Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
     15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "clang/AST/Type.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/ExprObjC.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "clang/Basic/ABI.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "llvm/ADT/ArrayRef.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/ValueHandle.h"
     28 #include "CodeGenModule.h"
     29 #include "CGBuilder.h"
     30 #include "CGValue.h"
     31 
     32 namespace llvm {
     33   class BasicBlock;
     34   class LLVMContext;
     35   class MDNode;
     36   class Module;
     37   class SwitchInst;
     38   class Twine;
     39   class Value;
     40   class CallSite;
     41 }
     42 
     43 namespace clang {
     44   class APValue;
     45   class ASTContext;
     46   class CXXDestructorDecl;
     47   class CXXForRangeStmt;
     48   class CXXTryStmt;
     49   class Decl;
     50   class LabelDecl;
     51   class EnumConstantDecl;
     52   class FunctionDecl;
     53   class FunctionProtoType;
     54   class LabelStmt;
     55   class ObjCContainerDecl;
     56   class ObjCInterfaceDecl;
     57   class ObjCIvarDecl;
     58   class ObjCMethodDecl;
     59   class ObjCImplementationDecl;
     60   class ObjCPropertyImplDecl;
     61   class TargetInfo;
     62   class TargetCodeGenInfo;
     63   class VarDecl;
     64   class ObjCForCollectionStmt;
     65   class ObjCAtTryStmt;
     66   class ObjCAtThrowStmt;
     67   class ObjCAtSynchronizedStmt;
     68   class ObjCAutoreleasePoolStmt;
     69 
     70 namespace CodeGen {
     71   class CodeGenTypes;
     72   class CGDebugInfo;
     73   class CGFunctionInfo;
     74   class CGRecordLayout;
     75   class CGBlockInfo;
     76   class CGCXXABI;
     77   class BlockFlags;
     78   class BlockFieldFlags;
     79 
     80 /// A branch fixup.  These are required when emitting a goto to a
     81 /// label which hasn't been emitted yet.  The goto is optimistically
     82 /// emitted as a branch to the basic block for the label, and (if it
     83 /// occurs in a scope with non-trivial cleanups) a fixup is added to
     84 /// the innermost cleanup.  When a (normal) cleanup is popped, any
     85 /// unresolved fixups in that scope are threaded through the cleanup.
     86 struct BranchFixup {
     87   /// The block containing the terminator which needs to be modified
     88   /// into a switch if this fixup is resolved into the current scope.
     89   /// If null, LatestBranch points directly to the destination.
     90   llvm::BasicBlock *OptimisticBranchBlock;
     91 
     92   /// The ultimate destination of the branch.
     93   ///
     94   /// This can be set to null to indicate that this fixup was
     95   /// successfully resolved.
     96   llvm::BasicBlock *Destination;
     97 
     98   /// The destination index value.
     99   unsigned DestinationIndex;
    100 
    101   /// The initial branch of the fixup.
    102   llvm::BranchInst *InitialBranch;
    103 };
    104 
    105 template <class T> struct InvariantValue {
    106   typedef T type;
    107   typedef T saved_type;
    108   static bool needsSaving(type value) { return false; }
    109   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
    110   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
    111 };
    112 
    113 /// A metaprogramming class for ensuring that a value will dominate an
    114 /// arbitrary position in a function.
    115 template <class T> struct DominatingValue : InvariantValue<T> {};
    116 
    117 template <class T, bool mightBeInstruction =
    118             llvm::is_base_of<llvm::Value, T>::value &&
    119             !llvm::is_base_of<llvm::Constant, T>::value &&
    120             !llvm::is_base_of<llvm::BasicBlock, T>::value>
    121 struct DominatingPointer;
    122 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
    123 // template <class T> struct DominatingPointer<T,true> at end of file
    124 
    125 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
    126 
    127 enum CleanupKind {
    128   EHCleanup = 0x1,
    129   NormalCleanup = 0x2,
    130   NormalAndEHCleanup = EHCleanup | NormalCleanup,
    131 
    132   InactiveCleanup = 0x4,
    133   InactiveEHCleanup = EHCleanup | InactiveCleanup,
    134   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
    135   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
    136 };
    137 
    138 /// A stack of scopes which respond to exceptions, including cleanups
    139 /// and catch blocks.
    140 class EHScopeStack {
    141 public:
    142   /// A saved depth on the scope stack.  This is necessary because
    143   /// pushing scopes onto the stack invalidates iterators.
    144   class stable_iterator {
    145     friend class EHScopeStack;
    146 
    147     /// Offset from StartOfData to EndOfBuffer.
    148     ptrdiff_t Size;
    149 
    150     stable_iterator(ptrdiff_t Size) : Size(Size) {}
    151 
    152   public:
    153     static stable_iterator invalid() { return stable_iterator(-1); }
    154     stable_iterator() : Size(-1) {}
    155 
    156     bool isValid() const { return Size >= 0; }
    157 
    158     /// Returns true if this scope encloses I.
    159     /// Returns false if I is invalid.
    160     /// This scope must be valid.
    161     bool encloses(stable_iterator I) const { return Size <= I.Size; }
    162 
    163     /// Returns true if this scope strictly encloses I: that is,
    164     /// if it encloses I and is not I.
    165     /// Returns false is I is invalid.
    166     /// This scope must be valid.
    167     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
    168 
    169     friend bool operator==(stable_iterator A, stable_iterator B) {
    170       return A.Size == B.Size;
    171     }
    172     friend bool operator!=(stable_iterator A, stable_iterator B) {
    173       return A.Size != B.Size;
    174     }
    175   };
    176 
    177   /// Information for lazily generating a cleanup.  Subclasses must be
    178   /// POD-like: cleanups will not be destructed, and they will be
    179   /// allocated on the cleanup stack and freely copied and moved
    180   /// around.
    181   ///
    182   /// Cleanup implementations should generally be declared in an
    183   /// anonymous namespace.
    184   class Cleanup {
    185     // Anchor the construction vtable.
    186     virtual void anchor();
    187   public:
    188     /// Generation flags.
    189     class Flags {
    190       enum {
    191         F_IsForEH             = 0x1,
    192         F_IsNormalCleanupKind = 0x2,
    193         F_IsEHCleanupKind     = 0x4
    194       };
    195       unsigned flags;
    196 
    197     public:
    198       Flags() : flags(0) {}
    199 
    200       /// isForEH - true if the current emission is for an EH cleanup.
    201       bool isForEHCleanup() const { return flags & F_IsForEH; }
    202       bool isForNormalCleanup() const { return !isForEHCleanup(); }
    203       void setIsForEHCleanup() { flags |= F_IsForEH; }
    204 
    205       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
    206       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
    207 
    208       /// isEHCleanupKind - true if the cleanup was pushed as an EH
    209       /// cleanup.
    210       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
    211       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
    212     };
    213 
    214     // Provide a virtual destructor to suppress a very common warning
    215     // that unfortunately cannot be suppressed without this.  Cleanups
    216     // should not rely on this destructor ever being called.
    217     virtual ~Cleanup() {}
    218 
    219     /// Emit the cleanup.  For normal cleanups, this is run in the
    220     /// same EH context as when the cleanup was pushed, i.e. the
    221     /// immediately-enclosing context of the cleanup scope.  For
    222     /// EH cleanups, this is run in a terminate context.
    223     ///
    224     // \param IsForEHCleanup true if this is for an EH cleanup, false
    225     ///  if for a normal cleanup.
    226     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
    227   };
    228 
    229   /// ConditionalCleanupN stores the saved form of its N parameters,
    230   /// then restores them and performs the cleanup.
    231   template <class T, class A0>
    232   class ConditionalCleanup1 : public Cleanup {
    233     typedef typename DominatingValue<A0>::saved_type A0_saved;
    234     A0_saved a0_saved;
    235 
    236     void Emit(CodeGenFunction &CGF, Flags flags) {
    237       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    238       T(a0).Emit(CGF, flags);
    239     }
    240 
    241   public:
    242     ConditionalCleanup1(A0_saved a0)
    243       : a0_saved(a0) {}
    244   };
    245 
    246   template <class T, class A0, class A1>
    247   class ConditionalCleanup2 : public Cleanup {
    248     typedef typename DominatingValue<A0>::saved_type A0_saved;
    249     typedef typename DominatingValue<A1>::saved_type A1_saved;
    250     A0_saved a0_saved;
    251     A1_saved a1_saved;
    252 
    253     void Emit(CodeGenFunction &CGF, Flags flags) {
    254       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    255       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    256       T(a0, a1).Emit(CGF, flags);
    257     }
    258 
    259   public:
    260     ConditionalCleanup2(A0_saved a0, A1_saved a1)
    261       : a0_saved(a0), a1_saved(a1) {}
    262   };
    263 
    264   template <class T, class A0, class A1, class A2>
    265   class ConditionalCleanup3 : public Cleanup {
    266     typedef typename DominatingValue<A0>::saved_type A0_saved;
    267     typedef typename DominatingValue<A1>::saved_type A1_saved;
    268     typedef typename DominatingValue<A2>::saved_type A2_saved;
    269     A0_saved a0_saved;
    270     A1_saved a1_saved;
    271     A2_saved a2_saved;
    272 
    273     void Emit(CodeGenFunction &CGF, Flags flags) {
    274       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    275       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    276       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    277       T(a0, a1, a2).Emit(CGF, flags);
    278     }
    279 
    280   public:
    281     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
    282       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
    283   };
    284 
    285   template <class T, class A0, class A1, class A2, class A3>
    286   class ConditionalCleanup4 : public Cleanup {
    287     typedef typename DominatingValue<A0>::saved_type A0_saved;
    288     typedef typename DominatingValue<A1>::saved_type A1_saved;
    289     typedef typename DominatingValue<A2>::saved_type A2_saved;
    290     typedef typename DominatingValue<A3>::saved_type A3_saved;
    291     A0_saved a0_saved;
    292     A1_saved a1_saved;
    293     A2_saved a2_saved;
    294     A3_saved a3_saved;
    295 
    296     void Emit(CodeGenFunction &CGF, Flags flags) {
    297       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    298       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    299       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    300       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
    301       T(a0, a1, a2, a3).Emit(CGF, flags);
    302     }
    303 
    304   public:
    305     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
    306       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
    307   };
    308 
    309 private:
    310   // The implementation for this class is in CGException.h and
    311   // CGException.cpp; the definition is here because it's used as a
    312   // member of CodeGenFunction.
    313 
    314   /// The start of the scope-stack buffer, i.e. the allocated pointer
    315   /// for the buffer.  All of these pointers are either simultaneously
    316   /// null or simultaneously valid.
    317   char *StartOfBuffer;
    318 
    319   /// The end of the buffer.
    320   char *EndOfBuffer;
    321 
    322   /// The first valid entry in the buffer.
    323   char *StartOfData;
    324 
    325   /// The innermost normal cleanup on the stack.
    326   stable_iterator InnermostNormalCleanup;
    327 
    328   /// The innermost EH cleanup on the stack.
    329   stable_iterator InnermostEHCleanup;
    330 
    331   /// The number of catches on the stack.
    332   unsigned CatchDepth;
    333 
    334   /// The current EH destination index.  Reset to FirstCatchIndex
    335   /// whenever the last EH cleanup is popped.
    336   unsigned NextEHDestIndex;
    337   enum { FirstEHDestIndex = 1 };
    338 
    339   /// The current set of branch fixups.  A branch fixup is a jump to
    340   /// an as-yet unemitted label, i.e. a label for which we don't yet
    341   /// know the EH stack depth.  Whenever we pop a cleanup, we have
    342   /// to thread all the current branch fixups through it.
    343   ///
    344   /// Fixups are recorded as the Use of the respective branch or
    345   /// switch statement.  The use points to the final destination.
    346   /// When popping out of a cleanup, these uses are threaded through
    347   /// the cleanup and adjusted to point to the new cleanup.
    348   ///
    349   /// Note that branches are allowed to jump into protected scopes
    350   /// in certain situations;  e.g. the following code is legal:
    351   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
    352   ///     goto foo;
    353   ///     A a;
    354   ///    foo:
    355   ///     bar();
    356   llvm::SmallVector<BranchFixup, 8> BranchFixups;
    357 
    358   char *allocate(size_t Size);
    359 
    360   void *pushCleanup(CleanupKind K, size_t DataSize);
    361 
    362 public:
    363   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
    364                    InnermostNormalCleanup(stable_end()),
    365                    InnermostEHCleanup(stable_end()),
    366                    CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
    367   ~EHScopeStack() { delete[] StartOfBuffer; }
    368 
    369   // Variadic templates would make this not terrible.
    370 
    371   /// Push a lazily-created cleanup on the stack.
    372   template <class T>
    373   void pushCleanup(CleanupKind Kind) {
    374     void *Buffer = pushCleanup(Kind, sizeof(T));
    375     Cleanup *Obj = new(Buffer) T();
    376     (void) Obj;
    377   }
    378 
    379   /// Push a lazily-created cleanup on the stack.
    380   template <class T, class A0>
    381   void pushCleanup(CleanupKind Kind, A0 a0) {
    382     void *Buffer = pushCleanup(Kind, sizeof(T));
    383     Cleanup *Obj = new(Buffer) T(a0);
    384     (void) Obj;
    385   }
    386 
    387   /// Push a lazily-created cleanup on the stack.
    388   template <class T, class A0, class A1>
    389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
    390     void *Buffer = pushCleanup(Kind, sizeof(T));
    391     Cleanup *Obj = new(Buffer) T(a0, a1);
    392     (void) Obj;
    393   }
    394 
    395   /// Push a lazily-created cleanup on the stack.
    396   template <class T, class A0, class A1, class A2>
    397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
    398     void *Buffer = pushCleanup(Kind, sizeof(T));
    399     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
    400     (void) Obj;
    401   }
    402 
    403   /// Push a lazily-created cleanup on the stack.
    404   template <class T, class A0, class A1, class A2, class A3>
    405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    406     void *Buffer = pushCleanup(Kind, sizeof(T));
    407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
    408     (void) Obj;
    409   }
    410 
    411   /// Push a lazily-created cleanup on the stack.
    412   template <class T, class A0, class A1, class A2, class A3, class A4>
    413   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
    414     void *Buffer = pushCleanup(Kind, sizeof(T));
    415     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
    416     (void) Obj;
    417   }
    418 
    419   // Feel free to add more variants of the following:
    420 
    421   /// Push a cleanup with non-constant storage requirements on the
    422   /// stack.  The cleanup type must provide an additional static method:
    423   ///   static size_t getExtraSize(size_t);
    424   /// The argument to this method will be the value N, which will also
    425   /// be passed as the first argument to the constructor.
    426   ///
    427   /// The data stored in the extra storage must obey the same
    428   /// restrictions as normal cleanup member data.
    429   ///
    430   /// The pointer returned from this method is valid until the cleanup
    431   /// stack is modified.
    432   template <class T, class A0, class A1, class A2>
    433   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
    434     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
    435     return new (Buffer) T(N, a0, a1, a2);
    436   }
    437 
    438   /// Pops a cleanup scope off the stack.  This should only be called
    439   /// by CodeGenFunction::PopCleanupBlock.
    440   void popCleanup();
    441 
    442   /// Push a set of catch handlers on the stack.  The catch is
    443   /// uninitialized and will need to have the given number of handlers
    444   /// set on it.
    445   class EHCatchScope *pushCatch(unsigned NumHandlers);
    446 
    447   /// Pops a catch scope off the stack.
    448   void popCatch();
    449 
    450   /// Push an exceptions filter on the stack.
    451   class EHFilterScope *pushFilter(unsigned NumFilters);
    452 
    453   /// Pops an exceptions filter off the stack.
    454   void popFilter();
    455 
    456   /// Push a terminate handler on the stack.
    457   void pushTerminate();
    458 
    459   /// Pops a terminate handler off the stack.
    460   void popTerminate();
    461 
    462   /// Determines whether the exception-scopes stack is empty.
    463   bool empty() const { return StartOfData == EndOfBuffer; }
    464 
    465   bool requiresLandingPad() const {
    466     return (CatchDepth || hasEHCleanups());
    467   }
    468 
    469   /// Determines whether there are any normal cleanups on the stack.
    470   bool hasNormalCleanups() const {
    471     return InnermostNormalCleanup != stable_end();
    472   }
    473 
    474   /// Returns the innermost normal cleanup on the stack, or
    475   /// stable_end() if there are no normal cleanups.
    476   stable_iterator getInnermostNormalCleanup() const {
    477     return InnermostNormalCleanup;
    478   }
    479   stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
    480 
    481   /// Determines whether there are any EH cleanups on the stack.
    482   bool hasEHCleanups() const {
    483     return InnermostEHCleanup != stable_end();
    484   }
    485 
    486   /// Returns the innermost EH cleanup on the stack, or stable_end()
    487   /// if there are no EH cleanups.
    488   stable_iterator getInnermostEHCleanup() const {
    489     return InnermostEHCleanup;
    490   }
    491   stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
    492 
    493   /// An unstable reference to a scope-stack depth.  Invalidated by
    494   /// pushes but not pops.
    495   class iterator;
    496 
    497   /// Returns an iterator pointing to the innermost EH scope.
    498   iterator begin() const;
    499 
    500   /// Returns an iterator pointing to the outermost EH scope.
    501   iterator end() const;
    502 
    503   /// Create a stable reference to the top of the EH stack.  The
    504   /// returned reference is valid until that scope is popped off the
    505   /// stack.
    506   stable_iterator stable_begin() const {
    507     return stable_iterator(EndOfBuffer - StartOfData);
    508   }
    509 
    510   /// Create a stable reference to the bottom of the EH stack.
    511   static stable_iterator stable_end() {
    512     return stable_iterator(0);
    513   }
    514 
    515   /// Translates an iterator into a stable_iterator.
    516   stable_iterator stabilize(iterator it) const;
    517 
    518   /// Finds the nearest cleanup enclosing the given iterator.
    519   /// Returns stable_iterator::invalid() if there are no such cleanups.
    520   stable_iterator getEnclosingEHCleanup(iterator it) const;
    521 
    522   /// Turn a stable reference to a scope depth into a unstable pointer
    523   /// to the EH stack.
    524   iterator find(stable_iterator save) const;
    525 
    526   /// Removes the cleanup pointed to by the given stable_iterator.
    527   void removeCleanup(stable_iterator save);
    528 
    529   /// Add a branch fixup to the current cleanup scope.
    530   BranchFixup &addBranchFixup() {
    531     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
    532     BranchFixups.push_back(BranchFixup());
    533     return BranchFixups.back();
    534   }
    535 
    536   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
    537   BranchFixup &getBranchFixup(unsigned I) {
    538     assert(I < getNumBranchFixups());
    539     return BranchFixups[I];
    540   }
    541 
    542   /// Pops lazily-removed fixups from the end of the list.  This
    543   /// should only be called by procedures which have just popped a
    544   /// cleanup or resolved one or more fixups.
    545   void popNullFixups();
    546 
    547   /// Clears the branch-fixups list.  This should only be called by
    548   /// ResolveAllBranchFixups.
    549   void clearFixups() { BranchFixups.clear(); }
    550 
    551   /// Gets the next EH destination index.
    552   unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
    553 };
    554 
    555 /// CodeGenFunction - This class organizes the per-function state that is used
    556 /// while generating LLVM code.
    557 class CodeGenFunction : public CodeGenTypeCache {
    558   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
    559   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
    560 
    561   friend class CGCXXABI;
    562 public:
    563   /// A jump destination is an abstract label, branching to which may
    564   /// require a jump out through normal cleanups.
    565   struct JumpDest {
    566     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
    567     JumpDest(llvm::BasicBlock *Block,
    568              EHScopeStack::stable_iterator Depth,
    569              unsigned Index)
    570       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    571 
    572     bool isValid() const { return Block != 0; }
    573     llvm::BasicBlock *getBlock() const { return Block; }
    574     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    575     unsigned getDestIndex() const { return Index; }
    576 
    577   private:
    578     llvm::BasicBlock *Block;
    579     EHScopeStack::stable_iterator ScopeDepth;
    580     unsigned Index;
    581   };
    582 
    583   /// An unwind destination is an abstract label, branching to which
    584   /// may require a jump out through EH cleanups.
    585   struct UnwindDest {
    586     UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
    587     UnwindDest(llvm::BasicBlock *Block,
    588                EHScopeStack::stable_iterator Depth,
    589                unsigned Index)
    590       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    591 
    592     bool isValid() const { return Block != 0; }
    593     llvm::BasicBlock *getBlock() const { return Block; }
    594     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    595     unsigned getDestIndex() const { return Index; }
    596 
    597   private:
    598     llvm::BasicBlock *Block;
    599     EHScopeStack::stable_iterator ScopeDepth;
    600     unsigned Index;
    601   };
    602 
    603   CodeGenModule &CGM;  // Per-module state.
    604   const TargetInfo &Target;
    605 
    606   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    607   CGBuilderTy Builder;
    608 
    609   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
    610   /// This excludes BlockDecls.
    611   const Decl *CurFuncDecl;
    612   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    613   const Decl *CurCodeDecl;
    614   const CGFunctionInfo *CurFnInfo;
    615   QualType FnRetTy;
    616   llvm::Function *CurFn;
    617 
    618   /// CurGD - The GlobalDecl for the current function being compiled.
    619   GlobalDecl CurGD;
    620 
    621   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    622   /// cleanups associated with the parameters.
    623   EHScopeStack::stable_iterator PrologueCleanupDepth;
    624 
    625   /// ReturnBlock - Unified return block.
    626   JumpDest ReturnBlock;
    627 
    628   /// ReturnValue - The temporary alloca to hold the return value. This is null
    629   /// iff the function has no return value.
    630   llvm::Value *ReturnValue;
    631 
    632   /// RethrowBlock - Unified rethrow block.
    633   UnwindDest RethrowBlock;
    634 
    635   /// AllocaInsertPoint - This is an instruction in the entry block before which
    636   /// we prefer to insert allocas.
    637   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    638 
    639   bool CatchUndefined;
    640 
    641   /// In ARC, whether we should autorelease the return value.
    642   bool AutoreleaseResult;
    643 
    644   const CodeGen::CGBlockInfo *BlockInfo;
    645   llvm::Value *BlockPointer;
    646 
    647   /// \brief A mapping from NRVO variables to the flags used to indicate
    648   /// when the NRVO has been applied to this variable.
    649   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    650 
    651   EHScopeStack EHStack;
    652 
    653   /// i32s containing the indexes of the cleanup destinations.
    654   llvm::AllocaInst *NormalCleanupDest;
    655   llvm::AllocaInst *EHCleanupDest;
    656 
    657   unsigned NextCleanupDestIndex;
    658 
    659   /// The exception slot.  All landing pads write the current
    660   /// exception pointer into this alloca.
    661   llvm::Value *ExceptionSlot;
    662 
    663   /// The selector slot.  Under the MandatoryCleanup model, all
    664   /// landing pads write the current selector value into this alloca.
    665   llvm::AllocaInst *EHSelectorSlot;
    666 
    667   /// Emits a landing pad for the current EH stack.
    668   llvm::BasicBlock *EmitLandingPad();
    669 
    670   llvm::BasicBlock *getInvokeDestImpl();
    671 
    672   /// Set up the last cleaup that was pushed as a conditional
    673   /// full-expression cleanup.
    674   void initFullExprCleanup();
    675 
    676   template <class T>
    677   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    678     return DominatingValue<T>::save(*this, value);
    679   }
    680 
    681 public:
    682   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    683   /// rethrows.
    684   llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    685 
    686   /// A class controlling the emission of a finally block.
    687   class FinallyInfo {
    688     /// Where the catchall's edge through the cleanup should go.
    689     JumpDest RethrowDest;
    690 
    691     /// A function to call to enter the catch.
    692     llvm::Constant *BeginCatchFn;
    693 
    694     /// An i1 variable indicating whether or not the @finally is
    695     /// running for an exception.
    696     llvm::AllocaInst *ForEHVar;
    697 
    698     /// An i8* variable into which the exception pointer to rethrow
    699     /// has been saved.
    700     llvm::AllocaInst *SavedExnVar;
    701 
    702   public:
    703     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    704                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    705                llvm::Constant *rethrowFn);
    706     void exit(CodeGenFunction &CGF);
    707   };
    708 
    709   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    710   /// current full-expression.  Safe against the possibility that
    711   /// we're currently inside a conditionally-evaluated expression.
    712   template <class T, class A0>
    713   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
    714     // If we're not in a conditional branch, or if none of the
    715     // arguments requires saving, then use the unconditional cleanup.
    716     if (!isInConditionalBranch())
    717       return EHStack.pushCleanup<T>(kind, a0);
    718 
    719     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    720 
    721     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
    722     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
    723     initFullExprCleanup();
    724   }
    725 
    726   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    727   /// current full-expression.  Safe against the possibility that
    728   /// we're currently inside a conditionally-evaluated expression.
    729   template <class T, class A0, class A1>
    730   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
    731     // If we're not in a conditional branch, or if none of the
    732     // arguments requires saving, then use the unconditional cleanup.
    733     if (!isInConditionalBranch())
    734       return EHStack.pushCleanup<T>(kind, a0, a1);
    735 
    736     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    737     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    738 
    739     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
    740     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
    741     initFullExprCleanup();
    742   }
    743 
    744   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    745   /// current full-expression.  Safe against the possibility that
    746   /// we're currently inside a conditionally-evaluated expression.
    747   template <class T, class A0, class A1, class A2>
    748   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
    749     // If we're not in a conditional branch, or if none of the
    750     // arguments requires saving, then use the unconditional cleanup.
    751     if (!isInConditionalBranch()) {
    752       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
    753     }
    754 
    755     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    756     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    757     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    758 
    759     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
    760     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
    761     initFullExprCleanup();
    762   }
    763 
    764   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    765   /// current full-expression.  Safe against the possibility that
    766   /// we're currently inside a conditionally-evaluated expression.
    767   template <class T, class A0, class A1, class A2, class A3>
    768   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    769     // If we're not in a conditional branch, or if none of the
    770     // arguments requires saving, then use the unconditional cleanup.
    771     if (!isInConditionalBranch()) {
    772       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
    773     }
    774 
    775     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    776     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    777     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    778     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
    779 
    780     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
    781     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
    782                                      a2_saved, a3_saved);
    783     initFullExprCleanup();
    784   }
    785 
    786   /// PushDestructorCleanup - Push a cleanup to call the
    787   /// complete-object destructor of an object of the given type at the
    788   /// given address.  Does nothing if T is not a C++ class type with a
    789   /// non-trivial destructor.
    790   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
    791 
    792   /// PushDestructorCleanup - Push a cleanup to call the
    793   /// complete-object variant of the given destructor on the object at
    794   /// the given address.
    795   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
    796                              llvm::Value *Addr);
    797 
    798   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    799   /// process all branch fixups.
    800   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    801 
    802   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    803   /// The block cannot be reactivated.  Pops it if it's the top of the
    804   /// stack.
    805   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
    806 
    807   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    808   /// Cannot be used to resurrect a deactivated cleanup.
    809   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
    810 
    811   /// \brief Enters a new scope for capturing cleanups, all of which
    812   /// will be executed once the scope is exited.
    813   class RunCleanupsScope {
    814     CodeGenFunction& CGF;
    815     EHScopeStack::stable_iterator CleanupStackDepth;
    816     bool OldDidCallStackSave;
    817     bool PerformCleanup;
    818 
    819     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
    820     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
    821 
    822   public:
    823     /// \brief Enter a new cleanup scope.
    824     explicit RunCleanupsScope(CodeGenFunction &CGF)
    825       : CGF(CGF), PerformCleanup(true)
    826     {
    827       CleanupStackDepth = CGF.EHStack.stable_begin();
    828       OldDidCallStackSave = CGF.DidCallStackSave;
    829       CGF.DidCallStackSave = false;
    830     }
    831 
    832     /// \brief Exit this cleanup scope, emitting any accumulated
    833     /// cleanups.
    834     ~RunCleanupsScope() {
    835       if (PerformCleanup) {
    836         CGF.DidCallStackSave = OldDidCallStackSave;
    837         CGF.PopCleanupBlocks(CleanupStackDepth);
    838       }
    839     }
    840 
    841     /// \brief Determine whether this scope requires any cleanups.
    842     bool requiresCleanups() const {
    843       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    844     }
    845 
    846     /// \brief Force the emission of cleanups now, instead of waiting
    847     /// until this object is destroyed.
    848     void ForceCleanup() {
    849       assert(PerformCleanup && "Already forced cleanup");
    850       CGF.DidCallStackSave = OldDidCallStackSave;
    851       CGF.PopCleanupBlocks(CleanupStackDepth);
    852       PerformCleanup = false;
    853     }
    854   };
    855 
    856 
    857   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
    858   /// the cleanup blocks that have been added.
    859   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    860 
    861   void ResolveBranchFixups(llvm::BasicBlock *Target);
    862 
    863   /// The given basic block lies in the current EH scope, but may be a
    864   /// target of a potentially scope-crossing jump; get a stable handle
    865   /// to which we can perform this jump later.
    866   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    867     return JumpDest(Target,
    868                     EHStack.getInnermostNormalCleanup(),
    869                     NextCleanupDestIndex++);
    870   }
    871 
    872   /// The given basic block lies in the current EH scope, but may be a
    873   /// target of a potentially scope-crossing jump; get a stable handle
    874   /// to which we can perform this jump later.
    875   JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
    876     return getJumpDestInCurrentScope(createBasicBlock(Name));
    877   }
    878 
    879   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    880   /// block through the normal cleanup handling code (if any) and then
    881   /// on to \arg Dest.
    882   void EmitBranchThroughCleanup(JumpDest Dest);
    883 
    884   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    885   /// specified destination obviously has no cleanups to run.  'false' is always
    886   /// a conservatively correct answer for this method.
    887   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    888 
    889   /// EmitBranchThroughEHCleanup - Emit a branch from the current
    890   /// insert block through the EH cleanup handling code (if any) and
    891   /// then on to \arg Dest.
    892   void EmitBranchThroughEHCleanup(UnwindDest Dest);
    893 
    894   /// getRethrowDest - Returns the unified outermost-scope rethrow
    895   /// destination.
    896   UnwindDest getRethrowDest();
    897 
    898   /// An object to manage conditionally-evaluated expressions.
    899   class ConditionalEvaluation {
    900     llvm::BasicBlock *StartBB;
    901 
    902   public:
    903     ConditionalEvaluation(CodeGenFunction &CGF)
    904       : StartBB(CGF.Builder.GetInsertBlock()) {}
    905 
    906     void begin(CodeGenFunction &CGF) {
    907       assert(CGF.OutermostConditional != this);
    908       if (!CGF.OutermostConditional)
    909         CGF.OutermostConditional = this;
    910     }
    911 
    912     void end(CodeGenFunction &CGF) {
    913       assert(CGF.OutermostConditional != 0);
    914       if (CGF.OutermostConditional == this)
    915         CGF.OutermostConditional = 0;
    916     }
    917 
    918     /// Returns a block which will be executed prior to each
    919     /// evaluation of the conditional code.
    920     llvm::BasicBlock *getStartingBlock() const {
    921       return StartBB;
    922     }
    923   };
    924 
    925   /// isInConditionalBranch - Return true if we're currently emitting
    926   /// one branch or the other of a conditional expression.
    927   bool isInConditionalBranch() const { return OutermostConditional != 0; }
    928 
    929   /// An RAII object to record that we're evaluating a statement
    930   /// expression.
    931   class StmtExprEvaluation {
    932     CodeGenFunction &CGF;
    933 
    934     /// We have to save the outermost conditional: cleanups in a
    935     /// statement expression aren't conditional just because the
    936     /// StmtExpr is.
    937     ConditionalEvaluation *SavedOutermostConditional;
    938 
    939   public:
    940     StmtExprEvaluation(CodeGenFunction &CGF)
    941       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    942       CGF.OutermostConditional = 0;
    943     }
    944 
    945     ~StmtExprEvaluation() {
    946       CGF.OutermostConditional = SavedOutermostConditional;
    947       CGF.EnsureInsertPoint();
    948     }
    949   };
    950 
    951   /// An object which temporarily prevents a value from being
    952   /// destroyed by aggressive peephole optimizations that assume that
    953   /// all uses of a value have been realized in the IR.
    954   class PeepholeProtection {
    955     llvm::Instruction *Inst;
    956     friend class CodeGenFunction;
    957 
    958   public:
    959     PeepholeProtection() : Inst(0) {}
    960   };
    961 
    962   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
    963   class OpaqueValueMapping {
    964     CodeGenFunction &CGF;
    965     const OpaqueValueExpr *OpaqueValue;
    966     bool BoundLValue;
    967     CodeGenFunction::PeepholeProtection Protection;
    968 
    969   public:
    970     static bool shouldBindAsLValue(const Expr *expr) {
    971       return expr->isGLValue() || expr->getType()->isRecordType();
    972     }
    973 
    974     /// Build the opaque value mapping for the given conditional
    975     /// operator if it's the GNU ?: extension.  This is a common
    976     /// enough pattern that the convenience operator is really
    977     /// helpful.
    978     ///
    979     OpaqueValueMapping(CodeGenFunction &CGF,
    980                        const AbstractConditionalOperator *op) : CGF(CGF) {
    981       if (isa<ConditionalOperator>(op)) {
    982         OpaqueValue = 0;
    983         BoundLValue = false;
    984         return;
    985       }
    986 
    987       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
    988       init(e->getOpaqueValue(), e->getCommon());
    989     }
    990 
    991     OpaqueValueMapping(CodeGenFunction &CGF,
    992                        const OpaqueValueExpr *opaqueValue,
    993                        LValue lvalue)
    994       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
    995       assert(opaqueValue && "no opaque value expression!");
    996       assert(shouldBindAsLValue(opaqueValue));
    997       initLValue(lvalue);
    998     }
    999 
   1000     OpaqueValueMapping(CodeGenFunction &CGF,
   1001                        const OpaqueValueExpr *opaqueValue,
   1002                        RValue rvalue)
   1003       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
   1004       assert(opaqueValue && "no opaque value expression!");
   1005       assert(!shouldBindAsLValue(opaqueValue));
   1006       initRValue(rvalue);
   1007     }
   1008 
   1009     void pop() {
   1010       assert(OpaqueValue && "mapping already popped!");
   1011       popImpl();
   1012       OpaqueValue = 0;
   1013     }
   1014 
   1015     ~OpaqueValueMapping() {
   1016       if (OpaqueValue) popImpl();
   1017     }
   1018 
   1019   private:
   1020     void popImpl() {
   1021       if (BoundLValue)
   1022         CGF.OpaqueLValues.erase(OpaqueValue);
   1023       else {
   1024         CGF.OpaqueRValues.erase(OpaqueValue);
   1025         CGF.unprotectFromPeepholes(Protection);
   1026       }
   1027     }
   1028 
   1029     void init(const OpaqueValueExpr *ov, const Expr *e) {
   1030       OpaqueValue = ov;
   1031       BoundLValue = shouldBindAsLValue(ov);
   1032       assert(BoundLValue == shouldBindAsLValue(e)
   1033              && "inconsistent expression value kinds!");
   1034       if (BoundLValue)
   1035         initLValue(CGF.EmitLValue(e));
   1036       else
   1037         initRValue(CGF.EmitAnyExpr(e));
   1038     }
   1039 
   1040     void initLValue(const LValue &lv) {
   1041       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
   1042     }
   1043 
   1044     void initRValue(const RValue &rv) {
   1045       // Work around an extremely aggressive peephole optimization in
   1046       // EmitScalarConversion which assumes that all other uses of a
   1047       // value are extant.
   1048       Protection = CGF.protectFromPeepholes(rv);
   1049       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
   1050     }
   1051   };
   1052 
   1053   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
   1054   /// number that holds the value.
   1055   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
   1056 
   1057   /// BuildBlockByrefAddress - Computes address location of the
   1058   /// variable which is declared as __block.
   1059   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
   1060                                       const VarDecl *V);
   1061 private:
   1062   CGDebugInfo *DebugInfo;
   1063   bool DisableDebugInfo;
   1064 
   1065   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
   1066   /// calling llvm.stacksave for multiple VLAs in the same scope.
   1067   bool DidCallStackSave;
   1068 
   1069   /// IndirectBranch - The first time an indirect goto is seen we create a block
   1070   /// with an indirect branch.  Every time we see the address of a label taken,
   1071   /// we add the label to the indirect goto.  Every subsequent indirect goto is
   1072   /// codegen'd as a jump to the IndirectBranch's basic block.
   1073   llvm::IndirectBrInst *IndirectBranch;
   1074 
   1075   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
   1076   /// decls.
   1077   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
   1078   DeclMapTy LocalDeclMap;
   1079 
   1080   /// LabelMap - This keeps track of the LLVM basic block for each C label.
   1081   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
   1082 
   1083   // BreakContinueStack - This keeps track of where break and continue
   1084   // statements should jump to.
   1085   struct BreakContinue {
   1086     BreakContinue(JumpDest Break, JumpDest Continue)
   1087       : BreakBlock(Break), ContinueBlock(Continue) {}
   1088 
   1089     JumpDest BreakBlock;
   1090     JumpDest ContinueBlock;
   1091   };
   1092   llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
   1093 
   1094   /// SwitchInsn - This is nearest current switch instruction. It is null if if
   1095   /// current context is not in a switch.
   1096   llvm::SwitchInst *SwitchInsn;
   1097 
   1098   /// CaseRangeBlock - This block holds if condition check for last case
   1099   /// statement range in current switch instruction.
   1100   llvm::BasicBlock *CaseRangeBlock;
   1101 
   1102   /// OpaqueLValues - Keeps track of the current set of opaque value
   1103   /// expressions.
   1104   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
   1105   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
   1106 
   1107   // VLASizeMap - This keeps track of the associated size for each VLA type.
   1108   // We track this by the size expression rather than the type itself because
   1109   // in certain situations, like a const qualifier applied to an VLA typedef,
   1110   // multiple VLA types can share the same size expression.
   1111   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1112   // enter/leave scopes.
   1113   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1114 
   1115   /// A block containing a single 'unreachable' instruction.  Created
   1116   /// lazily by getUnreachableBlock().
   1117   llvm::BasicBlock *UnreachableBlock;
   1118 
   1119   /// CXXThisDecl - When generating code for a C++ member function,
   1120   /// this will hold the implicit 'this' declaration.
   1121   ImplicitParamDecl *CXXThisDecl;
   1122   llvm::Value *CXXThisValue;
   1123 
   1124   /// CXXVTTDecl - When generating code for a base object constructor or
   1125   /// base object destructor with virtual bases, this will hold the implicit
   1126   /// VTT parameter.
   1127   ImplicitParamDecl *CXXVTTDecl;
   1128   llvm::Value *CXXVTTValue;
   1129 
   1130   /// OutermostConditional - Points to the outermost active
   1131   /// conditional control.  This is used so that we know if a
   1132   /// temporary should be destroyed conditionally.
   1133   ConditionalEvaluation *OutermostConditional;
   1134 
   1135 
   1136   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
   1137   /// type as well as the field number that contains the actual data.
   1138   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
   1139                                               unsigned> > ByRefValueInfo;
   1140 
   1141   llvm::BasicBlock *TerminateLandingPad;
   1142   llvm::BasicBlock *TerminateHandler;
   1143   llvm::BasicBlock *TrapBB;
   1144 
   1145 public:
   1146   CodeGenFunction(CodeGenModule &cgm);
   1147 
   1148   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1149   ASTContext &getContext() const { return CGM.getContext(); }
   1150   CGDebugInfo *getDebugInfo() {
   1151     if (DisableDebugInfo)
   1152       return NULL;
   1153     return DebugInfo;
   1154   }
   1155   void disableDebugInfo() { DisableDebugInfo = true; }
   1156   void enableDebugInfo() { DisableDebugInfo = false; }
   1157 
   1158   bool shouldUseFusedARCCalls() {
   1159     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1160   }
   1161 
   1162   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
   1163 
   1164   /// Returns a pointer to the function's exception object slot, which
   1165   /// is assigned in every landing pad.
   1166   llvm::Value *getExceptionSlot();
   1167   llvm::Value *getEHSelectorSlot();
   1168 
   1169   llvm::Value *getNormalCleanupDestSlot();
   1170   llvm::Value *getEHCleanupDestSlot();
   1171 
   1172   llvm::BasicBlock *getUnreachableBlock() {
   1173     if (!UnreachableBlock) {
   1174       UnreachableBlock = createBasicBlock("unreachable");
   1175       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1176     }
   1177     return UnreachableBlock;
   1178   }
   1179 
   1180   llvm::BasicBlock *getInvokeDest() {
   1181     if (!EHStack.requiresLandingPad()) return 0;
   1182     return getInvokeDestImpl();
   1183   }
   1184 
   1185   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1186 
   1187   //===--------------------------------------------------------------------===//
   1188   //                                  Cleanups
   1189   //===--------------------------------------------------------------------===//
   1190 
   1191   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
   1192 
   1193   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1194                                         llvm::Value *arrayEndPointer,
   1195                                         QualType elementType,
   1196                                         Destroyer &destroyer);
   1197   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1198                                       llvm::Value *arrayEnd,
   1199                                       QualType elementType,
   1200                                       Destroyer &destroyer);
   1201 
   1202   void pushDestroy(QualType::DestructionKind dtorKind,
   1203                    llvm::Value *addr, QualType type);
   1204   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
   1205                    Destroyer &destroyer, bool useEHCleanupForArray);
   1206   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
   1207                    bool useEHCleanupForArray);
   1208   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
   1209                                         QualType type,
   1210                                         Destroyer &destroyer,
   1211                                         bool useEHCleanupForArray);
   1212   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1213                         QualType type, Destroyer &destroyer,
   1214                         bool checkZeroLength, bool useEHCleanup);
   1215 
   1216   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
   1217 
   1218   /// Determines whether an EH cleanup is required to destroy a type
   1219   /// with the given destruction kind.
   1220   bool needsEHCleanup(QualType::DestructionKind kind) {
   1221     switch (kind) {
   1222     case QualType::DK_none:
   1223       return false;
   1224     case QualType::DK_cxx_destructor:
   1225     case QualType::DK_objc_weak_lifetime:
   1226       return getLangOptions().Exceptions;
   1227     case QualType::DK_objc_strong_lifetime:
   1228       return getLangOptions().Exceptions &&
   1229              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1230     }
   1231     llvm_unreachable("bad destruction kind");
   1232   }
   1233 
   1234   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1235     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1236   }
   1237 
   1238   //===--------------------------------------------------------------------===//
   1239   //                                  Objective-C
   1240   //===--------------------------------------------------------------------===//
   1241 
   1242   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1243 
   1244   void StartObjCMethod(const ObjCMethodDecl *MD,
   1245                        const ObjCContainerDecl *CD,
   1246                        SourceLocation StartLoc);
   1247 
   1248   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1249   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1250                           const ObjCPropertyImplDecl *PID);
   1251   void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
   1252   void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
   1253                                     ObjCIvarDecl *Ivar);
   1254 
   1255   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1256                                   ObjCMethodDecl *MD, bool ctor);
   1257 
   1258   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1259   /// for the given property.
   1260   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1261                           const ObjCPropertyImplDecl *PID);
   1262   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
   1263   bool IvarTypeWithAggrGCObjects(QualType Ty);
   1264 
   1265   //===--------------------------------------------------------------------===//
   1266   //                                  Block Bits
   1267   //===--------------------------------------------------------------------===//
   1268 
   1269   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1270   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
   1271                                            const CGBlockInfo &Info,
   1272                                            llvm::StructType *,
   1273                                            llvm::Constant *BlockVarLayout);
   1274 
   1275   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1276                                         const CGBlockInfo &Info,
   1277                                         const Decl *OuterFuncDecl,
   1278                                         const DeclMapTy &ldm);
   1279 
   1280   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1281   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1282 
   1283   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1284 
   1285   class AutoVarEmission;
   1286 
   1287   void emitByrefStructureInit(const AutoVarEmission &emission);
   1288   void enterByrefCleanup(const AutoVarEmission &emission);
   1289 
   1290   llvm::Value *LoadBlockStruct() {
   1291     assert(BlockPointer && "no block pointer set!");
   1292     return BlockPointer;
   1293   }
   1294 
   1295   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
   1296   void AllocateBlockDecl(const BlockDeclRefExpr *E);
   1297   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
   1298     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
   1299   }
   1300   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1301   llvm::Type *BuildByRefType(const VarDecl *var);
   1302 
   1303   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1304                     const CGFunctionInfo &FnInfo);
   1305   void StartFunction(GlobalDecl GD, QualType RetTy,
   1306                      llvm::Function *Fn,
   1307                      const CGFunctionInfo &FnInfo,
   1308                      const FunctionArgList &Args,
   1309                      SourceLocation StartLoc);
   1310 
   1311   void EmitConstructorBody(FunctionArgList &Args);
   1312   void EmitDestructorBody(FunctionArgList &Args);
   1313   void EmitFunctionBody(FunctionArgList &Args);
   1314 
   1315   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
   1316   /// emission when possible.
   1317   void EmitReturnBlock();
   1318 
   1319   /// FinishFunction - Complete IR generation of the current function. It is
   1320   /// legal to call this function even if there is no current insertion point.
   1321   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1322 
   1323   /// GenerateThunk - Generate a thunk for the given method.
   1324   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1325                      GlobalDecl GD, const ThunkInfo &Thunk);
   1326 
   1327   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1328                             GlobalDecl GD, const ThunkInfo &Thunk);
   1329 
   1330   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1331                         FunctionArgList &Args);
   1332 
   1333   /// InitializeVTablePointer - Initialize the vtable pointer of the given
   1334   /// subobject.
   1335   ///
   1336   void InitializeVTablePointer(BaseSubobject Base,
   1337                                const CXXRecordDecl *NearestVBase,
   1338                                CharUnits OffsetFromNearestVBase,
   1339                                llvm::Constant *VTable,
   1340                                const CXXRecordDecl *VTableClass);
   1341 
   1342   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1343   void InitializeVTablePointers(BaseSubobject Base,
   1344                                 const CXXRecordDecl *NearestVBase,
   1345                                 CharUnits OffsetFromNearestVBase,
   1346                                 bool BaseIsNonVirtualPrimaryBase,
   1347                                 llvm::Constant *VTable,
   1348                                 const CXXRecordDecl *VTableClass,
   1349                                 VisitedVirtualBasesSetTy& VBases);
   1350 
   1351   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1352 
   1353   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1354   /// to by This.
   1355   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
   1356 
   1357   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1358   /// given phase of destruction for a destructor.  The end result
   1359   /// should call destructors on members and base classes in reverse
   1360   /// order of their construction.
   1361   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1362 
   1363   /// ShouldInstrumentFunction - Return true if the current function should be
   1364   /// instrumented with __cyg_profile_func_* calls
   1365   bool ShouldInstrumentFunction();
   1366 
   1367   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1368   /// instrumentation function with the current function and the call site, if
   1369   /// function instrumentation is enabled.
   1370   void EmitFunctionInstrumentation(const char *Fn);
   1371 
   1372   /// EmitMCountInstrumentation - Emit call to .mcount.
   1373   void EmitMCountInstrumentation();
   1374 
   1375   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1376   /// arguments for the given function. This is also responsible for naming the
   1377   /// LLVM function arguments.
   1378   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1379                           llvm::Function *Fn,
   1380                           const FunctionArgList &Args);
   1381 
   1382   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1383   /// given temporary.
   1384   void EmitFunctionEpilog(const CGFunctionInfo &FI);
   1385 
   1386   /// EmitStartEHSpec - Emit the start of the exception spec.
   1387   void EmitStartEHSpec(const Decl *D);
   1388 
   1389   /// EmitEndEHSpec - Emit the end of the exception spec.
   1390   void EmitEndEHSpec(const Decl *D);
   1391 
   1392   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1393   llvm::BasicBlock *getTerminateLandingPad();
   1394 
   1395   /// getTerminateHandler - Return a handler (not a landing pad, just
   1396   /// a catch handler) that just calls terminate.  This is used when
   1397   /// a terminate scope encloses a try.
   1398   llvm::BasicBlock *getTerminateHandler();
   1399 
   1400   llvm::Type *ConvertTypeForMem(QualType T);
   1401   llvm::Type *ConvertType(QualType T);
   1402   llvm::Type *ConvertType(const TypeDecl *T) {
   1403     return ConvertType(getContext().getTypeDeclType(T));
   1404   }
   1405 
   1406   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1407   /// generating code for an Objective-C method.
   1408   llvm::Value *LoadObjCSelf();
   1409 
   1410   /// TypeOfSelfObject - Return type of object that this self represents.
   1411   QualType TypeOfSelfObject();
   1412 
   1413   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1414   /// an aggregate LLVM type or is void.
   1415   static bool hasAggregateLLVMType(QualType T);
   1416 
   1417   /// createBasicBlock - Create an LLVM basic block.
   1418   llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
   1419                                      llvm::Function *parent = 0,
   1420                                      llvm::BasicBlock *before = 0) {
   1421 #ifdef NDEBUG
   1422     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1423 #else
   1424     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1425 #endif
   1426   }
   1427 
   1428   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1429   /// label maps to.
   1430   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1431 
   1432   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1433   /// another basic block, simplify it. This assumes that no other code could
   1434   /// potentially reference the basic block.
   1435   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1436 
   1437   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1438   /// adding a fall-through branch from the current insert block if
   1439   /// necessary. It is legal to call this function even if there is no current
   1440   /// insertion point.
   1441   ///
   1442   /// IsFinished - If true, indicates that the caller has finished emitting
   1443   /// branches to the given block and does not expect to emit code into it. This
   1444   /// means the block can be ignored if it is unreachable.
   1445   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1446 
   1447   /// EmitBranch - Emit a branch to the specified basic block from the current
   1448   /// insert block, taking care to avoid creation of branches from dummy
   1449   /// blocks. It is legal to call this function even if there is no current
   1450   /// insertion point.
   1451   ///
   1452   /// This function clears the current insertion point. The caller should follow
   1453   /// calls to this function with calls to Emit*Block prior to generation new
   1454   /// code.
   1455   void EmitBranch(llvm::BasicBlock *Block);
   1456 
   1457   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1458   /// indicates that the current code being emitted is unreachable.
   1459   bool HaveInsertPoint() const {
   1460     return Builder.GetInsertBlock() != 0;
   1461   }
   1462 
   1463   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1464   /// emitted IR has a place to go. Note that by definition, if this function
   1465   /// creates a block then that block is unreachable; callers may do better to
   1466   /// detect when no insertion point is defined and simply skip IR generation.
   1467   void EnsureInsertPoint() {
   1468     if (!HaveInsertPoint())
   1469       EmitBlock(createBasicBlock());
   1470   }
   1471 
   1472   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1473   /// specified stmt yet.
   1474   void ErrorUnsupported(const Stmt *S, const char *Type,
   1475                         bool OmitOnError=false);
   1476 
   1477   //===--------------------------------------------------------------------===//
   1478   //                                  Helpers
   1479   //===--------------------------------------------------------------------===//
   1480 
   1481   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
   1482     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1483                             CGM.getTBAAInfo(T));
   1484   }
   1485 
   1486   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1487   /// block. The caller is responsible for setting an appropriate alignment on
   1488   /// the alloca.
   1489   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1490                                      const llvm::Twine &Name = "tmp");
   1491 
   1492   /// InitTempAlloca - Provide an initial value for the given alloca.
   1493   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
   1494 
   1495   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1496   /// appropriate alignment. This routine should only be used when an temporary
   1497   /// value needs to be stored into an alloca (for example, to avoid explicit
   1498   /// PHI construction), but the type is the IR type, not the type appropriate
   1499   /// for storing in memory.
   1500   llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
   1501 
   1502   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1503   /// appropriate alignment.
   1504   llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
   1505 
   1506   /// CreateAggTemp - Create a temporary memory object for the given
   1507   /// aggregate type.
   1508   AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
   1509     return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
   1510                                  false);
   1511   }
   1512 
   1513   /// Emit a cast to void* in the appropriate address space.
   1514   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1515 
   1516   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1517   /// expression and compare the result against zero, returning an Int1Ty value.
   1518   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1519 
   1520   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1521   void EmitIgnoredExpr(const Expr *E);
   1522 
   1523   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1524   /// any type.  The result is returned as an RValue struct.  If this is an
   1525   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1526   /// the result should be returned.
   1527   ///
   1528   /// \param IgnoreResult - True if the resulting value isn't used.
   1529   RValue EmitAnyExpr(const Expr *E,
   1530                      AggValueSlot AggSlot = AggValueSlot::ignored(),
   1531                      bool IgnoreResult = false);
   1532 
   1533   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1534   // or the value of the expression, depending on how va_list is defined.
   1535   llvm::Value *EmitVAListRef(const Expr *E);
   1536 
   1537   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1538   /// always be accessible even if no aggregate location is provided.
   1539   RValue EmitAnyExprToTemp(const Expr *E);
   1540 
   1541   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1542   /// arbitrary expression into the given memory location.
   1543   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
   1544                         Qualifiers Quals, bool IsInitializer);
   1545 
   1546   /// EmitExprAsInit - Emits the code necessary to initialize a
   1547   /// location in memory with the given initializer.
   1548   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1549                       LValue lvalue, bool capturedByInit);
   1550 
   1551   /// EmitAggregateCopy - Emit an aggrate copy.
   1552   ///
   1553   /// \param isVolatile - True iff either the source or the destination is
   1554   /// volatile.
   1555   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1556                          QualType EltTy, bool isVolatile=false);
   1557 
   1558   /// StartBlock - Start new block named N. If insert block is a dummy block
   1559   /// then reuse it.
   1560   void StartBlock(const char *N);
   1561 
   1562   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
   1563   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
   1564     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
   1565   }
   1566 
   1567   /// GetAddrOfLocalVar - Return the address of a local variable.
   1568   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
   1569     llvm::Value *Res = LocalDeclMap[VD];
   1570     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1571     return Res;
   1572   }
   1573 
   1574   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1575   /// must be mapped to an l-value), return its mapping.
   1576   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1577     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1578 
   1579     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1580       it = OpaqueLValues.find(e);
   1581     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1582     return it->second;
   1583   }
   1584 
   1585   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1586   /// must be mapped to an r-value), return its mapping.
   1587   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1588     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1589 
   1590     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1591       it = OpaqueRValues.find(e);
   1592     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1593     return it->second;
   1594   }
   1595 
   1596   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1597   /// the input field number being accessed.
   1598   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1599 
   1600   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1601   llvm::BasicBlock *GetIndirectGotoBlock();
   1602 
   1603   /// EmitNullInitialization - Generate code to set a value of the given type to
   1604   /// null, If the type contains data member pointers, they will be initialized
   1605   /// to -1 in accordance with the Itanium C++ ABI.
   1606   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
   1607 
   1608   // EmitVAArg - Generate code to get an argument from the passed in pointer
   1609   // and update it accordingly. The return value is a pointer to the argument.
   1610   // FIXME: We should be able to get rid of this method and use the va_arg
   1611   // instruction in LLVM instead once it works well enough.
   1612   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
   1613 
   1614   /// emitArrayLength - Compute the length of an array, even if it's a
   1615   /// VLA, and drill down to the base element type.
   1616   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1617                                QualType &baseType,
   1618                                llvm::Value *&addr);
   1619 
   1620   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1621   /// the given variably-modified type and store them in the VLASizeMap.
   1622   ///
   1623   /// This function can be called with a null (unreachable) insert point.
   1624   void EmitVariablyModifiedType(QualType Ty);
   1625 
   1626   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1627   /// in non-variably-sized elements, of a variable length array type,
   1628   /// plus that largest non-variably-sized element type.  Assumes that
   1629   /// the type has already been emitted with EmitVariablyModifiedType.
   1630   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1631   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1632 
   1633   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1634   /// generating code for an C++ member function.
   1635   llvm::Value *LoadCXXThis() {
   1636     assert(CXXThisValue && "no 'this' value for this function");
   1637     return CXXThisValue;
   1638   }
   1639 
   1640   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1641   /// virtual bases.
   1642   llvm::Value *LoadCXXVTT() {
   1643     assert(CXXVTTValue && "no VTT value for this function");
   1644     return CXXVTTValue;
   1645   }
   1646 
   1647   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1648   /// complete class to the given direct base.
   1649   llvm::Value *
   1650   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
   1651                                         const CXXRecordDecl *Derived,
   1652                                         const CXXRecordDecl *Base,
   1653                                         bool BaseIsVirtual);
   1654 
   1655   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1656   /// load of 'this' and returns address of the base class.
   1657   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
   1658                                      const CXXRecordDecl *Derived,
   1659                                      CastExpr::path_const_iterator PathBegin,
   1660                                      CastExpr::path_const_iterator PathEnd,
   1661                                      bool NullCheckValue);
   1662 
   1663   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
   1664                                         const CXXRecordDecl *Derived,
   1665                                         CastExpr::path_const_iterator PathBegin,
   1666                                         CastExpr::path_const_iterator PathEnd,
   1667                                         bool NullCheckValue);
   1668 
   1669   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
   1670                                          const CXXRecordDecl *ClassDecl,
   1671                                          const CXXRecordDecl *BaseClassDecl);
   1672 
   1673   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1674                                       CXXCtorType CtorType,
   1675                                       const FunctionArgList &Args);
   1676   // It's important not to confuse this and the previous function. Delegating
   1677   // constructors are the C++0x feature. The constructor delegate optimization
   1678   // is used to reduce duplication in the base and complete consturctors where
   1679   // they are substantially the same.
   1680   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1681                                         const FunctionArgList &Args);
   1682   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1683                               bool ForVirtualBase, llvm::Value *This,
   1684                               CallExpr::const_arg_iterator ArgBeg,
   1685                               CallExpr::const_arg_iterator ArgEnd);
   1686 
   1687   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1688                               llvm::Value *This, llvm::Value *Src,
   1689                               CallExpr::const_arg_iterator ArgBeg,
   1690                               CallExpr::const_arg_iterator ArgEnd);
   1691 
   1692   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1693                                   const ConstantArrayType *ArrayTy,
   1694                                   llvm::Value *ArrayPtr,
   1695                                   CallExpr::const_arg_iterator ArgBeg,
   1696                                   CallExpr::const_arg_iterator ArgEnd,
   1697                                   bool ZeroInitialization = false);
   1698 
   1699   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1700                                   llvm::Value *NumElements,
   1701                                   llvm::Value *ArrayPtr,
   1702                                   CallExpr::const_arg_iterator ArgBeg,
   1703                                   CallExpr::const_arg_iterator ArgEnd,
   1704                                   bool ZeroInitialization = false);
   1705 
   1706   static Destroyer destroyCXXObject;
   1707 
   1708   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1709                              bool ForVirtualBase, llvm::Value *This);
   1710 
   1711   void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
   1712                                llvm::Value *NumElements);
   1713 
   1714   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
   1715 
   1716   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1717   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1718 
   1719   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1720                       QualType DeleteTy);
   1721 
   1722   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1723   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
   1724 
   1725   void EmitCheck(llvm::Value *, unsigned Size);
   1726 
   1727   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1728                                        bool isInc, bool isPre);
   1729   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1730                                          bool isInc, bool isPre);
   1731   //===--------------------------------------------------------------------===//
   1732   //                            Declaration Emission
   1733   //===--------------------------------------------------------------------===//
   1734 
   1735   /// EmitDecl - Emit a declaration.
   1736   ///
   1737   /// This function can be called with a null (unreachable) insert point.
   1738   void EmitDecl(const Decl &D);
   1739 
   1740   /// EmitVarDecl - Emit a local variable declaration.
   1741   ///
   1742   /// This function can be called with a null (unreachable) insert point.
   1743   void EmitVarDecl(const VarDecl &D);
   1744 
   1745   void EmitScalarInit(const Expr *init, const ValueDecl *D,
   1746                       LValue lvalue, bool capturedByInit);
   1747   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1748 
   1749   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1750                              llvm::Value *Address);
   1751 
   1752   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1753   ///
   1754   /// This function can be called with a null (unreachable) insert point.
   1755   void EmitAutoVarDecl(const VarDecl &D);
   1756 
   1757   class AutoVarEmission {
   1758     friend class CodeGenFunction;
   1759 
   1760     const VarDecl *Variable;
   1761 
   1762     /// The alignment of the variable.
   1763     CharUnits Alignment;
   1764 
   1765     /// The address of the alloca.  Null if the variable was emitted
   1766     /// as a global constant.
   1767     llvm::Value *Address;
   1768 
   1769     llvm::Value *NRVOFlag;
   1770 
   1771     /// True if the variable is a __block variable.
   1772     bool IsByRef;
   1773 
   1774     /// True if the variable is of aggregate type and has a constant
   1775     /// initializer.
   1776     bool IsConstantAggregate;
   1777 
   1778     struct Invalid {};
   1779     AutoVarEmission(Invalid) : Variable(0) {}
   1780 
   1781     AutoVarEmission(const VarDecl &variable)
   1782       : Variable(&variable), Address(0), NRVOFlag(0),
   1783         IsByRef(false), IsConstantAggregate(false) {}
   1784 
   1785     bool wasEmittedAsGlobal() const { return Address == 0; }
   1786 
   1787   public:
   1788     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   1789 
   1790     /// Returns the address of the object within this declaration.
   1791     /// Note that this does not chase the forwarding pointer for
   1792     /// __block decls.
   1793     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
   1794       if (!IsByRef) return Address;
   1795 
   1796       return CGF.Builder.CreateStructGEP(Address,
   1797                                          CGF.getByRefValueLLVMField(Variable),
   1798                                          Variable->getNameAsString());
   1799     }
   1800   };
   1801   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   1802   void EmitAutoVarInit(const AutoVarEmission &emission);
   1803   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   1804   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   1805                               QualType::DestructionKind dtorKind);
   1806 
   1807   void EmitStaticVarDecl(const VarDecl &D,
   1808                          llvm::GlobalValue::LinkageTypes Linkage);
   1809 
   1810   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   1811   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
   1812 
   1813   /// protectFromPeepholes - Protect a value that we're intending to
   1814   /// store to the side, but which will probably be used later, from
   1815   /// aggressive peepholing optimizations that might delete it.
   1816   ///
   1817   /// Pass the result to unprotectFromPeepholes to declare that
   1818   /// protection is no longer required.
   1819   ///
   1820   /// There's no particular reason why this shouldn't apply to
   1821   /// l-values, it's just that no existing peepholes work on pointers.
   1822   PeepholeProtection protectFromPeepholes(RValue rvalue);
   1823   void unprotectFromPeepholes(PeepholeProtection protection);
   1824 
   1825   //===--------------------------------------------------------------------===//
   1826   //                             Statement Emission
   1827   //===--------------------------------------------------------------------===//
   1828 
   1829   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   1830   void EmitStopPoint(const Stmt *S);
   1831 
   1832   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   1833   /// this function even if there is no current insertion point.
   1834   ///
   1835   /// This function may clear the current insertion point; callers should use
   1836   /// EnsureInsertPoint if they wish to subsequently generate code without first
   1837   /// calling EmitBlock, EmitBranch, or EmitStmt.
   1838   void EmitStmt(const Stmt *S);
   1839 
   1840   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   1841   /// necessarily require an insertion point or debug information; typically
   1842   /// because the statement amounts to a jump or a container of other
   1843   /// statements.
   1844   ///
   1845   /// \return True if the statement was handled.
   1846   bool EmitSimpleStmt(const Stmt *S);
   1847 
   1848   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   1849                           AggValueSlot AVS = AggValueSlot::ignored());
   1850 
   1851   /// EmitLabel - Emit the block for the given label. It is legal to call this
   1852   /// function even if there is no current insertion point.
   1853   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   1854 
   1855   void EmitLabelStmt(const LabelStmt &S);
   1856   void EmitGotoStmt(const GotoStmt &S);
   1857   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   1858   void EmitIfStmt(const IfStmt &S);
   1859   void EmitWhileStmt(const WhileStmt &S);
   1860   void EmitDoStmt(const DoStmt &S);
   1861   void EmitForStmt(const ForStmt &S);
   1862   void EmitReturnStmt(const ReturnStmt &S);
   1863   void EmitDeclStmt(const DeclStmt &S);
   1864   void EmitBreakStmt(const BreakStmt &S);
   1865   void EmitContinueStmt(const ContinueStmt &S);
   1866   void EmitSwitchStmt(const SwitchStmt &S);
   1867   void EmitDefaultStmt(const DefaultStmt &S);
   1868   void EmitCaseStmt(const CaseStmt &S);
   1869   void EmitCaseStmtRange(const CaseStmt &S);
   1870   void EmitAsmStmt(const AsmStmt &S);
   1871 
   1872   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   1873   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   1874   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   1875   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   1876   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   1877 
   1878   llvm::Constant *getUnwindResumeFn();
   1879   llvm::Constant *getUnwindResumeOrRethrowFn();
   1880   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1881   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1882 
   1883   void EmitCXXTryStmt(const CXXTryStmt &S);
   1884   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
   1885 
   1886   //===--------------------------------------------------------------------===//
   1887   //                         LValue Expression Emission
   1888   //===--------------------------------------------------------------------===//
   1889 
   1890   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   1891   RValue GetUndefRValue(QualType Ty);
   1892 
   1893   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   1894   /// and issue an ErrorUnsupported style diagnostic (using the
   1895   /// provided Name).
   1896   RValue EmitUnsupportedRValue(const Expr *E,
   1897                                const char *Name);
   1898 
   1899   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   1900   /// an ErrorUnsupported style diagnostic (using the provided Name).
   1901   LValue EmitUnsupportedLValue(const Expr *E,
   1902                                const char *Name);
   1903 
   1904   /// EmitLValue - Emit code to compute a designator that specifies the location
   1905   /// of the expression.
   1906   ///
   1907   /// This can return one of two things: a simple address or a bitfield
   1908   /// reference.  In either case, the LLVM Value* in the LValue structure is
   1909   /// guaranteed to be an LLVM pointer type.
   1910   ///
   1911   /// If this returns a bitfield reference, nothing about the pointee type of
   1912   /// the LLVM value is known: For example, it may not be a pointer to an
   1913   /// integer.
   1914   ///
   1915   /// If this returns a normal address, and if the lvalue's C type is fixed
   1916   /// size, this method guarantees that the returned pointer type will point to
   1917   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   1918   /// variable length type, this is not possible.
   1919   ///
   1920   LValue EmitLValue(const Expr *E);
   1921 
   1922   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
   1923   /// checking code to guard against undefined behavior.  This is only
   1924   /// suitable when we know that the address will be used to access the
   1925   /// object.
   1926   LValue EmitCheckedLValue(const Expr *E);
   1927 
   1928   /// EmitToMemory - Change a scalar value from its value
   1929   /// representation to its in-memory representation.
   1930   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   1931 
   1932   /// EmitFromMemory - Change a scalar value from its memory
   1933   /// representation to its value representation.
   1934   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   1935 
   1936   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   1937   /// care to appropriately convert from the memory representation to
   1938   /// the LLVM value representation.
   1939   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1940                                 unsigned Alignment, QualType Ty,
   1941                                 llvm::MDNode *TBAAInfo = 0);
   1942 
   1943   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   1944   /// care to appropriately convert from the memory representation to
   1945   /// the LLVM value representation.  The l-value must be a simple
   1946   /// l-value.
   1947   llvm::Value *EmitLoadOfScalar(LValue lvalue);
   1948 
   1949   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   1950   /// care to appropriately convert from the memory representation to
   1951   /// the LLVM value representation.
   1952   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1953                          bool Volatile, unsigned Alignment, QualType Ty,
   1954                          llvm::MDNode *TBAAInfo = 0);
   1955 
   1956   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   1957   /// care to appropriately convert from the memory representation to
   1958   /// the LLVM value representation.  The l-value must be a simple
   1959   /// l-value.
   1960   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
   1961 
   1962   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   1963   /// this method emits the address of the lvalue, then loads the result as an
   1964   /// rvalue, returning the rvalue.
   1965   RValue EmitLoadOfLValue(LValue V);
   1966   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   1967   RValue EmitLoadOfBitfieldLValue(LValue LV);
   1968   RValue EmitLoadOfPropertyRefLValue(LValue LV,
   1969                                  ReturnValueSlot Return = ReturnValueSlot());
   1970 
   1971   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1972   /// lvalue, where both are guaranteed to the have the same type, and that type
   1973   /// is 'Ty'.
   1974   void EmitStoreThroughLValue(RValue Src, LValue Dst);
   1975   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   1976   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
   1977 
   1978   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
   1979   /// EmitStoreThroughLValue.
   1980   ///
   1981   /// \param Result [out] - If non-null, this will be set to a Value* for the
   1982   /// bit-field contents after the store, appropriate for use as the result of
   1983   /// an assignment to the bit-field.
   1984   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1985                                       llvm::Value **Result=0);
   1986 
   1987   /// Emit an l-value for an assignment (simple or compound) of complex type.
   1988   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   1989   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   1990 
   1991   // Note: only available for agg return types
   1992   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   1993   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   1994   // Note: only available for agg return types
   1995   LValue EmitCallExprLValue(const CallExpr *E);
   1996   // Note: only available for agg return types
   1997   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   1998   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   1999   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2000   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2001   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2002   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2003   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
   2004   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2005   LValue EmitMemberExpr(const MemberExpr *E);
   2006   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2007   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2008   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2009   LValue EmitCastLValue(const CastExpr *E);
   2010   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
   2011   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2012   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2013 
   2014   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2015                               const ObjCIvarDecl *Ivar);
   2016   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
   2017                                       const IndirectFieldDecl* Field,
   2018                                       unsigned CVRQualifiers);
   2019   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
   2020                             unsigned CVRQualifiers);
   2021 
   2022   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2023   /// if the Field is a reference, this will return the address of the reference
   2024   /// and not the address of the value stored in the reference.
   2025   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
   2026                                           const FieldDecl* Field,
   2027                                           unsigned CVRQualifiers);
   2028 
   2029   LValue EmitLValueForIvar(QualType ObjectTy,
   2030                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2031                            unsigned CVRQualifiers);
   2032 
   2033   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
   2034                                 unsigned CVRQualifiers);
   2035 
   2036   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
   2037 
   2038   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2039   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2040   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
   2041   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2042 
   2043   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2044   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2045   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
   2046   LValue EmitStmtExprLValue(const StmtExpr *E);
   2047   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2048   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2049   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2050 
   2051   //===--------------------------------------------------------------------===//
   2052   //                         Scalar Expression Emission
   2053   //===--------------------------------------------------------------------===//
   2054 
   2055   /// EmitCall - Generate a call of the given function, expecting the given
   2056   /// result type, and using the given argument list which specifies both the
   2057   /// LLVM arguments and the types they were derived from.
   2058   ///
   2059   /// \param TargetDecl - If given, the decl of the function in a direct call;
   2060   /// used to set attributes on the call (noreturn, etc.).
   2061   RValue EmitCall(const CGFunctionInfo &FnInfo,
   2062                   llvm::Value *Callee,
   2063                   ReturnValueSlot ReturnValue,
   2064                   const CallArgList &Args,
   2065                   const Decl *TargetDecl = 0,
   2066                   llvm::Instruction **callOrInvoke = 0);
   2067 
   2068   RValue EmitCall(QualType FnType, llvm::Value *Callee,
   2069                   ReturnValueSlot ReturnValue,
   2070                   CallExpr::const_arg_iterator ArgBeg,
   2071                   CallExpr::const_arg_iterator ArgEnd,
   2072                   const Decl *TargetDecl = 0);
   2073   RValue EmitCallExpr(const CallExpr *E,
   2074                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2075 
   2076   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2077                                   llvm::ArrayRef<llvm::Value *> Args,
   2078                                   const llvm::Twine &Name = "");
   2079   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2080                                   const llvm::Twine &Name = "");
   2081 
   2082   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
   2083                                 llvm::Type *Ty);
   2084   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
   2085                                 llvm::Value *This, llvm::Type *Ty);
   2086   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2087                                          NestedNameSpecifier *Qual,
   2088                                          llvm::Type *Ty);
   2089 
   2090   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2091                                                    CXXDtorType Type,
   2092                                                    const CXXRecordDecl *RD);
   2093 
   2094   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
   2095                            llvm::Value *Callee,
   2096                            ReturnValueSlot ReturnValue,
   2097                            llvm::Value *This,
   2098                            llvm::Value *VTT,
   2099                            CallExpr::const_arg_iterator ArgBeg,
   2100                            CallExpr::const_arg_iterator ArgEnd);
   2101   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2102                                ReturnValueSlot ReturnValue);
   2103   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2104                                       ReturnValueSlot ReturnValue);
   2105 
   2106   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2107                                            const CXXMethodDecl *MD,
   2108                                            llvm::Value *This);
   2109   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2110                                        const CXXMethodDecl *MD,
   2111                                        ReturnValueSlot ReturnValue);
   2112 
   2113 
   2114   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2115                          unsigned BuiltinID, const CallExpr *E);
   2116 
   2117   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2118 
   2119   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2120   /// is unhandled by the current target.
   2121   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2122 
   2123   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2124   llvm::Value *EmitNeonCall(llvm::Function *F,
   2125                             llvm::SmallVectorImpl<llvm::Value*> &O,
   2126                             const char *name,
   2127                             unsigned shift = 0, bool rightshift = false);
   2128   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2129   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2130                                    bool negateForRightShift);
   2131 
   2132   llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
   2133   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2134   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2135 
   2136   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2137   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2138   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2139   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2140                              ReturnValueSlot Return = ReturnValueSlot());
   2141 
   2142   /// Retrieves the default cleanup kind for an ARC cleanup.
   2143   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2144   CleanupKind getARCCleanupKind() {
   2145     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2146              ? NormalAndEHCleanup : NormalCleanup;
   2147   }
   2148 
   2149   // ARC primitives.
   2150   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
   2151   void EmitARCDestroyWeak(llvm::Value *addr);
   2152   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
   2153   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
   2154   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
   2155                                 bool ignored);
   2156   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
   2157   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
   2158   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2159   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2160   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2161                                   bool ignored);
   2162   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
   2163                                       bool ignored);
   2164   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2165   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2166   llvm::Value *EmitARCRetainBlock(llvm::Value *value);
   2167   void EmitARCRelease(llvm::Value *value, bool precise);
   2168   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2169   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2170   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2171   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2172 
   2173   std::pair<LValue,llvm::Value*>
   2174   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2175   std::pair<LValue,llvm::Value*>
   2176   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2177 
   2178   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
   2179   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2180   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2181 
   2182   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2183   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2184 
   2185   static Destroyer destroyARCStrongImprecise;
   2186   static Destroyer destroyARCStrongPrecise;
   2187   static Destroyer destroyARCWeak;
   2188 
   2189   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2190   llvm::Value *EmitObjCAutoreleasePoolPush();
   2191   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2192   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2193   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2194 
   2195   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
   2196   /// expression. Will emit a temporary variable if E is not an LValue.
   2197   RValue EmitReferenceBindingToExpr(const Expr* E,
   2198                                     const NamedDecl *InitializedDecl);
   2199 
   2200   //===--------------------------------------------------------------------===//
   2201   //                           Expression Emission
   2202   //===--------------------------------------------------------------------===//
   2203 
   2204   // Expressions are broken into three classes: scalar, complex, aggregate.
   2205 
   2206   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2207   /// scalar type, returning the result.
   2208   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2209 
   2210   /// EmitScalarConversion - Emit a conversion from the specified type to the
   2211   /// specified destination type, both of which are LLVM scalar types.
   2212   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2213                                     QualType DstTy);
   2214 
   2215   /// EmitComplexToScalarConversion - Emit a conversion from the specified
   2216   /// complex type to the specified destination type, where the destination type
   2217   /// is an LLVM scalar type.
   2218   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2219                                              QualType DstTy);
   2220 
   2221 
   2222   /// EmitAggExpr - Emit the computation of the specified expression
   2223   /// of aggregate type.  The result is computed into the given slot,
   2224   /// which may be null to indicate that the value is not needed.
   2225   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
   2226 
   2227   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2228   /// aggregate type into a temporary LValue.
   2229   LValue EmitAggExprToLValue(const Expr *E);
   2230 
   2231   /// EmitGCMemmoveCollectable - Emit special API for structs with object
   2232   /// pointers.
   2233   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   2234                                 QualType Ty);
   2235 
   2236   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2237   /// make sure it survives garbage collection until this point.
   2238   void EmitExtendGCLifetime(llvm::Value *object);
   2239 
   2240   /// EmitComplexExpr - Emit the computation of the specified expression of
   2241   /// complex type, returning the result.
   2242   ComplexPairTy EmitComplexExpr(const Expr *E,
   2243                                 bool IgnoreReal = false,
   2244                                 bool IgnoreImag = false);
   2245 
   2246   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
   2247   /// of complex type, storing into the specified Value*.
   2248   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
   2249                                bool DestIsVolatile);
   2250 
   2251   /// StoreComplexToAddr - Store a complex number into the specified address.
   2252   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
   2253                           bool DestIsVolatile);
   2254   /// LoadComplexFromAddr - Load a complex number from the specified address.
   2255   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
   2256 
   2257   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
   2258   /// a static local variable.
   2259   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
   2260                                             const char *Separator,
   2261                                        llvm::GlobalValue::LinkageTypes Linkage);
   2262 
   2263   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2264   /// global variable that has already been created for it.  If the initializer
   2265   /// has a different type than GV does, this may free GV and return a different
   2266   /// one.  Otherwise it just returns GV.
   2267   llvm::GlobalVariable *
   2268   AddInitializerToStaticVarDecl(const VarDecl &D,
   2269                                 llvm::GlobalVariable *GV);
   2270 
   2271 
   2272   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2273   /// variable with global storage.
   2274   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
   2275 
   2276   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
   2277   /// with the C++ runtime so that its destructor will be called at exit.
   2278   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
   2279                                      llvm::Constant *DeclPtr);
   2280 
   2281   /// Emit code in this function to perform a guarded variable
   2282   /// initialization.  Guarded initializations are used when it's not
   2283   /// possible to prove that an initialization will be done exactly
   2284   /// once, e.g. with a static local variable or a static data member
   2285   /// of a class template.
   2286   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
   2287 
   2288   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2289   /// variables.
   2290   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2291                                  llvm::Constant **Decls,
   2292                                  unsigned NumDecls);
   2293 
   2294   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
   2295   /// variables.
   2296   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
   2297                                  const std::vector<std::pair<llvm::WeakVH,
   2298                                    llvm::Constant*> > &DtorsAndObjects);
   2299 
   2300   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2301                                         const VarDecl *D,
   2302                                         llvm::GlobalVariable *Addr);
   2303 
   2304   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2305 
   2306   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
   2307                                   const Expr *Exp);
   2308 
   2309   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
   2310                               AggValueSlot Slot =AggValueSlot::ignored());
   2311 
   2312   void EmitCXXThrowExpr(const CXXThrowExpr *E);
   2313 
   2314   //===--------------------------------------------------------------------===//
   2315   //                             Internal Helpers
   2316   //===--------------------------------------------------------------------===//
   2317 
   2318   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2319   /// this statement is not executed normally, it not containing a label means
   2320   /// that we can just remove the code.
   2321   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2322 
   2323   /// containsBreak - Return true if the statement contains a break out of it.
   2324   /// If the statement (recursively) contains a switch or loop with a break
   2325   /// inside of it, this is fine.
   2326   static bool containsBreak(const Stmt *S);
   2327 
   2328   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2329   /// to a constant, or if it does but contains a label, return false.  If it
   2330   /// constant folds return true and set the boolean result in Result.
   2331   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2332 
   2333   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2334   /// to a constant, or if it does but contains a label, return false.  If it
   2335   /// constant folds return true and set the folded value.
   2336   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
   2337 
   2338   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2339   /// if statement) to the specified blocks.  Based on the condition, this might
   2340   /// try to simplify the codegen of the conditional based on the branch.
   2341   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2342                             llvm::BasicBlock *FalseBlock);
   2343 
   2344   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
   2345   /// generate a branch around the created basic block as necessary.
   2346   llvm::BasicBlock *getTrapBB();
   2347 
   2348   /// EmitCallArg - Emit a single call argument.
   2349   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   2350 
   2351   /// EmitDelegateCallArg - We are performing a delegate call; that
   2352   /// is, the current function is delegating to another one.  Produce
   2353   /// a r-value suitable for passing the given parameter.
   2354   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
   2355 
   2356 private:
   2357   void EmitReturnOfRValue(RValue RV, QualType Ty);
   2358 
   2359   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   2360   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   2361   ///
   2362   /// \param AI - The first function argument of the expansion.
   2363   /// \return The argument following the last expanded function
   2364   /// argument.
   2365   llvm::Function::arg_iterator
   2366   ExpandTypeFromArgs(QualType Ty, LValue Dst,
   2367                      llvm::Function::arg_iterator AI);
   2368 
   2369   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
   2370   /// Ty, into individual arguments on the provided vector \arg Args. See
   2371   /// ABIArgInfo::Expand.
   2372   void ExpandTypeToArgs(QualType Ty, RValue Src,
   2373                         llvm::SmallVector<llvm::Value*, 16> &Args,
   2374                         llvm::FunctionType *IRFuncTy);
   2375 
   2376   llvm::Value* EmitAsmInput(const AsmStmt &S,
   2377                             const TargetInfo::ConstraintInfo &Info,
   2378                             const Expr *InputExpr, std::string &ConstraintStr);
   2379 
   2380   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
   2381                                   const TargetInfo::ConstraintInfo &Info,
   2382                                   LValue InputValue, QualType InputType,
   2383                                   std::string &ConstraintStr);
   2384 
   2385   /// EmitCallArgs - Emit call arguments for a function.
   2386   /// The CallArgTypeInfo parameter is used for iterating over the known
   2387   /// argument types of the function being called.
   2388   template<typename T>
   2389   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
   2390                     CallExpr::const_arg_iterator ArgBeg,
   2391                     CallExpr::const_arg_iterator ArgEnd) {
   2392       CallExpr::const_arg_iterator Arg = ArgBeg;
   2393 
   2394     // First, use the argument types that the type info knows about
   2395     if (CallArgTypeInfo) {
   2396       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
   2397            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
   2398         assert(Arg != ArgEnd && "Running over edge of argument list!");
   2399         QualType ArgType = *I;
   2400 #ifndef NDEBUG
   2401         QualType ActualArgType = Arg->getType();
   2402         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
   2403           QualType ActualBaseType =
   2404             ActualArgType->getAs<PointerType>()->getPointeeType();
   2405           QualType ArgBaseType =
   2406             ArgType->getAs<PointerType>()->getPointeeType();
   2407           if (ArgBaseType->isVariableArrayType()) {
   2408             if (const VariableArrayType *VAT =
   2409                 getContext().getAsVariableArrayType(ActualBaseType)) {
   2410               if (!VAT->getSizeExpr())
   2411                 ActualArgType = ArgType;
   2412             }
   2413           }
   2414         }
   2415         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
   2416                getTypePtr() ==
   2417                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
   2418                "type mismatch in call argument!");
   2419 #endif
   2420         EmitCallArg(Args, *Arg, ArgType);
   2421       }
   2422 
   2423       // Either we've emitted all the call args, or we have a call to a
   2424       // variadic function.
   2425       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
   2426              "Extra arguments in non-variadic function!");
   2427 
   2428     }
   2429 
   2430     // If we still have any arguments, emit them using the type of the argument.
   2431     for (; Arg != ArgEnd; ++Arg)
   2432       EmitCallArg(Args, *Arg, Arg->getType());
   2433   }
   2434 
   2435   const TargetCodeGenInfo &getTargetHooks() const {
   2436     return CGM.getTargetCodeGenInfo();
   2437   }
   2438 
   2439   void EmitDeclMetadata();
   2440 
   2441   CodeGenModule::ByrefHelpers *
   2442   buildByrefHelpers(llvm::StructType &byrefType,
   2443                     const AutoVarEmission &emission);
   2444 };
   2445 
   2446 /// Helper class with most of the code for saving a value for a
   2447 /// conditional expression cleanup.
   2448 struct DominatingLLVMValue {
   2449   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   2450 
   2451   /// Answer whether the given value needs extra work to be saved.
   2452   static bool needsSaving(llvm::Value *value) {
   2453     // If it's not an instruction, we don't need to save.
   2454     if (!isa<llvm::Instruction>(value)) return false;
   2455 
   2456     // If it's an instruction in the entry block, we don't need to save.
   2457     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   2458     return (block != &block->getParent()->getEntryBlock());
   2459   }
   2460 
   2461   /// Try to save the given value.
   2462   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   2463     if (!needsSaving(value)) return saved_type(value, false);
   2464 
   2465     // Otherwise we need an alloca.
   2466     llvm::Value *alloca =
   2467       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
   2468     CGF.Builder.CreateStore(value, alloca);
   2469 
   2470     return saved_type(alloca, true);
   2471   }
   2472 
   2473   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   2474     if (!value.getInt()) return value.getPointer();
   2475     return CGF.Builder.CreateLoad(value.getPointer());
   2476   }
   2477 };
   2478 
   2479 /// A partial specialization of DominatingValue for llvm::Values that
   2480 /// might be llvm::Instructions.
   2481 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   2482   typedef T *type;
   2483   static type restore(CodeGenFunction &CGF, saved_type value) {
   2484     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   2485   }
   2486 };
   2487 
   2488 /// A specialization of DominatingValue for RValue.
   2489 template <> struct DominatingValue<RValue> {
   2490   typedef RValue type;
   2491   class saved_type {
   2492     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   2493                 AggregateAddress, ComplexAddress };
   2494 
   2495     llvm::Value *Value;
   2496     Kind K;
   2497     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
   2498 
   2499   public:
   2500     static bool needsSaving(RValue value);
   2501     static saved_type save(CodeGenFunction &CGF, RValue value);
   2502     RValue restore(CodeGenFunction &CGF);
   2503 
   2504     // implementations in CGExprCXX.cpp
   2505   };
   2506 
   2507   static bool needsSaving(type value) {
   2508     return saved_type::needsSaving(value);
   2509   }
   2510   static saved_type save(CodeGenFunction &CGF, type value) {
   2511     return saved_type::save(CGF, value);
   2512   }
   2513   static type restore(CodeGenFunction &CGF, saved_type value) {
   2514     return value.restore(CGF);
   2515   }
   2516 };
   2517 
   2518 }  // end namespace CodeGen
   2519 }  // end namespace clang
   2520 
   2521 #endif
   2522