Home | History | Annotate | Download | only in Core
      1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defined the types Store and StoreManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
     16 #include "clang/AST/CharUnits.h"
     17 
     18 using namespace clang;
     19 using namespace ento;
     20 
     21 StoreManager::StoreManager(GRStateManager &stateMgr)
     22   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
     23     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
     24 
     25 StoreRef StoreManager::enterStackFrame(const GRState *state,
     26                                        const StackFrameContext *frame) {
     27   return StoreRef(state->getStore(), *this);
     28 }
     29 
     30 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
     31                                               QualType EleTy, uint64_t index) {
     32   NonLoc idx = svalBuilder.makeArrayIndex(index);
     33   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
     34 }
     35 
     36 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
     37 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
     38   if (const RecordType *RT = Ty->getAs<RecordType>()) {
     39     const RecordDecl *D = RT->getDecl();
     40     if (!D->getDefinition())
     41       return false;
     42   }
     43 
     44   return true;
     45 }
     46 
     47 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
     48   return StoreRef(store, *this);
     49 }
     50 
     51 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
     52                                                         QualType T) {
     53   NonLoc idx = svalBuilder.makeZeroArrayIndex();
     54   assert(!T.isNull());
     55   return MRMgr.getElementRegion(T, idx, R, Ctx);
     56 }
     57 
     58 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
     59 
     60   ASTContext& Ctx = StateMgr.getContext();
     61 
     62   // Handle casts to Objective-C objects.
     63   if (CastToTy->isObjCObjectPointerType())
     64     return R->StripCasts();
     65 
     66   if (CastToTy->isBlockPointerType()) {
     67     // FIXME: We may need different solutions, depending on the symbol
     68     // involved.  Blocks can be casted to/from 'id', as they can be treated
     69     // as Objective-C objects.  This could possibly be handled by enhancing
     70     // our reasoning of downcasts of symbolic objects.
     71     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
     72       return R;
     73 
     74     // We don't know what to make of it.  Return a NULL region, which
     75     // will be interpretted as UnknownVal.
     76     return NULL;
     77   }
     78 
     79   // Now assume we are casting from pointer to pointer. Other cases should
     80   // already be handled.
     81   QualType PointeeTy = CastToTy->getPointeeType();
     82   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
     83 
     84   // Handle casts to void*.  We just pass the region through.
     85   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
     86     return R;
     87 
     88   // Handle casts from compatible types.
     89   if (R->isBoundable())
     90     if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
     91       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
     92       if (CanonPointeeTy == ObjTy)
     93         return R;
     94     }
     95 
     96   // Process region cast according to the kind of the region being cast.
     97   switch (R->getKind()) {
     98     case MemRegion::CXXThisRegionKind:
     99     case MemRegion::GenericMemSpaceRegionKind:
    100     case MemRegion::StackLocalsSpaceRegionKind:
    101     case MemRegion::StackArgumentsSpaceRegionKind:
    102     case MemRegion::HeapSpaceRegionKind:
    103     case MemRegion::UnknownSpaceRegionKind:
    104     case MemRegion::NonStaticGlobalSpaceRegionKind:
    105     case MemRegion::StaticGlobalSpaceRegionKind: {
    106       assert(0 && "Invalid region cast");
    107       break;
    108     }
    109 
    110     case MemRegion::FunctionTextRegionKind:
    111     case MemRegion::BlockTextRegionKind:
    112     case MemRegion::BlockDataRegionKind:
    113     case MemRegion::StringRegionKind:
    114       // FIXME: Need to handle arbitrary downcasts.
    115     case MemRegion::SymbolicRegionKind:
    116     case MemRegion::AllocaRegionKind:
    117     case MemRegion::CompoundLiteralRegionKind:
    118     case MemRegion::FieldRegionKind:
    119     case MemRegion::ObjCIvarRegionKind:
    120     case MemRegion::VarRegionKind:
    121     case MemRegion::CXXTempObjectRegionKind:
    122     case MemRegion::CXXBaseObjectRegionKind:
    123       return MakeElementRegion(R, PointeeTy);
    124 
    125     case MemRegion::ElementRegionKind: {
    126       // If we are casting from an ElementRegion to another type, the
    127       // algorithm is as follows:
    128       //
    129       // (1) Compute the "raw offset" of the ElementRegion from the
    130       //     base region.  This is done by calling 'getAsRawOffset()'.
    131       //
    132       // (2a) If we get a 'RegionRawOffset' after calling
    133       //      'getAsRawOffset()', determine if the absolute offset
    134       //      can be exactly divided into chunks of the size of the
    135       //      casted-pointee type.  If so, create a new ElementRegion with
    136       //      the pointee-cast type as the new ElementType and the index
    137       //      being the offset divded by the chunk size.  If not, create
    138       //      a new ElementRegion at offset 0 off the raw offset region.
    139       //
    140       // (2b) If we don't a get a 'RegionRawOffset' after calling
    141       //      'getAsRawOffset()', it means that we are at offset 0.
    142       //
    143       // FIXME: Handle symbolic raw offsets.
    144 
    145       const ElementRegion *elementR = cast<ElementRegion>(R);
    146       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
    147       const MemRegion *baseR = rawOff.getRegion();
    148 
    149       // If we cannot compute a raw offset, throw up our hands and return
    150       // a NULL MemRegion*.
    151       if (!baseR)
    152         return NULL;
    153 
    154       CharUnits off = rawOff.getOffset();
    155 
    156       if (off.isZero()) {
    157         // Edge case: we are at 0 bytes off the beginning of baseR.  We
    158         // check to see if type we are casting to is the same as the base
    159         // region.  If so, just return the base region.
    160         if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) {
    161           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
    162           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
    163           if (CanonPointeeTy == ObjTy)
    164             return baseR;
    165         }
    166 
    167         // Otherwise, create a new ElementRegion at offset 0.
    168         return MakeElementRegion(baseR, PointeeTy);
    169       }
    170 
    171       // We have a non-zero offset from the base region.  We want to determine
    172       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
    173       // we create an ElementRegion whose index is that value.  Otherwise, we
    174       // create two ElementRegions, one that reflects a raw offset and the other
    175       // that reflects the cast.
    176 
    177       // Compute the index for the new ElementRegion.
    178       int64_t newIndex = 0;
    179       const MemRegion *newSuperR = 0;
    180 
    181       // We can only compute sizeof(PointeeTy) if it is a complete type.
    182       if (IsCompleteType(Ctx, PointeeTy)) {
    183         // Compute the size in **bytes**.
    184         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
    185         if (!pointeeTySize.isZero()) {
    186           // Is the offset a multiple of the size?  If so, we can layer the
    187           // ElementRegion (with elementType == PointeeTy) directly on top of
    188           // the base region.
    189           if (off % pointeeTySize == 0) {
    190             newIndex = off / pointeeTySize;
    191             newSuperR = baseR;
    192           }
    193         }
    194       }
    195 
    196       if (!newSuperR) {
    197         // Create an intermediate ElementRegion to represent the raw byte.
    198         // This will be the super region of the final ElementRegion.
    199         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
    200       }
    201 
    202       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
    203     }
    204   }
    205 
    206   assert(0 && "unreachable");
    207   return 0;
    208 }
    209 
    210 
    211 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
    212 ///  implicit casts that arise from loads from regions that are reinterpreted
    213 ///  as another region.
    214 SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R,
    215                                     QualType castTy, bool performTestOnly) {
    216 
    217   if (castTy.isNull())
    218     return V;
    219 
    220   ASTContext &Ctx = svalBuilder.getContext();
    221 
    222   if (performTestOnly) {
    223     // Automatically translate references to pointers.
    224     QualType T = R->getValueType();
    225     if (const ReferenceType *RT = T->getAs<ReferenceType>())
    226       T = Ctx.getPointerType(RT->getPointeeType());
    227 
    228     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
    229     return V;
    230   }
    231 
    232   if (const Loc *L = dyn_cast<Loc>(&V))
    233     return svalBuilder.evalCastFromLoc(*L, castTy);
    234   else if (const NonLoc *NL = dyn_cast<NonLoc>(&V))
    235     return svalBuilder.evalCastFromNonLoc(*NL, castTy);
    236 
    237   return V;
    238 }
    239 
    240 SVal StoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) {
    241   if (Base.isUnknownOrUndef())
    242     return Base;
    243 
    244   Loc BaseL = cast<Loc>(Base);
    245   const MemRegion* BaseR = 0;
    246 
    247   switch (BaseL.getSubKind()) {
    248   case loc::MemRegionKind:
    249     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
    250     break;
    251 
    252   case loc::GotoLabelKind:
    253     // These are anormal cases. Flag an undefined value.
    254     return UndefinedVal();
    255 
    256   case loc::ConcreteIntKind:
    257     // While these seem funny, this can happen through casts.
    258     // FIXME: What we should return is the field offset.  For example,
    259     //  add the field offset to the integer value.  That way funny things
    260     //  like this work properly:  &(((struct foo *) 0xa)->f)
    261     return Base;
    262 
    263   default:
    264     assert(0 && "Unhandled Base.");
    265     return Base;
    266   }
    267 
    268   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
    269   // of FieldDecl.
    270   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
    271     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
    272 
    273   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
    274 }
    275 
    276 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
    277                                     SVal Base) {
    278 
    279   // If the base is an unknown or undefined value, just return it back.
    280   // FIXME: For absolute pointer addresses, we just return that value back as
    281   //  well, although in reality we should return the offset added to that
    282   //  value.
    283   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
    284     return Base;
    285 
    286   const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
    287 
    288   // Pointer of any type can be cast and used as array base.
    289   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
    290 
    291   // Convert the offset to the appropriate size and signedness.
    292   Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
    293 
    294   if (!ElemR) {
    295     //
    296     // If the base region is not an ElementRegion, create one.
    297     // This can happen in the following example:
    298     //
    299     //   char *p = __builtin_alloc(10);
    300     //   p[1] = 8;
    301     //
    302     //  Observe that 'p' binds to an AllocaRegion.
    303     //
    304     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    305                                                     BaseRegion, Ctx));
    306   }
    307 
    308   SVal BaseIdx = ElemR->getIndex();
    309 
    310   if (!isa<nonloc::ConcreteInt>(BaseIdx))
    311     return UnknownVal();
    312 
    313   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
    314 
    315   // Only allow non-integer offsets if the base region has no offset itself.
    316   // FIXME: This is a somewhat arbitrary restriction. We should be using
    317   // SValBuilder here to add the two offsets without checking their types.
    318   if (!isa<nonloc::ConcreteInt>(Offset)) {
    319     if (isa<ElementRegion>(BaseRegion->StripCasts()))
    320       return UnknownVal();
    321 
    322     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    323                                                     ElemR->getSuperRegion(),
    324                                                     Ctx));
    325   }
    326 
    327   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
    328   assert(BaseIdxI.isSigned());
    329 
    330   // Compute the new index.
    331   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
    332                                                                     OffI));
    333 
    334   // Construct the new ElementRegion.
    335   const MemRegion *ArrayR = ElemR->getSuperRegion();
    336   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
    337                                                   Ctx));
    338 }
    339