1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilties. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/DerivedTypes.h" 16 #include "llvm/Function.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/LLVMContext.h" 20 #include "llvm/Module.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/Target/TargetLowering.h" 25 #include "llvm/Target/TargetOptions.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 using namespace llvm; 29 30 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 31 /// of insertvalue or extractvalue indices that identify a member, return 32 /// the linearized index of the start of the member. 33 /// 34 unsigned llvm::ComputeLinearIndex(Type *Ty, 35 const unsigned *Indices, 36 const unsigned *IndicesEnd, 37 unsigned CurIndex) { 38 // Base case: We're done. 39 if (Indices && Indices == IndicesEnd) 40 return CurIndex; 41 42 // Given a struct type, recursively traverse the elements. 43 if (StructType *STy = dyn_cast<StructType>(Ty)) { 44 for (StructType::element_iterator EB = STy->element_begin(), 45 EI = EB, 46 EE = STy->element_end(); 47 EI != EE; ++EI) { 48 if (Indices && *Indices == unsigned(EI - EB)) 49 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 50 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 51 } 52 return CurIndex; 53 } 54 // Given an array type, recursively traverse the elements. 55 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 56 Type *EltTy = ATy->getElementType(); 57 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 58 if (Indices && *Indices == i) 59 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 60 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 61 } 62 return CurIndex; 63 } 64 // We haven't found the type we're looking for, so keep searching. 65 return CurIndex + 1; 66 } 67 68 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 69 /// EVTs that represent all the individual underlying 70 /// non-aggregate types that comprise it. 71 /// 72 /// If Offsets is non-null, it points to a vector to be filled in 73 /// with the in-memory offsets of each of the individual values. 74 /// 75 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 76 SmallVectorImpl<EVT> &ValueVTs, 77 SmallVectorImpl<uint64_t> *Offsets, 78 uint64_t StartingOffset) { 79 // Given a struct type, recursively traverse the elements. 80 if (StructType *STy = dyn_cast<StructType>(Ty)) { 81 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); 82 for (StructType::element_iterator EB = STy->element_begin(), 83 EI = EB, 84 EE = STy->element_end(); 85 EI != EE; ++EI) 86 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 87 StartingOffset + SL->getElementOffset(EI - EB)); 88 return; 89 } 90 // Given an array type, recursively traverse the elements. 91 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 92 Type *EltTy = ATy->getElementType(); 93 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); 94 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 95 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 96 StartingOffset + i * EltSize); 97 return; 98 } 99 // Interpret void as zero return values. 100 if (Ty->isVoidTy()) 101 return; 102 // Base case: we can get an EVT for this LLVM IR type. 103 ValueVTs.push_back(TLI.getValueType(Ty)); 104 if (Offsets) 105 Offsets->push_back(StartingOffset); 106 } 107 108 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 109 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 110 V = V->stripPointerCasts(); 111 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 112 113 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 114 assert(GV->hasInitializer() && 115 "The EH catch-all value must have an initializer"); 116 Value *Init = GV->getInitializer(); 117 GV = dyn_cast<GlobalVariable>(Init); 118 if (!GV) V = cast<ConstantPointerNull>(Init); 119 } 120 121 assert((GV || isa<ConstantPointerNull>(V)) && 122 "TypeInfo must be a global variable or NULL"); 123 return GV; 124 } 125 126 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 127 /// processed uses a memory 'm' constraint. 128 bool 129 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 130 const TargetLowering &TLI) { 131 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 132 InlineAsm::ConstraintInfo &CI = CInfos[i]; 133 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 134 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 135 if (CType == TargetLowering::C_Memory) 136 return true; 137 } 138 139 // Indirect operand accesses access memory. 140 if (CI.isIndirect) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// getFCmpCondCode - Return the ISD condition code corresponding to 148 /// the given LLVM IR floating-point condition code. This includes 149 /// consideration of global floating-point math flags. 150 /// 151 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 152 ISD::CondCode FPC, FOC; 153 switch (Pred) { 154 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 155 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 156 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 157 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 158 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 159 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 160 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 161 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 162 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 163 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 164 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 165 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 166 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 167 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 168 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 169 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 170 default: 171 llvm_unreachable("Invalid FCmp predicate opcode!"); 172 FOC = FPC = ISD::SETFALSE; 173 break; 174 } 175 if (NoNaNsFPMath) 176 return FOC; 177 else 178 return FPC; 179 } 180 181 /// getICmpCondCode - Return the ISD condition code corresponding to 182 /// the given LLVM IR integer condition code. 183 /// 184 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 185 switch (Pred) { 186 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 187 case ICmpInst::ICMP_NE: return ISD::SETNE; 188 case ICmpInst::ICMP_SLE: return ISD::SETLE; 189 case ICmpInst::ICMP_ULE: return ISD::SETULE; 190 case ICmpInst::ICMP_SGE: return ISD::SETGE; 191 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 192 case ICmpInst::ICMP_SLT: return ISD::SETLT; 193 case ICmpInst::ICMP_ULT: return ISD::SETULT; 194 case ICmpInst::ICMP_SGT: return ISD::SETGT; 195 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 196 default: 197 llvm_unreachable("Invalid ICmp predicate opcode!"); 198 return ISD::SETNE; 199 } 200 } 201 202 /// Test if the given instruction is in a position to be optimized 203 /// with a tail-call. This roughly means that it's in a block with 204 /// a return and there's nothing that needs to be scheduled 205 /// between it and the return. 206 /// 207 /// This function only tests target-independent requirements. 208 bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, 209 const TargetLowering &TLI) { 210 const Instruction *I = CS.getInstruction(); 211 const BasicBlock *ExitBB = I->getParent(); 212 const TerminatorInst *Term = ExitBB->getTerminator(); 213 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 214 215 // The block must end in a return statement or unreachable. 216 // 217 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 218 // an unreachable, for now. The way tailcall optimization is currently 219 // implemented means it will add an epilogue followed by a jump. That is 220 // not profitable. Also, if the callee is a special function (e.g. 221 // longjmp on x86), it can end up causing miscompilation that has not 222 // been fully understood. 223 if (!Ret && 224 (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; 225 226 // If I will have a chain, make sure no other instruction that will have a 227 // chain interposes between I and the return. 228 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 229 !I->isSafeToSpeculativelyExecute()) 230 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 231 --BBI) { 232 if (&*BBI == I) 233 break; 234 // Debug info intrinsics do not get in the way of tail call optimization. 235 if (isa<DbgInfoIntrinsic>(BBI)) 236 continue; 237 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 238 !BBI->isSafeToSpeculativelyExecute()) 239 return false; 240 } 241 242 // If the block ends with a void return or unreachable, it doesn't matter 243 // what the call's return type is. 244 if (!Ret || Ret->getNumOperands() == 0) return true; 245 246 // If the return value is undef, it doesn't matter what the call's 247 // return type is. 248 if (isa<UndefValue>(Ret->getOperand(0))) return true; 249 250 // Conservatively require the attributes of the call to match those of 251 // the return. Ignore noalias because it doesn't affect the call sequence. 252 const Function *F = ExitBB->getParent(); 253 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 254 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 255 return false; 256 257 // It's not safe to eliminate the sign / zero extension of the return value. 258 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 259 return false; 260 261 // Otherwise, make sure the unmodified return value of I is the return value. 262 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 263 U = dyn_cast<Instruction>(U->getOperand(0))) { 264 if (!U) 265 return false; 266 if (!U->hasOneUse()) 267 return false; 268 if (U == I) 269 break; 270 // Check for a truly no-op truncate. 271 if (isa<TruncInst>(U) && 272 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 273 continue; 274 // Check for a truly no-op bitcast. 275 if (isa<BitCastInst>(U) && 276 (U->getOperand(0)->getType() == U->getType() || 277 (U->getOperand(0)->getType()->isPointerTy() && 278 U->getType()->isPointerTy()))) 279 continue; 280 // Otherwise it's not a true no-op. 281 return false; 282 } 283 284 return true; 285 } 286 287 bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 288 const TargetLowering &TLI) { 289 const Function *F = DAG.getMachineFunction().getFunction(); 290 291 // Conservatively require the attributes of the call to match those of 292 // the return. Ignore noalias because it doesn't affect the call sequence. 293 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 294 if (CallerRetAttr & ~Attribute::NoAlias) 295 return false; 296 297 // It's not safe to eliminate the sign / zero extension of the return value. 298 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 299 return false; 300 301 // Check if the only use is a function return node. 302 return TLI.isUsedByReturnOnly(Node); 303 } 304