Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DominatorTree class, which provides fast and efficient
     11 // dominance queries.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_DOMINATORS_H
     16 #define LLVM_ANALYSIS_DOMINATORS_H
     17 
     18 #include "llvm/Pass.h"
     19 #include "llvm/Function.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/GraphTraits.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Support/Compiler.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <algorithm>
     29 
     30 namespace llvm {
     31 
     32 //===----------------------------------------------------------------------===//
     33 /// DominatorBase - Base class that other, more interesting dominator analyses
     34 /// inherit from.
     35 ///
     36 template <class NodeT>
     37 class DominatorBase {
     38 protected:
     39   std::vector<NodeT*> Roots;
     40   const bool IsPostDominators;
     41   inline explicit DominatorBase(bool isPostDom) :
     42     Roots(), IsPostDominators(isPostDom) {}
     43 public:
     44 
     45   /// getRoots - Return the root blocks of the current CFG.  This may include
     46   /// multiple blocks if we are computing post dominators.  For forward
     47   /// dominators, this will always be a single block (the entry node).
     48   ///
     49   inline const std::vector<NodeT*> &getRoots() const { return Roots; }
     50 
     51   /// isPostDominator - Returns true if analysis based of postdoms
     52   ///
     53   bool isPostDominator() const { return IsPostDominators; }
     54 };
     55 
     56 
     57 //===----------------------------------------------------------------------===//
     58 // DomTreeNode - Dominator Tree Node
     59 template<class NodeT> class DominatorTreeBase;
     60 struct PostDominatorTree;
     61 class MachineBasicBlock;
     62 
     63 template <class NodeT>
     64 class DomTreeNodeBase {
     65   NodeT *TheBB;
     66   DomTreeNodeBase<NodeT> *IDom;
     67   std::vector<DomTreeNodeBase<NodeT> *> Children;
     68   int DFSNumIn, DFSNumOut;
     69 
     70   template<class N> friend class DominatorTreeBase;
     71   friend struct PostDominatorTree;
     72 public:
     73   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
     74   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
     75                    const_iterator;
     76 
     77   iterator begin()             { return Children.begin(); }
     78   iterator end()               { return Children.end(); }
     79   const_iterator begin() const { return Children.begin(); }
     80   const_iterator end()   const { return Children.end(); }
     81 
     82   NodeT *getBlock() const { return TheBB; }
     83   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
     84   const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
     85     return Children;
     86   }
     87 
     88   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
     89     : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
     90 
     91   DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
     92     Children.push_back(C);
     93     return C;
     94   }
     95 
     96   size_t getNumChildren() const {
     97     return Children.size();
     98   }
     99 
    100   void clearAllChildren() {
    101     Children.clear();
    102   }
    103 
    104   bool compare(DomTreeNodeBase<NodeT> *Other) {
    105     if (getNumChildren() != Other->getNumChildren())
    106       return true;
    107 
    108     SmallPtrSet<NodeT *, 4> OtherChildren;
    109     for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
    110       NodeT *Nd = (*I)->getBlock();
    111       OtherChildren.insert(Nd);
    112     }
    113 
    114     for (iterator I = begin(), E = end(); I != E; ++I) {
    115       NodeT *N = (*I)->getBlock();
    116       if (OtherChildren.count(N) == 0)
    117         return true;
    118     }
    119     return false;
    120   }
    121 
    122   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
    123     assert(IDom && "No immediate dominator?");
    124     if (IDom != NewIDom) {
    125       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
    126                   std::find(IDom->Children.begin(), IDom->Children.end(), this);
    127       assert(I != IDom->Children.end() &&
    128              "Not in immediate dominator children set!");
    129       // I am no longer your child...
    130       IDom->Children.erase(I);
    131 
    132       // Switch to new dominator
    133       IDom = NewIDom;
    134       IDom->Children.push_back(this);
    135     }
    136   }
    137 
    138   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
    139   /// not call them.
    140   unsigned getDFSNumIn() const { return DFSNumIn; }
    141   unsigned getDFSNumOut() const { return DFSNumOut; }
    142 private:
    143   // Return true if this node is dominated by other. Use this only if DFS info
    144   // is valid.
    145   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
    146     return this->DFSNumIn >= other->DFSNumIn &&
    147       this->DFSNumOut <= other->DFSNumOut;
    148   }
    149 };
    150 
    151 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
    152 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
    153 
    154 template<class NodeT>
    155 static raw_ostream &operator<<(raw_ostream &o,
    156                                const DomTreeNodeBase<NodeT> *Node) {
    157   if (Node->getBlock())
    158     WriteAsOperand(o, Node->getBlock(), false);
    159   else
    160     o << " <<exit node>>";
    161 
    162   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
    163 
    164   return o << "\n";
    165 }
    166 
    167 template<class NodeT>
    168 static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
    169                          unsigned Lev) {
    170   o.indent(2*Lev) << "[" << Lev << "] " << N;
    171   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
    172        E = N->end(); I != E; ++I)
    173     PrintDomTree<NodeT>(*I, o, Lev+1);
    174 }
    175 
    176 typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
    177 
    178 //===----------------------------------------------------------------------===//
    179 /// DominatorTree - Calculate the immediate dominator tree for a function.
    180 ///
    181 
    182 template<class FuncT, class N>
    183 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
    184                FuncT& F);
    185 
    186 template<class NodeT>
    187 class DominatorTreeBase : public DominatorBase<NodeT> {
    188 protected:
    189   typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
    190   DomTreeNodeMapType DomTreeNodes;
    191   DomTreeNodeBase<NodeT> *RootNode;
    192 
    193   bool DFSInfoValid;
    194   unsigned int SlowQueries;
    195   // Information record used during immediate dominators computation.
    196   struct InfoRec {
    197     unsigned DFSNum;
    198     unsigned Parent;
    199     unsigned Semi;
    200     NodeT *Label;
    201 
    202     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
    203   };
    204 
    205   DenseMap<NodeT*, NodeT*> IDoms;
    206 
    207   // Vertex - Map the DFS number to the BasicBlock*
    208   std::vector<NodeT*> Vertex;
    209 
    210   // Info - Collection of information used during the computation of idoms.
    211   DenseMap<NodeT*, InfoRec> Info;
    212 
    213   void reset() {
    214     for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
    215            E = DomTreeNodes.end(); I != E; ++I)
    216       delete I->second;
    217     DomTreeNodes.clear();
    218     IDoms.clear();
    219     this->Roots.clear();
    220     Vertex.clear();
    221     RootNode = 0;
    222   }
    223 
    224   // NewBB is split and now it has one successor. Update dominator tree to
    225   // reflect this change.
    226   template<class N, class GraphT>
    227   void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
    228              typename GraphT::NodeType* NewBB) {
    229     assert(std::distance(GraphT::child_begin(NewBB),
    230                          GraphT::child_end(NewBB)) == 1 &&
    231            "NewBB should have a single successor!");
    232     typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
    233 
    234     std::vector<typename GraphT::NodeType*> PredBlocks;
    235     typedef GraphTraits<Inverse<N> > InvTraits;
    236     for (typename InvTraits::ChildIteratorType PI =
    237          InvTraits::child_begin(NewBB),
    238          PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
    239       PredBlocks.push_back(*PI);
    240 
    241     assert(!PredBlocks.empty() && "No predblocks?");
    242 
    243     bool NewBBDominatesNewBBSucc = true;
    244     for (typename InvTraits::ChildIteratorType PI =
    245          InvTraits::child_begin(NewBBSucc),
    246          E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
    247       typename InvTraits::NodeType *ND = *PI;
    248       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
    249           DT.isReachableFromEntry(ND)) {
    250         NewBBDominatesNewBBSucc = false;
    251         break;
    252       }
    253     }
    254 
    255     // Find NewBB's immediate dominator and create new dominator tree node for
    256     // NewBB.
    257     NodeT *NewBBIDom = 0;
    258     unsigned i = 0;
    259     for (i = 0; i < PredBlocks.size(); ++i)
    260       if (DT.isReachableFromEntry(PredBlocks[i])) {
    261         NewBBIDom = PredBlocks[i];
    262         break;
    263       }
    264 
    265     // It's possible that none of the predecessors of NewBB are reachable;
    266     // in that case, NewBB itself is unreachable, so nothing needs to be
    267     // changed.
    268     if (!NewBBIDom)
    269       return;
    270 
    271     for (i = i + 1; i < PredBlocks.size(); ++i) {
    272       if (DT.isReachableFromEntry(PredBlocks[i]))
    273         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
    274     }
    275 
    276     // Create the new dominator tree node... and set the idom of NewBB.
    277     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
    278 
    279     // If NewBB strictly dominates other blocks, then it is now the immediate
    280     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
    281     if (NewBBDominatesNewBBSucc) {
    282       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
    283       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
    284     }
    285   }
    286 
    287 public:
    288   explicit DominatorTreeBase(bool isPostDom)
    289     : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
    290   virtual ~DominatorTreeBase() { reset(); }
    291 
    292   /// compare - Return false if the other dominator tree base matches this
    293   /// dominator tree base. Otherwise return true.
    294   bool compare(DominatorTreeBase &Other) const {
    295 
    296     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
    297     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
    298       return true;
    299 
    300     for (typename DomTreeNodeMapType::const_iterator
    301            I = this->DomTreeNodes.begin(),
    302            E = this->DomTreeNodes.end(); I != E; ++I) {
    303       NodeT *BB = I->first;
    304       typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
    305       if (OI == OtherDomTreeNodes.end())
    306         return true;
    307 
    308       DomTreeNodeBase<NodeT>* MyNd = I->second;
    309       DomTreeNodeBase<NodeT>* OtherNd = OI->second;
    310 
    311       if (MyNd->compare(OtherNd))
    312         return true;
    313     }
    314 
    315     return false;
    316   }
    317 
    318   virtual void releaseMemory() { reset(); }
    319 
    320   /// getNode - return the (Post)DominatorTree node for the specified basic
    321   /// block.  This is the same as using operator[] on this class.
    322   ///
    323   inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
    324     typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
    325     return I != DomTreeNodes.end() ? I->second : 0;
    326   }
    327 
    328   /// getRootNode - This returns the entry node for the CFG of the function.  If
    329   /// this tree represents the post-dominance relations for a function, however,
    330   /// this root may be a node with the block == NULL.  This is the case when
    331   /// there are multiple exit nodes from a particular function.  Consumers of
    332   /// post-dominance information must be capable of dealing with this
    333   /// possibility.
    334   ///
    335   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
    336   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
    337 
    338   /// properlyDominates - Returns true iff this dominates N and this != N.
    339   /// Note that this is not a constant time operation!
    340   ///
    341   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
    342                          const DomTreeNodeBase<NodeT> *B) const {
    343     if (A == 0 || B == 0) return false;
    344     return dominatedBySlowTreeWalk(A, B);
    345   }
    346 
    347   inline bool properlyDominates(const NodeT *A, const NodeT *B) {
    348     if (A == B)
    349       return false;
    350 
    351     // Cast away the const qualifiers here. This is ok since
    352     // this function doesn't actually return the values returned
    353     // from getNode.
    354     return properlyDominates(getNode(const_cast<NodeT *>(A)),
    355                              getNode(const_cast<NodeT *>(B)));
    356   }
    357 
    358   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
    359                                const DomTreeNodeBase<NodeT> *B) const {
    360     const DomTreeNodeBase<NodeT> *IDom;
    361     if (A == 0 || B == 0) return false;
    362     while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
    363       B = IDom;   // Walk up the tree
    364     return IDom != 0;
    365   }
    366 
    367 
    368   /// isReachableFromEntry - Return true if A is dominated by the entry
    369   /// block of the function containing it.
    370   bool isReachableFromEntry(const NodeT* A) {
    371     assert(!this->isPostDominator() &&
    372            "This is not implemented for post dominators");
    373     return dominates(&A->getParent()->front(), A);
    374   }
    375 
    376   /// dominates - Returns true iff A dominates B.  Note that this is not a
    377   /// constant time operation!
    378   ///
    379   inline bool dominates(const DomTreeNodeBase<NodeT> *A,
    380                         const DomTreeNodeBase<NodeT> *B) {
    381     if (B == A)
    382       return true;  // A node trivially dominates itself.
    383 
    384     if (A == 0 || B == 0)
    385       return false;
    386 
    387     // Compare the result of the tree walk and the dfs numbers, if expensive
    388     // checks are enabled.
    389 #ifdef XDEBUG
    390     assert((!DFSInfoValid ||
    391             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
    392            "Tree walk disagrees with dfs numbers!");
    393 #endif
    394 
    395     if (DFSInfoValid)
    396       return B->DominatedBy(A);
    397 
    398     // If we end up with too many slow queries, just update the
    399     // DFS numbers on the theory that we are going to keep querying.
    400     SlowQueries++;
    401     if (SlowQueries > 32) {
    402       updateDFSNumbers();
    403       return B->DominatedBy(A);
    404     }
    405 
    406     return dominatedBySlowTreeWalk(A, B);
    407   }
    408 
    409   inline bool dominates(const NodeT *A, const NodeT *B) {
    410     if (A == B)
    411       return true;
    412 
    413     // Cast away the const qualifiers here. This is ok since
    414     // this function doesn't actually return the values returned
    415     // from getNode.
    416     return dominates(getNode(const_cast<NodeT *>(A)),
    417                      getNode(const_cast<NodeT *>(B)));
    418   }
    419 
    420   NodeT *getRoot() const {
    421     assert(this->Roots.size() == 1 && "Should always have entry node!");
    422     return this->Roots[0];
    423   }
    424 
    425   /// findNearestCommonDominator - Find nearest common dominator basic block
    426   /// for basic block A and B. If there is no such block then return NULL.
    427   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
    428     assert(A->getParent() == B->getParent() &&
    429            "Two blocks are not in same function");
    430 
    431     // If either A or B is a entry block then it is nearest common dominator
    432     // (for forward-dominators).
    433     if (!this->isPostDominator()) {
    434       NodeT &Entry = A->getParent()->front();
    435       if (A == &Entry || B == &Entry)
    436         return &Entry;
    437     }
    438 
    439     // If B dominates A then B is nearest common dominator.
    440     if (dominates(B, A))
    441       return B;
    442 
    443     // If A dominates B then A is nearest common dominator.
    444     if (dominates(A, B))
    445       return A;
    446 
    447     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
    448     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
    449 
    450     // Collect NodeA dominators set.
    451     SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
    452     NodeADoms.insert(NodeA);
    453     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
    454     while (IDomA) {
    455       NodeADoms.insert(IDomA);
    456       IDomA = IDomA->getIDom();
    457     }
    458 
    459     // Walk NodeB immediate dominators chain and find common dominator node.
    460     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
    461     while (IDomB) {
    462       if (NodeADoms.count(IDomB) != 0)
    463         return IDomB->getBlock();
    464 
    465       IDomB = IDomB->getIDom();
    466     }
    467 
    468     return NULL;
    469   }
    470 
    471   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
    472     // Cast away the const qualifiers here. This is ok since
    473     // const is re-introduced on the return type.
    474     return findNearestCommonDominator(const_cast<NodeT *>(A),
    475                                       const_cast<NodeT *>(B));
    476   }
    477 
    478   //===--------------------------------------------------------------------===//
    479   // API to update (Post)DominatorTree information based on modifications to
    480   // the CFG...
    481 
    482   /// addNewBlock - Add a new node to the dominator tree information.  This
    483   /// creates a new node as a child of DomBB dominator node,linking it into
    484   /// the children list of the immediate dominator.
    485   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
    486     assert(getNode(BB) == 0 && "Block already in dominator tree!");
    487     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
    488     assert(IDomNode && "Not immediate dominator specified for block!");
    489     DFSInfoValid = false;
    490     return DomTreeNodes[BB] =
    491       IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
    492   }
    493 
    494   /// changeImmediateDominator - This method is used to update the dominator
    495   /// tree information when a node's immediate dominator changes.
    496   ///
    497   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
    498                                 DomTreeNodeBase<NodeT> *NewIDom) {
    499     assert(N && NewIDom && "Cannot change null node pointers!");
    500     DFSInfoValid = false;
    501     N->setIDom(NewIDom);
    502   }
    503 
    504   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
    505     changeImmediateDominator(getNode(BB), getNode(NewBB));
    506   }
    507 
    508   /// eraseNode - Removes a node from the dominator tree. Block must not
    509   /// dominate any other blocks. Removes node from its immediate dominator's
    510   /// children list. Deletes dominator node associated with basic block BB.
    511   void eraseNode(NodeT *BB) {
    512     DomTreeNodeBase<NodeT> *Node = getNode(BB);
    513     assert(Node && "Removing node that isn't in dominator tree.");
    514     assert(Node->getChildren().empty() && "Node is not a leaf node.");
    515 
    516       // Remove node from immediate dominator's children list.
    517     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
    518     if (IDom) {
    519       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
    520         std::find(IDom->Children.begin(), IDom->Children.end(), Node);
    521       assert(I != IDom->Children.end() &&
    522              "Not in immediate dominator children set!");
    523       // I am no longer your child...
    524       IDom->Children.erase(I);
    525     }
    526 
    527     DomTreeNodes.erase(BB);
    528     delete Node;
    529   }
    530 
    531   /// removeNode - Removes a node from the dominator tree.  Block must not
    532   /// dominate any other blocks.  Invalidates any node pointing to removed
    533   /// block.
    534   void removeNode(NodeT *BB) {
    535     assert(getNode(BB) && "Removing node that isn't in dominator tree.");
    536     DomTreeNodes.erase(BB);
    537   }
    538 
    539   /// splitBlock - BB is split and now it has one successor. Update dominator
    540   /// tree to reflect this change.
    541   void splitBlock(NodeT* NewBB) {
    542     if (this->IsPostDominators)
    543       this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
    544     else
    545       this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
    546   }
    547 
    548   /// print - Convert to human readable form
    549   ///
    550   void print(raw_ostream &o) const {
    551     o << "=============================--------------------------------\n";
    552     if (this->isPostDominator())
    553       o << "Inorder PostDominator Tree: ";
    554     else
    555       o << "Inorder Dominator Tree: ";
    556     if (!this->DFSInfoValid)
    557       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
    558     o << "\n";
    559 
    560     // The postdom tree can have a null root if there are no returns.
    561     if (getRootNode())
    562       PrintDomTree<NodeT>(getRootNode(), o, 1);
    563   }
    564 
    565 protected:
    566   template<class GraphT>
    567   friend typename GraphT::NodeType* Eval(
    568                                DominatorTreeBase<typename GraphT::NodeType>& DT,
    569                                          typename GraphT::NodeType* V,
    570                                          unsigned LastLinked);
    571 
    572   template<class GraphT>
    573   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
    574                           typename GraphT::NodeType* V,
    575                           unsigned N);
    576 
    577   template<class FuncT, class N>
    578   friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
    579                         FuncT& F);
    580 
    581   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
    582   /// dominator tree in dfs order.
    583   void updateDFSNumbers() {
    584     unsigned DFSNum = 0;
    585 
    586     SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
    587                 typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
    588 
    589     DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
    590 
    591     if (!ThisRoot)
    592       return;
    593 
    594     // Even in the case of multiple exits that form the post dominator root
    595     // nodes, do not iterate over all exits, but start from the virtual root
    596     // node. Otherwise bbs, that are not post dominated by any exit but by the
    597     // virtual root node, will never be assigned a DFS number.
    598     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
    599     ThisRoot->DFSNumIn = DFSNum++;
    600 
    601     while (!WorkStack.empty()) {
    602       DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
    603       typename DomTreeNodeBase<NodeT>::iterator ChildIt =
    604         WorkStack.back().second;
    605 
    606       // If we visited all of the children of this node, "recurse" back up the
    607       // stack setting the DFOutNum.
    608       if (ChildIt == Node->end()) {
    609         Node->DFSNumOut = DFSNum++;
    610         WorkStack.pop_back();
    611       } else {
    612         // Otherwise, recursively visit this child.
    613         DomTreeNodeBase<NodeT> *Child = *ChildIt;
    614         ++WorkStack.back().second;
    615 
    616         WorkStack.push_back(std::make_pair(Child, Child->begin()));
    617         Child->DFSNumIn = DFSNum++;
    618       }
    619     }
    620 
    621     SlowQueries = 0;
    622     DFSInfoValid = true;
    623   }
    624 
    625   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
    626     typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
    627     if (I != this->DomTreeNodes.end() && I->second)
    628       return I->second;
    629 
    630     // Haven't calculated this node yet?  Get or calculate the node for the
    631     // immediate dominator.
    632     NodeT *IDom = getIDom(BB);
    633 
    634     assert(IDom || this->DomTreeNodes[NULL]);
    635     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
    636 
    637     // Add a new tree node for this BasicBlock, and link it as a child of
    638     // IDomNode
    639     DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
    640     return this->DomTreeNodes[BB] = IDomNode->addChild(C);
    641   }
    642 
    643   inline NodeT *getIDom(NodeT *BB) const {
    644     typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
    645     return I != IDoms.end() ? I->second : 0;
    646   }
    647 
    648   inline void addRoot(NodeT* BB) {
    649     this->Roots.push_back(BB);
    650   }
    651 
    652 public:
    653   /// recalculate - compute a dominator tree for the given function
    654   template<class FT>
    655   void recalculate(FT& F) {
    656     reset();
    657     this->Vertex.push_back(0);
    658 
    659     if (!this->IsPostDominators) {
    660       // Initialize root
    661       this->Roots.push_back(&F.front());
    662       this->IDoms[&F.front()] = 0;
    663       this->DomTreeNodes[&F.front()] = 0;
    664 
    665       Calculate<FT, NodeT*>(*this, F);
    666     } else {
    667       // Initialize the roots list
    668       for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    669         if (std::distance(GraphTraits<FT*>::child_begin(I),
    670                           GraphTraits<FT*>::child_end(I)) == 0)
    671           addRoot(I);
    672 
    673         // Prepopulate maps so that we don't get iterator invalidation issues later.
    674         this->IDoms[I] = 0;
    675         this->DomTreeNodes[I] = 0;
    676       }
    677 
    678       Calculate<FT, Inverse<NodeT*> >(*this, F);
    679     }
    680   }
    681 };
    682 
    683 EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
    684 
    685 //===-------------------------------------
    686 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
    687 /// compute a normal dominator tree.
    688 ///
    689 class DominatorTree : public FunctionPass {
    690 public:
    691   static char ID; // Pass ID, replacement for typeid
    692   DominatorTreeBase<BasicBlock>* DT;
    693 
    694   DominatorTree() : FunctionPass(ID) {
    695     initializeDominatorTreePass(*PassRegistry::getPassRegistry());
    696     DT = new DominatorTreeBase<BasicBlock>(false);
    697   }
    698 
    699   ~DominatorTree() {
    700     delete DT;
    701   }
    702 
    703   DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
    704 
    705   /// getRoots - Return the root blocks of the current CFG.  This may include
    706   /// multiple blocks if we are computing post dominators.  For forward
    707   /// dominators, this will always be a single block (the entry node).
    708   ///
    709   inline const std::vector<BasicBlock*> &getRoots() const {
    710     return DT->getRoots();
    711   }
    712 
    713   inline BasicBlock *getRoot() const {
    714     return DT->getRoot();
    715   }
    716 
    717   inline DomTreeNode *getRootNode() const {
    718     return DT->getRootNode();
    719   }
    720 
    721   /// compare - Return false if the other dominator tree matches this
    722   /// dominator tree. Otherwise return true.
    723   inline bool compare(DominatorTree &Other) const {
    724     DomTreeNode *R = getRootNode();
    725     DomTreeNode *OtherR = Other.getRootNode();
    726 
    727     if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
    728       return true;
    729 
    730     if (DT->compare(Other.getBase()))
    731       return true;
    732 
    733     return false;
    734   }
    735 
    736   virtual bool runOnFunction(Function &F);
    737 
    738   virtual void verifyAnalysis() const;
    739 
    740   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    741     AU.setPreservesAll();
    742   }
    743 
    744   inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
    745     return DT->dominates(A, B);
    746   }
    747 
    748   inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
    749     return DT->dominates(A, B);
    750   }
    751 
    752   // dominates - Return true if A dominates B. This performs the
    753   // special checks necessary if A and B are in the same basic block.
    754   bool dominates(const Instruction *A, const Instruction *B) const;
    755 
    756   bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
    757     return DT->properlyDominates(A, B);
    758   }
    759 
    760   bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
    761     return DT->properlyDominates(A, B);
    762   }
    763 
    764   /// findNearestCommonDominator - Find nearest common dominator basic block
    765   /// for basic block A and B. If there is no such block then return NULL.
    766   inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
    767     return DT->findNearestCommonDominator(A, B);
    768   }
    769 
    770   inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
    771                                                       const BasicBlock *B) {
    772     return DT->findNearestCommonDominator(A, B);
    773   }
    774 
    775   inline DomTreeNode *operator[](BasicBlock *BB) const {
    776     return DT->getNode(BB);
    777   }
    778 
    779   /// getNode - return the (Post)DominatorTree node for the specified basic
    780   /// block.  This is the same as using operator[] on this class.
    781   ///
    782   inline DomTreeNode *getNode(BasicBlock *BB) const {
    783     return DT->getNode(BB);
    784   }
    785 
    786   /// addNewBlock - Add a new node to the dominator tree information.  This
    787   /// creates a new node as a child of DomBB dominator node,linking it into
    788   /// the children list of the immediate dominator.
    789   inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
    790     return DT->addNewBlock(BB, DomBB);
    791   }
    792 
    793   /// changeImmediateDominator - This method is used to update the dominator
    794   /// tree information when a node's immediate dominator changes.
    795   ///
    796   inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
    797     DT->changeImmediateDominator(N, NewIDom);
    798   }
    799 
    800   inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
    801     DT->changeImmediateDominator(N, NewIDom);
    802   }
    803 
    804   /// eraseNode - Removes a node from the dominator tree. Block must not
    805   /// dominate any other blocks. Removes node from its immediate dominator's
    806   /// children list. Deletes dominator node associated with basic block BB.
    807   inline void eraseNode(BasicBlock *BB) {
    808     DT->eraseNode(BB);
    809   }
    810 
    811   /// splitBlock - BB is split and now it has one successor. Update dominator
    812   /// tree to reflect this change.
    813   inline void splitBlock(BasicBlock* NewBB) {
    814     DT->splitBlock(NewBB);
    815   }
    816 
    817   bool isReachableFromEntry(const BasicBlock* A) {
    818     return DT->isReachableFromEntry(A);
    819   }
    820 
    821 
    822   virtual void releaseMemory() {
    823     DT->releaseMemory();
    824   }
    825 
    826   virtual void print(raw_ostream &OS, const Module* M= 0) const;
    827 };
    828 
    829 //===-------------------------------------
    830 /// DominatorTree GraphTraits specialization so the DominatorTree can be
    831 /// iterable by generic graph iterators.
    832 ///
    833 template <> struct GraphTraits<DomTreeNode*> {
    834   typedef DomTreeNode NodeType;
    835   typedef NodeType::iterator  ChildIteratorType;
    836 
    837   static NodeType *getEntryNode(NodeType *N) {
    838     return N;
    839   }
    840   static inline ChildIteratorType child_begin(NodeType *N) {
    841     return N->begin();
    842   }
    843   static inline ChildIteratorType child_end(NodeType *N) {
    844     return N->end();
    845   }
    846 
    847   typedef df_iterator<DomTreeNode*> nodes_iterator;
    848 
    849   static nodes_iterator nodes_begin(DomTreeNode *N) {
    850     return df_begin(getEntryNode(N));
    851   }
    852 
    853   static nodes_iterator nodes_end(DomTreeNode *N) {
    854     return df_end(getEntryNode(N));
    855   }
    856 };
    857 
    858 template <> struct GraphTraits<DominatorTree*>
    859   : public GraphTraits<DomTreeNode*> {
    860   static NodeType *getEntryNode(DominatorTree *DT) {
    861     return DT->getRootNode();
    862   }
    863 
    864   static nodes_iterator nodes_begin(DominatorTree *N) {
    865     return df_begin(getEntryNode(N));
    866   }
    867 
    868   static nodes_iterator nodes_end(DominatorTree *N) {
    869     return df_end(getEntryNode(N));
    870   }
    871 };
    872 
    873 
    874 } // End llvm namespace
    875 
    876 #endif
    877