1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "InstCombine.h" 17 #include "llvm/Target/TargetData.h" 18 #include "llvm/IntrinsicInst.h" 19 20 using namespace llvm; 21 22 23 /// ShrinkDemandedConstant - Check to see if the specified operand of the 24 /// specified instruction is a constant integer. If so, check to see if there 25 /// are any bits set in the constant that are not demanded. If so, shrink the 26 /// constant and return true. 27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 28 APInt Demanded) { 29 assert(I && "No instruction?"); 30 assert(OpNo < I->getNumOperands() && "Operand index too large"); 31 32 // If the operand is not a constant integer, nothing to do. 33 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 34 if (!OpC) return false; 35 36 // If there are no bits set that aren't demanded, nothing to do. 37 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 38 if ((~Demanded & OpC->getValue()) == 0) 39 return false; 40 41 // This instruction is producing bits that are not demanded. Shrink the RHS. 42 Demanded &= OpC->getValue(); 43 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 44 return true; 45 } 46 47 48 49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 50 /// SimplifyDemandedBits knows about. See if the instruction has any 51 /// properties that allow us to simplify its operands. 52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 53 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 54 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 55 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 56 57 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 58 KnownZero, KnownOne, 0); 59 if (V == 0) return false; 60 if (V == &Inst) return true; 61 ReplaceInstUsesWith(Inst, V); 62 return true; 63 } 64 65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 66 /// specified instruction operand if possible, updating it in place. It returns 67 /// true if it made any change and false otherwise. 68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 69 APInt &KnownZero, APInt &KnownOne, 70 unsigned Depth) { 71 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 72 KnownZero, KnownOne, Depth); 73 if (NewVal == 0) return false; 74 U = NewVal; 75 return true; 76 } 77 78 79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 80 /// value based on the demanded bits. When this function is called, it is known 81 /// that only the bits set in DemandedMask of the result of V are ever used 82 /// downstream. Consequently, depending on the mask and V, it may be possible 83 /// to replace V with a constant or one of its operands. In such cases, this 84 /// function does the replacement and returns true. In all other cases, it 85 /// returns false after analyzing the expression and setting KnownOne and known 86 /// to be one in the expression. KnownZero contains all the bits that are known 87 /// to be zero in the expression. These are provided to potentially allow the 88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 89 /// the expression. KnownOne and KnownZero always follow the invariant that 90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 93 /// and KnownOne must all be the same. 94 /// 95 /// This returns null if it did not change anything and it permits no 96 /// simplification. This returns V itself if it did some simplification of V's 97 /// operands based on the information about what bits are demanded. This returns 98 /// some other non-null value if it found out that V is equal to another value 99 /// in the context where the specified bits are demanded, but not for all users. 100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 101 APInt &KnownZero, APInt &KnownOne, 102 unsigned Depth) { 103 assert(V != 0 && "Null pointer of Value???"); 104 assert(Depth <= 6 && "Limit Search Depth"); 105 uint32_t BitWidth = DemandedMask.getBitWidth(); 106 Type *VTy = V->getType(); 107 assert((TD || !VTy->isPointerTy()) && 108 "SimplifyDemandedBits needs to know bit widths!"); 109 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 110 (!VTy->isIntOrIntVectorTy() || 111 VTy->getScalarSizeInBits() == BitWidth) && 112 KnownZero.getBitWidth() == BitWidth && 113 KnownOne.getBitWidth() == BitWidth && 114 "Value *V, DemandedMask, KnownZero and KnownOne " 115 "must have same BitWidth"); 116 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 117 // We know all of the bits for a constant! 118 KnownOne = CI->getValue() & DemandedMask; 119 KnownZero = ~KnownOne & DemandedMask; 120 return 0; 121 } 122 if (isa<ConstantPointerNull>(V)) { 123 // We know all of the bits for a constant! 124 KnownOne.clearAllBits(); 125 KnownZero = DemandedMask; 126 return 0; 127 } 128 129 KnownZero.clearAllBits(); 130 KnownOne.clearAllBits(); 131 if (DemandedMask == 0) { // Not demanding any bits from V. 132 if (isa<UndefValue>(V)) 133 return 0; 134 return UndefValue::get(VTy); 135 } 136 137 if (Depth == 6) // Limit search depth. 138 return 0; 139 140 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 141 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 142 143 Instruction *I = dyn_cast<Instruction>(V); 144 if (!I) { 145 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); 146 return 0; // Only analyze instructions. 147 } 148 149 // If there are multiple uses of this value and we aren't at the root, then 150 // we can't do any simplifications of the operands, because DemandedMask 151 // only reflects the bits demanded by *one* of the users. 152 if (Depth != 0 && !I->hasOneUse()) { 153 // Despite the fact that we can't simplify this instruction in all User's 154 // context, we can at least compute the knownzero/knownone bits, and we can 155 // do simplifications that apply to *just* the one user if we know that 156 // this instruction has a simpler value in that context. 157 if (I->getOpcode() == Instruction::And) { 158 // If either the LHS or the RHS are Zero, the result is zero. 159 ComputeMaskedBits(I->getOperand(1), DemandedMask, 160 RHSKnownZero, RHSKnownOne, Depth+1); 161 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, 162 LHSKnownZero, LHSKnownOne, Depth+1); 163 164 // If all of the demanded bits are known 1 on one side, return the other. 165 // These bits cannot contribute to the result of the 'and' in this 166 // context. 167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 168 (DemandedMask & ~LHSKnownZero)) 169 return I->getOperand(0); 170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 171 (DemandedMask & ~RHSKnownZero)) 172 return I->getOperand(1); 173 174 // If all of the demanded bits in the inputs are known zeros, return zero. 175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 176 return Constant::getNullValue(VTy); 177 178 } else if (I->getOpcode() == Instruction::Or) { 179 // We can simplify (X|Y) -> X or Y in the user's context if we know that 180 // only bits from X or Y are demanded. 181 182 // If either the LHS or the RHS are One, the result is One. 183 ComputeMaskedBits(I->getOperand(1), DemandedMask, 184 RHSKnownZero, RHSKnownOne, Depth+1); 185 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, 186 LHSKnownZero, LHSKnownOne, Depth+1); 187 188 // If all of the demanded bits are known zero on one side, return the 189 // other. These bits cannot contribute to the result of the 'or' in this 190 // context. 191 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 192 (DemandedMask & ~LHSKnownOne)) 193 return I->getOperand(0); 194 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 195 (DemandedMask & ~RHSKnownOne)) 196 return I->getOperand(1); 197 198 // If all of the potentially set bits on one side are known to be set on 199 // the other side, just use the 'other' side. 200 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 201 (DemandedMask & (~RHSKnownZero))) 202 return I->getOperand(0); 203 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 204 (DemandedMask & (~LHSKnownZero))) 205 return I->getOperand(1); 206 } 207 208 // Compute the KnownZero/KnownOne bits to simplify things downstream. 209 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); 210 return 0; 211 } 212 213 // If this is the root being simplified, allow it to have multiple uses, 214 // just set the DemandedMask to all bits so that we can try to simplify the 215 // operands. This allows visitTruncInst (for example) to simplify the 216 // operand of a trunc without duplicating all the logic below. 217 if (Depth == 0 && !V->hasOneUse()) 218 DemandedMask = APInt::getAllOnesValue(BitWidth); 219 220 switch (I->getOpcode()) { 221 default: 222 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); 223 break; 224 case Instruction::And: 225 // If either the LHS or the RHS are Zero, the result is zero. 226 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 227 RHSKnownZero, RHSKnownOne, Depth+1) || 228 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 229 LHSKnownZero, LHSKnownOne, Depth+1)) 230 return I; 231 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 232 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 233 234 // If all of the demanded bits are known 1 on one side, return the other. 235 // These bits cannot contribute to the result of the 'and'. 236 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 237 (DemandedMask & ~LHSKnownZero)) 238 return I->getOperand(0); 239 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 240 (DemandedMask & ~RHSKnownZero)) 241 return I->getOperand(1); 242 243 // If all of the demanded bits in the inputs are known zeros, return zero. 244 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 245 return Constant::getNullValue(VTy); 246 247 // If the RHS is a constant, see if we can simplify it. 248 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 249 return I; 250 251 // Output known-1 bits are only known if set in both the LHS & RHS. 252 KnownOne = RHSKnownOne & LHSKnownOne; 253 // Output known-0 are known to be clear if zero in either the LHS | RHS. 254 KnownZero = RHSKnownZero | LHSKnownZero; 255 break; 256 case Instruction::Or: 257 // If either the LHS or the RHS are One, the result is One. 258 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 259 RHSKnownZero, RHSKnownOne, Depth+1) || 260 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 261 LHSKnownZero, LHSKnownOne, Depth+1)) 262 return I; 263 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 264 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 265 266 // If all of the demanded bits are known zero on one side, return the other. 267 // These bits cannot contribute to the result of the 'or'. 268 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 269 (DemandedMask & ~LHSKnownOne)) 270 return I->getOperand(0); 271 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 272 (DemandedMask & ~RHSKnownOne)) 273 return I->getOperand(1); 274 275 // If all of the potentially set bits on one side are known to be set on 276 // the other side, just use the 'other' side. 277 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 278 (DemandedMask & (~RHSKnownZero))) 279 return I->getOperand(0); 280 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 281 (DemandedMask & (~LHSKnownZero))) 282 return I->getOperand(1); 283 284 // If the RHS is a constant, see if we can simplify it. 285 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 286 return I; 287 288 // Output known-0 bits are only known if clear in both the LHS & RHS. 289 KnownZero = RHSKnownZero & LHSKnownZero; 290 // Output known-1 are known to be set if set in either the LHS | RHS. 291 KnownOne = RHSKnownOne | LHSKnownOne; 292 break; 293 case Instruction::Xor: { 294 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 295 RHSKnownZero, RHSKnownOne, Depth+1) || 296 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 297 LHSKnownZero, LHSKnownOne, Depth+1)) 298 return I; 299 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 300 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 301 302 // If all of the demanded bits are known zero on one side, return the other. 303 // These bits cannot contribute to the result of the 'xor'. 304 if ((DemandedMask & RHSKnownZero) == DemandedMask) 305 return I->getOperand(0); 306 if ((DemandedMask & LHSKnownZero) == DemandedMask) 307 return I->getOperand(1); 308 309 // If all of the demanded bits are known to be zero on one side or the 310 // other, turn this into an *inclusive* or. 311 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 312 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 313 Instruction *Or = 314 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 315 I->getName()); 316 return InsertNewInstWith(Or, *I); 317 } 318 319 // If all of the demanded bits on one side are known, and all of the set 320 // bits on that side are also known to be set on the other side, turn this 321 // into an AND, as we know the bits will be cleared. 322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 323 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 324 // all known 325 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 326 Constant *AndC = Constant::getIntegerValue(VTy, 327 ~RHSKnownOne & DemandedMask); 328 Instruction *And = 329 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); 330 return InsertNewInstWith(And, *I); 331 } 332 } 333 334 // If the RHS is a constant, see if we can simplify it. 335 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 336 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 337 return I; 338 339 // If our LHS is an 'and' and if it has one use, and if any of the bits we 340 // are flipping are known to be set, then the xor is just resetting those 341 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 342 // simplifying both of them. 343 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 344 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 345 isa<ConstantInt>(I->getOperand(1)) && 346 isa<ConstantInt>(LHSInst->getOperand(1)) && 347 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 348 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 349 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 350 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 351 352 Constant *AndC = 353 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 354 Instruction *NewAnd = 355 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); 356 InsertNewInstWith(NewAnd, *I); 357 358 Constant *XorC = 359 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 360 Instruction *NewXor = 361 BinaryOperator::CreateXor(NewAnd, XorC, "tmp"); 362 return InsertNewInstWith(NewXor, *I); 363 } 364 365 // Output known-0 bits are known if clear or set in both the LHS & RHS. 366 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 367 // Output known-1 are known to be set if set in only one of the LHS, RHS. 368 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 369 break; 370 } 371 case Instruction::Select: 372 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 373 RHSKnownZero, RHSKnownOne, Depth+1) || 374 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 375 LHSKnownZero, LHSKnownOne, Depth+1)) 376 return I; 377 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 378 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 379 380 // If the operands are constants, see if we can simplify them. 381 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 382 ShrinkDemandedConstant(I, 2, DemandedMask)) 383 return I; 384 385 // Only known if known in both the LHS and RHS. 386 KnownOne = RHSKnownOne & LHSKnownOne; 387 KnownZero = RHSKnownZero & LHSKnownZero; 388 break; 389 case Instruction::Trunc: { 390 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 391 DemandedMask = DemandedMask.zext(truncBf); 392 KnownZero = KnownZero.zext(truncBf); 393 KnownOne = KnownOne.zext(truncBf); 394 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 395 KnownZero, KnownOne, Depth+1)) 396 return I; 397 DemandedMask = DemandedMask.trunc(BitWidth); 398 KnownZero = KnownZero.trunc(BitWidth); 399 KnownOne = KnownOne.trunc(BitWidth); 400 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 401 break; 402 } 403 case Instruction::BitCast: 404 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 405 return 0; // vector->int or fp->int? 406 407 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 408 if (VectorType *SrcVTy = 409 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 410 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 411 // Don't touch a bitcast between vectors of different element counts. 412 return 0; 413 } else 414 // Don't touch a scalar-to-vector bitcast. 415 return 0; 416 } else if (I->getOperand(0)->getType()->isVectorTy()) 417 // Don't touch a vector-to-scalar bitcast. 418 return 0; 419 420 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 421 KnownZero, KnownOne, Depth+1)) 422 return I; 423 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 424 break; 425 case Instruction::ZExt: { 426 // Compute the bits in the result that are not present in the input. 427 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 428 429 DemandedMask = DemandedMask.trunc(SrcBitWidth); 430 KnownZero = KnownZero.trunc(SrcBitWidth); 431 KnownOne = KnownOne.trunc(SrcBitWidth); 432 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 433 KnownZero, KnownOne, Depth+1)) 434 return I; 435 DemandedMask = DemandedMask.zext(BitWidth); 436 KnownZero = KnownZero.zext(BitWidth); 437 KnownOne = KnownOne.zext(BitWidth); 438 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 439 // The top bits are known to be zero. 440 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 441 break; 442 } 443 case Instruction::SExt: { 444 // Compute the bits in the result that are not present in the input. 445 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 446 447 APInt InputDemandedBits = DemandedMask & 448 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 449 450 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 451 // If any of the sign extended bits are demanded, we know that the sign 452 // bit is demanded. 453 if ((NewBits & DemandedMask) != 0) 454 InputDemandedBits.setBit(SrcBitWidth-1); 455 456 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 457 KnownZero = KnownZero.trunc(SrcBitWidth); 458 KnownOne = KnownOne.trunc(SrcBitWidth); 459 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 460 KnownZero, KnownOne, Depth+1)) 461 return I; 462 InputDemandedBits = InputDemandedBits.zext(BitWidth); 463 KnownZero = KnownZero.zext(BitWidth); 464 KnownOne = KnownOne.zext(BitWidth); 465 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 466 467 // If the sign bit of the input is known set or clear, then we know the 468 // top bits of the result. 469 470 // If the input sign bit is known zero, or if the NewBits are not demanded 471 // convert this into a zero extension. 472 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 473 // Convert to ZExt cast 474 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 475 return InsertNewInstWith(NewCast, *I); 476 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 477 KnownOne |= NewBits; 478 } 479 break; 480 } 481 case Instruction::Add: { 482 // Figure out what the input bits are. If the top bits of the and result 483 // are not demanded, then the add doesn't demand them from its input 484 // either. 485 unsigned NLZ = DemandedMask.countLeadingZeros(); 486 487 // If there is a constant on the RHS, there are a variety of xformations 488 // we can do. 489 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 490 // If null, this should be simplified elsewhere. Some of the xforms here 491 // won't work if the RHS is zero. 492 if (RHS->isZero()) 493 break; 494 495 // If the top bit of the output is demanded, demand everything from the 496 // input. Otherwise, we demand all the input bits except NLZ top bits. 497 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 498 499 // Find information about known zero/one bits in the input. 500 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 501 LHSKnownZero, LHSKnownOne, Depth+1)) 502 return I; 503 504 // If the RHS of the add has bits set that can't affect the input, reduce 505 // the constant. 506 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 507 return I; 508 509 // Avoid excess work. 510 if (LHSKnownZero == 0 && LHSKnownOne == 0) 511 break; 512 513 // Turn it into OR if input bits are zero. 514 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 515 Instruction *Or = 516 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 517 I->getName()); 518 return InsertNewInstWith(Or, *I); 519 } 520 521 // We can say something about the output known-zero and known-one bits, 522 // depending on potential carries from the input constant and the 523 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 524 // bits set and the RHS constant is 0x01001, then we know we have a known 525 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 526 527 // To compute this, we first compute the potential carry bits. These are 528 // the bits which may be modified. I'm not aware of a better way to do 529 // this scan. 530 const APInt &RHSVal = RHS->getValue(); 531 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 532 533 // Now that we know which bits have carries, compute the known-1/0 sets. 534 535 // Bits are known one if they are known zero in one operand and one in the 536 // other, and there is no input carry. 537 KnownOne = ((LHSKnownZero & RHSVal) | 538 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 539 540 // Bits are known zero if they are known zero in both operands and there 541 // is no input carry. 542 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 543 } else { 544 // If the high-bits of this ADD are not demanded, then it does not demand 545 // the high bits of its LHS or RHS. 546 if (DemandedMask[BitWidth-1] == 0) { 547 // Right fill the mask of bits for this ADD to demand the most 548 // significant bit and all those below it. 549 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 550 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 551 LHSKnownZero, LHSKnownOne, Depth+1) || 552 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 553 LHSKnownZero, LHSKnownOne, Depth+1)) 554 return I; 555 } 556 } 557 break; 558 } 559 case Instruction::Sub: 560 // If the high-bits of this SUB are not demanded, then it does not demand 561 // the high bits of its LHS or RHS. 562 if (DemandedMask[BitWidth-1] == 0) { 563 // Right fill the mask of bits for this SUB to demand the most 564 // significant bit and all those below it. 565 uint32_t NLZ = DemandedMask.countLeadingZeros(); 566 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 567 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 568 LHSKnownZero, LHSKnownOne, Depth+1) || 569 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 570 LHSKnownZero, LHSKnownOne, Depth+1)) 571 return I; 572 } 573 // Otherwise just hand the sub off to ComputeMaskedBits to fill in 574 // the known zeros and ones. 575 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); 576 break; 577 case Instruction::Shl: 578 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 579 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 580 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 581 582 // If the shift is NUW/NSW, then it does demand the high bits. 583 ShlOperator *IOp = cast<ShlOperator>(I); 584 if (IOp->hasNoSignedWrap()) 585 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 586 else if (IOp->hasNoUnsignedWrap()) 587 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 588 589 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 590 KnownZero, KnownOne, Depth+1)) 591 return I; 592 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 593 KnownZero <<= ShiftAmt; 594 KnownOne <<= ShiftAmt; 595 // low bits known zero. 596 if (ShiftAmt) 597 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 598 } 599 break; 600 case Instruction::LShr: 601 // For a logical shift right 602 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 603 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 604 605 // Unsigned shift right. 606 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 607 608 // If the shift is exact, then it does demand the low bits (and knows that 609 // they are zero). 610 if (cast<LShrOperator>(I)->isExact()) 611 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 612 613 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 614 KnownZero, KnownOne, Depth+1)) 615 return I; 616 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 617 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 618 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 619 if (ShiftAmt) { 620 // Compute the new bits that are at the top now. 621 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 622 KnownZero |= HighBits; // high bits known zero. 623 } 624 } 625 break; 626 case Instruction::AShr: 627 // If this is an arithmetic shift right and only the low-bit is set, we can 628 // always convert this into a logical shr, even if the shift amount is 629 // variable. The low bit of the shift cannot be an input sign bit unless 630 // the shift amount is >= the size of the datatype, which is undefined. 631 if (DemandedMask == 1) { 632 // Perform the logical shift right. 633 Instruction *NewVal = BinaryOperator::CreateLShr( 634 I->getOperand(0), I->getOperand(1), I->getName()); 635 return InsertNewInstWith(NewVal, *I); 636 } 637 638 // If the sign bit is the only bit demanded by this ashr, then there is no 639 // need to do it, the shift doesn't change the high bit. 640 if (DemandedMask.isSignBit()) 641 return I->getOperand(0); 642 643 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 644 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 645 646 // Signed shift right. 647 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 648 // If any of the "high bits" are demanded, we should set the sign bit as 649 // demanded. 650 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 651 DemandedMaskIn.setBit(BitWidth-1); 652 653 // If the shift is exact, then it does demand the low bits (and knows that 654 // they are zero). 655 if (cast<AShrOperator>(I)->isExact()) 656 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 657 658 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 659 KnownZero, KnownOne, Depth+1)) 660 return I; 661 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 662 // Compute the new bits that are at the top now. 663 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 664 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 665 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 666 667 // Handle the sign bits. 668 APInt SignBit(APInt::getSignBit(BitWidth)); 669 // Adjust to where it is now in the mask. 670 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 671 672 // If the input sign bit is known to be zero, or if none of the top bits 673 // are demanded, turn this into an unsigned shift right. 674 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 675 (HighBits & ~DemandedMask) == HighBits) { 676 // Perform the logical shift right. 677 Instruction *NewVal = BinaryOperator::CreateLShr( 678 I->getOperand(0), SA, I->getName()); 679 return InsertNewInstWith(NewVal, *I); 680 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 681 KnownOne |= HighBits; 682 } 683 } 684 break; 685 case Instruction::SRem: 686 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 687 // X % -1 demands all the bits because we don't want to introduce 688 // INT_MIN % -1 (== undef) by accident. 689 if (Rem->isAllOnesValue()) 690 break; 691 APInt RA = Rem->getValue().abs(); 692 if (RA.isPowerOf2()) { 693 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 694 return I->getOperand(0); 695 696 APInt LowBits = RA - 1; 697 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 698 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 699 LHSKnownZero, LHSKnownOne, Depth+1)) 700 return I; 701 702 // The low bits of LHS are unchanged by the srem. 703 KnownZero = LHSKnownZero & LowBits; 704 KnownOne = LHSKnownOne & LowBits; 705 706 // If LHS is non-negative or has all low bits zero, then the upper bits 707 // are all zero. 708 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 709 KnownZero |= ~LowBits; 710 711 // If LHS is negative and not all low bits are zero, then the upper bits 712 // are all one. 713 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 714 KnownOne |= ~LowBits; 715 716 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 717 } 718 } 719 720 // The sign bit is the LHS's sign bit, except when the result of the 721 // remainder is zero. 722 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 723 APInt Mask2 = APInt::getSignBit(BitWidth); 724 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 725 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, 726 Depth+1); 727 // If it's known zero, our sign bit is also zero. 728 if (LHSKnownZero.isNegative()) 729 KnownZero |= LHSKnownZero; 730 } 731 break; 732 case Instruction::URem: { 733 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 734 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 735 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 736 KnownZero2, KnownOne2, Depth+1) || 737 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 738 KnownZero2, KnownOne2, Depth+1)) 739 return I; 740 741 unsigned Leaders = KnownZero2.countLeadingOnes(); 742 Leaders = std::max(Leaders, 743 KnownZero2.countLeadingOnes()); 744 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 745 break; 746 } 747 case Instruction::Call: 748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 749 switch (II->getIntrinsicID()) { 750 default: break; 751 case Intrinsic::bswap: { 752 // If the only bits demanded come from one byte of the bswap result, 753 // just shift the input byte into position to eliminate the bswap. 754 unsigned NLZ = DemandedMask.countLeadingZeros(); 755 unsigned NTZ = DemandedMask.countTrailingZeros(); 756 757 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 758 // we need all the bits down to bit 8. Likewise, round NLZ. If we 759 // have 14 leading zeros, round to 8. 760 NLZ &= ~7; 761 NTZ &= ~7; 762 // If we need exactly one byte, we can do this transformation. 763 if (BitWidth-NLZ-NTZ == 8) { 764 unsigned ResultBit = NTZ; 765 unsigned InputBit = BitWidth-NTZ-8; 766 767 // Replace this with either a left or right shift to get the byte into 768 // the right place. 769 Instruction *NewVal; 770 if (InputBit > ResultBit) 771 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 772 ConstantInt::get(I->getType(), InputBit-ResultBit)); 773 else 774 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 775 ConstantInt::get(I->getType(), ResultBit-InputBit)); 776 NewVal->takeName(I); 777 return InsertNewInstWith(NewVal, *I); 778 } 779 780 // TODO: Could compute known zero/one bits based on the input. 781 break; 782 } 783 case Intrinsic::x86_sse42_crc32_64_8: 784 case Intrinsic::x86_sse42_crc32_64_64: 785 KnownZero = APInt::getHighBitsSet(64, 32); 786 return 0; 787 } 788 } 789 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); 790 break; 791 } 792 793 // If the client is only demanding bits that we know, return the known 794 // constant. 795 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 796 return Constant::getIntegerValue(VTy, KnownOne); 797 return 0; 798 } 799 800 801 /// SimplifyDemandedVectorElts - The specified value produces a vector with 802 /// any number of elements. DemandedElts contains the set of elements that are 803 /// actually used by the caller. This method analyzes which elements of the 804 /// operand are undef and returns that information in UndefElts. 805 /// 806 /// If the information about demanded elements can be used to simplify the 807 /// operation, the operation is simplified, then the resultant value is 808 /// returned. This returns null if no change was made. 809 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 810 APInt &UndefElts, 811 unsigned Depth) { 812 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 813 APInt EltMask(APInt::getAllOnesValue(VWidth)); 814 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 815 816 if (isa<UndefValue>(V)) { 817 // If the entire vector is undefined, just return this info. 818 UndefElts = EltMask; 819 return 0; 820 } 821 822 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 823 UndefElts = EltMask; 824 return UndefValue::get(V->getType()); 825 } 826 827 UndefElts = 0; 828 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 829 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 830 Constant *Undef = UndefValue::get(EltTy); 831 832 std::vector<Constant*> Elts; 833 for (unsigned i = 0; i != VWidth; ++i) 834 if (!DemandedElts[i]) { // If not demanded, set to undef. 835 Elts.push_back(Undef); 836 UndefElts.setBit(i); 837 } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef. 838 Elts.push_back(Undef); 839 UndefElts.setBit(i); 840 } else { // Otherwise, defined. 841 Elts.push_back(CV->getOperand(i)); 842 } 843 844 // If we changed the constant, return it. 845 Constant *NewCP = ConstantVector::get(Elts); 846 return NewCP != CV ? NewCP : 0; 847 } 848 849 if (isa<ConstantAggregateZero>(V)) { 850 // Simplify the CAZ to a ConstantVector where the non-demanded elements are 851 // set to undef. 852 853 // Check if this is identity. If so, return 0 since we are not simplifying 854 // anything. 855 if (DemandedElts.isAllOnesValue()) 856 return 0; 857 858 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 859 Constant *Zero = Constant::getNullValue(EltTy); 860 Constant *Undef = UndefValue::get(EltTy); 861 std::vector<Constant*> Elts; 862 for (unsigned i = 0; i != VWidth; ++i) { 863 Constant *Elt = DemandedElts[i] ? Zero : Undef; 864 Elts.push_back(Elt); 865 } 866 UndefElts = DemandedElts ^ EltMask; 867 return ConstantVector::get(Elts); 868 } 869 870 // Limit search depth. 871 if (Depth == 10) 872 return 0; 873 874 // If multiple users are using the root value, proceed with 875 // simplification conservatively assuming that all elements 876 // are needed. 877 if (!V->hasOneUse()) { 878 // Quit if we find multiple users of a non-root value though. 879 // They'll be handled when it's their turn to be visited by 880 // the main instcombine process. 881 if (Depth != 0) 882 // TODO: Just compute the UndefElts information recursively. 883 return 0; 884 885 // Conservatively assume that all elements are needed. 886 DemandedElts = EltMask; 887 } 888 889 Instruction *I = dyn_cast<Instruction>(V); 890 if (!I) return 0; // Only analyze instructions. 891 892 bool MadeChange = false; 893 APInt UndefElts2(VWidth, 0); 894 Value *TmpV; 895 switch (I->getOpcode()) { 896 default: break; 897 898 case Instruction::InsertElement: { 899 // If this is a variable index, we don't know which element it overwrites. 900 // demand exactly the same input as we produce. 901 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 902 if (Idx == 0) { 903 // Note that we can't propagate undef elt info, because we don't know 904 // which elt is getting updated. 905 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 906 UndefElts2, Depth+1); 907 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 908 break; 909 } 910 911 // If this is inserting an element that isn't demanded, remove this 912 // insertelement. 913 unsigned IdxNo = Idx->getZExtValue(); 914 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 915 Worklist.Add(I); 916 return I->getOperand(0); 917 } 918 919 // Otherwise, the element inserted overwrites whatever was there, so the 920 // input demanded set is simpler than the output set. 921 APInt DemandedElts2 = DemandedElts; 922 DemandedElts2.clearBit(IdxNo); 923 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 924 UndefElts, Depth+1); 925 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 926 927 // The inserted element is defined. 928 UndefElts.clearBit(IdxNo); 929 break; 930 } 931 case Instruction::ShuffleVector: { 932 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 933 uint64_t LHSVWidth = 934 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 935 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 936 for (unsigned i = 0; i < VWidth; i++) { 937 if (DemandedElts[i]) { 938 unsigned MaskVal = Shuffle->getMaskValue(i); 939 if (MaskVal != -1u) { 940 assert(MaskVal < LHSVWidth * 2 && 941 "shufflevector mask index out of range!"); 942 if (MaskVal < LHSVWidth) 943 LeftDemanded.setBit(MaskVal); 944 else 945 RightDemanded.setBit(MaskVal - LHSVWidth); 946 } 947 } 948 } 949 950 APInt UndefElts4(LHSVWidth, 0); 951 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 952 UndefElts4, Depth+1); 953 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 954 955 APInt UndefElts3(LHSVWidth, 0); 956 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 957 UndefElts3, Depth+1); 958 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 959 960 bool NewUndefElts = false; 961 for (unsigned i = 0; i < VWidth; i++) { 962 unsigned MaskVal = Shuffle->getMaskValue(i); 963 if (MaskVal == -1u) { 964 UndefElts.setBit(i); 965 } else if (MaskVal < LHSVWidth) { 966 if (UndefElts4[MaskVal]) { 967 NewUndefElts = true; 968 UndefElts.setBit(i); 969 } 970 } else { 971 if (UndefElts3[MaskVal - LHSVWidth]) { 972 NewUndefElts = true; 973 UndefElts.setBit(i); 974 } 975 } 976 } 977 978 if (NewUndefElts) { 979 // Add additional discovered undefs. 980 std::vector<Constant*> Elts; 981 for (unsigned i = 0; i < VWidth; ++i) { 982 if (UndefElts[i]) 983 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 984 else 985 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 986 Shuffle->getMaskValue(i))); 987 } 988 I->setOperand(2, ConstantVector::get(Elts)); 989 MadeChange = true; 990 } 991 break; 992 } 993 case Instruction::BitCast: { 994 // Vector->vector casts only. 995 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 996 if (!VTy) break; 997 unsigned InVWidth = VTy->getNumElements(); 998 APInt InputDemandedElts(InVWidth, 0); 999 unsigned Ratio; 1000 1001 if (VWidth == InVWidth) { 1002 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1003 // elements as are demanded of us. 1004 Ratio = 1; 1005 InputDemandedElts = DemandedElts; 1006 } else if (VWidth > InVWidth) { 1007 // Untested so far. 1008 break; 1009 1010 // If there are more elements in the result than there are in the source, 1011 // then an input element is live if any of the corresponding output 1012 // elements are live. 1013 Ratio = VWidth/InVWidth; 1014 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1015 if (DemandedElts[OutIdx]) 1016 InputDemandedElts.setBit(OutIdx/Ratio); 1017 } 1018 } else { 1019 // Untested so far. 1020 break; 1021 1022 // If there are more elements in the source than there are in the result, 1023 // then an input element is live if the corresponding output element is 1024 // live. 1025 Ratio = InVWidth/VWidth; 1026 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1027 if (DemandedElts[InIdx/Ratio]) 1028 InputDemandedElts.setBit(InIdx); 1029 } 1030 1031 // div/rem demand all inputs, because they don't want divide by zero. 1032 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1033 UndefElts2, Depth+1); 1034 if (TmpV) { 1035 I->setOperand(0, TmpV); 1036 MadeChange = true; 1037 } 1038 1039 UndefElts = UndefElts2; 1040 if (VWidth > InVWidth) { 1041 llvm_unreachable("Unimp"); 1042 // If there are more elements in the result than there are in the source, 1043 // then an output element is undef if the corresponding input element is 1044 // undef. 1045 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1046 if (UndefElts2[OutIdx/Ratio]) 1047 UndefElts.setBit(OutIdx); 1048 } else if (VWidth < InVWidth) { 1049 llvm_unreachable("Unimp"); 1050 // If there are more elements in the source than there are in the result, 1051 // then a result element is undef if all of the corresponding input 1052 // elements are undef. 1053 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1054 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1055 if (!UndefElts2[InIdx]) // Not undef? 1056 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1057 } 1058 break; 1059 } 1060 case Instruction::And: 1061 case Instruction::Or: 1062 case Instruction::Xor: 1063 case Instruction::Add: 1064 case Instruction::Sub: 1065 case Instruction::Mul: 1066 // div/rem demand all inputs, because they don't want divide by zero. 1067 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1068 UndefElts, Depth+1); 1069 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1070 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1071 UndefElts2, Depth+1); 1072 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1073 1074 // Output elements are undefined if both are undefined. Consider things 1075 // like undef&0. The result is known zero, not undef. 1076 UndefElts &= UndefElts2; 1077 break; 1078 1079 case Instruction::Call: { 1080 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1081 if (!II) break; 1082 switch (II->getIntrinsicID()) { 1083 default: break; 1084 1085 // Binary vector operations that work column-wise. A dest element is a 1086 // function of the corresponding input elements from the two inputs. 1087 case Intrinsic::x86_sse_sub_ss: 1088 case Intrinsic::x86_sse_mul_ss: 1089 case Intrinsic::x86_sse_min_ss: 1090 case Intrinsic::x86_sse_max_ss: 1091 case Intrinsic::x86_sse2_sub_sd: 1092 case Intrinsic::x86_sse2_mul_sd: 1093 case Intrinsic::x86_sse2_min_sd: 1094 case Intrinsic::x86_sse2_max_sd: 1095 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1096 UndefElts, Depth+1); 1097 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1098 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1099 UndefElts2, Depth+1); 1100 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1101 1102 // If only the low elt is demanded and this is a scalarizable intrinsic, 1103 // scalarize it now. 1104 if (DemandedElts == 1) { 1105 switch (II->getIntrinsicID()) { 1106 default: break; 1107 case Intrinsic::x86_sse_sub_ss: 1108 case Intrinsic::x86_sse_mul_ss: 1109 case Intrinsic::x86_sse2_sub_sd: 1110 case Intrinsic::x86_sse2_mul_sd: 1111 // TODO: Lower MIN/MAX/ABS/etc 1112 Value *LHS = II->getArgOperand(0); 1113 Value *RHS = II->getArgOperand(1); 1114 // Extract the element as scalars. 1115 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1116 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1117 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1118 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1119 1120 switch (II->getIntrinsicID()) { 1121 default: llvm_unreachable("Case stmts out of sync!"); 1122 case Intrinsic::x86_sse_sub_ss: 1123 case Intrinsic::x86_sse2_sub_sd: 1124 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1125 II->getName()), *II); 1126 break; 1127 case Intrinsic::x86_sse_mul_ss: 1128 case Intrinsic::x86_sse2_mul_sd: 1129 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1130 II->getName()), *II); 1131 break; 1132 } 1133 1134 Instruction *New = 1135 InsertElementInst::Create( 1136 UndefValue::get(II->getType()), TmpV, 1137 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1138 II->getName()); 1139 InsertNewInstWith(New, *II); 1140 return New; 1141 } 1142 } 1143 1144 // Output elements are undefined if both are undefined. Consider things 1145 // like undef&0. The result is known zero, not undef. 1146 UndefElts &= UndefElts2; 1147 break; 1148 } 1149 break; 1150 } 1151 } 1152 return MadeChange ? I : 0; 1153 } 1154