCallingConvs[Call];
   1586   }
   1587 
   1588 private:
   1589   const TargetMachine &TM;
   1590   const TargetData *TD;
   1591   const TargetLoweringObjectFile &TLOF;
   1592 
   1593   /// We are in the process of implementing a new TypeLegalization action
   1594   /// which is the promotion of vector elements. This feature is under
   1595   /// development. Until this feature is complete, it is only enabled using a
   1596   /// flag. We pass this flag using a member because of circular dep issues.
   1597   /// This member will be removed with the flag once we complete the transition.
   1598   bool mayPromoteElements;
   1599 
   1600   /// PointerTy - The type to use for pointers, usually i32 or i64.
   1601   ///
   1602   MVT PointerTy;
   1603 
   1604   /// IsLittleEndian - True if this is a little endian target.
   1605   ///
   1606   bool IsLittleEndian;
   1607 
   1608   /// SelectIsExpensive - Tells the code generator not to expand operations
   1609   /// into sequences that use the select operations if possible.
   1610   bool SelectIsExpensive;
   1611 
   1612   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
   1613   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
   1614   /// a real cost model is in place.  If we ever optimize for size, this will be
   1615   /// set to true unconditionally.
   1616   bool IntDivIsCheap;
   1617 
   1618   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
   1619   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1620   /// it.
   1621   bool Pow2DivIsCheap;
   1622 
   1623   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
   1624   /// extra flow control instructions and should attempt to combine flow
   1625   /// control instructions via predication.
   1626   bool JumpIsExpensive;
   1627 
   1628   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
   1629   /// llvm.setjmp.  Defaults to false.
   1630   bool UseUnderscoreSetJmp;
   1631 
   1632   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
   1633   /// llvm.longjmp.  Defaults to false.
   1634   bool UseUnderscoreLongJmp;
   1635 
   1636   /// BooleanContents - Information about the contents of the high-bits in
   1637   /// boolean values held in a type wider than i1.  See getBooleanContents.
   1638   BooleanContent BooleanContents;
   1639 
   1640   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
   1641   /// total cycles or lowest register usage.
   1642   Sched::Preference SchedPreferenceInfo;
   1643 
   1644   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
   1645   unsigned JumpBufSize;
   1646 
   1647   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
   1648   /// buffers
   1649   unsigned JumpBufAlignment;
   1650 
   1651   /// MinStackArgumentAlignment - The minimum alignment that any argument
   1652   /// on the stack needs to have.
   1653   ///
   1654   unsigned MinStackArgumentAlignment;
   1655 
   1656   /// MinFunctionAlignment - The minimum function alignment (used when
   1657   /// optimizing for size, and to prevent explicitly provided alignment
   1658   /// from leading to incorrect code).
   1659   ///
   1660   unsigned MinFunctionAlignment;
   1661 
   1662   /// PrefFunctionAlignment - The preferred function alignment (used when
   1663   /// alignment unspecified and optimizing for speed).
   1664   ///
   1665   unsigned PrefFunctionAlignment;
   1666 
   1667   /// PrefLoopAlignment - The preferred loop alignment.
   1668   ///
   1669   unsigned PrefLoopAlignment;
   1670 
   1671   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
   1672   /// be folded into the enclosed atomic intrinsic instruction by the
   1673   /// combiner.
   1674   bool ShouldFoldAtomicFences;
   1675 
   1676   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
   1677   /// specifies the register that llvm.savestack/llvm.restorestack should save
   1678   /// and restore.
   1679   unsigned StackPointerRegisterToSaveRestore;
   1680 
   1681   /// ExceptionPointerRegister - If set to a physical register, this specifies
   1682   /// the register that receives the exception address on entry to a landing
   1683   /// pad.
   1684   unsigned ExceptionPointerRegister;
   1685 
   1686   /// ExceptionSelectorRegister - If set to a physical register, this specifies
   1687   /// the register that receives the exception typeid on entry to a landing
   1688   /// pad.
   1689   unsigned ExceptionSelectorRegister;
   1690 
   1691   /// RegClassForVT - This indicates the default register class to use for
   1692   /// each ValueType the target supports natively.
   1693   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1694   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1695   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1696 
   1697   /// RepRegClassForVT - This indicates the "representative" register class to
   1698   /// use for each ValueType the target supports natively. This information is
   1699   /// used by the scheduler to track register pressure. By default, the
   1700   /// representative register class is the largest legal super-reg register
   1701   /// class of the register class of the specified type. e.g. On x86, i8, i16,
   1702   /// and i32's representative class would be GR32.
   1703   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1704 
   1705   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
   1706   /// register class for each ValueType. The cost is used by the scheduler to
   1707   /// approximate register pressure.
   1708   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1709 
   1710   /// TransformToType - For any value types we are promoting or expanding, this
   1711   /// contains the value type that we are changing to.  For Expanded types, this
   1712   /// contains one step of the expand (e.g. i64 -> i32), even if there are
   1713   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
   1714   /// by the system, this holds the same type (e.g. i32 -> i32).
   1715   EVT TransformToType[MVT::LAST_VALUETYPE];
   1716 
   1717   /// OpActions - For each operation and each value type, keep a LegalizeAction
   1718   /// that indicates how instruction selection should deal with the operation.
   1719   /// Most operations are Legal (aka, supported natively by the target), but
   1720   /// operations that are not should be described.  Note that operations on
   1721   /// non-legal value types are not described here.
   1722   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1723 
   1724   /// LoadExtActions - For each load extension type and each value type,
   1725   /// keep a LegalizeAction that indicates how instruction selection should deal
   1726   /// with a load of a specific value type and extension type.
   1727   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
   1728 
   1729   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
   1730   /// indicates whether a truncating store of a specific value type and
   1731   /// truncating type is legal.
   1732   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1733 
   1734   /// IndexedModeActions - For each indexed mode and each value type,
   1735   /// keep a pair of LegalizeAction that indicates how instruction
   1736   /// selection should deal with the load / store.  The first dimension is the
   1737   /// value_type for the reference. The second dimension represents the various
   1738   /// modes for load store.
   1739   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1740 
   1741   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
   1742   /// LegalizeAction that indicates how instruction selection should
   1743   /// deal with the condition code.
   1744   uint64_t CondCodeActions[ISD::SETCC_INVALID];
   1745 
   1746   ValueTypeActionImpl ValueTypeActions;
   1747 
   1748   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
   1749 
   1750   LegalizeKind
   1751   getTypeConversion(LLVMContext &Context, EVT VT) const {
   1752     // If this is a simple type, use the ComputeRegisterProp mechanism.
   1753     if (VT.isSimple()) {
   1754       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1755              array_lengthof(TransformToType));
   1756       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
   1757       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
   1758 
   1759       assert(
   1760         (!(NVT.isSimple() && LA != TypeLegal) ||
   1761          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
   1762          && "Promote may not follow Expand or Promote");
   1763 
   1764       return LegalizeKind(LA, NVT);
   1765     }
   1766 
   1767     // Handle Extended Scalar Types.
   1768     if (!VT.isVector()) {
   1769       assert(VT.isInteger() && "Float types must be simple");
   1770       unsigned BitSize = VT.getSizeInBits();
   1771       // First promote to a power-of-two size, then expand if necessary.
   1772       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1773         EVT NVT = VT.getRoundIntegerType(Context);
   1774         assert(NVT != VT && "Unable to round integer VT");
   1775         LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1776         // Avoid multi-step promotion.
   1777         if (NextStep.first == TypePromoteInteger) return NextStep;
   1778         // Return rounded integer type.
   1779         return LegalizeKind(TypePromoteInteger, NVT);
   1780       }
   1781 
   1782       return LegalizeKind(TypeExpandInteger,
   1783                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
   1784     }
   1785 
   1786     // Handle vector types.
   1787     unsigned NumElts = VT.getVectorNumElements();
   1788     EVT EltVT = VT.getVectorElementType();
   1789 
   1790     // Vectors with only one element are always scalarized.
   1791     if (NumElts == 1)
   1792       return LegalizeKind(TypeScalarizeVector, EltVT);
   1793 
   1794     // If we allow the promotion of vector elements using a flag,
   1795     // then try to widen vector elements until a legal type is found.
   1796     if (mayPromoteElements && EltVT.isInteger()) {
   1797       // Vectors with a number of elements that is not a power of two are always
   1798       // widened, for example <3 x float> -> <4 x float>.
   1799       if (!VT.isPow2VectorType()) {
   1800         NumElts = (unsigned)NextPowerOf2(NumElts);
   1801         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1802         return LegalizeKind(TypeWidenVector, NVT);
   1803       }
   1804 
   1805       // Examine the element type.
   1806       LegalizeKind LK = getTypeConversion(Context, EltVT);
   1807 
   1808       // If type is to be expanded, split the vector.
   1809       //  <4 x i140> -> <2 x i140>
   1810       if (LK.first == TypeExpandInteger)
   1811         return LegalizeKind(TypeSplitVector,
   1812                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
   1813 
   1814       // Promote the integer element types until a legal vector type is found
   1815       // or until the element integer type is too big. If a legal type was not
   1816       // found, fallback to the usual mechanism of widening/splitting the
   1817       // vector.
   1818       while (1) {
   1819         // Increase the bitwidth of the element to the next pow-of-two
   1820         // (which is greater than 8 bits).
   1821         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
   1822                                  ).getRoundIntegerType(Context);
   1823 
   1824         // Stop trying when getting a non-simple element type.
   1825         // Note that vector elements may be greater than legal vector element
   1826         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
   1827         if (!EltVT.isSimple()) break;
   1828 
   1829         // Build a new vector type and check if it is legal.
   1830         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1831         // Found a legal promoted vector type.
   1832         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   1833           return LegalizeKind(TypePromoteInteger,
   1834                               EVT::getVectorVT(Context, EltVT, NumElts));
   1835       }
   1836     }
   1837 
   1838     // Try to widen the vector until a legal type is found.
   1839     // If there is no wider legal type, split the vector.
   1840     while (1) {
   1841       // Round up to the next power of 2.
   1842       NumElts = (unsigned)NextPowerOf2(NumElts);
   1843 
   1844       // If there is no simple vector type with this many elements then there
   1845       // cannot be a larger legal vector type.  Note that this assumes that
   1846       // there are no skipped intermediate vector types in the simple types.
   1847       if (!EltVT.isSimple()) break;
   1848       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1849       if (LargerVector == MVT()) break;
   1850 
   1851       // If this type is legal then widen the vector.
   1852       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1853         return LegalizeKind(TypeWidenVector, LargerVector);
   1854     }
   1855 
   1856     // Widen odd vectors to next power of two.
   1857     if (!VT.isPow2VectorType()) {
   1858       EVT NVT = VT.getPow2VectorType(Context);
   1859       return LegalizeKind(TypeWidenVector, NVT);
   1860     }
   1861 
   1862     // Vectors with illegal element types are expanded.
   1863     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1864     return LegalizeKind(TypeSplitVector, NVT);
   1865 
   1866     assert(false && "Unable to handle this kind of vector type");
   1867     return LegalizeKind(TypeLegal, VT);
   1868   }
   1869 
   1870   std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
   1871 
   1872   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
   1873   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
   1874   /// which sets a bit in this array.
   1875   unsigned char
   1876   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1877 
   1878   /// PromoteToType - For operations that must be promoted to a specific type,
   1879   /// this holds the destination type.  This map should be sparse, so don't hold
   1880   /// it as an array.
   1881   ///
   1882   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1883   /// this with getTypeToPromoteTo(..).
   1884   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1885     PromoteToType;
   1886 
   1887   /// LibcallRoutineNames - Stores the name each libcall.
   1888   ///
   1889   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1890 
   1891   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
   1892   /// of each of the comparison libcall against zero.
   1893   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1894 
   1895   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
   1896   /// libcall.
   1897   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1898 
   1899 protected:
   1900   /// When lowering \@llvm.memset this field specifies the maximum number of
   1901   /// store operations that may be substituted for the call to memset. Targets
   1902   /// must set this value based on the cost threshold for that target. Targets
   1903   /// should assume that the memset will be done using as many of the largest
   1904   /// store operations first, followed by smaller ones, if necessary, per
   1905   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1906   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1907   /// store.  This only applies to setting a constant array of a constant size.
   1908   /// @brief Specify maximum number of store instructions per memset call.
   1909   unsigned maxStoresPerMemset;
   1910 
   1911   /// Maximum number of stores operations that may be substituted for the call
   1912   /// to memset, used for functions with OptSize attribute.
   1913   unsigned maxStoresPerMemsetOptSize;
   1914 
   1915   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1916   /// store operations that may be substituted for a call to memcpy. Targets
   1917   /// must set this value based on the cost threshold for that target. Targets
   1918   /// should assume that the memcpy will be done using as many of the largest
   1919   /// store operations first, followed by smaller ones, if necessary, per
   1920   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   1921   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   1922   /// and one 1-byte store. This only applies to copying a constant array of
   1923   /// constant size.
   1924   /// @brief Specify maximum bytes of store instructions per memcpy call.
   1925   unsigned maxStoresPerMemcpy;
   1926 
   1927   /// Maximum number of store operations that may be substituted for a call
   1928   /// to memcpy, used for functions with OptSize attribute.
   1929   unsigned maxStoresPerMemcpyOptSize;
   1930 
   1931   /// When lowering \@llvm.memmove this field specifies the maximum number of
   1932   /// store instructions that may be substituted for a call to memmove. Targets
   1933   /// must set this value based on the cost threshold for that target. Targets
   1934   /// should assume that the memmove will be done using as many of the largest
   1935   /// store operations first, followed by smaller ones, if necessary, per
   1936   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   1937   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   1938   /// applies to copying a constant array of constant size.
   1939   /// @brief Specify maximum bytes of store instructions per memmove call.
   1940   unsigned maxStoresPerMemmove;
   1941 
   1942   /// Maximum number of store instructions that may be substituted for a call
   1943   /// to memmove, used for functions with OpSize attribute.
   1944   unsigned maxStoresPerMemmoveOptSize;
   1945 
   1946   /// This field specifies whether the target can benefit from code placement
   1947   /// optimization.
   1948   bool benefitFromCodePlacementOpt;
   1949 
   1950 private:
   1951   /// isLegalRC - Return true if the value types that can be represented by the
   1952   /// specified register class are all legal.
   1953   bool isLegalRC(const TargetRegisterClass *RC) const;
   1954 
   1955   /// hasLegalSuperRegRegClasses - Return true if the specified register class
   1956   /// has one or more super-reg register classes that are legal.
   1957   bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
   1958 };
   1959 
   1960 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
   1961 /// compute the return value EVTs and flags, and optionally also
   1962 /// the offsets, if the return value is being lowered to memory.
   1963 void GetReturnInfo(Type* ReturnType, Attributes attr,
   1964                    SmallVectorImpl<ISD::OutputArg> &Outs,
   1965                    const TargetLowering &TLI,
   1966                    SmallVectorImpl<uint64_t> *Offsets = 0);
   1967 
   1968 } // end llvm namespace
   1969 
   1970 #endif
   1971