Home | History | Annotate | Download | only in CodeGen
      1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/Analysis.h"
     15 #include "llvm/DerivedTypes.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/LLVMContext.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/Target/TargetData.h"
     24 #include "llvm/Target/TargetLowering.h"
     25 #include "llvm/Target/TargetOptions.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 using namespace llvm;
     29 
     30 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
     31 /// of insertvalue or extractvalue indices that identify a member, return
     32 /// the linearized index of the start of the member.
     33 ///
     34 unsigned llvm::ComputeLinearIndex(Type *Ty,
     35                                   const unsigned *Indices,
     36                                   const unsigned *IndicesEnd,
     37                                   unsigned CurIndex) {
     38   // Base case: We're done.
     39   if (Indices && Indices == IndicesEnd)
     40     return CurIndex;
     41 
     42   // Given a struct type, recursively traverse the elements.
     43   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     44     for (StructType::element_iterator EB = STy->element_begin(),
     45                                       EI = EB,
     46                                       EE = STy->element_end();
     47         EI != EE; ++EI) {
     48       if (Indices && *Indices == unsigned(EI - EB))
     49         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
     50       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
     51     }
     52     return CurIndex;
     53   }
     54   // Given an array type, recursively traverse the elements.
     55   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     56     Type *EltTy = ATy->getElementType();
     57     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
     58       if (Indices && *Indices == i)
     59         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
     60       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
     61     }
     62     return CurIndex;
     63   }
     64   // We haven't found the type we're looking for, so keep searching.
     65   return CurIndex + 1;
     66 }
     67 
     68 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
     69 /// EVTs that represent all the individual underlying
     70 /// non-aggregate types that comprise it.
     71 ///
     72 /// If Offsets is non-null, it points to a vector to be filled in
     73 /// with the in-memory offsets of each of the individual values.
     74 ///
     75 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
     76                            SmallVectorImpl<EVT> &ValueVTs,
     77                            SmallVectorImpl<uint64_t> *Offsets,
     78                            uint64_t StartingOffset) {
     79   // Given a struct type, recursively traverse the elements.
     80   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     81     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
     82     for (StructType::element_iterator EB = STy->element_begin(),
     83                                       EI = EB,
     84                                       EE = STy->element_end();
     85          EI != EE; ++EI)
     86       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
     87                       StartingOffset + SL->getElementOffset(EI - EB));
     88     return;
     89   }
     90   // Given an array type, recursively traverse the elements.
     91   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     92     Type *EltTy = ATy->getElementType();
     93     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
     94     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
     95       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
     96                       StartingOffset + i * EltSize);
     97     return;
     98   }
     99   // Interpret void as zero return values.
    100   if (Ty->isVoidTy())
    101     return;
    102   // Base case: we can get an EVT for this LLVM IR type.
    103   ValueVTs.push_back(TLI.getValueType(Ty));
    104   if (Offsets)
    105     Offsets->push_back(StartingOffset);
    106 }
    107 
    108 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
    109 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
    110   V = V->stripPointerCasts();
    111   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
    112 
    113   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
    114     assert(GV->hasInitializer() &&
    115            "The EH catch-all value must have an initializer");
    116     Value *Init = GV->getInitializer();
    117     GV = dyn_cast<GlobalVariable>(Init);
    118     if (!GV) V = cast<ConstantPointerNull>(Init);
    119   }
    120 
    121   assert((GV || isa<ConstantPointerNull>(V)) &&
    122          "TypeInfo must be a global variable or NULL");
    123   return GV;
    124 }
    125 
    126 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
    127 /// processed uses a memory 'm' constraint.
    128 bool
    129 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
    130                                 const TargetLowering &TLI) {
    131   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
    132     InlineAsm::ConstraintInfo &CI = CInfos[i];
    133     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
    134       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
    135       if (CType == TargetLowering::C_Memory)
    136         return true;
    137     }
    138 
    139     // Indirect operand accesses access memory.
    140     if (CI.isIndirect)
    141       return true;
    142   }
    143 
    144   return false;
    145 }
    146 
    147 /// getFCmpCondCode - Return the ISD condition code corresponding to
    148 /// the given LLVM IR floating-point condition code.  This includes
    149 /// consideration of global floating-point math flags.
    150 ///
    151 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
    152   ISD::CondCode FPC, FOC;
    153   switch (Pred) {
    154   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
    155   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
    156   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
    157   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
    158   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
    159   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
    160   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
    161   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
    162   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
    163   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
    164   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
    165   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
    166   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
    167   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
    168   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
    169   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
    170   default:
    171     llvm_unreachable("Invalid FCmp predicate opcode!");
    172     FOC = FPC = ISD::SETFALSE;
    173     break;
    174   }
    175   if (NoNaNsFPMath)
    176     return FOC;
    177   else
    178     return FPC;
    179 }
    180 
    181 /// getICmpCondCode - Return the ISD condition code corresponding to
    182 /// the given LLVM IR integer condition code.
    183 ///
    184 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
    185   switch (Pred) {
    186   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
    187   case ICmpInst::ICMP_NE:  return ISD::SETNE;
    188   case ICmpInst::ICMP_SLE: return ISD::SETLE;
    189   case ICmpInst::ICMP_ULE: return ISD::SETULE;
    190   case ICmpInst::ICMP_SGE: return ISD::SETGE;
    191   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
    192   case ICmpInst::ICMP_SLT: return ISD::SETLT;
    193   case ICmpInst::ICMP_ULT: return ISD::SETULT;
    194   case ICmpInst::ICMP_SGT: return ISD::SETGT;
    195   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
    196   default:
    197     llvm_unreachable("Invalid ICmp predicate opcode!");
    198     return ISD::SETNE;
    199   }
    200 }
    201 
    202 /// Test if the given instruction is in a position to be optimized
    203 /// with a tail-call. This roughly means that it's in a block with
    204 /// a return and there's nothing that needs to be scheduled
    205 /// between it and the return.
    206 ///
    207 /// This function only tests target-independent requirements.
    208 bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
    209                                 const TargetLowering &TLI) {
    210   const Instruction *I = CS.getInstruction();
    211   const BasicBlock *ExitBB = I->getParent();
    212   const TerminatorInst *Term = ExitBB->getTerminator();
    213   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
    214 
    215   // The block must end in a return statement or unreachable.
    216   //
    217   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
    218   // an unreachable, for now. The way tailcall optimization is currently
    219   // implemented means it will add an epilogue followed by a jump. That is
    220   // not profitable. Also, if the callee is a special function (e.g.
    221   // longjmp on x86), it can end up causing miscompilation that has not
    222   // been fully understood.
    223   if (!Ret &&
    224       (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
    225 
    226   // If I will have a chain, make sure no other instruction that will have a
    227   // chain interposes between I and the return.
    228   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
    229       !I->isSafeToSpeculativelyExecute())
    230     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
    231          --BBI) {
    232       if (&*BBI == I)
    233         break;
    234       // Debug info intrinsics do not get in the way of tail call optimization.
    235       if (isa<DbgInfoIntrinsic>(BBI))
    236         continue;
    237       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
    238           !BBI->isSafeToSpeculativelyExecute())
    239         return false;
    240     }
    241 
    242   // If the block ends with a void return or unreachable, it doesn't matter
    243   // what the call's return type is.
    244   if (!Ret || Ret->getNumOperands() == 0) return true;
    245 
    246   // If the return value is undef, it doesn't matter what the call's
    247   // return type is.
    248   if (isa<UndefValue>(Ret->getOperand(0))) return true;
    249 
    250   // Conservatively require the attributes of the call to match those of
    251   // the return. Ignore noalias because it doesn't affect the call sequence.
    252   const Function *F = ExitBB->getParent();
    253   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
    254   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
    255     return false;
    256 
    257   // It's not safe to eliminate the sign / zero extension of the return value.
    258   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    259     return false;
    260 
    261   // Otherwise, make sure the unmodified return value of I is the return value.
    262   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
    263        U = dyn_cast<Instruction>(U->getOperand(0))) {
    264     if (!U)
    265       return false;
    266     if (!U->hasOneUse())
    267       return false;
    268     if (U == I)
    269       break;
    270     // Check for a truly no-op truncate.
    271     if (isa<TruncInst>(U) &&
    272         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
    273       continue;
    274     // Check for a truly no-op bitcast.
    275     if (isa<BitCastInst>(U) &&
    276         (U->getOperand(0)->getType() == U->getType() ||
    277          (U->getOperand(0)->getType()->isPointerTy() &&
    278           U->getType()->isPointerTy())))
    279       continue;
    280     // Otherwise it's not a true no-op.
    281     return false;
    282   }
    283 
    284   return true;
    285 }
    286 
    287 bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
    288                                 const TargetLowering &TLI) {
    289   const Function *F = DAG.getMachineFunction().getFunction();
    290 
    291   // Conservatively require the attributes of the call to match those of
    292   // the return. Ignore noalias because it doesn't affect the call sequence.
    293   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
    294   if (CallerRetAttr & ~Attribute::NoAlias)
    295     return false;
    296 
    297   // It's not safe to eliminate the sign / zero extension of the return value.
    298   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    299     return false;
    300 
    301   // Check if the only use is a function return node.
    302   return TLI.isUsedByReturnOnly(Node);
    303 }
    304