1 //===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of RTTI descriptors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCXXABI.h" 16 #include "clang/AST/RecordLayout.h" 17 #include "clang/AST/Type.h" 18 #include "clang/Frontend/CodeGenOptions.h" 19 #include "CGObjCRuntime.h" 20 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 class RTTIBuilder { 26 CodeGenModule &CGM; // Per-module state. 27 llvm::LLVMContext &VMContext; 28 29 llvm::Type *Int8PtrTy; 30 31 /// Fields - The fields of the RTTI descriptor currently being built. 32 llvm::SmallVector<llvm::Constant *, 16> Fields; 33 34 /// GetAddrOfTypeName - Returns the mangled type name of the given type. 35 llvm::GlobalVariable * 36 GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); 37 38 /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI 39 /// descriptor of the given type. 40 llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); 41 42 /// BuildVTablePointer - Build the vtable pointer for the given type. 43 void BuildVTablePointer(const Type *Ty); 44 45 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single 46 /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. 47 void BuildSIClassTypeInfo(const CXXRecordDecl *RD); 48 49 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for 50 /// classes with bases that do not satisfy the abi::__si_class_type_info 51 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. 52 void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); 53 54 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used 55 /// for pointer types. 56 void BuildPointerTypeInfo(QualType PointeeTy); 57 58 /// BuildObjCObjectTypeInfo - Build the appropriate kind of 59 /// type_info for an object type. 60 void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); 61 62 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info 63 /// struct, used for member pointer types. 64 void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); 65 66 public: 67 RTTIBuilder(CodeGenModule &CGM) : CGM(CGM), 68 VMContext(CGM.getModule().getContext()), 69 Int8PtrTy(llvm::Type::getInt8PtrTy(VMContext)) { } 70 71 // Pointer type info flags. 72 enum { 73 /// PTI_Const - Type has const qualifier. 74 PTI_Const = 0x1, 75 76 /// PTI_Volatile - Type has volatile qualifier. 77 PTI_Volatile = 0x2, 78 79 /// PTI_Restrict - Type has restrict qualifier. 80 PTI_Restrict = 0x4, 81 82 /// PTI_Incomplete - Type is incomplete. 83 PTI_Incomplete = 0x8, 84 85 /// PTI_ContainingClassIncomplete - Containing class is incomplete. 86 /// (in pointer to member). 87 PTI_ContainingClassIncomplete = 0x10 88 }; 89 90 // VMI type info flags. 91 enum { 92 /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. 93 VMI_NonDiamondRepeat = 0x1, 94 95 /// VMI_DiamondShaped - Class is diamond shaped. 96 VMI_DiamondShaped = 0x2 97 }; 98 99 // Base class type info flags. 100 enum { 101 /// BCTI_Virtual - Base class is virtual. 102 BCTI_Virtual = 0x1, 103 104 /// BCTI_Public - Base class is public. 105 BCTI_Public = 0x2 106 }; 107 108 /// BuildTypeInfo - Build the RTTI type info struct for the given type. 109 /// 110 /// \param Force - true to force the creation of this RTTI value 111 /// \param ForEH - true if this is for exception handling 112 llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false); 113 }; 114 } 115 116 llvm::GlobalVariable * 117 RTTIBuilder::GetAddrOfTypeName(QualType Ty, 118 llvm::GlobalVariable::LinkageTypes Linkage) { 119 llvm::SmallString<256> OutName; 120 llvm::raw_svector_ostream Out(OutName); 121 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); 122 Out.flush(); 123 llvm::StringRef Name = OutName.str(); 124 125 // We know that the mangled name of the type starts at index 4 of the 126 // mangled name of the typename, so we can just index into it in order to 127 // get the mangled name of the type. 128 llvm::Constant *Init = llvm::ConstantArray::get(VMContext, Name.substr(4)); 129 130 llvm::GlobalVariable *GV = 131 CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage); 132 133 GV->setInitializer(Init); 134 135 return GV; 136 } 137 138 llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { 139 // Mangle the RTTI name. 140 llvm::SmallString<256> OutName; 141 llvm::raw_svector_ostream Out(OutName); 142 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); 143 Out.flush(); 144 llvm::StringRef Name = OutName.str(); 145 146 // Look for an existing global. 147 llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); 148 149 if (!GV) { 150 // Create a new global variable. 151 GV = new llvm::GlobalVariable(CGM.getModule(), Int8PtrTy, /*Constant=*/true, 152 llvm::GlobalValue::ExternalLinkage, 0, Name); 153 } 154 155 return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 156 } 157 158 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type 159 /// info for that type is defined in the standard library. 160 static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { 161 // Itanium C++ ABI 2.9.2: 162 // Basic type information (e.g. for "int", "bool", etc.) will be kept in 163 // the run-time support library. Specifically, the run-time support 164 // library should contain type_info objects for the types X, X* and 165 // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, 166 // unsigned char, signed char, short, unsigned short, int, unsigned int, 167 // long, unsigned long, long long, unsigned long long, float, double, 168 // long double, char16_t, char32_t, and the IEEE 754r decimal and 169 // half-precision floating point types. 170 switch (Ty->getKind()) { 171 case BuiltinType::Void: 172 case BuiltinType::NullPtr: 173 case BuiltinType::Bool: 174 case BuiltinType::WChar_S: 175 case BuiltinType::WChar_U: 176 case BuiltinType::Char_U: 177 case BuiltinType::Char_S: 178 case BuiltinType::UChar: 179 case BuiltinType::SChar: 180 case BuiltinType::Short: 181 case BuiltinType::UShort: 182 case BuiltinType::Int: 183 case BuiltinType::UInt: 184 case BuiltinType::Long: 185 case BuiltinType::ULong: 186 case BuiltinType::LongLong: 187 case BuiltinType::ULongLong: 188 case BuiltinType::Float: 189 case BuiltinType::Double: 190 case BuiltinType::LongDouble: 191 case BuiltinType::Char16: 192 case BuiltinType::Char32: 193 case BuiltinType::Int128: 194 case BuiltinType::UInt128: 195 return true; 196 197 case BuiltinType::Overload: 198 case BuiltinType::Dependent: 199 case BuiltinType::BoundMember: 200 case BuiltinType::UnknownAny: 201 llvm_unreachable("asking for RRTI for a placeholder type!"); 202 203 case BuiltinType::ObjCId: 204 case BuiltinType::ObjCClass: 205 case BuiltinType::ObjCSel: 206 assert(false && "FIXME: Objective-C types are unsupported!"); 207 } 208 209 // Silent gcc. 210 return false; 211 } 212 213 static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { 214 QualType PointeeTy = PointerTy->getPointeeType(); 215 const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); 216 if (!BuiltinTy) 217 return false; 218 219 // Check the qualifiers. 220 Qualifiers Quals = PointeeTy.getQualifiers(); 221 Quals.removeConst(); 222 223 if (!Quals.empty()) 224 return false; 225 226 return TypeInfoIsInStandardLibrary(BuiltinTy); 227 } 228 229 /// IsStandardLibraryRTTIDescriptor - Returns whether the type 230 /// information for the given type exists in the standard library. 231 static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { 232 // Type info for builtin types is defined in the standard library. 233 if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) 234 return TypeInfoIsInStandardLibrary(BuiltinTy); 235 236 // Type info for some pointer types to builtin types is defined in the 237 // standard library. 238 if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) 239 return TypeInfoIsInStandardLibrary(PointerTy); 240 241 return false; 242 } 243 244 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for 245 /// the given type exists somewhere else, and that we should not emit the type 246 /// information in this translation unit. Assumes that it is not a 247 /// standard-library type. 248 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) { 249 ASTContext &Context = CGM.getContext(); 250 251 // If RTTI is disabled, don't consider key functions. 252 if (!Context.getLangOptions().RTTI) return false; 253 254 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { 255 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 256 if (!RD->hasDefinition()) 257 return false; 258 259 if (!RD->isDynamicClass()) 260 return false; 261 262 return !CGM.getVTables().ShouldEmitVTableInThisTU(RD); 263 } 264 265 return false; 266 } 267 268 /// IsIncompleteClassType - Returns whether the given record type is incomplete. 269 static bool IsIncompleteClassType(const RecordType *RecordTy) { 270 return !RecordTy->getDecl()->isDefinition(); 271 } 272 273 /// ContainsIncompleteClassType - Returns whether the given type contains an 274 /// incomplete class type. This is true if 275 /// 276 /// * The given type is an incomplete class type. 277 /// * The given type is a pointer type whose pointee type contains an 278 /// incomplete class type. 279 /// * The given type is a member pointer type whose class is an incomplete 280 /// class type. 281 /// * The given type is a member pointer type whoise pointee type contains an 282 /// incomplete class type. 283 /// is an indirect or direct pointer to an incomplete class type. 284 static bool ContainsIncompleteClassType(QualType Ty) { 285 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { 286 if (IsIncompleteClassType(RecordTy)) 287 return true; 288 } 289 290 if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) 291 return ContainsIncompleteClassType(PointerTy->getPointeeType()); 292 293 if (const MemberPointerType *MemberPointerTy = 294 dyn_cast<MemberPointerType>(Ty)) { 295 // Check if the class type is incomplete. 296 const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass()); 297 if (IsIncompleteClassType(ClassType)) 298 return true; 299 300 return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); 301 } 302 303 return false; 304 } 305 306 /// getTypeInfoLinkage - Return the linkage that the type info and type info 307 /// name constants should have for the given type. 308 static llvm::GlobalVariable::LinkageTypes 309 getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) { 310 // Itanium C++ ABI 2.9.5p7: 311 // In addition, it and all of the intermediate abi::__pointer_type_info 312 // structs in the chain down to the abi::__class_type_info for the 313 // incomplete class type must be prevented from resolving to the 314 // corresponding type_info structs for the complete class type, possibly 315 // by making them local static objects. Finally, a dummy class RTTI is 316 // generated for the incomplete type that will not resolve to the final 317 // complete class RTTI (because the latter need not exist), possibly by 318 // making it a local static object. 319 if (ContainsIncompleteClassType(Ty)) 320 return llvm::GlobalValue::InternalLinkage; 321 322 switch (Ty->getLinkage()) { 323 case NoLinkage: 324 case InternalLinkage: 325 case UniqueExternalLinkage: 326 return llvm::GlobalValue::InternalLinkage; 327 328 case ExternalLinkage: 329 if (!CGM.getLangOptions().RTTI) { 330 // RTTI is not enabled, which means that this type info struct is going 331 // to be used for exception handling. Give it linkonce_odr linkage. 332 return llvm::GlobalValue::LinkOnceODRLinkage; 333 } 334 335 if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { 336 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 337 if (RD->isDynamicClass()) 338 return CGM.getVTableLinkage(RD); 339 } 340 341 return llvm::GlobalValue::LinkOnceODRLinkage; 342 } 343 344 return llvm::GlobalValue::LinkOnceODRLinkage; 345 } 346 347 // CanUseSingleInheritance - Return whether the given record decl has a "single, 348 // public, non-virtual base at offset zero (i.e. the derived class is dynamic 349 // iff the base is)", according to Itanium C++ ABI, 2.95p6b. 350 static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { 351 // Check the number of bases. 352 if (RD->getNumBases() != 1) 353 return false; 354 355 // Get the base. 356 CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); 357 358 // Check that the base is not virtual. 359 if (Base->isVirtual()) 360 return false; 361 362 // Check that the base is public. 363 if (Base->getAccessSpecifier() != AS_public) 364 return false; 365 366 // Check that the class is dynamic iff the base is. 367 const CXXRecordDecl *BaseDecl = 368 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 369 if (!BaseDecl->isEmpty() && 370 BaseDecl->isDynamicClass() != RD->isDynamicClass()) 371 return false; 372 373 return true; 374 } 375 376 void RTTIBuilder::BuildVTablePointer(const Type *Ty) { 377 // abi::__class_type_info. 378 static const char * const ClassTypeInfo = 379 "_ZTVN10__cxxabiv117__class_type_infoE"; 380 // abi::__si_class_type_info. 381 static const char * const SIClassTypeInfo = 382 "_ZTVN10__cxxabiv120__si_class_type_infoE"; 383 // abi::__vmi_class_type_info. 384 static const char * const VMIClassTypeInfo = 385 "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; 386 387 const char *VTableName = 0; 388 389 switch (Ty->getTypeClass()) { 390 #define TYPE(Class, Base) 391 #define ABSTRACT_TYPE(Class, Base) 392 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 393 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 394 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 395 #include "clang/AST/TypeNodes.def" 396 assert(false && "Non-canonical and dependent types shouldn't get here"); 397 398 case Type::LValueReference: 399 case Type::RValueReference: 400 assert(false && "References shouldn't get here"); 401 402 case Type::Builtin: 403 // GCC treats vector and complex types as fundamental types. 404 case Type::Vector: 405 case Type::ExtVector: 406 case Type::Complex: 407 // FIXME: GCC treats block pointers as fundamental types?! 408 case Type::BlockPointer: 409 // abi::__fundamental_type_info. 410 VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; 411 break; 412 413 case Type::ConstantArray: 414 case Type::IncompleteArray: 415 case Type::VariableArray: 416 // abi::__array_type_info. 417 VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; 418 break; 419 420 case Type::FunctionNoProto: 421 case Type::FunctionProto: 422 // abi::__function_type_info. 423 VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; 424 break; 425 426 case Type::Enum: 427 // abi::__enum_type_info. 428 VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; 429 break; 430 431 case Type::Record: { 432 const CXXRecordDecl *RD = 433 cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); 434 435 if (!RD->hasDefinition() || !RD->getNumBases()) { 436 VTableName = ClassTypeInfo; 437 } else if (CanUseSingleInheritance(RD)) { 438 VTableName = SIClassTypeInfo; 439 } else { 440 VTableName = VMIClassTypeInfo; 441 } 442 443 break; 444 } 445 446 case Type::ObjCObject: 447 // Ignore protocol qualifiers. 448 Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); 449 450 // Handle id and Class. 451 if (isa<BuiltinType>(Ty)) { 452 VTableName = ClassTypeInfo; 453 break; 454 } 455 456 assert(isa<ObjCInterfaceType>(Ty)); 457 // Fall through. 458 459 case Type::ObjCInterface: 460 if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { 461 VTableName = SIClassTypeInfo; 462 } else { 463 VTableName = ClassTypeInfo; 464 } 465 break; 466 467 case Type::ObjCObjectPointer: 468 case Type::Pointer: 469 // abi::__pointer_type_info. 470 VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; 471 break; 472 473 case Type::MemberPointer: 474 // abi::__pointer_to_member_type_info. 475 VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; 476 break; 477 } 478 479 llvm::Constant *VTable = 480 CGM.getModule().getOrInsertGlobal(VTableName, Int8PtrTy); 481 482 llvm::Type *PtrDiffTy = 483 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 484 485 // The vtable address point is 2. 486 llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); 487 VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, &Two, 1); 488 VTable = llvm::ConstantExpr::getBitCast(VTable, Int8PtrTy); 489 490 Fields.push_back(VTable); 491 } 492 493 // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures 494 // from available_externally to the correct linkage if necessary. An example of 495 // this is: 496 // 497 // struct A { 498 // virtual void f(); 499 // }; 500 // 501 // const std::type_info &g() { 502 // return typeid(A); 503 // } 504 // 505 // void A::f() { } 506 // 507 // When we're generating the typeid(A) expression, we do not yet know that 508 // A's key function is defined in this translation unit, so we will give the 509 // typeinfo and typename structures available_externally linkage. When A::f 510 // forces the vtable to be generated, we need to change the linkage of the 511 // typeinfo and typename structs, otherwise we'll end up with undefined 512 // externals when linking. 513 static void 514 maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV, 515 QualType Ty) { 516 // We're only interested in globals with available_externally linkage. 517 if (!GV->hasAvailableExternallyLinkage()) 518 return; 519 520 // Get the real linkage for the type. 521 llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); 522 523 // If variable is supposed to have available_externally linkage, we don't 524 // need to do anything. 525 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 526 return; 527 528 // Update the typeinfo linkage. 529 GV->setLinkage(Linkage); 530 531 // Get the typename global. 532 llvm::SmallString<256> OutName; 533 llvm::raw_svector_ostream Out(OutName); 534 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); 535 Out.flush(); 536 llvm::StringRef Name = OutName.str(); 537 538 llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name); 539 540 assert(TypeNameGV->hasAvailableExternallyLinkage() && 541 "Type name has different linkage from type info!"); 542 543 // And update its linkage. 544 TypeNameGV->setLinkage(Linkage); 545 } 546 547 llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) { 548 // We want to operate on the canonical type. 549 Ty = CGM.getContext().getCanonicalType(Ty); 550 551 // Check if we've already emitted an RTTI descriptor for this type. 552 llvm::SmallString<256> OutName; 553 llvm::raw_svector_ostream Out(OutName); 554 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); 555 Out.flush(); 556 llvm::StringRef Name = OutName.str(); 557 558 llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); 559 if (OldGV && !OldGV->isDeclaration()) { 560 maybeUpdateRTTILinkage(CGM, OldGV, Ty); 561 562 return llvm::ConstantExpr::getBitCast(OldGV, Int8PtrTy); 563 } 564 565 // Check if there is already an external RTTI descriptor for this type. 566 bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty); 567 if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty))) 568 return GetAddrOfExternalRTTIDescriptor(Ty); 569 570 // Emit the standard library with external linkage. 571 llvm::GlobalVariable::LinkageTypes Linkage; 572 if (IsStdLib) 573 Linkage = llvm::GlobalValue::ExternalLinkage; 574 else 575 Linkage = getTypeInfoLinkage(CGM, Ty); 576 577 // Add the vtable pointer. 578 BuildVTablePointer(cast<Type>(Ty)); 579 580 // And the name. 581 llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); 582 583 llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 584 Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, Int8PtrTy)); 585 586 switch (Ty->getTypeClass()) { 587 #define TYPE(Class, Base) 588 #define ABSTRACT_TYPE(Class, Base) 589 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 590 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 591 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 592 #include "clang/AST/TypeNodes.def" 593 assert(false && "Non-canonical and dependent types shouldn't get here"); 594 595 // GCC treats vector types as fundamental types. 596 case Type::Builtin: 597 case Type::Vector: 598 case Type::ExtVector: 599 case Type::Complex: 600 case Type::BlockPointer: 601 // Itanium C++ ABI 2.9.5p4: 602 // abi::__fundamental_type_info adds no data members to std::type_info. 603 break; 604 605 case Type::LValueReference: 606 case Type::RValueReference: 607 assert(false && "References shouldn't get here"); 608 609 case Type::ConstantArray: 610 case Type::IncompleteArray: 611 case Type::VariableArray: 612 // Itanium C++ ABI 2.9.5p5: 613 // abi::__array_type_info adds no data members to std::type_info. 614 break; 615 616 case Type::FunctionNoProto: 617 case Type::FunctionProto: 618 // Itanium C++ ABI 2.9.5p5: 619 // abi::__function_type_info adds no data members to std::type_info. 620 break; 621 622 case Type::Enum: 623 // Itanium C++ ABI 2.9.5p5: 624 // abi::__enum_type_info adds no data members to std::type_info. 625 break; 626 627 case Type::Record: { 628 const CXXRecordDecl *RD = 629 cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); 630 if (!RD->hasDefinition() || !RD->getNumBases()) { 631 // We don't need to emit any fields. 632 break; 633 } 634 635 if (CanUseSingleInheritance(RD)) 636 BuildSIClassTypeInfo(RD); 637 else 638 BuildVMIClassTypeInfo(RD); 639 640 break; 641 } 642 643 case Type::ObjCObject: 644 case Type::ObjCInterface: 645 BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); 646 break; 647 648 case Type::ObjCObjectPointer: 649 BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 650 break; 651 652 case Type::Pointer: 653 BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); 654 break; 655 656 case Type::MemberPointer: 657 BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); 658 break; 659 } 660 661 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); 662 663 llvm::GlobalVariable *GV = 664 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 665 /*Constant=*/true, Linkage, Init, Name); 666 667 // If there's already an old global variable, replace it with the new one. 668 if (OldGV) { 669 GV->takeName(OldGV); 670 llvm::Constant *NewPtr = 671 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 672 OldGV->replaceAllUsesWith(NewPtr); 673 OldGV->eraseFromParent(); 674 } 675 676 // GCC only relies on the uniqueness of the type names, not the 677 // type_infos themselves, so we can emit these as hidden symbols. 678 // But don't do this if we're worried about strict visibility 679 // compatibility. 680 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) { 681 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 682 683 CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI); 684 CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName); 685 } else { 686 Visibility TypeInfoVisibility = DefaultVisibility; 687 if (CGM.getCodeGenOpts().HiddenWeakVTables && 688 Linkage == llvm::GlobalValue::LinkOnceODRLinkage) 689 TypeInfoVisibility = HiddenVisibility; 690 691 // The type name should have the same visibility as the type itself. 692 Visibility ExplicitVisibility = Ty->getVisibility(); 693 TypeName->setVisibility(CodeGenModule:: 694 GetLLVMVisibility(ExplicitVisibility)); 695 696 TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility()); 697 GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility)); 698 } 699 700 GV->setUnnamedAddr(true); 701 702 return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 703 } 704 705 /// ComputeQualifierFlags - Compute the pointer type info flags from the 706 /// given qualifier. 707 static unsigned ComputeQualifierFlags(Qualifiers Quals) { 708 unsigned Flags = 0; 709 710 if (Quals.hasConst()) 711 Flags |= RTTIBuilder::PTI_Const; 712 if (Quals.hasVolatile()) 713 Flags |= RTTIBuilder::PTI_Volatile; 714 if (Quals.hasRestrict()) 715 Flags |= RTTIBuilder::PTI_Restrict; 716 717 return Flags; 718 } 719 720 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info 721 /// for the given Objective-C object type. 722 void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { 723 // Drop qualifiers. 724 const Type *T = OT->getBaseType().getTypePtr(); 725 assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); 726 727 // The builtin types are abi::__class_type_infos and don't require 728 // extra fields. 729 if (isa<BuiltinType>(T)) return; 730 731 ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); 732 ObjCInterfaceDecl *Super = Class->getSuperClass(); 733 734 // Root classes are also __class_type_info. 735 if (!Super) return; 736 737 QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); 738 739 // Everything else is single inheritance. 740 llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy); 741 Fields.push_back(BaseTypeInfo); 742 } 743 744 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single 745 /// inheritance, according to the Itanium C++ ABI, 2.95p6b. 746 void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { 747 // Itanium C++ ABI 2.9.5p6b: 748 // It adds to abi::__class_type_info a single member pointing to the 749 // type_info structure for the base type, 750 llvm::Constant *BaseTypeInfo = 751 RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType()); 752 Fields.push_back(BaseTypeInfo); 753 } 754 755 namespace { 756 /// SeenBases - Contains virtual and non-virtual bases seen when traversing 757 /// a class hierarchy. 758 struct SeenBases { 759 llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; 760 llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; 761 }; 762 } 763 764 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in 765 /// abi::__vmi_class_type_info. 766 /// 767 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, 768 SeenBases &Bases) { 769 770 unsigned Flags = 0; 771 772 const CXXRecordDecl *BaseDecl = 773 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 774 775 if (Base->isVirtual()) { 776 if (Bases.VirtualBases.count(BaseDecl)) { 777 // If this virtual base has been seen before, then the class is diamond 778 // shaped. 779 Flags |= RTTIBuilder::VMI_DiamondShaped; 780 } else { 781 if (Bases.NonVirtualBases.count(BaseDecl)) 782 Flags |= RTTIBuilder::VMI_NonDiamondRepeat; 783 784 // Mark the virtual base as seen. 785 Bases.VirtualBases.insert(BaseDecl); 786 } 787 } else { 788 if (Bases.NonVirtualBases.count(BaseDecl)) { 789 // If this non-virtual base has been seen before, then the class has non- 790 // diamond shaped repeated inheritance. 791 Flags |= RTTIBuilder::VMI_NonDiamondRepeat; 792 } else { 793 if (Bases.VirtualBases.count(BaseDecl)) 794 Flags |= RTTIBuilder::VMI_NonDiamondRepeat; 795 796 // Mark the non-virtual base as seen. 797 Bases.NonVirtualBases.insert(BaseDecl); 798 } 799 } 800 801 // Walk all bases. 802 for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(), 803 E = BaseDecl->bases_end(); I != E; ++I) 804 Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); 805 806 return Flags; 807 } 808 809 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { 810 unsigned Flags = 0; 811 SeenBases Bases; 812 813 // Walk all bases. 814 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 815 E = RD->bases_end(); I != E; ++I) 816 Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); 817 818 return Flags; 819 } 820 821 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for 822 /// classes with bases that do not satisfy the abi::__si_class_type_info 823 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. 824 void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { 825 llvm::Type *UnsignedIntLTy = 826 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); 827 828 // Itanium C++ ABI 2.9.5p6c: 829 // __flags is a word with flags describing details about the class 830 // structure, which may be referenced by using the __flags_masks 831 // enumeration. These flags refer to both direct and indirect bases. 832 unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); 833 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); 834 835 // Itanium C++ ABI 2.9.5p6c: 836 // __base_count is a word with the number of direct proper base class 837 // descriptions that follow. 838 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); 839 840 if (!RD->getNumBases()) 841 return; 842 843 llvm::Type *LongLTy = 844 CGM.getTypes().ConvertType(CGM.getContext().LongTy); 845 846 // Now add the base class descriptions. 847 848 // Itanium C++ ABI 2.9.5p6c: 849 // __base_info[] is an array of base class descriptions -- one for every 850 // direct proper base. Each description is of the type: 851 // 852 // struct abi::__base_class_type_info { 853 // public: 854 // const __class_type_info *__base_type; 855 // long __offset_flags; 856 // 857 // enum __offset_flags_masks { 858 // __virtual_mask = 0x1, 859 // __public_mask = 0x2, 860 // __offset_shift = 8 861 // }; 862 // }; 863 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 864 E = RD->bases_end(); I != E; ++I) { 865 const CXXBaseSpecifier *Base = I; 866 867 // The __base_type member points to the RTTI for the base type. 868 Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType())); 869 870 const CXXRecordDecl *BaseDecl = 871 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 872 873 int64_t OffsetFlags = 0; 874 875 // All but the lower 8 bits of __offset_flags are a signed offset. 876 // For a non-virtual base, this is the offset in the object of the base 877 // subobject. For a virtual base, this is the offset in the virtual table of 878 // the virtual base offset for the virtual base referenced (negative). 879 CharUnits Offset; 880 if (Base->isVirtual()) 881 Offset = 882 CGM.getVTables().getVirtualBaseOffsetOffset(RD, BaseDecl); 883 else { 884 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 885 Offset = Layout.getBaseClassOffset(BaseDecl); 886 }; 887 888 OffsetFlags = Offset.getQuantity() << 8; 889 890 // The low-order byte of __offset_flags contains flags, as given by the 891 // masks from the enumeration __offset_flags_masks. 892 if (Base->isVirtual()) 893 OffsetFlags |= BCTI_Virtual; 894 if (Base->getAccessSpecifier() == AS_public) 895 OffsetFlags |= BCTI_Public; 896 897 Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags)); 898 } 899 } 900 901 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, 902 /// used for pointer types. 903 void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { 904 Qualifiers Quals; 905 QualType UnqualifiedPointeeTy = 906 CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals); 907 908 // Itanium C++ ABI 2.9.5p7: 909 // __flags is a flag word describing the cv-qualification and other 910 // attributes of the type pointed to 911 unsigned Flags = ComputeQualifierFlags(Quals); 912 913 // Itanium C++ ABI 2.9.5p7: 914 // When the abi::__pbase_type_info is for a direct or indirect pointer to an 915 // incomplete class type, the incomplete target type flag is set. 916 if (ContainsIncompleteClassType(UnqualifiedPointeeTy)) 917 Flags |= PTI_Incomplete; 918 919 llvm::Type *UnsignedIntLTy = 920 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); 921 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); 922 923 // Itanium C++ ABI 2.9.5p7: 924 // __pointee is a pointer to the std::type_info derivation for the 925 // unqualified type being pointed to. 926 llvm::Constant *PointeeTypeInfo = 927 RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy); 928 Fields.push_back(PointeeTypeInfo); 929 } 930 931 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info 932 /// struct, used for member pointer types. 933 void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { 934 QualType PointeeTy = Ty->getPointeeType(); 935 936 Qualifiers Quals; 937 QualType UnqualifiedPointeeTy = 938 CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals); 939 940 // Itanium C++ ABI 2.9.5p7: 941 // __flags is a flag word describing the cv-qualification and other 942 // attributes of the type pointed to. 943 unsigned Flags = ComputeQualifierFlags(Quals); 944 945 const RecordType *ClassType = cast<RecordType>(Ty->getClass()); 946 947 // Itanium C++ ABI 2.9.5p7: 948 // When the abi::__pbase_type_info is for a direct or indirect pointer to an 949 // incomplete class type, the incomplete target type flag is set. 950 if (ContainsIncompleteClassType(UnqualifiedPointeeTy)) 951 Flags |= PTI_Incomplete; 952 953 if (IsIncompleteClassType(ClassType)) 954 Flags |= PTI_ContainingClassIncomplete; 955 956 llvm::Type *UnsignedIntLTy = 957 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); 958 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); 959 960 // Itanium C++ ABI 2.9.5p7: 961 // __pointee is a pointer to the std::type_info derivation for the 962 // unqualified type being pointed to. 963 llvm::Constant *PointeeTypeInfo = 964 RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy); 965 Fields.push_back(PointeeTypeInfo); 966 967 // Itanium C++ ABI 2.9.5p9: 968 // __context is a pointer to an abi::__class_type_info corresponding to the 969 // class type containing the member pointed to 970 // (e.g., the "A" in "int A::*"). 971 Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0))); 972 } 973 974 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 975 bool ForEH) { 976 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 977 // FIXME: should we even be calling this method if RTTI is disabled 978 // and it's not for EH? 979 if (!ForEH && !getContext().getLangOptions().RTTI) { 980 llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 981 return llvm::Constant::getNullValue(Int8PtrTy); 982 } 983 984 if (ForEH && Ty->isObjCObjectPointerType() && !Features.NeXTRuntime) { 985 return Runtime->GetEHType(Ty); 986 } 987 988 return RTTIBuilder(*this).BuildTypeInfo(Ty); 989 } 990 991 void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) { 992 QualType PointerType = Context.getPointerType(Type); 993 QualType PointerTypeConst = Context.getPointerType(Type.withConst()); 994 RTTIBuilder(*this).BuildTypeInfo(Type, true); 995 RTTIBuilder(*this).BuildTypeInfo(PointerType, true); 996 RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true); 997 } 998 999 void CodeGenModule::EmitFundamentalRTTIDescriptors() { 1000 QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy, 1001 Context.BoolTy, Context.WCharTy, 1002 Context.CharTy, Context.UnsignedCharTy, 1003 Context.SignedCharTy, Context.ShortTy, 1004 Context.UnsignedShortTy, Context.IntTy, 1005 Context.UnsignedIntTy, Context.LongTy, 1006 Context.UnsignedLongTy, Context.LongLongTy, 1007 Context.UnsignedLongLongTy, Context.FloatTy, 1008 Context.DoubleTy, Context.LongDoubleTy, 1009 Context.Char16Ty, Context.Char32Ty }; 1010 for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i) 1011 EmitFundamentalRTTIDescriptor(FundamentalTypes[i]); 1012 } 1013