Home | History | Annotate | Download | only in Utils
      1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/Constant.h"
     20 #include "llvm/Type.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Analysis/Dominators.h"
     23 #include "llvm/Analysis/LoopInfo.h"
     24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     25 #include "llvm/Target/TargetData.h"
     26 #include "llvm/Transforms/Utils/Local.h"
     27 #include "llvm/Transforms/Scalar.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include <algorithm>
     31 using namespace llvm;
     32 
     33 /// DeleteDeadBlock - Delete the specified block, which must have no
     34 /// predecessors.
     35 void llvm::DeleteDeadBlock(BasicBlock *BB) {
     36   assert((pred_begin(BB) == pred_end(BB) ||
     37          // Can delete self loop.
     38          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     39   TerminatorInst *BBTerm = BB->getTerminator();
     40 
     41   // Loop through all of our successors and make sure they know that one
     42   // of their predecessors is going away.
     43   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
     44     BBTerm->getSuccessor(i)->removePredecessor(BB);
     45 
     46   // Zap all the instructions in the block.
     47   while (!BB->empty()) {
     48     Instruction &I = BB->back();
     49     // If this instruction is used, replace uses with an arbitrary value.
     50     // Because control flow can't get here, we don't care what we replace the
     51     // value with.  Note that since this block is unreachable, and all values
     52     // contained within it must dominate their uses, that all uses will
     53     // eventually be removed (they are themselves dead).
     54     if (!I.use_empty())
     55       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     56     BB->getInstList().pop_back();
     57   }
     58 
     59   // Zap the block!
     60   BB->eraseFromParent();
     61 }
     62 
     63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     64 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     66 /// when the block has exactly one predecessor.
     67 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
     68   if (!isa<PHINode>(BB->begin())) return;
     69 
     70   AliasAnalysis *AA = 0;
     71   MemoryDependenceAnalysis *MemDep = 0;
     72   if (P) {
     73     AA = P->getAnalysisIfAvailable<AliasAnalysis>();
     74     MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
     75   }
     76 
     77   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     78     if (PN->getIncomingValue(0) != PN)
     79       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     80     else
     81       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     82 
     83     if (MemDep)
     84       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     85     else if (AA && isa<PointerType>(PN->getType()))
     86       AA->deleteValue(PN);
     87 
     88     PN->eraseFromParent();
     89   }
     90 }
     91 
     92 
     93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     94 /// is dead. Also recursively delete any operands that become dead as
     95 /// a result. This includes tracing the def-use list from the PHI to see if
     96 /// it is ultimately unused or if it reaches an unused cycle.
     97 bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
     98   // Recursively deleting a PHI may cause multiple PHIs to be deleted
     99   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
    100   SmallVector<WeakVH, 8> PHIs;
    101   for (BasicBlock::iterator I = BB->begin();
    102        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    103     PHIs.push_back(PN);
    104 
    105   bool Changed = false;
    106   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    107     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
    108       Changed |= RecursivelyDeleteDeadPHINode(PN);
    109 
    110   return Changed;
    111 }
    112 
    113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
    114 /// if possible.  The return value indicates success or failure.
    115 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
    116   // Don't merge away blocks who have their address taken.
    117   if (BB->hasAddressTaken()) return false;
    118 
    119   // Can't merge if there are multiple predecessors, or no predecessors.
    120   BasicBlock *PredBB = BB->getUniquePredecessor();
    121   if (!PredBB) return false;
    122 
    123   // Don't break self-loops.
    124   if (PredBB == BB) return false;
    125   // Don't break invokes.
    126   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
    127 
    128   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
    129   BasicBlock *OnlySucc = BB;
    130   for (; SI != SE; ++SI)
    131     if (*SI != OnlySucc) {
    132       OnlySucc = 0;     // There are multiple distinct successors!
    133       break;
    134     }
    135 
    136   // Can't merge if there are multiple successors.
    137   if (!OnlySucc) return false;
    138 
    139   // Can't merge if there is PHI loop.
    140   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
    141     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
    142       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    143         if (PN->getIncomingValue(i) == PN)
    144           return false;
    145     } else
    146       break;
    147   }
    148 
    149   // Begin by getting rid of unneeded PHIs.
    150   if (isa<PHINode>(BB->front()))
    151     FoldSingleEntryPHINodes(BB, P);
    152 
    153   // Delete the unconditional branch from the predecessor...
    154   PredBB->getInstList().pop_back();
    155 
    156   // Make all PHI nodes that referred to BB now refer to Pred as their
    157   // source...
    158   BB->replaceAllUsesWith(PredBB);
    159 
    160   // Move all definitions in the successor to the predecessor...
    161   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    162 
    163   // Inherit predecessors name if it exists.
    164   if (!PredBB->hasName())
    165     PredBB->takeName(BB);
    166 
    167   // Finally, erase the old block and update dominator info.
    168   if (P) {
    169     if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
    170       if (DomTreeNode *DTN = DT->getNode(BB)) {
    171         DomTreeNode *PredDTN = DT->getNode(PredBB);
    172         SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
    173         for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
    174              DE = Children.end(); DI != DE; ++DI)
    175           DT->changeImmediateDominator(*DI, PredDTN);
    176 
    177         DT->eraseNode(BB);
    178       }
    179 
    180       if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
    181         LI->removeBlock(BB);
    182 
    183       if (MemoryDependenceAnalysis *MD =
    184             P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
    185         MD->invalidateCachedPredecessors();
    186     }
    187   }
    188 
    189   BB->eraseFromParent();
    190   return true;
    191 }
    192 
    193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
    194 /// with a value, then remove and delete the original instruction.
    195 ///
    196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    197                                 BasicBlock::iterator &BI, Value *V) {
    198   Instruction &I = *BI;
    199   // Replaces all of the uses of the instruction with uses of the value
    200   I.replaceAllUsesWith(V);
    201 
    202   // Make sure to propagate a name if there is one already.
    203   if (I.hasName() && !V->hasName())
    204     V->takeName(&I);
    205 
    206   // Delete the unnecessary instruction now...
    207   BI = BIL.erase(BI);
    208 }
    209 
    210 
    211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
    212 /// instruction specified by I.  The original instruction is deleted and BI is
    213 /// updated to point to the new instruction.
    214 ///
    215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    216                                BasicBlock::iterator &BI, Instruction *I) {
    217   assert(I->getParent() == 0 &&
    218          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    219 
    220   // Insert the new instruction into the basic block...
    221   BasicBlock::iterator New = BIL.insert(BI, I);
    222 
    223   // Replace all uses of the old instruction, and delete it.
    224   ReplaceInstWithValue(BIL, BI, I);
    225 
    226   // Move BI back to point to the newly inserted instruction
    227   BI = New;
    228 }
    229 
    230 /// ReplaceInstWithInst - Replace the instruction specified by From with the
    231 /// instruction specified by To.
    232 ///
    233 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    234   BasicBlock::iterator BI(From);
    235   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    236 }
    237 
    238 /// GetSuccessorNumber - Search for the specified successor of basic block BB
    239 /// and return its position in the terminator instruction's list of
    240 /// successors.  It is an error to call this with a block that is not a
    241 /// successor.
    242 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
    243   TerminatorInst *Term = BB->getTerminator();
    244 #ifndef NDEBUG
    245   unsigned e = Term->getNumSuccessors();
    246 #endif
    247   for (unsigned i = 0; ; ++i) {
    248     assert(i != e && "Didn't find edge?");
    249     if (Term->getSuccessor(i) == Succ)
    250       return i;
    251   }
    252   return 0;
    253 }
    254 
    255 /// SplitEdge -  Split the edge connecting specified block. Pass P must
    256 /// not be NULL.
    257 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
    258   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    259 
    260   // If this is a critical edge, let SplitCriticalEdge do it.
    261   TerminatorInst *LatchTerm = BB->getTerminator();
    262   if (SplitCriticalEdge(LatchTerm, SuccNum, P))
    263     return LatchTerm->getSuccessor(SuccNum);
    264 
    265   // If the edge isn't critical, then BB has a single successor or Succ has a
    266   // single pred.  Split the block.
    267   BasicBlock::iterator SplitPoint;
    268   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    269     // If the successor only has a single pred, split the top of the successor
    270     // block.
    271     assert(SP == BB && "CFG broken");
    272     SP = NULL;
    273     return SplitBlock(Succ, Succ->begin(), P);
    274   }
    275 
    276   // Otherwise, if BB has a single successor, split it at the bottom of the
    277   // block.
    278   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    279          "Should have a single succ!");
    280   return SplitBlock(BB, BB->getTerminator(), P);
    281 }
    282 
    283 /// SplitBlock - Split the specified block at the specified instruction - every
    284 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    285 /// to a new block.  The two blocks are joined by an unconditional branch and
    286 /// the loop info is updated.
    287 ///
    288 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
    289   BasicBlock::iterator SplitIt = SplitPt;
    290   while (isa<PHINode>(SplitIt))
    291     ++SplitIt;
    292   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    293 
    294   // The new block lives in whichever loop the old one did. This preserves
    295   // LCSSA as well, because we force the split point to be after any PHI nodes.
    296   if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
    297     if (Loop *L = LI->getLoopFor(Old))
    298       L->addBasicBlockToLoop(New, LI->getBase());
    299 
    300   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
    301     // Old dominates New. New node dominates all other nodes dominated by Old.
    302     DomTreeNode *OldNode = DT->getNode(Old);
    303     std::vector<DomTreeNode *> Children;
    304     for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
    305          I != E; ++I)
    306       Children.push_back(*I);
    307 
    308       DomTreeNode *NewNode = DT->addNewBlock(New,Old);
    309       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
    310              E = Children.end(); I != E; ++I)
    311         DT->changeImmediateDominator(*I, NewNode);
    312   }
    313 
    314   return New;
    315 }
    316 
    317 
    318 /// SplitBlockPredecessors - This method transforms BB by introducing a new
    319 /// basic block into the function, and moving some of the predecessors of BB to
    320 /// be predecessors of the new block.  The new predecessors are indicated by the
    321 /// Preds array, which has NumPreds elements in it.  The new block is given a
    322 /// suffix of 'Suffix'.
    323 ///
    324 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    325 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
    326 /// preserve LoopSimplify (because it's complicated to handle the case where one
    327 /// of the edges being split is an exit of a loop with other exits).
    328 ///
    329 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    330                                          BasicBlock *const *Preds,
    331                                          unsigned NumPreds, const char *Suffix,
    332                                          Pass *P) {
    333   // Create new basic block, insert right before the original block.
    334   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
    335                                          BB->getParent(), BB);
    336 
    337   // The new block unconditionally branches to the old block.
    338   BranchInst *BI = BranchInst::Create(BB, NewBB);
    339 
    340   LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
    341   Loop *L = LI ? LI->getLoopFor(BB) : 0;
    342   bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
    343 
    344   // Move the edges from Preds to point to NewBB instead of BB.
    345   // While here, if we need to preserve loop analyses, collect
    346   // some information about how this split will affect loops.
    347   bool HasLoopExit = false;
    348   bool IsLoopEntry = !!L;
    349   bool SplitMakesNewLoopHeader = false;
    350   for (unsigned i = 0; i != NumPreds; ++i) {
    351     // This is slightly more strict than necessary; the minimum requirement
    352     // is that there be no more than one indirectbr branching to BB. And
    353     // all BlockAddress uses would need to be updated.
    354     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    355            "Cannot split an edge from an IndirectBrInst");
    356 
    357     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    358 
    359     if (LI) {
    360       // If we need to preserve LCSSA, determine if any of
    361       // the preds is a loop exit.
    362       if (PreserveLCSSA)
    363         if (Loop *PL = LI->getLoopFor(Preds[i]))
    364           if (!PL->contains(BB))
    365             HasLoopExit = true;
    366       // If we need to preserve LoopInfo, note whether any of the
    367       // preds crosses an interesting loop boundary.
    368       if (L) {
    369         if (L->contains(Preds[i]))
    370           IsLoopEntry = false;
    371         else
    372           SplitMakesNewLoopHeader = true;
    373       }
    374     }
    375   }
    376 
    377   // Update dominator tree if available.
    378   DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
    379   if (DT)
    380     DT->splitBlock(NewBB);
    381 
    382   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    383   // node becomes an incoming value for BB's phi node.  However, if the Preds
    384   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    385   // account for the newly created predecessor.
    386   if (NumPreds == 0) {
    387     // Insert dummy values as the incoming value.
    388     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    389       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    390     return NewBB;
    391   }
    392 
    393   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
    394 
    395   if (L) {
    396     if (IsLoopEntry) {
    397       // Add the new block to the nearest enclosing loop (and not an
    398       // adjacent loop). To find this, examine each of the predecessors and
    399       // determine which loops enclose them, and select the most-nested loop
    400       // which contains the loop containing the block being split.
    401       Loop *InnermostPredLoop = 0;
    402       for (unsigned i = 0; i != NumPreds; ++i)
    403         if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
    404           // Seek a loop which actually contains the block being split (to
    405           // avoid adjacent loops).
    406           while (PredLoop && !PredLoop->contains(BB))
    407             PredLoop = PredLoop->getParentLoop();
    408           // Select the most-nested of these loops which contains the block.
    409           if (PredLoop &&
    410               PredLoop->contains(BB) &&
    411               (!InnermostPredLoop ||
    412                InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    413             InnermostPredLoop = PredLoop;
    414         }
    415       if (InnermostPredLoop)
    416         InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    417     } else {
    418       L->addBasicBlockToLoop(NewBB, LI->getBase());
    419       if (SplitMakesNewLoopHeader)
    420         L->moveToHeader(NewBB);
    421     }
    422   }
    423 
    424   // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
    425   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
    426     PHINode *PN = cast<PHINode>(I++);
    427 
    428     // Check to see if all of the values coming in are the same.  If so, we
    429     // don't need to create a new PHI node, unless it's needed for LCSSA.
    430     Value *InVal = 0;
    431     if (!HasLoopExit) {
    432       InVal = PN->getIncomingValueForBlock(Preds[0]);
    433       for (unsigned i = 1; i != NumPreds; ++i)
    434         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
    435           InVal = 0;
    436           break;
    437         }
    438     }
    439 
    440     if (InVal) {
    441       // If all incoming values for the new PHI would be the same, just don't
    442       // make a new PHI.  Instead, just remove the incoming values from the old
    443       // PHI.
    444       for (unsigned i = 0; i != NumPreds; ++i)
    445         PN->removeIncomingValue(Preds[i], false);
    446     } else {
    447       // If the values coming into the block are not the same, we need a PHI.
    448       // Create the new PHI node, insert it into NewBB at the end of the block
    449       PHINode *NewPHI =
    450         PHINode::Create(PN->getType(), NumPreds, PN->getName()+".ph", BI);
    451       if (AA) AA->copyValue(PN, NewPHI);
    452 
    453       // Move all of the PHI values for 'Preds' to the new PHI.
    454       for (unsigned i = 0; i != NumPreds; ++i) {
    455         Value *V = PN->removeIncomingValue(Preds[i], false);
    456         NewPHI->addIncoming(V, Preds[i]);
    457       }
    458       InVal = NewPHI;
    459     }
    460 
    461     // Add an incoming value to the PHI node in the loop for the preheader
    462     // edge.
    463     PN->addIncoming(InVal, NewBB);
    464   }
    465 
    466   return NewBB;
    467 }
    468 
    469 /// FindFunctionBackedges - Analyze the specified function to find all of the
    470 /// loop backedges in the function and return them.  This is a relatively cheap
    471 /// (compared to computing dominators and loop info) analysis.
    472 ///
    473 /// The output is added to Result, as pairs of <from,to> edge info.
    474 void llvm::FindFunctionBackedges(const Function &F,
    475      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
    476   const BasicBlock *BB = &F.getEntryBlock();
    477   if (succ_begin(BB) == succ_end(BB))
    478     return;
    479 
    480   SmallPtrSet<const BasicBlock*, 8> Visited;
    481   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
    482   SmallPtrSet<const BasicBlock*, 8> InStack;
    483 
    484   Visited.insert(BB);
    485   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
    486   InStack.insert(BB);
    487   do {
    488     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
    489     const BasicBlock *ParentBB = Top.first;
    490     succ_const_iterator &I = Top.second;
    491 
    492     bool FoundNew = false;
    493     while (I != succ_end(ParentBB)) {
    494       BB = *I++;
    495       if (Visited.insert(BB)) {
    496         FoundNew = true;
    497         break;
    498       }
    499       // Successor is in VisitStack, it's a back edge.
    500       if (InStack.count(BB))
    501         Result.push_back(std::make_pair(ParentBB, BB));
    502     }
    503 
    504     if (FoundNew) {
    505       // Go down one level if there is a unvisited successor.
    506       InStack.insert(BB);
    507       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
    508     } else {
    509       // Go up one level.
    510       InStack.erase(VisitStack.pop_back_val().first);
    511     }
    512   } while (!VisitStack.empty());
    513 }
    514 
    515 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    516 /// instruction into a predecessor which ends in an unconditional branch. If
    517 /// the return instruction returns a value defined by a PHI, propagate the
    518 /// right value into the return. It returns the new return instruction in the
    519 /// predecessor.
    520 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    521                                              BasicBlock *Pred) {
    522   Instruction *UncondBranch = Pred->getTerminator();
    523   // Clone the return and add it to the end of the predecessor.
    524   Instruction *NewRet = RI->clone();
    525   Pred->getInstList().push_back(NewRet);
    526 
    527   // If the return instruction returns a value, and if the value was a
    528   // PHI node in "BB", propagate the right value into the return.
    529   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    530        i != e; ++i)
    531     if (PHINode *PN = dyn_cast<PHINode>(*i))
    532       if (PN->getParent() == BB)
    533         *i = PN->getIncomingValueForBlock(Pred);
    534 
    535   // Update any PHI nodes in the returning block to realize that we no
    536   // longer branch to them.
    537   BB->removePredecessor(Pred);
    538   UncondBranch->eraseFromParent();
    539   return cast<ReturnInst>(NewRet);
    540 }
    541 
    542 /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a
    543 /// given basic block.
    544 DebugLoc llvm::GetFirstDebugLocInBasicBlock(const BasicBlock *BB) {
    545   if (const Instruction *I = BB->getFirstNonPHI())
    546     return I->getDebugLoc();
    547   // Scanning entire block may be too expensive, if the first instruction
    548   // does not have valid location info.
    549   return DebugLoc();
    550 }
    551