1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/Basic/ABI.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "CodeGenModule.h" 29 #include "CGBuilder.h" 30 #include "CGValue.h" 31 32 namespace llvm { 33 class BasicBlock; 34 class LLVMContext; 35 class MDNode; 36 class Module; 37 class SwitchInst; 38 class Twine; 39 class Value; 40 class CallSite; 41 } 42 43 namespace clang { 44 class APValue; 45 class ASTContext; 46 class CXXDestructorDecl; 47 class CXXForRangeStmt; 48 class CXXTryStmt; 49 class Decl; 50 class LabelDecl; 51 class EnumConstantDecl; 52 class FunctionDecl; 53 class FunctionProtoType; 54 class LabelStmt; 55 class ObjCContainerDecl; 56 class ObjCInterfaceDecl; 57 class ObjCIvarDecl; 58 class ObjCMethodDecl; 59 class ObjCImplementationDecl; 60 class ObjCPropertyImplDecl; 61 class TargetInfo; 62 class TargetCodeGenInfo; 63 class VarDecl; 64 class ObjCForCollectionStmt; 65 class ObjCAtTryStmt; 66 class ObjCAtThrowStmt; 67 class ObjCAtSynchronizedStmt; 68 class ObjCAutoreleasePoolStmt; 69 70 namespace CodeGen { 71 class CodeGenTypes; 72 class CGDebugInfo; 73 class CGFunctionInfo; 74 class CGRecordLayout; 75 class CGBlockInfo; 76 class CGCXXABI; 77 class BlockFlags; 78 class BlockFieldFlags; 79 80 /// A branch fixup. These are required when emitting a goto to a 81 /// label which hasn't been emitted yet. The goto is optimistically 82 /// emitted as a branch to the basic block for the label, and (if it 83 /// occurs in a scope with non-trivial cleanups) a fixup is added to 84 /// the innermost cleanup. When a (normal) cleanup is popped, any 85 /// unresolved fixups in that scope are threaded through the cleanup. 86 struct BranchFixup { 87 /// The block containing the terminator which needs to be modified 88 /// into a switch if this fixup is resolved into the current scope. 89 /// If null, LatestBranch points directly to the destination. 90 llvm::BasicBlock *OptimisticBranchBlock; 91 92 /// The ultimate destination of the branch. 93 /// 94 /// This can be set to null to indicate that this fixup was 95 /// successfully resolved. 96 llvm::BasicBlock *Destination; 97 98 /// The destination index value. 99 unsigned DestinationIndex; 100 101 /// The initial branch of the fixup. 102 llvm::BranchInst *InitialBranch; 103 }; 104 105 template <class T> struct InvariantValue { 106 typedef T type; 107 typedef T saved_type; 108 static bool needsSaving(type value) { return false; } 109 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 110 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 111 }; 112 113 /// A metaprogramming class for ensuring that a value will dominate an 114 /// arbitrary position in a function. 115 template <class T> struct DominatingValue : InvariantValue<T> {}; 116 117 template <class T, bool mightBeInstruction = 118 llvm::is_base_of<llvm::Value, T>::value && 119 !llvm::is_base_of<llvm::Constant, T>::value && 120 !llvm::is_base_of<llvm::BasicBlock, T>::value> 121 struct DominatingPointer; 122 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 123 // template <class T> struct DominatingPointer<T,true> at end of file 124 125 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 126 127 enum CleanupKind { 128 EHCleanup = 0x1, 129 NormalCleanup = 0x2, 130 NormalAndEHCleanup = EHCleanup | NormalCleanup, 131 132 InactiveCleanup = 0x4, 133 InactiveEHCleanup = EHCleanup | InactiveCleanup, 134 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 135 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 136 }; 137 138 /// A stack of scopes which respond to exceptions, including cleanups 139 /// and catch blocks. 140 class EHScopeStack { 141 public: 142 /// A saved depth on the scope stack. This is necessary because 143 /// pushing scopes onto the stack invalidates iterators. 144 class stable_iterator { 145 friend class EHScopeStack; 146 147 /// Offset from StartOfData to EndOfBuffer. 148 ptrdiff_t Size; 149 150 stable_iterator(ptrdiff_t Size) : Size(Size) {} 151 152 public: 153 static stable_iterator invalid() { return stable_iterator(-1); } 154 stable_iterator() : Size(-1) {} 155 156 bool isValid() const { return Size >= 0; } 157 158 /// Returns true if this scope encloses I. 159 /// Returns false if I is invalid. 160 /// This scope must be valid. 161 bool encloses(stable_iterator I) const { return Size <= I.Size; } 162 163 /// Returns true if this scope strictly encloses I: that is, 164 /// if it encloses I and is not I. 165 /// Returns false is I is invalid. 166 /// This scope must be valid. 167 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 168 169 friend bool operator==(stable_iterator A, stable_iterator B) { 170 return A.Size == B.Size; 171 } 172 friend bool operator!=(stable_iterator A, stable_iterator B) { 173 return A.Size != B.Size; 174 } 175 }; 176 177 /// Information for lazily generating a cleanup. Subclasses must be 178 /// POD-like: cleanups will not be destructed, and they will be 179 /// allocated on the cleanup stack and freely copied and moved 180 /// around. 181 /// 182 /// Cleanup implementations should generally be declared in an 183 /// anonymous namespace. 184 class Cleanup { 185 // Anchor the construction vtable. 186 virtual void anchor(); 187 public: 188 /// Generation flags. 189 class Flags { 190 enum { 191 F_IsForEH = 0x1, 192 F_IsNormalCleanupKind = 0x2, 193 F_IsEHCleanupKind = 0x4 194 }; 195 unsigned flags; 196 197 public: 198 Flags() : flags(0) {} 199 200 /// isForEH - true if the current emission is for an EH cleanup. 201 bool isForEHCleanup() const { return flags & F_IsForEH; } 202 bool isForNormalCleanup() const { return !isForEHCleanup(); } 203 void setIsForEHCleanup() { flags |= F_IsForEH; } 204 205 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 206 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 207 208 /// isEHCleanupKind - true if the cleanup was pushed as an EH 209 /// cleanup. 210 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 211 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 212 }; 213 214 // Provide a virtual destructor to suppress a very common warning 215 // that unfortunately cannot be suppressed without this. Cleanups 216 // should not rely on this destructor ever being called. 217 virtual ~Cleanup() {} 218 219 /// Emit the cleanup. For normal cleanups, this is run in the 220 /// same EH context as when the cleanup was pushed, i.e. the 221 /// immediately-enclosing context of the cleanup scope. For 222 /// EH cleanups, this is run in a terminate context. 223 /// 224 // \param IsForEHCleanup true if this is for an EH cleanup, false 225 /// if for a normal cleanup. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309 private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH cleanup on the stack. 329 stable_iterator InnermostEHCleanup; 330 331 /// The number of catches on the stack. 332 unsigned CatchDepth; 333 334 /// The current EH destination index. Reset to FirstCatchIndex 335 /// whenever the last EH cleanup is popped. 336 unsigned NextEHDestIndex; 337 enum { FirstEHDestIndex = 1 }; 338 339 /// The current set of branch fixups. A branch fixup is a jump to 340 /// an as-yet unemitted label, i.e. a label for which we don't yet 341 /// know the EH stack depth. Whenever we pop a cleanup, we have 342 /// to thread all the current branch fixups through it. 343 /// 344 /// Fixups are recorded as the Use of the respective branch or 345 /// switch statement. The use points to the final destination. 346 /// When popping out of a cleanup, these uses are threaded through 347 /// the cleanup and adjusted to point to the new cleanup. 348 /// 349 /// Note that branches are allowed to jump into protected scopes 350 /// in certain situations; e.g. the following code is legal: 351 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 352 /// goto foo; 353 /// A a; 354 /// foo: 355 /// bar(); 356 llvm::SmallVector<BranchFixup, 8> BranchFixups; 357 358 char *allocate(size_t Size); 359 360 void *pushCleanup(CleanupKind K, size_t DataSize); 361 362 public: 363 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 364 InnermostNormalCleanup(stable_end()), 365 InnermostEHCleanup(stable_end()), 366 CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {} 367 ~EHScopeStack() { delete[] StartOfBuffer; } 368 369 // Variadic templates would make this not terrible. 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T> 373 void pushCleanup(CleanupKind Kind) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0> 381 void pushCleanup(CleanupKind Kind, A0 a0) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 408 (void) Obj; 409 } 410 411 /// Push a lazily-created cleanup on the stack. 412 template <class T, class A0, class A1, class A2, class A3, class A4> 413 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 414 void *Buffer = pushCleanup(Kind, sizeof(T)); 415 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 416 (void) Obj; 417 } 418 419 // Feel free to add more variants of the following: 420 421 /// Push a cleanup with non-constant storage requirements on the 422 /// stack. The cleanup type must provide an additional static method: 423 /// static size_t getExtraSize(size_t); 424 /// The argument to this method will be the value N, which will also 425 /// be passed as the first argument to the constructor. 426 /// 427 /// The data stored in the extra storage must obey the same 428 /// restrictions as normal cleanup member data. 429 /// 430 /// The pointer returned from this method is valid until the cleanup 431 /// stack is modified. 432 template <class T, class A0, class A1, class A2> 433 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 434 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 435 return new (Buffer) T(N, a0, a1, a2); 436 } 437 438 /// Pops a cleanup scope off the stack. This should only be called 439 /// by CodeGenFunction::PopCleanupBlock. 440 void popCleanup(); 441 442 /// Push a set of catch handlers on the stack. The catch is 443 /// uninitialized and will need to have the given number of handlers 444 /// set on it. 445 class EHCatchScope *pushCatch(unsigned NumHandlers); 446 447 /// Pops a catch scope off the stack. 448 void popCatch(); 449 450 /// Push an exceptions filter on the stack. 451 class EHFilterScope *pushFilter(unsigned NumFilters); 452 453 /// Pops an exceptions filter off the stack. 454 void popFilter(); 455 456 /// Push a terminate handler on the stack. 457 void pushTerminate(); 458 459 /// Pops a terminate handler off the stack. 460 void popTerminate(); 461 462 /// Determines whether the exception-scopes stack is empty. 463 bool empty() const { return StartOfData == EndOfBuffer; } 464 465 bool requiresLandingPad() const { 466 return (CatchDepth || hasEHCleanups()); 467 } 468 469 /// Determines whether there are any normal cleanups on the stack. 470 bool hasNormalCleanups() const { 471 return InnermostNormalCleanup != stable_end(); 472 } 473 474 /// Returns the innermost normal cleanup on the stack, or 475 /// stable_end() if there are no normal cleanups. 476 stable_iterator getInnermostNormalCleanup() const { 477 return InnermostNormalCleanup; 478 } 479 stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h 480 481 /// Determines whether there are any EH cleanups on the stack. 482 bool hasEHCleanups() const { 483 return InnermostEHCleanup != stable_end(); 484 } 485 486 /// Returns the innermost EH cleanup on the stack, or stable_end() 487 /// if there are no EH cleanups. 488 stable_iterator getInnermostEHCleanup() const { 489 return InnermostEHCleanup; 490 } 491 stable_iterator getInnermostActiveEHCleanup() const; // CGException.h 492 493 /// An unstable reference to a scope-stack depth. Invalidated by 494 /// pushes but not pops. 495 class iterator; 496 497 /// Returns an iterator pointing to the innermost EH scope. 498 iterator begin() const; 499 500 /// Returns an iterator pointing to the outermost EH scope. 501 iterator end() const; 502 503 /// Create a stable reference to the top of the EH stack. The 504 /// returned reference is valid until that scope is popped off the 505 /// stack. 506 stable_iterator stable_begin() const { 507 return stable_iterator(EndOfBuffer - StartOfData); 508 } 509 510 /// Create a stable reference to the bottom of the EH stack. 511 static stable_iterator stable_end() { 512 return stable_iterator(0); 513 } 514 515 /// Translates an iterator into a stable_iterator. 516 stable_iterator stabilize(iterator it) const; 517 518 /// Finds the nearest cleanup enclosing the given iterator. 519 /// Returns stable_iterator::invalid() if there are no such cleanups. 520 stable_iterator getEnclosingEHCleanup(iterator it) const; 521 522 /// Turn a stable reference to a scope depth into a unstable pointer 523 /// to the EH stack. 524 iterator find(stable_iterator save) const; 525 526 /// Removes the cleanup pointed to by the given stable_iterator. 527 void removeCleanup(stable_iterator save); 528 529 /// Add a branch fixup to the current cleanup scope. 530 BranchFixup &addBranchFixup() { 531 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 532 BranchFixups.push_back(BranchFixup()); 533 return BranchFixups.back(); 534 } 535 536 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 537 BranchFixup &getBranchFixup(unsigned I) { 538 assert(I < getNumBranchFixups()); 539 return BranchFixups[I]; 540 } 541 542 /// Pops lazily-removed fixups from the end of the list. This 543 /// should only be called by procedures which have just popped a 544 /// cleanup or resolved one or more fixups. 545 void popNullFixups(); 546 547 /// Clears the branch-fixups list. This should only be called by 548 /// ResolveAllBranchFixups. 549 void clearFixups() { BranchFixups.clear(); } 550 551 /// Gets the next EH destination index. 552 unsigned getNextEHDestIndex() { return NextEHDestIndex++; } 553 }; 554 555 /// CodeGenFunction - This class organizes the per-function state that is used 556 /// while generating LLVM code. 557 class CodeGenFunction : public CodeGenTypeCache { 558 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 559 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 560 561 friend class CGCXXABI; 562 public: 563 /// A jump destination is an abstract label, branching to which may 564 /// require a jump out through normal cleanups. 565 struct JumpDest { 566 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 567 JumpDest(llvm::BasicBlock *Block, 568 EHScopeStack::stable_iterator Depth, 569 unsigned Index) 570 : Block(Block), ScopeDepth(Depth), Index(Index) {} 571 572 bool isValid() const { return Block != 0; } 573 llvm::BasicBlock *getBlock() const { return Block; } 574 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 575 unsigned getDestIndex() const { return Index; } 576 577 private: 578 llvm::BasicBlock *Block; 579 EHScopeStack::stable_iterator ScopeDepth; 580 unsigned Index; 581 }; 582 583 /// An unwind destination is an abstract label, branching to which 584 /// may require a jump out through EH cleanups. 585 struct UnwindDest { 586 UnwindDest() : Block(0), ScopeDepth(), Index(0) {} 587 UnwindDest(llvm::BasicBlock *Block, 588 EHScopeStack::stable_iterator Depth, 589 unsigned Index) 590 : Block(Block), ScopeDepth(Depth), Index(Index) {} 591 592 bool isValid() const { return Block != 0; } 593 llvm::BasicBlock *getBlock() const { return Block; } 594 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 595 unsigned getDestIndex() const { return Index; } 596 597 private: 598 llvm::BasicBlock *Block; 599 EHScopeStack::stable_iterator ScopeDepth; 600 unsigned Index; 601 }; 602 603 CodeGenModule &CGM; // Per-module state. 604 const TargetInfo &Target; 605 606 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 607 CGBuilderTy Builder; 608 609 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 610 /// This excludes BlockDecls. 611 const Decl *CurFuncDecl; 612 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 613 const Decl *CurCodeDecl; 614 const CGFunctionInfo *CurFnInfo; 615 QualType FnRetTy; 616 llvm::Function *CurFn; 617 618 /// CurGD - The GlobalDecl for the current function being compiled. 619 GlobalDecl CurGD; 620 621 /// PrologueCleanupDepth - The cleanup depth enclosing all the 622 /// cleanups associated with the parameters. 623 EHScopeStack::stable_iterator PrologueCleanupDepth; 624 625 /// ReturnBlock - Unified return block. 626 JumpDest ReturnBlock; 627 628 /// ReturnValue - The temporary alloca to hold the return value. This is null 629 /// iff the function has no return value. 630 llvm::Value *ReturnValue; 631 632 /// RethrowBlock - Unified rethrow block. 633 UnwindDest RethrowBlock; 634 635 /// AllocaInsertPoint - This is an instruction in the entry block before which 636 /// we prefer to insert allocas. 637 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 638 639 bool CatchUndefined; 640 641 /// In ARC, whether we should autorelease the return value. 642 bool AutoreleaseResult; 643 644 const CodeGen::CGBlockInfo *BlockInfo; 645 llvm::Value *BlockPointer; 646 647 /// \brief A mapping from NRVO variables to the flags used to indicate 648 /// when the NRVO has been applied to this variable. 649 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 650 651 EHScopeStack EHStack; 652 653 /// i32s containing the indexes of the cleanup destinations. 654 llvm::AllocaInst *NormalCleanupDest; 655 llvm::AllocaInst *EHCleanupDest; 656 657 unsigned NextCleanupDestIndex; 658 659 /// The exception slot. All landing pads write the current 660 /// exception pointer into this alloca. 661 llvm::Value *ExceptionSlot; 662 663 /// The selector slot. Under the MandatoryCleanup model, all 664 /// landing pads write the current selector value into this alloca. 665 llvm::AllocaInst *EHSelectorSlot; 666 667 /// Emits a landing pad for the current EH stack. 668 llvm::BasicBlock *EmitLandingPad(); 669 670 llvm::BasicBlock *getInvokeDestImpl(); 671 672 /// Set up the last cleaup that was pushed as a conditional 673 /// full-expression cleanup. 674 void initFullExprCleanup(); 675 676 template <class T> 677 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 678 return DominatingValue<T>::save(*this, value); 679 } 680 681 public: 682 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 683 /// rethrows. 684 llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack; 685 686 /// A class controlling the emission of a finally block. 687 class FinallyInfo { 688 /// Where the catchall's edge through the cleanup should go. 689 JumpDest RethrowDest; 690 691 /// A function to call to enter the catch. 692 llvm::Constant *BeginCatchFn; 693 694 /// An i1 variable indicating whether or not the @finally is 695 /// running for an exception. 696 llvm::AllocaInst *ForEHVar; 697 698 /// An i8* variable into which the exception pointer to rethrow 699 /// has been saved. 700 llvm::AllocaInst *SavedExnVar; 701 702 public: 703 void enter(CodeGenFunction &CGF, const Stmt *Finally, 704 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 705 llvm::Constant *rethrowFn); 706 void exit(CodeGenFunction &CGF); 707 }; 708 709 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 710 /// current full-expression. Safe against the possibility that 711 /// we're currently inside a conditionally-evaluated expression. 712 template <class T, class A0> 713 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 714 // If we're not in a conditional branch, or if none of the 715 // arguments requires saving, then use the unconditional cleanup. 716 if (!isInConditionalBranch()) 717 return EHStack.pushCleanup<T>(kind, a0); 718 719 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 720 721 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 722 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 723 initFullExprCleanup(); 724 } 725 726 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 727 /// current full-expression. Safe against the possibility that 728 /// we're currently inside a conditionally-evaluated expression. 729 template <class T, class A0, class A1> 730 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 731 // If we're not in a conditional branch, or if none of the 732 // arguments requires saving, then use the unconditional cleanup. 733 if (!isInConditionalBranch()) 734 return EHStack.pushCleanup<T>(kind, a0, a1); 735 736 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 737 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 738 739 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 740 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 741 initFullExprCleanup(); 742 } 743 744 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 745 /// current full-expression. Safe against the possibility that 746 /// we're currently inside a conditionally-evaluated expression. 747 template <class T, class A0, class A1, class A2> 748 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 749 // If we're not in a conditional branch, or if none of the 750 // arguments requires saving, then use the unconditional cleanup. 751 if (!isInConditionalBranch()) { 752 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 753 } 754 755 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 756 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 757 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 758 759 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 760 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 761 initFullExprCleanup(); 762 } 763 764 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 765 /// current full-expression. Safe against the possibility that 766 /// we're currently inside a conditionally-evaluated expression. 767 template <class T, class A0, class A1, class A2, class A3> 768 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 769 // If we're not in a conditional branch, or if none of the 770 // arguments requires saving, then use the unconditional cleanup. 771 if (!isInConditionalBranch()) { 772 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 773 } 774 775 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 776 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 777 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 778 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 779 780 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 781 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 782 a2_saved, a3_saved); 783 initFullExprCleanup(); 784 } 785 786 /// PushDestructorCleanup - Push a cleanup to call the 787 /// complete-object destructor of an object of the given type at the 788 /// given address. Does nothing if T is not a C++ class type with a 789 /// non-trivial destructor. 790 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 791 792 /// PushDestructorCleanup - Push a cleanup to call the 793 /// complete-object variant of the given destructor on the object at 794 /// the given address. 795 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 796 llvm::Value *Addr); 797 798 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 799 /// process all branch fixups. 800 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 801 802 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 803 /// The block cannot be reactivated. Pops it if it's the top of the 804 /// stack. 805 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 806 807 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 808 /// Cannot be used to resurrect a deactivated cleanup. 809 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 810 811 /// \brief Enters a new scope for capturing cleanups, all of which 812 /// will be executed once the scope is exited. 813 class RunCleanupsScope { 814 CodeGenFunction& CGF; 815 EHScopeStack::stable_iterator CleanupStackDepth; 816 bool OldDidCallStackSave; 817 bool PerformCleanup; 818 819 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 820 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 821 822 public: 823 /// \brief Enter a new cleanup scope. 824 explicit RunCleanupsScope(CodeGenFunction &CGF) 825 : CGF(CGF), PerformCleanup(true) 826 { 827 CleanupStackDepth = CGF.EHStack.stable_begin(); 828 OldDidCallStackSave = CGF.DidCallStackSave; 829 CGF.DidCallStackSave = false; 830 } 831 832 /// \brief Exit this cleanup scope, emitting any accumulated 833 /// cleanups. 834 ~RunCleanupsScope() { 835 if (PerformCleanup) { 836 CGF.DidCallStackSave = OldDidCallStackSave; 837 CGF.PopCleanupBlocks(CleanupStackDepth); 838 } 839 } 840 841 /// \brief Determine whether this scope requires any cleanups. 842 bool requiresCleanups() const { 843 return CGF.EHStack.stable_begin() != CleanupStackDepth; 844 } 845 846 /// \brief Force the emission of cleanups now, instead of waiting 847 /// until this object is destroyed. 848 void ForceCleanup() { 849 assert(PerformCleanup && "Already forced cleanup"); 850 CGF.DidCallStackSave = OldDidCallStackSave; 851 CGF.PopCleanupBlocks(CleanupStackDepth); 852 PerformCleanup = false; 853 } 854 }; 855 856 857 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 858 /// the cleanup blocks that have been added. 859 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 860 861 void ResolveBranchFixups(llvm::BasicBlock *Target); 862 863 /// The given basic block lies in the current EH scope, but may be a 864 /// target of a potentially scope-crossing jump; get a stable handle 865 /// to which we can perform this jump later. 866 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 867 return JumpDest(Target, 868 EHStack.getInnermostNormalCleanup(), 869 NextCleanupDestIndex++); 870 } 871 872 /// The given basic block lies in the current EH scope, but may be a 873 /// target of a potentially scope-crossing jump; get a stable handle 874 /// to which we can perform this jump later. 875 JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) { 876 return getJumpDestInCurrentScope(createBasicBlock(Name)); 877 } 878 879 /// EmitBranchThroughCleanup - Emit a branch from the current insert 880 /// block through the normal cleanup handling code (if any) and then 881 /// on to \arg Dest. 882 void EmitBranchThroughCleanup(JumpDest Dest); 883 884 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 885 /// specified destination obviously has no cleanups to run. 'false' is always 886 /// a conservatively correct answer for this method. 887 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 888 889 /// EmitBranchThroughEHCleanup - Emit a branch from the current 890 /// insert block through the EH cleanup handling code (if any) and 891 /// then on to \arg Dest. 892 void EmitBranchThroughEHCleanup(UnwindDest Dest); 893 894 /// getRethrowDest - Returns the unified outermost-scope rethrow 895 /// destination. 896 UnwindDest getRethrowDest(); 897 898 /// An object to manage conditionally-evaluated expressions. 899 class ConditionalEvaluation { 900 llvm::BasicBlock *StartBB; 901 902 public: 903 ConditionalEvaluation(CodeGenFunction &CGF) 904 : StartBB(CGF.Builder.GetInsertBlock()) {} 905 906 void begin(CodeGenFunction &CGF) { 907 assert(CGF.OutermostConditional != this); 908 if (!CGF.OutermostConditional) 909 CGF.OutermostConditional = this; 910 } 911 912 void end(CodeGenFunction &CGF) { 913 assert(CGF.OutermostConditional != 0); 914 if (CGF.OutermostConditional == this) 915 CGF.OutermostConditional = 0; 916 } 917 918 /// Returns a block which will be executed prior to each 919 /// evaluation of the conditional code. 920 llvm::BasicBlock *getStartingBlock() const { 921 return StartBB; 922 } 923 }; 924 925 /// isInConditionalBranch - Return true if we're currently emitting 926 /// one branch or the other of a conditional expression. 927 bool isInConditionalBranch() const { return OutermostConditional != 0; } 928 929 /// An RAII object to record that we're evaluating a statement 930 /// expression. 931 class StmtExprEvaluation { 932 CodeGenFunction &CGF; 933 934 /// We have to save the outermost conditional: cleanups in a 935 /// statement expression aren't conditional just because the 936 /// StmtExpr is. 937 ConditionalEvaluation *SavedOutermostConditional; 938 939 public: 940 StmtExprEvaluation(CodeGenFunction &CGF) 941 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 942 CGF.OutermostConditional = 0; 943 } 944 945 ~StmtExprEvaluation() { 946 CGF.OutermostConditional = SavedOutermostConditional; 947 CGF.EnsureInsertPoint(); 948 } 949 }; 950 951 /// An object which temporarily prevents a value from being 952 /// destroyed by aggressive peephole optimizations that assume that 953 /// all uses of a value have been realized in the IR. 954 class PeepholeProtection { 955 llvm::Instruction *Inst; 956 friend class CodeGenFunction; 957 958 public: 959 PeepholeProtection() : Inst(0) {} 960 }; 961 962 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 963 class OpaqueValueMapping { 964 CodeGenFunction &CGF; 965 const OpaqueValueExpr *OpaqueValue; 966 bool BoundLValue; 967 CodeGenFunction::PeepholeProtection Protection; 968 969 public: 970 static bool shouldBindAsLValue(const Expr *expr) { 971 return expr->isGLValue() || expr->getType()->isRecordType(); 972 } 973 974 /// Build the opaque value mapping for the given conditional 975 /// operator if it's the GNU ?: extension. This is a common 976 /// enough pattern that the convenience operator is really 977 /// helpful. 978 /// 979 OpaqueValueMapping(CodeGenFunction &CGF, 980 const AbstractConditionalOperator *op) : CGF(CGF) { 981 if (isa<ConditionalOperator>(op)) { 982 OpaqueValue = 0; 983 BoundLValue = false; 984 return; 985 } 986 987 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 988 init(e->getOpaqueValue(), e->getCommon()); 989 } 990 991 OpaqueValueMapping(CodeGenFunction &CGF, 992 const OpaqueValueExpr *opaqueValue, 993 LValue lvalue) 994 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) { 995 assert(opaqueValue && "no opaque value expression!"); 996 assert(shouldBindAsLValue(opaqueValue)); 997 initLValue(lvalue); 998 } 999 1000 OpaqueValueMapping(CodeGenFunction &CGF, 1001 const OpaqueValueExpr *opaqueValue, 1002 RValue rvalue) 1003 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) { 1004 assert(opaqueValue && "no opaque value expression!"); 1005 assert(!shouldBindAsLValue(opaqueValue)); 1006 initRValue(rvalue); 1007 } 1008 1009 void pop() { 1010 assert(OpaqueValue && "mapping already popped!"); 1011 popImpl(); 1012 OpaqueValue = 0; 1013 } 1014 1015 ~OpaqueValueMapping() { 1016 if (OpaqueValue) popImpl(); 1017 } 1018 1019 private: 1020 void popImpl() { 1021 if (BoundLValue) 1022 CGF.OpaqueLValues.erase(OpaqueValue); 1023 else { 1024 CGF.OpaqueRValues.erase(OpaqueValue); 1025 CGF.unprotectFromPeepholes(Protection); 1026 } 1027 } 1028 1029 void init(const OpaqueValueExpr *ov, const Expr *e) { 1030 OpaqueValue = ov; 1031 BoundLValue = shouldBindAsLValue(ov); 1032 assert(BoundLValue == shouldBindAsLValue(e) 1033 && "inconsistent expression value kinds!"); 1034 if (BoundLValue) 1035 initLValue(CGF.EmitLValue(e)); 1036 else 1037 initRValue(CGF.EmitAnyExpr(e)); 1038 } 1039 1040 void initLValue(const LValue &lv) { 1041 CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv)); 1042 } 1043 1044 void initRValue(const RValue &rv) { 1045 // Work around an extremely aggressive peephole optimization in 1046 // EmitScalarConversion which assumes that all other uses of a 1047 // value are extant. 1048 Protection = CGF.protectFromPeepholes(rv); 1049 CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv)); 1050 } 1051 }; 1052 1053 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1054 /// number that holds the value. 1055 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1056 1057 /// BuildBlockByrefAddress - Computes address location of the 1058 /// variable which is declared as __block. 1059 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1060 const VarDecl *V); 1061 private: 1062 CGDebugInfo *DebugInfo; 1063 bool DisableDebugInfo; 1064 1065 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1066 /// calling llvm.stacksave for multiple VLAs in the same scope. 1067 bool DidCallStackSave; 1068 1069 /// IndirectBranch - The first time an indirect goto is seen we create a block 1070 /// with an indirect branch. Every time we see the address of a label taken, 1071 /// we add the label to the indirect goto. Every subsequent indirect goto is 1072 /// codegen'd as a jump to the IndirectBranch's basic block. 1073 llvm::IndirectBrInst *IndirectBranch; 1074 1075 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1076 /// decls. 1077 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1078 DeclMapTy LocalDeclMap; 1079 1080 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1081 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1082 1083 // BreakContinueStack - This keeps track of where break and continue 1084 // statements should jump to. 1085 struct BreakContinue { 1086 BreakContinue(JumpDest Break, JumpDest Continue) 1087 : BreakBlock(Break), ContinueBlock(Continue) {} 1088 1089 JumpDest BreakBlock; 1090 JumpDest ContinueBlock; 1091 }; 1092 llvm::SmallVector<BreakContinue, 8> BreakContinueStack; 1093 1094 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1095 /// current context is not in a switch. 1096 llvm::SwitchInst *SwitchInsn; 1097 1098 /// CaseRangeBlock - This block holds if condition check for last case 1099 /// statement range in current switch instruction. 1100 llvm::BasicBlock *CaseRangeBlock; 1101 1102 /// OpaqueLValues - Keeps track of the current set of opaque value 1103 /// expressions. 1104 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1105 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1106 1107 // VLASizeMap - This keeps track of the associated size for each VLA type. 1108 // We track this by the size expression rather than the type itself because 1109 // in certain situations, like a const qualifier applied to an VLA typedef, 1110 // multiple VLA types can share the same size expression. 1111 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1112 // enter/leave scopes. 1113 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1114 1115 /// A block containing a single 'unreachable' instruction. Created 1116 /// lazily by getUnreachableBlock(). 1117 llvm::BasicBlock *UnreachableBlock; 1118 1119 /// CXXThisDecl - When generating code for a C++ member function, 1120 /// this will hold the implicit 'this' declaration. 1121 ImplicitParamDecl *CXXThisDecl; 1122 llvm::Value *CXXThisValue; 1123 1124 /// CXXVTTDecl - When generating code for a base object constructor or 1125 /// base object destructor with virtual bases, this will hold the implicit 1126 /// VTT parameter. 1127 ImplicitParamDecl *CXXVTTDecl; 1128 llvm::Value *CXXVTTValue; 1129 1130 /// OutermostConditional - Points to the outermost active 1131 /// conditional control. This is used so that we know if a 1132 /// temporary should be destroyed conditionally. 1133 ConditionalEvaluation *OutermostConditional; 1134 1135 1136 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1137 /// type as well as the field number that contains the actual data. 1138 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1139 unsigned> > ByRefValueInfo; 1140 1141 llvm::BasicBlock *TerminateLandingPad; 1142 llvm::BasicBlock *TerminateHandler; 1143 llvm::BasicBlock *TrapBB; 1144 1145 public: 1146 CodeGenFunction(CodeGenModule &cgm); 1147 1148 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1149 ASTContext &getContext() const { return CGM.getContext(); } 1150 CGDebugInfo *getDebugInfo() { 1151 if (DisableDebugInfo) 1152 return NULL; 1153 return DebugInfo; 1154 } 1155 void disableDebugInfo() { DisableDebugInfo = true; } 1156 void enableDebugInfo() { DisableDebugInfo = false; } 1157 1158 bool shouldUseFusedARCCalls() { 1159 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1160 } 1161 1162 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1163 1164 /// Returns a pointer to the function's exception object slot, which 1165 /// is assigned in every landing pad. 1166 llvm::Value *getExceptionSlot(); 1167 llvm::Value *getEHSelectorSlot(); 1168 1169 llvm::Value *getNormalCleanupDestSlot(); 1170 llvm::Value *getEHCleanupDestSlot(); 1171 1172 llvm::BasicBlock *getUnreachableBlock() { 1173 if (!UnreachableBlock) { 1174 UnreachableBlock = createBasicBlock("unreachable"); 1175 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1176 } 1177 return UnreachableBlock; 1178 } 1179 1180 llvm::BasicBlock *getInvokeDest() { 1181 if (!EHStack.requiresLandingPad()) return 0; 1182 return getInvokeDestImpl(); 1183 } 1184 1185 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1186 1187 //===--------------------------------------------------------------------===// 1188 // Cleanups 1189 //===--------------------------------------------------------------------===// 1190 1191 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1192 1193 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1194 llvm::Value *arrayEndPointer, 1195 QualType elementType, 1196 Destroyer &destroyer); 1197 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1198 llvm::Value *arrayEnd, 1199 QualType elementType, 1200 Destroyer &destroyer); 1201 1202 void pushDestroy(QualType::DestructionKind dtorKind, 1203 llvm::Value *addr, QualType type); 1204 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1205 Destroyer &destroyer, bool useEHCleanupForArray); 1206 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1207 bool useEHCleanupForArray); 1208 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1209 QualType type, 1210 Destroyer &destroyer, 1211 bool useEHCleanupForArray); 1212 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1213 QualType type, Destroyer &destroyer, 1214 bool checkZeroLength, bool useEHCleanup); 1215 1216 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1217 1218 /// Determines whether an EH cleanup is required to destroy a type 1219 /// with the given destruction kind. 1220 bool needsEHCleanup(QualType::DestructionKind kind) { 1221 switch (kind) { 1222 case QualType::DK_none: 1223 return false; 1224 case QualType::DK_cxx_destructor: 1225 case QualType::DK_objc_weak_lifetime: 1226 return getLangOptions().Exceptions; 1227 case QualType::DK_objc_strong_lifetime: 1228 return getLangOptions().Exceptions && 1229 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1230 } 1231 llvm_unreachable("bad destruction kind"); 1232 } 1233 1234 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1235 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1236 } 1237 1238 //===--------------------------------------------------------------------===// 1239 // Objective-C 1240 //===--------------------------------------------------------------------===// 1241 1242 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1243 1244 void StartObjCMethod(const ObjCMethodDecl *MD, 1245 const ObjCContainerDecl *CD, 1246 SourceLocation StartLoc); 1247 1248 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1249 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1250 const ObjCPropertyImplDecl *PID); 1251 void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong); 1252 void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, 1253 ObjCIvarDecl *Ivar); 1254 1255 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1256 ObjCMethodDecl *MD, bool ctor); 1257 1258 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1259 /// for the given property. 1260 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1261 const ObjCPropertyImplDecl *PID); 1262 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1263 bool IvarTypeWithAggrGCObjects(QualType Ty); 1264 1265 //===--------------------------------------------------------------------===// 1266 // Block Bits 1267 //===--------------------------------------------------------------------===// 1268 1269 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1270 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1271 const CGBlockInfo &Info, 1272 llvm::StructType *, 1273 llvm::Constant *BlockVarLayout); 1274 1275 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1276 const CGBlockInfo &Info, 1277 const Decl *OuterFuncDecl, 1278 const DeclMapTy &ldm); 1279 1280 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1281 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1282 1283 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1284 1285 class AutoVarEmission; 1286 1287 void emitByrefStructureInit(const AutoVarEmission &emission); 1288 void enterByrefCleanup(const AutoVarEmission &emission); 1289 1290 llvm::Value *LoadBlockStruct() { 1291 assert(BlockPointer && "no block pointer set!"); 1292 return BlockPointer; 1293 } 1294 1295 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1296 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1297 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1298 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1299 } 1300 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1301 llvm::Type *BuildByRefType(const VarDecl *var); 1302 1303 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1304 const CGFunctionInfo &FnInfo); 1305 void StartFunction(GlobalDecl GD, QualType RetTy, 1306 llvm::Function *Fn, 1307 const CGFunctionInfo &FnInfo, 1308 const FunctionArgList &Args, 1309 SourceLocation StartLoc); 1310 1311 void EmitConstructorBody(FunctionArgList &Args); 1312 void EmitDestructorBody(FunctionArgList &Args); 1313 void EmitFunctionBody(FunctionArgList &Args); 1314 1315 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1316 /// emission when possible. 1317 void EmitReturnBlock(); 1318 1319 /// FinishFunction - Complete IR generation of the current function. It is 1320 /// legal to call this function even if there is no current insertion point. 1321 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1322 1323 /// GenerateThunk - Generate a thunk for the given method. 1324 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1325 GlobalDecl GD, const ThunkInfo &Thunk); 1326 1327 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1328 GlobalDecl GD, const ThunkInfo &Thunk); 1329 1330 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1331 FunctionArgList &Args); 1332 1333 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1334 /// subobject. 1335 /// 1336 void InitializeVTablePointer(BaseSubobject Base, 1337 const CXXRecordDecl *NearestVBase, 1338 CharUnits OffsetFromNearestVBase, 1339 llvm::Constant *VTable, 1340 const CXXRecordDecl *VTableClass); 1341 1342 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1343 void InitializeVTablePointers(BaseSubobject Base, 1344 const CXXRecordDecl *NearestVBase, 1345 CharUnits OffsetFromNearestVBase, 1346 bool BaseIsNonVirtualPrimaryBase, 1347 llvm::Constant *VTable, 1348 const CXXRecordDecl *VTableClass, 1349 VisitedVirtualBasesSetTy& VBases); 1350 1351 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1352 1353 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1354 /// to by This. 1355 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1356 1357 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1358 /// given phase of destruction for a destructor. The end result 1359 /// should call destructors on members and base classes in reverse 1360 /// order of their construction. 1361 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1362 1363 /// ShouldInstrumentFunction - Return true if the current function should be 1364 /// instrumented with __cyg_profile_func_* calls 1365 bool ShouldInstrumentFunction(); 1366 1367 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1368 /// instrumentation function with the current function and the call site, if 1369 /// function instrumentation is enabled. 1370 void EmitFunctionInstrumentation(const char *Fn); 1371 1372 /// EmitMCountInstrumentation - Emit call to .mcount. 1373 void EmitMCountInstrumentation(); 1374 1375 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1376 /// arguments for the given function. This is also responsible for naming the 1377 /// LLVM function arguments. 1378 void EmitFunctionProlog(const CGFunctionInfo &FI, 1379 llvm::Function *Fn, 1380 const FunctionArgList &Args); 1381 1382 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1383 /// given temporary. 1384 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1385 1386 /// EmitStartEHSpec - Emit the start of the exception spec. 1387 void EmitStartEHSpec(const Decl *D); 1388 1389 /// EmitEndEHSpec - Emit the end of the exception spec. 1390 void EmitEndEHSpec(const Decl *D); 1391 1392 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1393 llvm::BasicBlock *getTerminateLandingPad(); 1394 1395 /// getTerminateHandler - Return a handler (not a landing pad, just 1396 /// a catch handler) that just calls terminate. This is used when 1397 /// a terminate scope encloses a try. 1398 llvm::BasicBlock *getTerminateHandler(); 1399 1400 llvm::Type *ConvertTypeForMem(QualType T); 1401 llvm::Type *ConvertType(QualType T); 1402 llvm::Type *ConvertType(const TypeDecl *T) { 1403 return ConvertType(getContext().getTypeDeclType(T)); 1404 } 1405 1406 /// LoadObjCSelf - Load the value of self. This function is only valid while 1407 /// generating code for an Objective-C method. 1408 llvm::Value *LoadObjCSelf(); 1409 1410 /// TypeOfSelfObject - Return type of object that this self represents. 1411 QualType TypeOfSelfObject(); 1412 1413 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1414 /// an aggregate LLVM type or is void. 1415 static bool hasAggregateLLVMType(QualType T); 1416 1417 /// createBasicBlock - Create an LLVM basic block. 1418 llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "", 1419 llvm::Function *parent = 0, 1420 llvm::BasicBlock *before = 0) { 1421 #ifdef NDEBUG 1422 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1423 #else 1424 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1425 #endif 1426 } 1427 1428 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1429 /// label maps to. 1430 JumpDest getJumpDestForLabel(const LabelDecl *S); 1431 1432 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1433 /// another basic block, simplify it. This assumes that no other code could 1434 /// potentially reference the basic block. 1435 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1436 1437 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1438 /// adding a fall-through branch from the current insert block if 1439 /// necessary. It is legal to call this function even if there is no current 1440 /// insertion point. 1441 /// 1442 /// IsFinished - If true, indicates that the caller has finished emitting 1443 /// branches to the given block and does not expect to emit code into it. This 1444 /// means the block can be ignored if it is unreachable. 1445 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1446 1447 /// EmitBranch - Emit a branch to the specified basic block from the current 1448 /// insert block, taking care to avoid creation of branches from dummy 1449 /// blocks. It is legal to call this function even if there is no current 1450 /// insertion point. 1451 /// 1452 /// This function clears the current insertion point. The caller should follow 1453 /// calls to this function with calls to Emit*Block prior to generation new 1454 /// code. 1455 void EmitBranch(llvm::BasicBlock *Block); 1456 1457 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1458 /// indicates that the current code being emitted is unreachable. 1459 bool HaveInsertPoint() const { 1460 return Builder.GetInsertBlock() != 0; 1461 } 1462 1463 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1464 /// emitted IR has a place to go. Note that by definition, if this function 1465 /// creates a block then that block is unreachable; callers may do better to 1466 /// detect when no insertion point is defined and simply skip IR generation. 1467 void EnsureInsertPoint() { 1468 if (!HaveInsertPoint()) 1469 EmitBlock(createBasicBlock()); 1470 } 1471 1472 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1473 /// specified stmt yet. 1474 void ErrorUnsupported(const Stmt *S, const char *Type, 1475 bool OmitOnError=false); 1476 1477 //===--------------------------------------------------------------------===// 1478 // Helpers 1479 //===--------------------------------------------------------------------===// 1480 1481 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1482 return LValue::MakeAddr(V, T, Alignment, getContext(), 1483 CGM.getTBAAInfo(T)); 1484 } 1485 1486 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1487 /// block. The caller is responsible for setting an appropriate alignment on 1488 /// the alloca. 1489 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1490 const llvm::Twine &Name = "tmp"); 1491 1492 /// InitTempAlloca - Provide an initial value for the given alloca. 1493 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1494 1495 /// CreateIRTemp - Create a temporary IR object of the given type, with 1496 /// appropriate alignment. This routine should only be used when an temporary 1497 /// value needs to be stored into an alloca (for example, to avoid explicit 1498 /// PHI construction), but the type is the IR type, not the type appropriate 1499 /// for storing in memory. 1500 llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp"); 1501 1502 /// CreateMemTemp - Create a temporary memory object of the given type, with 1503 /// appropriate alignment. 1504 llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp"); 1505 1506 /// CreateAggTemp - Create a temporary memory object for the given 1507 /// aggregate type. 1508 AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") { 1509 return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(), 1510 false); 1511 } 1512 1513 /// Emit a cast to void* in the appropriate address space. 1514 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1515 1516 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1517 /// expression and compare the result against zero, returning an Int1Ty value. 1518 llvm::Value *EvaluateExprAsBool(const Expr *E); 1519 1520 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1521 void EmitIgnoredExpr(const Expr *E); 1522 1523 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1524 /// any type. The result is returned as an RValue struct. If this is an 1525 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1526 /// the result should be returned. 1527 /// 1528 /// \param IgnoreResult - True if the resulting value isn't used. 1529 RValue EmitAnyExpr(const Expr *E, 1530 AggValueSlot AggSlot = AggValueSlot::ignored(), 1531 bool IgnoreResult = false); 1532 1533 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1534 // or the value of the expression, depending on how va_list is defined. 1535 llvm::Value *EmitVAListRef(const Expr *E); 1536 1537 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1538 /// always be accessible even if no aggregate location is provided. 1539 RValue EmitAnyExprToTemp(const Expr *E); 1540 1541 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1542 /// arbitrary expression into the given memory location. 1543 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1544 Qualifiers Quals, bool IsInitializer); 1545 1546 /// EmitExprAsInit - Emits the code necessary to initialize a 1547 /// location in memory with the given initializer. 1548 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1549 LValue lvalue, bool capturedByInit); 1550 1551 /// EmitAggregateCopy - Emit an aggrate copy. 1552 /// 1553 /// \param isVolatile - True iff either the source or the destination is 1554 /// volatile. 1555 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1556 QualType EltTy, bool isVolatile=false); 1557 1558 /// StartBlock - Start new block named N. If insert block is a dummy block 1559 /// then reuse it. 1560 void StartBlock(const char *N); 1561 1562 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1563 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1564 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1565 } 1566 1567 /// GetAddrOfLocalVar - Return the address of a local variable. 1568 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1569 llvm::Value *Res = LocalDeclMap[VD]; 1570 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1571 return Res; 1572 } 1573 1574 /// getOpaqueLValueMapping - Given an opaque value expression (which 1575 /// must be mapped to an l-value), return its mapping. 1576 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1577 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1578 1579 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1580 it = OpaqueLValues.find(e); 1581 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1582 return it->second; 1583 } 1584 1585 /// getOpaqueRValueMapping - Given an opaque value expression (which 1586 /// must be mapped to an r-value), return its mapping. 1587 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1588 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1589 1590 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1591 it = OpaqueRValues.find(e); 1592 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1593 return it->second; 1594 } 1595 1596 /// getAccessedFieldNo - Given an encoded value and a result number, return 1597 /// the input field number being accessed. 1598 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1599 1600 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1601 llvm::BasicBlock *GetIndirectGotoBlock(); 1602 1603 /// EmitNullInitialization - Generate code to set a value of the given type to 1604 /// null, If the type contains data member pointers, they will be initialized 1605 /// to -1 in accordance with the Itanium C++ ABI. 1606 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1607 1608 // EmitVAArg - Generate code to get an argument from the passed in pointer 1609 // and update it accordingly. The return value is a pointer to the argument. 1610 // FIXME: We should be able to get rid of this method and use the va_arg 1611 // instruction in LLVM instead once it works well enough. 1612 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1613 1614 /// emitArrayLength - Compute the length of an array, even if it's a 1615 /// VLA, and drill down to the base element type. 1616 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1617 QualType &baseType, 1618 llvm::Value *&addr); 1619 1620 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1621 /// the given variably-modified type and store them in the VLASizeMap. 1622 /// 1623 /// This function can be called with a null (unreachable) insert point. 1624 void EmitVariablyModifiedType(QualType Ty); 1625 1626 /// getVLASize - Returns an LLVM value that corresponds to the size, 1627 /// in non-variably-sized elements, of a variable length array type, 1628 /// plus that largest non-variably-sized element type. Assumes that 1629 /// the type has already been emitted with EmitVariablyModifiedType. 1630 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1631 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1632 1633 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1634 /// generating code for an C++ member function. 1635 llvm::Value *LoadCXXThis() { 1636 assert(CXXThisValue && "no 'this' value for this function"); 1637 return CXXThisValue; 1638 } 1639 1640 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1641 /// virtual bases. 1642 llvm::Value *LoadCXXVTT() { 1643 assert(CXXVTTValue && "no VTT value for this function"); 1644 return CXXVTTValue; 1645 } 1646 1647 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1648 /// complete class to the given direct base. 1649 llvm::Value * 1650 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1651 const CXXRecordDecl *Derived, 1652 const CXXRecordDecl *Base, 1653 bool BaseIsVirtual); 1654 1655 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1656 /// load of 'this' and returns address of the base class. 1657 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1658 const CXXRecordDecl *Derived, 1659 CastExpr::path_const_iterator PathBegin, 1660 CastExpr::path_const_iterator PathEnd, 1661 bool NullCheckValue); 1662 1663 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1664 const CXXRecordDecl *Derived, 1665 CastExpr::path_const_iterator PathBegin, 1666 CastExpr::path_const_iterator PathEnd, 1667 bool NullCheckValue); 1668 1669 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1670 const CXXRecordDecl *ClassDecl, 1671 const CXXRecordDecl *BaseClassDecl); 1672 1673 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1674 CXXCtorType CtorType, 1675 const FunctionArgList &Args); 1676 // It's important not to confuse this and the previous function. Delegating 1677 // constructors are the C++0x feature. The constructor delegate optimization 1678 // is used to reduce duplication in the base and complete consturctors where 1679 // they are substantially the same. 1680 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1681 const FunctionArgList &Args); 1682 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1683 bool ForVirtualBase, llvm::Value *This, 1684 CallExpr::const_arg_iterator ArgBeg, 1685 CallExpr::const_arg_iterator ArgEnd); 1686 1687 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1688 llvm::Value *This, llvm::Value *Src, 1689 CallExpr::const_arg_iterator ArgBeg, 1690 CallExpr::const_arg_iterator ArgEnd); 1691 1692 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1693 const ConstantArrayType *ArrayTy, 1694 llvm::Value *ArrayPtr, 1695 CallExpr::const_arg_iterator ArgBeg, 1696 CallExpr::const_arg_iterator ArgEnd, 1697 bool ZeroInitialization = false); 1698 1699 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1700 llvm::Value *NumElements, 1701 llvm::Value *ArrayPtr, 1702 CallExpr::const_arg_iterator ArgBeg, 1703 CallExpr::const_arg_iterator ArgEnd, 1704 bool ZeroInitialization = false); 1705 1706 static Destroyer destroyCXXObject; 1707 1708 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1709 bool ForVirtualBase, llvm::Value *This); 1710 1711 void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, 1712 llvm::Value *NumElements); 1713 1714 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1715 1716 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1717 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1718 1719 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1720 QualType DeleteTy); 1721 1722 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1723 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1724 1725 void EmitCheck(llvm::Value *, unsigned Size); 1726 1727 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1728 bool isInc, bool isPre); 1729 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1730 bool isInc, bool isPre); 1731 //===--------------------------------------------------------------------===// 1732 // Declaration Emission 1733 //===--------------------------------------------------------------------===// 1734 1735 /// EmitDecl - Emit a declaration. 1736 /// 1737 /// This function can be called with a null (unreachable) insert point. 1738 void EmitDecl(const Decl &D); 1739 1740 /// EmitVarDecl - Emit a local variable declaration. 1741 /// 1742 /// This function can be called with a null (unreachable) insert point. 1743 void EmitVarDecl(const VarDecl &D); 1744 1745 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1746 LValue lvalue, bool capturedByInit); 1747 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1748 1749 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1750 llvm::Value *Address); 1751 1752 /// EmitAutoVarDecl - Emit an auto variable declaration. 1753 /// 1754 /// This function can be called with a null (unreachable) insert point. 1755 void EmitAutoVarDecl(const VarDecl &D); 1756 1757 class AutoVarEmission { 1758 friend class CodeGenFunction; 1759 1760 const VarDecl *Variable; 1761 1762 /// The alignment of the variable. 1763 CharUnits Alignment; 1764 1765 /// The address of the alloca. Null if the variable was emitted 1766 /// as a global constant. 1767 llvm::Value *Address; 1768 1769 llvm::Value *NRVOFlag; 1770 1771 /// True if the variable is a __block variable. 1772 bool IsByRef; 1773 1774 /// True if the variable is of aggregate type and has a constant 1775 /// initializer. 1776 bool IsConstantAggregate; 1777 1778 struct Invalid {}; 1779 AutoVarEmission(Invalid) : Variable(0) {} 1780 1781 AutoVarEmission(const VarDecl &variable) 1782 : Variable(&variable), Address(0), NRVOFlag(0), 1783 IsByRef(false), IsConstantAggregate(false) {} 1784 1785 bool wasEmittedAsGlobal() const { return Address == 0; } 1786 1787 public: 1788 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1789 1790 /// Returns the address of the object within this declaration. 1791 /// Note that this does not chase the forwarding pointer for 1792 /// __block decls. 1793 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1794 if (!IsByRef) return Address; 1795 1796 return CGF.Builder.CreateStructGEP(Address, 1797 CGF.getByRefValueLLVMField(Variable), 1798 Variable->getNameAsString()); 1799 } 1800 }; 1801 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1802 void EmitAutoVarInit(const AutoVarEmission &emission); 1803 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1804 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1805 QualType::DestructionKind dtorKind); 1806 1807 void EmitStaticVarDecl(const VarDecl &D, 1808 llvm::GlobalValue::LinkageTypes Linkage); 1809 1810 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1811 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1812 1813 /// protectFromPeepholes - Protect a value that we're intending to 1814 /// store to the side, but which will probably be used later, from 1815 /// aggressive peepholing optimizations that might delete it. 1816 /// 1817 /// Pass the result to unprotectFromPeepholes to declare that 1818 /// protection is no longer required. 1819 /// 1820 /// There's no particular reason why this shouldn't apply to 1821 /// l-values, it's just that no existing peepholes work on pointers. 1822 PeepholeProtection protectFromPeepholes(RValue rvalue); 1823 void unprotectFromPeepholes(PeepholeProtection protection); 1824 1825 //===--------------------------------------------------------------------===// 1826 // Statement Emission 1827 //===--------------------------------------------------------------------===// 1828 1829 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1830 void EmitStopPoint(const Stmt *S); 1831 1832 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1833 /// this function even if there is no current insertion point. 1834 /// 1835 /// This function may clear the current insertion point; callers should use 1836 /// EnsureInsertPoint if they wish to subsequently generate code without first 1837 /// calling EmitBlock, EmitBranch, or EmitStmt. 1838 void EmitStmt(const Stmt *S); 1839 1840 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1841 /// necessarily require an insertion point or debug information; typically 1842 /// because the statement amounts to a jump or a container of other 1843 /// statements. 1844 /// 1845 /// \return True if the statement was handled. 1846 bool EmitSimpleStmt(const Stmt *S); 1847 1848 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1849 AggValueSlot AVS = AggValueSlot::ignored()); 1850 1851 /// EmitLabel - Emit the block for the given label. It is legal to call this 1852 /// function even if there is no current insertion point. 1853 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1854 1855 void EmitLabelStmt(const LabelStmt &S); 1856 void EmitGotoStmt(const GotoStmt &S); 1857 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1858 void EmitIfStmt(const IfStmt &S); 1859 void EmitWhileStmt(const WhileStmt &S); 1860 void EmitDoStmt(const DoStmt &S); 1861 void EmitForStmt(const ForStmt &S); 1862 void EmitReturnStmt(const ReturnStmt &S); 1863 void EmitDeclStmt(const DeclStmt &S); 1864 void EmitBreakStmt(const BreakStmt &S); 1865 void EmitContinueStmt(const ContinueStmt &S); 1866 void EmitSwitchStmt(const SwitchStmt &S); 1867 void EmitDefaultStmt(const DefaultStmt &S); 1868 void EmitCaseStmt(const CaseStmt &S); 1869 void EmitCaseStmtRange(const CaseStmt &S); 1870 void EmitAsmStmt(const AsmStmt &S); 1871 1872 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1873 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1874 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1875 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1876 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1877 1878 llvm::Constant *getUnwindResumeFn(); 1879 llvm::Constant *getUnwindResumeOrRethrowFn(); 1880 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1881 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1882 1883 void EmitCXXTryStmt(const CXXTryStmt &S); 1884 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1885 1886 //===--------------------------------------------------------------------===// 1887 // LValue Expression Emission 1888 //===--------------------------------------------------------------------===// 1889 1890 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1891 RValue GetUndefRValue(QualType Ty); 1892 1893 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1894 /// and issue an ErrorUnsupported style diagnostic (using the 1895 /// provided Name). 1896 RValue EmitUnsupportedRValue(const Expr *E, 1897 const char *Name); 1898 1899 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1900 /// an ErrorUnsupported style diagnostic (using the provided Name). 1901 LValue EmitUnsupportedLValue(const Expr *E, 1902 const char *Name); 1903 1904 /// EmitLValue - Emit code to compute a designator that specifies the location 1905 /// of the expression. 1906 /// 1907 /// This can return one of two things: a simple address or a bitfield 1908 /// reference. In either case, the LLVM Value* in the LValue structure is 1909 /// guaranteed to be an LLVM pointer type. 1910 /// 1911 /// If this returns a bitfield reference, nothing about the pointee type of 1912 /// the LLVM value is known: For example, it may not be a pointer to an 1913 /// integer. 1914 /// 1915 /// If this returns a normal address, and if the lvalue's C type is fixed 1916 /// size, this method guarantees that the returned pointer type will point to 1917 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1918 /// variable length type, this is not possible. 1919 /// 1920 LValue EmitLValue(const Expr *E); 1921 1922 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1923 /// checking code to guard against undefined behavior. This is only 1924 /// suitable when we know that the address will be used to access the 1925 /// object. 1926 LValue EmitCheckedLValue(const Expr *E); 1927 1928 /// EmitToMemory - Change a scalar value from its value 1929 /// representation to its in-memory representation. 1930 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1931 1932 /// EmitFromMemory - Change a scalar value from its memory 1933 /// representation to its value representation. 1934 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1935 1936 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1937 /// care to appropriately convert from the memory representation to 1938 /// the LLVM value representation. 1939 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1940 unsigned Alignment, QualType Ty, 1941 llvm::MDNode *TBAAInfo = 0); 1942 1943 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1944 /// care to appropriately convert from the memory representation to 1945 /// the LLVM value representation. The l-value must be a simple 1946 /// l-value. 1947 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1948 1949 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1950 /// care to appropriately convert from the memory representation to 1951 /// the LLVM value representation. 1952 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1953 bool Volatile, unsigned Alignment, QualType Ty, 1954 llvm::MDNode *TBAAInfo = 0); 1955 1956 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1957 /// care to appropriately convert from the memory representation to 1958 /// the LLVM value representation. The l-value must be a simple 1959 /// l-value. 1960 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 1961 1962 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1963 /// this method emits the address of the lvalue, then loads the result as an 1964 /// rvalue, returning the rvalue. 1965 RValue EmitLoadOfLValue(LValue V); 1966 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1967 RValue EmitLoadOfBitfieldLValue(LValue LV); 1968 RValue EmitLoadOfPropertyRefLValue(LValue LV, 1969 ReturnValueSlot Return = ReturnValueSlot()); 1970 1971 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1972 /// lvalue, where both are guaranteed to the have the same type, and that type 1973 /// is 'Ty'. 1974 void EmitStoreThroughLValue(RValue Src, LValue Dst); 1975 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1976 void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst); 1977 1978 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1979 /// EmitStoreThroughLValue. 1980 /// 1981 /// \param Result [out] - If non-null, this will be set to a Value* for the 1982 /// bit-field contents after the store, appropriate for use as the result of 1983 /// an assignment to the bit-field. 1984 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1985 llvm::Value **Result=0); 1986 1987 /// Emit an l-value for an assignment (simple or compound) of complex type. 1988 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1989 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1990 1991 // Note: only available for agg return types 1992 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1993 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1994 // Note: only available for agg return types 1995 LValue EmitCallExprLValue(const CallExpr *E); 1996 // Note: only available for agg return types 1997 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1998 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1999 LValue EmitStringLiteralLValue(const StringLiteral *E); 2000 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2001 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2002 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2003 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2004 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2005 LValue EmitMemberExpr(const MemberExpr *E); 2006 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2007 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2008 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2009 LValue EmitCastLValue(const CastExpr *E); 2010 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2011 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2012 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2013 2014 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2015 const ObjCIvarDecl *Ivar); 2016 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2017 const IndirectFieldDecl* Field, 2018 unsigned CVRQualifiers); 2019 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 2020 unsigned CVRQualifiers); 2021 2022 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2023 /// if the Field is a reference, this will return the address of the reference 2024 /// and not the address of the value stored in the reference. 2025 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 2026 const FieldDecl* Field, 2027 unsigned CVRQualifiers); 2028 2029 LValue EmitLValueForIvar(QualType ObjectTy, 2030 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2031 unsigned CVRQualifiers); 2032 2033 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2034 unsigned CVRQualifiers); 2035 2036 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 2037 2038 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2039 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2040 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 2041 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2042 2043 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2044 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2045 LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E); 2046 LValue EmitStmtExprLValue(const StmtExpr *E); 2047 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2048 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2049 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2050 2051 //===--------------------------------------------------------------------===// 2052 // Scalar Expression Emission 2053 //===--------------------------------------------------------------------===// 2054 2055 /// EmitCall - Generate a call of the given function, expecting the given 2056 /// result type, and using the given argument list which specifies both the 2057 /// LLVM arguments and the types they were derived from. 2058 /// 2059 /// \param TargetDecl - If given, the decl of the function in a direct call; 2060 /// used to set attributes on the call (noreturn, etc.). 2061 RValue EmitCall(const CGFunctionInfo &FnInfo, 2062 llvm::Value *Callee, 2063 ReturnValueSlot ReturnValue, 2064 const CallArgList &Args, 2065 const Decl *TargetDecl = 0, 2066 llvm::Instruction **callOrInvoke = 0); 2067 2068 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2069 ReturnValueSlot ReturnValue, 2070 CallExpr::const_arg_iterator ArgBeg, 2071 CallExpr::const_arg_iterator ArgEnd, 2072 const Decl *TargetDecl = 0); 2073 RValue EmitCallExpr(const CallExpr *E, 2074 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2075 2076 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2077 llvm::ArrayRef<llvm::Value *> Args, 2078 const llvm::Twine &Name = ""); 2079 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2080 const llvm::Twine &Name = ""); 2081 2082 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2083 llvm::Type *Ty); 2084 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2085 llvm::Value *This, llvm::Type *Ty); 2086 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2087 NestedNameSpecifier *Qual, 2088 llvm::Type *Ty); 2089 2090 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2091 CXXDtorType Type, 2092 const CXXRecordDecl *RD); 2093 2094 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2095 llvm::Value *Callee, 2096 ReturnValueSlot ReturnValue, 2097 llvm::Value *This, 2098 llvm::Value *VTT, 2099 CallExpr::const_arg_iterator ArgBeg, 2100 CallExpr::const_arg_iterator ArgEnd); 2101 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2102 ReturnValueSlot ReturnValue); 2103 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2104 ReturnValueSlot ReturnValue); 2105 2106 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2107 const CXXMethodDecl *MD, 2108 llvm::Value *This); 2109 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2110 const CXXMethodDecl *MD, 2111 ReturnValueSlot ReturnValue); 2112 2113 2114 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2115 unsigned BuiltinID, const CallExpr *E); 2116 2117 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2118 2119 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2120 /// is unhandled by the current target. 2121 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2122 2123 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2124 llvm::Value *EmitNeonCall(llvm::Function *F, 2125 llvm::SmallVectorImpl<llvm::Value*> &O, 2126 const char *name, 2127 unsigned shift = 0, bool rightshift = false); 2128 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2129 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2130 bool negateForRightShift); 2131 2132 llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops); 2133 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2134 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2135 2136 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2137 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2138 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2139 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2140 ReturnValueSlot Return = ReturnValueSlot()); 2141 2142 /// Retrieves the default cleanup kind for an ARC cleanup. 2143 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2144 CleanupKind getARCCleanupKind() { 2145 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2146 ? NormalAndEHCleanup : NormalCleanup; 2147 } 2148 2149 // ARC primitives. 2150 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2151 void EmitARCDestroyWeak(llvm::Value *addr); 2152 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2153 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2154 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2155 bool ignored); 2156 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2157 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2158 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2159 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2160 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2161 bool ignored); 2162 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2163 bool ignored); 2164 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2165 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2166 llvm::Value *EmitARCRetainBlock(llvm::Value *value); 2167 void EmitARCRelease(llvm::Value *value, bool precise); 2168 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2169 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2170 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2171 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2172 2173 std::pair<LValue,llvm::Value*> 2174 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2175 std::pair<LValue,llvm::Value*> 2176 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2177 2178 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2179 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2180 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2181 2182 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2183 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2184 2185 static Destroyer destroyARCStrongImprecise; 2186 static Destroyer destroyARCStrongPrecise; 2187 static Destroyer destroyARCWeak; 2188 2189 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2190 llvm::Value *EmitObjCAutoreleasePoolPush(); 2191 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2192 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2193 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2194 2195 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2196 /// expression. Will emit a temporary variable if E is not an LValue. 2197 RValue EmitReferenceBindingToExpr(const Expr* E, 2198 const NamedDecl *InitializedDecl); 2199 2200 //===--------------------------------------------------------------------===// 2201 // Expression Emission 2202 //===--------------------------------------------------------------------===// 2203 2204 // Expressions are broken into three classes: scalar, complex, aggregate. 2205 2206 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2207 /// scalar type, returning the result. 2208 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2209 2210 /// EmitScalarConversion - Emit a conversion from the specified type to the 2211 /// specified destination type, both of which are LLVM scalar types. 2212 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2213 QualType DstTy); 2214 2215 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2216 /// complex type to the specified destination type, where the destination type 2217 /// is an LLVM scalar type. 2218 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2219 QualType DstTy); 2220 2221 2222 /// EmitAggExpr - Emit the computation of the specified expression 2223 /// of aggregate type. The result is computed into the given slot, 2224 /// which may be null to indicate that the value is not needed. 2225 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2226 2227 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2228 /// aggregate type into a temporary LValue. 2229 LValue EmitAggExprToLValue(const Expr *E); 2230 2231 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2232 /// pointers. 2233 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2234 QualType Ty); 2235 2236 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2237 /// make sure it survives garbage collection until this point. 2238 void EmitExtendGCLifetime(llvm::Value *object); 2239 2240 /// EmitComplexExpr - Emit the computation of the specified expression of 2241 /// complex type, returning the result. 2242 ComplexPairTy EmitComplexExpr(const Expr *E, 2243 bool IgnoreReal = false, 2244 bool IgnoreImag = false); 2245 2246 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2247 /// of complex type, storing into the specified Value*. 2248 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2249 bool DestIsVolatile); 2250 2251 /// StoreComplexToAddr - Store a complex number into the specified address. 2252 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2253 bool DestIsVolatile); 2254 /// LoadComplexFromAddr - Load a complex number from the specified address. 2255 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2256 2257 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2258 /// a static local variable. 2259 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2260 const char *Separator, 2261 llvm::GlobalValue::LinkageTypes Linkage); 2262 2263 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2264 /// global variable that has already been created for it. If the initializer 2265 /// has a different type than GV does, this may free GV and return a different 2266 /// one. Otherwise it just returns GV. 2267 llvm::GlobalVariable * 2268 AddInitializerToStaticVarDecl(const VarDecl &D, 2269 llvm::GlobalVariable *GV); 2270 2271 2272 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2273 /// variable with global storage. 2274 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2275 2276 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2277 /// with the C++ runtime so that its destructor will be called at exit. 2278 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2279 llvm::Constant *DeclPtr); 2280 2281 /// Emit code in this function to perform a guarded variable 2282 /// initialization. Guarded initializations are used when it's not 2283 /// possible to prove that an initialization will be done exactly 2284 /// once, e.g. with a static local variable or a static data member 2285 /// of a class template. 2286 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2287 2288 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2289 /// variables. 2290 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2291 llvm::Constant **Decls, 2292 unsigned NumDecls); 2293 2294 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2295 /// variables. 2296 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2297 const std::vector<std::pair<llvm::WeakVH, 2298 llvm::Constant*> > &DtorsAndObjects); 2299 2300 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2301 const VarDecl *D, 2302 llvm::GlobalVariable *Addr); 2303 2304 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2305 2306 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2307 const Expr *Exp); 2308 2309 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2310 AggValueSlot Slot =AggValueSlot::ignored()); 2311 2312 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2313 2314 //===--------------------------------------------------------------------===// 2315 // Internal Helpers 2316 //===--------------------------------------------------------------------===// 2317 2318 /// ContainsLabel - Return true if the statement contains a label in it. If 2319 /// this statement is not executed normally, it not containing a label means 2320 /// that we can just remove the code. 2321 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2322 2323 /// containsBreak - Return true if the statement contains a break out of it. 2324 /// If the statement (recursively) contains a switch or loop with a break 2325 /// inside of it, this is fine. 2326 static bool containsBreak(const Stmt *S); 2327 2328 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2329 /// to a constant, or if it does but contains a label, return false. If it 2330 /// constant folds return true and set the boolean result in Result. 2331 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2332 2333 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2334 /// to a constant, or if it does but contains a label, return false. If it 2335 /// constant folds return true and set the folded value. 2336 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2337 2338 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2339 /// if statement) to the specified blocks. Based on the condition, this might 2340 /// try to simplify the codegen of the conditional based on the branch. 2341 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2342 llvm::BasicBlock *FalseBlock); 2343 2344 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2345 /// generate a branch around the created basic block as necessary. 2346 llvm::BasicBlock *getTrapBB(); 2347 2348 /// EmitCallArg - Emit a single call argument. 2349 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2350 2351 /// EmitDelegateCallArg - We are performing a delegate call; that 2352 /// is, the current function is delegating to another one. Produce 2353 /// a r-value suitable for passing the given parameter. 2354 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2355 2356 private: 2357 void EmitReturnOfRValue(RValue RV, QualType Ty); 2358 2359 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2360 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2361 /// 2362 /// \param AI - The first function argument of the expansion. 2363 /// \return The argument following the last expanded function 2364 /// argument. 2365 llvm::Function::arg_iterator 2366 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2367 llvm::Function::arg_iterator AI); 2368 2369 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2370 /// Ty, into individual arguments on the provided vector \arg Args. See 2371 /// ABIArgInfo::Expand. 2372 void ExpandTypeToArgs(QualType Ty, RValue Src, 2373 llvm::SmallVector<llvm::Value*, 16> &Args, 2374 llvm::FunctionType *IRFuncTy); 2375 2376 llvm::Value* EmitAsmInput(const AsmStmt &S, 2377 const TargetInfo::ConstraintInfo &Info, 2378 const Expr *InputExpr, std::string &ConstraintStr); 2379 2380 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2381 const TargetInfo::ConstraintInfo &Info, 2382 LValue InputValue, QualType InputType, 2383 std::string &ConstraintStr); 2384 2385 /// EmitCallArgs - Emit call arguments for a function. 2386 /// The CallArgTypeInfo parameter is used for iterating over the known 2387 /// argument types of the function being called. 2388 template<typename T> 2389 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2390 CallExpr::const_arg_iterator ArgBeg, 2391 CallExpr::const_arg_iterator ArgEnd) { 2392 CallExpr::const_arg_iterator Arg = ArgBeg; 2393 2394 // First, use the argument types that the type info knows about 2395 if (CallArgTypeInfo) { 2396 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2397 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2398 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2399 QualType ArgType = *I; 2400 #ifndef NDEBUG 2401 QualType ActualArgType = Arg->getType(); 2402 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2403 QualType ActualBaseType = 2404 ActualArgType->getAs<PointerType>()->getPointeeType(); 2405 QualType ArgBaseType = 2406 ArgType->getAs<PointerType>()->getPointeeType(); 2407 if (ArgBaseType->isVariableArrayType()) { 2408 if (const VariableArrayType *VAT = 2409 getContext().getAsVariableArrayType(ActualBaseType)) { 2410 if (!VAT->getSizeExpr()) 2411 ActualArgType = ArgType; 2412 } 2413 } 2414 } 2415 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2416 getTypePtr() == 2417 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2418 "type mismatch in call argument!"); 2419 #endif 2420 EmitCallArg(Args, *Arg, ArgType); 2421 } 2422 2423 // Either we've emitted all the call args, or we have a call to a 2424 // variadic function. 2425 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2426 "Extra arguments in non-variadic function!"); 2427 2428 } 2429 2430 // If we still have any arguments, emit them using the type of the argument. 2431 for (; Arg != ArgEnd; ++Arg) 2432 EmitCallArg(Args, *Arg, Arg->getType()); 2433 } 2434 2435 const TargetCodeGenInfo &getTargetHooks() const { 2436 return CGM.getTargetCodeGenInfo(); 2437 } 2438 2439 void EmitDeclMetadata(); 2440 2441 CodeGenModule::ByrefHelpers * 2442 buildByrefHelpers(llvm::StructType &byrefType, 2443 const AutoVarEmission &emission); 2444 }; 2445 2446 /// Helper class with most of the code for saving a value for a 2447 /// conditional expression cleanup. 2448 struct DominatingLLVMValue { 2449 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2450 2451 /// Answer whether the given value needs extra work to be saved. 2452 static bool needsSaving(llvm::Value *value) { 2453 // If it's not an instruction, we don't need to save. 2454 if (!isa<llvm::Instruction>(value)) return false; 2455 2456 // If it's an instruction in the entry block, we don't need to save. 2457 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2458 return (block != &block->getParent()->getEntryBlock()); 2459 } 2460 2461 /// Try to save the given value. 2462 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2463 if (!needsSaving(value)) return saved_type(value, false); 2464 2465 // Otherwise we need an alloca. 2466 llvm::Value *alloca = 2467 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2468 CGF.Builder.CreateStore(value, alloca); 2469 2470 return saved_type(alloca, true); 2471 } 2472 2473 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2474 if (!value.getInt()) return value.getPointer(); 2475 return CGF.Builder.CreateLoad(value.getPointer()); 2476 } 2477 }; 2478 2479 /// A partial specialization of DominatingValue for llvm::Values that 2480 /// might be llvm::Instructions. 2481 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2482 typedef T *type; 2483 static type restore(CodeGenFunction &CGF, saved_type value) { 2484 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2485 } 2486 }; 2487 2488 /// A specialization of DominatingValue for RValue. 2489 template <> struct DominatingValue<RValue> { 2490 typedef RValue type; 2491 class saved_type { 2492 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2493 AggregateAddress, ComplexAddress }; 2494 2495 llvm::Value *Value; 2496 Kind K; 2497 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2498 2499 public: 2500 static bool needsSaving(RValue value); 2501 static saved_type save(CodeGenFunction &CGF, RValue value); 2502 RValue restore(CodeGenFunction &CGF); 2503 2504 // implementations in CGExprCXX.cpp 2505 }; 2506 2507 static bool needsSaving(type value) { 2508 return saved_type::needsSaving(value); 2509 } 2510 static saved_type save(CodeGenFunction &CGF, type value) { 2511 return saved_type::save(CGF, value); 2512 } 2513 static type restore(CodeGenFunction &CGF, saved_type value) { 2514 return value.restore(CGF); 2515 } 2516 }; 2517 2518 } // end namespace CodeGen 2519 } // end namespace clang 2520 2521 #endif 2522