Home | History | Annotate | Download | only in Instrumentation
      1 //===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This module provides means for calculating a maximum spanning tree for a
     11 // given set of weighted edges. The type parameter T is the type of a node.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
     16 #define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
     17 
     18 #include "llvm/BasicBlock.h"
     19 #include "llvm/ADT/EquivalenceClasses.h"
     20 #include <vector>
     21 #include <algorithm>
     22 
     23 namespace llvm {
     24 
     25   /// MaximumSpanningTree - A MST implementation.
     26   /// The type parameter T determines the type of the nodes of the graph.
     27   template <typename T>
     28   class MaximumSpanningTree {
     29 
     30     // A comparing class for comparing weighted edges.
     31     template <typename CT>
     32     struct EdgeWeightCompare {
     33       bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X,
     34                       typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
     35         if (X.second > Y.second) return true;
     36         if (X.second < Y.second) return false;
     37         if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) {
     38           if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) {
     39             if (BBX->size() > BBY->size()) return true;
     40             if (BBX->size() < BBY->size()) return false;
     41           }
     42         }
     43         if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) {
     44           if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) {
     45             if (BBX->size() > BBY->size()) return true;
     46             if (BBX->size() < BBY->size()) return false;
     47           }
     48         }
     49         return false;
     50       }
     51     };
     52 
     53   public:
     54     typedef std::pair<const T*, const T*> Edge;
     55     typedef std::pair<Edge, double> EdgeWeight;
     56     typedef std::vector<EdgeWeight> EdgeWeights;
     57   protected:
     58     typedef std::vector<Edge> MaxSpanTree;
     59 
     60     MaxSpanTree MST;
     61 
     62   public:
     63     static char ID; // Class identification, replacement for typeinfo
     64 
     65     /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
     66     /// spanning tree.
     67     MaximumSpanningTree(EdgeWeights &EdgeVector) {
     68 
     69       std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
     70 
     71       // Create spanning tree, Forest contains a special data structure
     72       // that makes checking if two nodes are already in a common (sub-)tree
     73       // fast and cheap.
     74       EquivalenceClasses<const T*> Forest;
     75       for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
     76            EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
     77         Edge e = (*EWi).first;
     78 
     79         Forest.insert(e.first);
     80         Forest.insert(e.second);
     81       }
     82 
     83       // Iterate over the sorted edges, biggest first.
     84       for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
     85            EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
     86         Edge e = (*EWi).first;
     87 
     88         if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
     89           Forest.unionSets(e.first, e.second);
     90           // So we know now that the edge is not already in a subtree, so we push
     91           // the edge to the MST.
     92           MST.push_back(e);
     93         }
     94       }
     95     }
     96 
     97     typename MaxSpanTree::iterator begin() {
     98       return MST.begin();
     99     }
    100 
    101     typename MaxSpanTree::iterator end() {
    102       return MST.end();
    103     }
    104   };
    105 
    106 } // End llvm namespace
    107 
    108 #endif
    109