1 //===- DAGISelMatcher.cpp - Representation of DAG pattern matcher ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "DAGISelMatcher.h" 11 #include "CodeGenDAGPatterns.h" 12 #include "CodeGenTarget.h" 13 #include "Record.h" 14 #include "llvm/Support/raw_ostream.h" 15 #include "llvm/ADT/StringExtras.h" 16 using namespace llvm; 17 18 void Matcher::dump() const { 19 print(errs(), 0); 20 } 21 22 void Matcher::print(raw_ostream &OS, unsigned indent) const { 23 printImpl(OS, indent); 24 if (Next) 25 return Next->print(OS, indent); 26 } 27 28 void Matcher::printOne(raw_ostream &OS) const { 29 printImpl(OS, 0); 30 } 31 32 /// unlinkNode - Unlink the specified node from this chain. If Other == this, 33 /// we unlink the next pointer and return it. Otherwise we unlink Other from 34 /// the list and return this. 35 Matcher *Matcher::unlinkNode(Matcher *Other) { 36 if (this == Other) 37 return takeNext(); 38 39 // Scan until we find the predecessor of Other. 40 Matcher *Cur = this; 41 for (; Cur && Cur->getNext() != Other; Cur = Cur->getNext()) 42 /*empty*/; 43 44 if (Cur == 0) return 0; 45 Cur->takeNext(); 46 Cur->setNext(Other->takeNext()); 47 return this; 48 } 49 50 /// canMoveBefore - Return true if this matcher is the same as Other, or if 51 /// we can move this matcher past all of the nodes in-between Other and this 52 /// node. Other must be equal to or before this. 53 bool Matcher::canMoveBefore(const Matcher *Other) const { 54 for (;; Other = Other->getNext()) { 55 assert(Other && "Other didn't come before 'this'?"); 56 if (this == Other) return true; 57 58 // We have to be able to move this node across the Other node. 59 if (!canMoveBeforeNode(Other)) 60 return false; 61 } 62 } 63 64 /// canMoveBefore - Return true if it is safe to move the current matcher 65 /// across the specified one. 66 bool Matcher::canMoveBeforeNode(const Matcher *Other) const { 67 // We can move simple predicates before record nodes. 68 if (isSimplePredicateNode()) 69 return Other->isSimplePredicateOrRecordNode(); 70 71 // We can move record nodes across simple predicates. 72 if (isSimplePredicateOrRecordNode()) 73 return isSimplePredicateNode(); 74 75 // We can't move record nodes across each other etc. 76 return false; 77 } 78 79 80 ScopeMatcher::~ScopeMatcher() { 81 for (unsigned i = 0, e = Children.size(); i != e; ++i) 82 delete Children[i]; 83 } 84 85 86 CheckPredicateMatcher::CheckPredicateMatcher(const TreePredicateFn &pred) 87 : Matcher(CheckPredicate), Pred(pred.getOrigPatFragRecord()) {} 88 89 TreePredicateFn CheckPredicateMatcher::getPredicate() const { 90 return TreePredicateFn(Pred); 91 } 92 93 94 95 // printImpl methods. 96 97 void ScopeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 98 OS.indent(indent) << "Scope\n"; 99 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 100 if (getChild(i) == 0) 101 OS.indent(indent+1) << "NULL POINTER\n"; 102 else 103 getChild(i)->print(OS, indent+2); 104 } 105 } 106 107 void RecordMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 108 OS.indent(indent) << "Record\n"; 109 } 110 111 void RecordChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 112 OS.indent(indent) << "RecordChild: " << ChildNo << '\n'; 113 } 114 115 void RecordMemRefMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 116 OS.indent(indent) << "RecordMemRef\n"; 117 } 118 119 void CaptureGlueInputMatcher::printImpl(raw_ostream &OS, unsigned indent) const{ 120 OS.indent(indent) << "CaptureGlueInput\n"; 121 } 122 123 void MoveChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 124 OS.indent(indent) << "MoveChild " << ChildNo << '\n'; 125 } 126 127 void MoveParentMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 128 OS.indent(indent) << "MoveParent\n"; 129 } 130 131 void CheckSameMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 132 OS.indent(indent) << "CheckSame " << MatchNumber << '\n'; 133 } 134 135 void CheckPatternPredicateMatcher:: 136 printImpl(raw_ostream &OS, unsigned indent) const { 137 OS.indent(indent) << "CheckPatternPredicate " << Predicate << '\n'; 138 } 139 140 void CheckPredicateMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 141 OS.indent(indent) << "CheckPredicate " << getPredicate().getFnName() << '\n'; 142 } 143 144 void CheckOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 145 OS.indent(indent) << "CheckOpcode " << Opcode.getEnumName() << '\n'; 146 } 147 148 void SwitchOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 149 OS.indent(indent) << "SwitchOpcode: {\n"; 150 for (unsigned i = 0, e = Cases.size(); i != e; ++i) { 151 OS.indent(indent) << "case " << Cases[i].first->getEnumName() << ":\n"; 152 Cases[i].second->print(OS, indent+2); 153 } 154 OS.indent(indent) << "}\n"; 155 } 156 157 158 void CheckTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 159 OS.indent(indent) << "CheckType " << getEnumName(Type) << ", ResNo=" 160 << ResNo << '\n'; 161 } 162 163 void SwitchTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 164 OS.indent(indent) << "SwitchType: {\n"; 165 for (unsigned i = 0, e = Cases.size(); i != e; ++i) { 166 OS.indent(indent) << "case " << getEnumName(Cases[i].first) << ":\n"; 167 Cases[i].second->print(OS, indent+2); 168 } 169 OS.indent(indent) << "}\n"; 170 } 171 172 void CheckChildTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 173 OS.indent(indent) << "CheckChildType " << ChildNo << " " 174 << getEnumName(Type) << '\n'; 175 } 176 177 178 void CheckIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 179 OS.indent(indent) << "CheckInteger " << Value << '\n'; 180 } 181 182 void CheckCondCodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 183 OS.indent(indent) << "CheckCondCode ISD::" << CondCodeName << '\n'; 184 } 185 186 void CheckValueTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 187 OS.indent(indent) << "CheckValueType MVT::" << TypeName << '\n'; 188 } 189 190 void CheckComplexPatMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 191 OS.indent(indent) << "CheckComplexPat " << Pattern.getSelectFunc() << '\n'; 192 } 193 194 void CheckAndImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 195 OS.indent(indent) << "CheckAndImm " << Value << '\n'; 196 } 197 198 void CheckOrImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 199 OS.indent(indent) << "CheckOrImm " << Value << '\n'; 200 } 201 202 void CheckFoldableChainNodeMatcher::printImpl(raw_ostream &OS, 203 unsigned indent) const { 204 OS.indent(indent) << "CheckFoldableChainNode\n"; 205 } 206 207 void EmitIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 208 OS.indent(indent) << "EmitInteger " << Val << " VT=" << VT << '\n'; 209 } 210 211 void EmitStringIntegerMatcher:: 212 printImpl(raw_ostream &OS, unsigned indent) const { 213 OS.indent(indent) << "EmitStringInteger " << Val << " VT=" << VT << '\n'; 214 } 215 216 void EmitRegisterMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 217 OS.indent(indent) << "EmitRegister "; 218 if (Reg) 219 OS << Reg->getName(); 220 else 221 OS << "zero_reg"; 222 OS << " VT=" << VT << '\n'; 223 } 224 225 void EmitConvertToTargetMatcher:: 226 printImpl(raw_ostream &OS, unsigned indent) const { 227 OS.indent(indent) << "EmitConvertToTarget " << Slot << '\n'; 228 } 229 230 void EmitMergeInputChainsMatcher:: 231 printImpl(raw_ostream &OS, unsigned indent) const { 232 OS.indent(indent) << "EmitMergeInputChains <todo: args>\n"; 233 } 234 235 void EmitCopyToRegMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 236 OS.indent(indent) << "EmitCopyToReg <todo: args>\n"; 237 } 238 239 void EmitNodeXFormMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 240 OS.indent(indent) << "EmitNodeXForm " << NodeXForm->getName() 241 << " Slot=" << Slot << '\n'; 242 } 243 244 245 void EmitNodeMatcherCommon::printImpl(raw_ostream &OS, unsigned indent) const { 246 OS.indent(indent); 247 OS << (isa<MorphNodeToMatcher>(this) ? "MorphNodeTo: " : "EmitNode: ") 248 << OpcodeName << ": <todo flags> "; 249 250 for (unsigned i = 0, e = VTs.size(); i != e; ++i) 251 OS << ' ' << getEnumName(VTs[i]); 252 OS << '('; 253 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 254 OS << Operands[i] << ' '; 255 OS << ")\n"; 256 } 257 258 void MarkGlueResultsMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 259 OS.indent(indent) << "MarkGlueResults <todo: args>\n"; 260 } 261 262 void CompleteMatchMatcher::printImpl(raw_ostream &OS, unsigned indent) const { 263 OS.indent(indent) << "CompleteMatch <todo args>\n"; 264 OS.indent(indent) << "Src = " << *Pattern.getSrcPattern() << "\n"; 265 OS.indent(indent) << "Dst = " << *Pattern.getDstPattern() << "\n"; 266 } 267 268 // getHashImpl Implementation. 269 270 unsigned CheckPatternPredicateMatcher::getHashImpl() const { 271 return HashString(Predicate); 272 } 273 274 unsigned CheckPredicateMatcher::getHashImpl() const { 275 return HashString(getPredicate().getFnName()); 276 } 277 278 unsigned CheckOpcodeMatcher::getHashImpl() const { 279 return HashString(Opcode.getEnumName()); 280 } 281 282 unsigned CheckCondCodeMatcher::getHashImpl() const { 283 return HashString(CondCodeName); 284 } 285 286 unsigned CheckValueTypeMatcher::getHashImpl() const { 287 return HashString(TypeName); 288 } 289 290 unsigned EmitStringIntegerMatcher::getHashImpl() const { 291 return HashString(Val) ^ VT; 292 } 293 294 template<typename It> 295 static unsigned HashUnsigneds(It I, It E) { 296 unsigned Result = 0; 297 for (; I != E; ++I) 298 Result = (Result<<3) ^ *I; 299 return Result; 300 } 301 302 unsigned EmitMergeInputChainsMatcher::getHashImpl() const { 303 return HashUnsigneds(ChainNodes.begin(), ChainNodes.end()); 304 } 305 306 bool CheckOpcodeMatcher::isEqualImpl(const Matcher *M) const { 307 // Note: pointer equality isn't enough here, we have to check the enum names 308 // to ensure that the nodes are for the same opcode. 309 return cast<CheckOpcodeMatcher>(M)->Opcode.getEnumName() == 310 Opcode.getEnumName(); 311 } 312 313 bool EmitNodeMatcherCommon::isEqualImpl(const Matcher *m) const { 314 const EmitNodeMatcherCommon *M = cast<EmitNodeMatcherCommon>(m); 315 return M->OpcodeName == OpcodeName && M->VTs == VTs && 316 M->Operands == Operands && M->HasChain == HasChain && 317 M->HasInGlue == HasInGlue && M->HasOutGlue == HasOutGlue && 318 M->HasMemRefs == HasMemRefs && 319 M->NumFixedArityOperands == NumFixedArityOperands; 320 } 321 322 unsigned EmitNodeMatcherCommon::getHashImpl() const { 323 return (HashString(OpcodeName) << 4) | Operands.size(); 324 } 325 326 327 unsigned MarkGlueResultsMatcher::getHashImpl() const { 328 return HashUnsigneds(GlueResultNodes.begin(), GlueResultNodes.end()); 329 } 330 331 unsigned CompleteMatchMatcher::getHashImpl() const { 332 return HashUnsigneds(Results.begin(), Results.end()) ^ 333 ((unsigned)(intptr_t)&Pattern << 8); 334 } 335 336 // isContradictoryImpl Implementations. 337 338 static bool TypesAreContradictory(MVT::SimpleValueType T1, 339 MVT::SimpleValueType T2) { 340 // If the two types are the same, then they are the same, so they don't 341 // contradict. 342 if (T1 == T2) return false; 343 344 // If either type is about iPtr, then they don't conflict unless the other 345 // one is not a scalar integer type. 346 if (T1 == MVT::iPTR) 347 return !MVT(T2).isInteger() || MVT(T2).isVector(); 348 349 if (T2 == MVT::iPTR) 350 return !MVT(T1).isInteger() || MVT(T1).isVector(); 351 352 // Otherwise, they are two different non-iPTR types, they conflict. 353 return true; 354 } 355 356 bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const { 357 if (const CheckOpcodeMatcher *COM = dyn_cast<CheckOpcodeMatcher>(M)) { 358 // One node can't have two different opcodes! 359 // Note: pointer equality isn't enough here, we have to check the enum names 360 // to ensure that the nodes are for the same opcode. 361 return COM->getOpcode().getEnumName() != getOpcode().getEnumName(); 362 } 363 364 // If the node has a known type, and if the type we're checking for is 365 // different, then we know they contradict. For example, a check for 366 // ISD::STORE will never be true at the same time a check for Type i32 is. 367 if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) { 368 // If checking for a result the opcode doesn't have, it can't match. 369 if (CT->getResNo() >= getOpcode().getNumResults()) 370 return true; 371 372 MVT::SimpleValueType NodeType = getOpcode().getKnownType(CT->getResNo()); 373 if (NodeType != MVT::Other) 374 return TypesAreContradictory(NodeType, CT->getType()); 375 } 376 377 return false; 378 } 379 380 bool CheckTypeMatcher::isContradictoryImpl(const Matcher *M) const { 381 if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) 382 return TypesAreContradictory(getType(), CT->getType()); 383 return false; 384 } 385 386 bool CheckChildTypeMatcher::isContradictoryImpl(const Matcher *M) const { 387 if (const CheckChildTypeMatcher *CC = dyn_cast<CheckChildTypeMatcher>(M)) { 388 // If the two checks are about different nodes, we don't know if they 389 // conflict! 390 if (CC->getChildNo() != getChildNo()) 391 return false; 392 393 return TypesAreContradictory(getType(), CC->getType()); 394 } 395 return false; 396 } 397 398 bool CheckIntegerMatcher::isContradictoryImpl(const Matcher *M) const { 399 if (const CheckIntegerMatcher *CIM = dyn_cast<CheckIntegerMatcher>(M)) 400 return CIM->getValue() != getValue(); 401 return false; 402 } 403 404 bool CheckValueTypeMatcher::isContradictoryImpl(const Matcher *M) const { 405 if (const CheckValueTypeMatcher *CVT = dyn_cast<CheckValueTypeMatcher>(M)) 406 return CVT->getTypeName() != getTypeName(); 407 return false; 408 } 409 410