1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* TO DO: 18 * 1. Perhaps keep several copies of the encrypted key, in case something 19 * goes horribly wrong? 20 * 21 */ 22 23 #include <sys/types.h> 24 #include <sys/stat.h> 25 #include <fcntl.h> 26 #include <unistd.h> 27 #include <stdio.h> 28 #include <sys/ioctl.h> 29 #include <linux/dm-ioctl.h> 30 #include <libgen.h> 31 #include <stdlib.h> 32 #include <sys/param.h> 33 #include <string.h> 34 #include <sys/mount.h> 35 #include <openssl/evp.h> 36 #include <openssl/sha.h> 37 #include <errno.h> 38 #include <cutils/android_reboot.h> 39 #include <ext4.h> 40 #include <linux/kdev_t.h> 41 #include "cryptfs.h" 42 #define LOG_TAG "Cryptfs" 43 #include "cutils/log.h" 44 #include "cutils/properties.h" 45 #include "hardware_legacy/power.h" 46 #include "VolumeManager.h" 47 48 #define DM_CRYPT_BUF_SIZE 4096 49 #define DATA_MNT_POINT "/data" 50 51 #define HASH_COUNT 2000 52 #define KEY_LEN_BYTES 16 53 #define IV_LEN_BYTES 16 54 55 #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" 56 #define KEY_IN_FOOTER "footer" 57 58 #define EXT4_FS 1 59 #define FAT_FS 2 60 61 char *me = "cryptfs"; 62 63 static unsigned char saved_master_key[KEY_LEN_BYTES]; 64 static char *saved_data_blkdev; 65 static char *saved_mount_point; 66 static int master_key_saved = 0; 67 68 static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) 69 { 70 memset(io, 0, dataSize); 71 io->data_size = dataSize; 72 io->data_start = sizeof(struct dm_ioctl); 73 io->version[0] = 4; 74 io->version[1] = 0; 75 io->version[2] = 0; 76 io->flags = flags; 77 if (name) { 78 strncpy(io->name, name, sizeof(io->name)); 79 } 80 } 81 82 static unsigned int get_fs_size(char *dev) 83 { 84 int fd, block_size; 85 struct ext4_super_block sb; 86 off64_t len; 87 88 if ((fd = open(dev, O_RDONLY)) < 0) { 89 SLOGE("Cannot open device to get filesystem size "); 90 return 0; 91 } 92 93 if (lseek64(fd, 1024, SEEK_SET) < 0) { 94 SLOGE("Cannot seek to superblock"); 95 return 0; 96 } 97 98 if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { 99 SLOGE("Cannot read superblock"); 100 return 0; 101 } 102 103 close(fd); 104 105 block_size = 1024 << sb.s_log_block_size; 106 /* compute length in bytes */ 107 len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; 108 109 /* return length in sectors */ 110 return (unsigned int) (len / 512); 111 } 112 113 static unsigned int get_blkdev_size(int fd) 114 { 115 unsigned int nr_sec; 116 117 if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) { 118 nr_sec = 0; 119 } 120 121 return nr_sec; 122 } 123 124 /* key or salt can be NULL, in which case just skip writing that value. Useful to 125 * update the failed mount count but not change the key. 126 */ 127 static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, 128 unsigned char *key, unsigned char *salt) 129 { 130 int fd; 131 unsigned int nr_sec, cnt; 132 off64_t off; 133 int rc = -1; 134 char *fname; 135 char key_loc[PROPERTY_VALUE_MAX]; 136 struct stat statbuf; 137 138 property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); 139 140 if (!strcmp(key_loc, KEY_IN_FOOTER)) { 141 fname = real_blk_name; 142 if ( (fd = open(fname, O_RDWR)) < 0) { 143 SLOGE("Cannot open real block device %s\n", fname); 144 return -1; 145 } 146 147 if ( (nr_sec = get_blkdev_size(fd)) == 0) { 148 SLOGE("Cannot get size of block device %s\n", fname); 149 goto errout; 150 } 151 152 /* If it's an encrypted Android partition, the last 16 Kbytes contain the 153 * encryption info footer and key, and plenty of bytes to spare for future 154 * growth. 155 */ 156 off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; 157 158 if (lseek64(fd, off, SEEK_SET) == -1) { 159 SLOGE("Cannot seek to real block device footer\n"); 160 goto errout; 161 } 162 } else if (key_loc[0] == '/') { 163 fname = key_loc; 164 if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) { 165 SLOGE("Cannot open footer file %s\n", fname); 166 return -1; 167 } 168 } else { 169 SLOGE("Unexpected value for" KEY_LOC_PROP "\n"); 170 return -1;; 171 } 172 173 if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { 174 SLOGE("Cannot write real block device footer\n"); 175 goto errout; 176 } 177 178 if (key) { 179 if (crypt_ftr->keysize != KEY_LEN_BYTES) { 180 SLOGE("Keysize of %d bits not supported for real block device %s\n", 181 crypt_ftr->keysize*8, fname); 182 goto errout; 183 } 184 185 if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { 186 SLOGE("Cannot write key for real block device %s\n", fname); 187 goto errout; 188 } 189 } 190 191 if (salt) { 192 /* Compute the offset from the last write to the salt */ 193 off = KEY_TO_SALT_PADDING; 194 if (! key) 195 off += crypt_ftr->keysize; 196 197 if (lseek64(fd, off, SEEK_CUR) == -1) { 198 SLOGE("Cannot seek to real block device salt \n"); 199 goto errout; 200 } 201 202 if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) { 203 SLOGE("Cannot write salt for real block device %s\n", fname); 204 goto errout; 205 } 206 } 207 208 fstat(fd, &statbuf); 209 /* If the keys are kept on a raw block device, do not try to truncate it. */ 210 if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) { 211 if (ftruncate(fd, 0x4000)) { 212 SLOGE("Cannot set footer file size\n", fname); 213 goto errout; 214 } 215 } 216 217 /* Success! */ 218 rc = 0; 219 220 errout: 221 close(fd); 222 return rc; 223 224 } 225 226 static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, 227 unsigned char *key, unsigned char *salt) 228 { 229 int fd; 230 unsigned int nr_sec, cnt; 231 off64_t off; 232 int rc = -1; 233 char key_loc[PROPERTY_VALUE_MAX]; 234 char *fname; 235 struct stat statbuf; 236 237 property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); 238 239 if (!strcmp(key_loc, KEY_IN_FOOTER)) { 240 fname = real_blk_name; 241 if ( (fd = open(fname, O_RDONLY)) < 0) { 242 SLOGE("Cannot open real block device %s\n", fname); 243 return -1; 244 } 245 246 if ( (nr_sec = get_blkdev_size(fd)) == 0) { 247 SLOGE("Cannot get size of block device %s\n", fname); 248 goto errout; 249 } 250 251 /* If it's an encrypted Android partition, the last 16 Kbytes contain the 252 * encryption info footer and key, and plenty of bytes to spare for future 253 * growth. 254 */ 255 off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; 256 257 if (lseek64(fd, off, SEEK_SET) == -1) { 258 SLOGE("Cannot seek to real block device footer\n"); 259 goto errout; 260 } 261 } else if (key_loc[0] == '/') { 262 fname = key_loc; 263 if ( (fd = open(fname, O_RDONLY)) < 0) { 264 SLOGE("Cannot open footer file %s\n", fname); 265 return -1; 266 } 267 268 /* Make sure it's 16 Kbytes in length */ 269 fstat(fd, &statbuf); 270 if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { 271 SLOGE("footer file %s is not the expected size!\n", fname); 272 goto errout; 273 } 274 } else { 275 SLOGE("Unexpected value for" KEY_LOC_PROP "\n"); 276 return -1;; 277 } 278 279 if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { 280 SLOGE("Cannot read real block device footer\n"); 281 goto errout; 282 } 283 284 if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { 285 SLOGE("Bad magic for real block device %s\n", fname); 286 goto errout; 287 } 288 289 if (crypt_ftr->major_version != 1) { 290 SLOGE("Cannot understand major version %d real block device footer\n", 291 crypt_ftr->major_version); 292 goto errout; 293 } 294 295 if (crypt_ftr->minor_version != 0) { 296 SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n", 297 crypt_ftr->minor_version); 298 } 299 300 if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) { 301 /* the footer size is bigger than we expected. 302 * Skip to it's stated end so we can read the key. 303 */ 304 if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) { 305 SLOGE("Cannot seek to start of key\n"); 306 goto errout; 307 } 308 } 309 310 if (crypt_ftr->keysize != KEY_LEN_BYTES) { 311 SLOGE("Keysize of %d bits not supported for real block device %s\n", 312 crypt_ftr->keysize * 8, fname); 313 goto errout; 314 } 315 316 if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { 317 SLOGE("Cannot read key for real block device %s\n", fname); 318 goto errout; 319 } 320 321 if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) { 322 SLOGE("Cannot seek to real block device salt\n"); 323 goto errout; 324 } 325 326 if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) { 327 SLOGE("Cannot read salt for real block device %s\n", fname); 328 goto errout; 329 } 330 331 /* Success! */ 332 rc = 0; 333 334 errout: 335 close(fd); 336 return rc; 337 } 338 339 /* Convert a binary key of specified length into an ascii hex string equivalent, 340 * without the leading 0x and with null termination 341 */ 342 void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, 343 char *master_key_ascii) 344 { 345 unsigned int i, a; 346 unsigned char nibble; 347 348 for (i=0, a=0; i<keysize; i++, a+=2) { 349 /* For each byte, write out two ascii hex digits */ 350 nibble = (master_key[i] >> 4) & 0xf; 351 master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); 352 353 nibble = master_key[i] & 0xf; 354 master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); 355 } 356 357 /* Add the null termination */ 358 master_key_ascii[a] = '\0'; 359 360 } 361 362 static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, 363 char *real_blk_name, char *crypto_blk_name, const char *name) 364 { 365 char buffer[DM_CRYPT_BUF_SIZE]; 366 char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ 367 char *crypt_params; 368 struct dm_ioctl *io; 369 struct dm_target_spec *tgt; 370 unsigned int minor; 371 int fd; 372 int retval = -1; 373 374 if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { 375 SLOGE("Cannot open device-mapper\n"); 376 goto errout; 377 } 378 379 io = (struct dm_ioctl *) buffer; 380 381 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); 382 if (ioctl(fd, DM_DEV_CREATE, io)) { 383 SLOGE("Cannot create dm-crypt device\n"); 384 goto errout; 385 } 386 387 /* Get the device status, in particular, the name of it's device file */ 388 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); 389 if (ioctl(fd, DM_DEV_STATUS, io)) { 390 SLOGE("Cannot retrieve dm-crypt device status\n"); 391 goto errout; 392 } 393 minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); 394 snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); 395 396 /* Load the mapping table for this device */ 397 tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; 398 399 ioctl_init(io, 4096, name, 0); 400 io->target_count = 1; 401 tgt->status = 0; 402 tgt->sector_start = 0; 403 tgt->length = crypt_ftr->fs_size; 404 strcpy(tgt->target_type, "crypt"); 405 406 crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); 407 convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); 408 sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name, 409 master_key_ascii, real_blk_name); 410 crypt_params += strlen(crypt_params) + 1; 411 crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ 412 tgt->next = crypt_params - buffer; 413 414 if (ioctl(fd, DM_TABLE_LOAD, io)) { 415 SLOGE("Cannot load dm-crypt mapping table.\n"); 416 goto errout; 417 } 418 419 /* Resume this device to activate it */ 420 ioctl_init(io, 4096, name, 0); 421 422 if (ioctl(fd, DM_DEV_SUSPEND, io)) { 423 SLOGE("Cannot resume the dm-crypt device\n"); 424 goto errout; 425 } 426 427 /* We made it here with no errors. Woot! */ 428 retval = 0; 429 430 errout: 431 close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ 432 433 return retval; 434 } 435 436 static int delete_crypto_blk_dev(char *name) 437 { 438 int fd; 439 char buffer[DM_CRYPT_BUF_SIZE]; 440 struct dm_ioctl *io; 441 int retval = -1; 442 443 if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { 444 SLOGE("Cannot open device-mapper\n"); 445 goto errout; 446 } 447 448 io = (struct dm_ioctl *) buffer; 449 450 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); 451 if (ioctl(fd, DM_DEV_REMOVE, io)) { 452 SLOGE("Cannot remove dm-crypt device\n"); 453 goto errout; 454 } 455 456 /* We made it here with no errors. Woot! */ 457 retval = 0; 458 459 errout: 460 close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ 461 462 return retval; 463 464 } 465 466 static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey) 467 { 468 /* Turn the password into a key and IV that can decrypt the master key */ 469 PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, 470 HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); 471 } 472 473 static int encrypt_master_key(char *passwd, unsigned char *salt, 474 unsigned char *decrypted_master_key, 475 unsigned char *encrypted_master_key) 476 { 477 unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ 478 EVP_CIPHER_CTX e_ctx; 479 int encrypted_len, final_len; 480 481 /* Turn the password into a key and IV that can decrypt the master key */ 482 pbkdf2(passwd, salt, ikey); 483 484 /* Initialize the decryption engine */ 485 if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { 486 SLOGE("EVP_EncryptInit failed\n"); 487 return -1; 488 } 489 EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ 490 491 /* Encrypt the master key */ 492 if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, 493 decrypted_master_key, KEY_LEN_BYTES)) { 494 SLOGE("EVP_EncryptUpdate failed\n"); 495 return -1; 496 } 497 if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { 498 SLOGE("EVP_EncryptFinal failed\n"); 499 return -1; 500 } 501 502 if (encrypted_len + final_len != KEY_LEN_BYTES) { 503 SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); 504 return -1; 505 } else { 506 return 0; 507 } 508 } 509 510 static int decrypt_master_key(char *passwd, unsigned char *salt, 511 unsigned char *encrypted_master_key, 512 unsigned char *decrypted_master_key) 513 { 514 unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ 515 EVP_CIPHER_CTX d_ctx; 516 int decrypted_len, final_len; 517 518 /* Turn the password into a key and IV that can decrypt the master key */ 519 pbkdf2(passwd, salt, ikey); 520 521 /* Initialize the decryption engine */ 522 if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { 523 return -1; 524 } 525 EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ 526 /* Decrypt the master key */ 527 if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, 528 encrypted_master_key, KEY_LEN_BYTES)) { 529 return -1; 530 } 531 if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { 532 return -1; 533 } 534 535 if (decrypted_len + final_len != KEY_LEN_BYTES) { 536 return -1; 537 } else { 538 return 0; 539 } 540 } 541 542 static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt) 543 { 544 int fd; 545 unsigned char key_buf[KEY_LEN_BYTES]; 546 EVP_CIPHER_CTX e_ctx; 547 int encrypted_len, final_len; 548 549 /* Get some random bits for a key */ 550 fd = open("/dev/urandom", O_RDONLY); 551 read(fd, key_buf, sizeof(key_buf)); 552 read(fd, salt, SALT_LEN); 553 close(fd); 554 555 /* Now encrypt it with the password */ 556 return encrypt_master_key(passwd, salt, key_buf, master_key); 557 } 558 559 static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev, 560 unsigned long *mnt_flags, char *fs_options) 561 { 562 char mount_point2[PROPERTY_VALUE_MAX]; 563 char fs_flags[PROPERTY_VALUE_MAX]; 564 565 property_get("ro.crypto.fs_type", fs_type, ""); 566 property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); 567 property_get("ro.crypto.fs_mnt_point", mount_point2, ""); 568 property_get("ro.crypto.fs_options", fs_options, ""); 569 property_get("ro.crypto.fs_flags", fs_flags, ""); 570 *mnt_flags = strtol(fs_flags, 0, 0); 571 572 if (strcmp(mount_point, mount_point2)) { 573 /* Consistency check. These should match. If not, something odd happened. */ 574 return -1; 575 } 576 577 return 0; 578 } 579 580 static int wait_and_unmount(char *mountpoint) 581 { 582 int i, rc; 583 #define WAIT_UNMOUNT_COUNT 20 584 585 /* Now umount the tmpfs filesystem */ 586 for (i=0; i<WAIT_UNMOUNT_COUNT; i++) { 587 if (umount(mountpoint)) { 588 if (errno == EINVAL) { 589 /* EINVAL is returned if the directory is not a mountpoint, 590 * i.e. there is no filesystem mounted there. So just get out. 591 */ 592 break; 593 } 594 sleep(1); 595 i++; 596 } else { 597 break; 598 } 599 } 600 601 if (i < WAIT_UNMOUNT_COUNT) { 602 SLOGD("unmounting %s succeeded\n", mountpoint); 603 rc = 0; 604 } else { 605 SLOGE("unmounting %s failed\n", mountpoint); 606 rc = -1; 607 } 608 609 return rc; 610 } 611 612 #define DATA_PREP_TIMEOUT 100 613 static int prep_data_fs(void) 614 { 615 int i; 616 617 /* Do the prep of the /data filesystem */ 618 property_set("vold.post_fs_data_done", "0"); 619 property_set("vold.decrypt", "trigger_post_fs_data"); 620 SLOGD("Just triggered post_fs_data\n"); 621 622 /* Wait a max of 25 seconds, hopefully it takes much less */ 623 for (i=0; i<DATA_PREP_TIMEOUT; i++) { 624 char p[PROPERTY_VALUE_MAX]; 625 626 property_get("vold.post_fs_data_done", p, "0"); 627 if (*p == '1') { 628 break; 629 } else { 630 usleep(250000); 631 } 632 } 633 if (i == DATA_PREP_TIMEOUT) { 634 /* Ugh, we failed to prep /data in time. Bail. */ 635 return -1; 636 } else { 637 SLOGD("post_fs_data done\n"); 638 return 0; 639 } 640 } 641 642 int cryptfs_restart(void) 643 { 644 char fs_type[32]; 645 char real_blkdev[MAXPATHLEN]; 646 char crypto_blkdev[MAXPATHLEN]; 647 char fs_options[256]; 648 unsigned long mnt_flags; 649 struct stat statbuf; 650 int rc = -1, i; 651 static int restart_successful = 0; 652 653 /* Validate that it's OK to call this routine */ 654 if (! master_key_saved) { 655 SLOGE("Encrypted filesystem not validated, aborting"); 656 return -1; 657 } 658 659 if (restart_successful) { 660 SLOGE("System already restarted with encrypted disk, aborting"); 661 return -1; 662 } 663 664 /* Here is where we shut down the framework. The init scripts 665 * start all services in one of three classes: core, main or late_start. 666 * On boot, we start core and main. Now, we stop main, but not core, 667 * as core includes vold and a few other really important things that 668 * we need to keep running. Once main has stopped, we should be able 669 * to umount the tmpfs /data, then mount the encrypted /data. 670 * We then restart the class main, and also the class late_start. 671 * At the moment, I've only put a few things in late_start that I know 672 * are not needed to bring up the framework, and that also cause problems 673 * with unmounting the tmpfs /data, but I hope to add add more services 674 * to the late_start class as we optimize this to decrease the delay 675 * till the user is asked for the password to the filesystem. 676 */ 677 678 /* The init files are setup to stop the class main when vold.decrypt is 679 * set to trigger_reset_main. 680 */ 681 property_set("vold.decrypt", "trigger_reset_main"); 682 SLOGD("Just asked init to shut down class main\n"); 683 684 /* Now that the framework is shutdown, we should be able to umount() 685 * the tmpfs filesystem, and mount the real one. 686 */ 687 688 property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, ""); 689 if (strlen(crypto_blkdev) == 0) { 690 SLOGE("fs_crypto_blkdev not set\n"); 691 return -1; 692 } 693 694 if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) { 695 SLOGD("Just got orig mount parms\n"); 696 697 if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) { 698 /* If that succeeded, then mount the decrypted filesystem */ 699 mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options); 700 701 property_set("vold.decrypt", "trigger_load_persist_props"); 702 /* Create necessary paths on /data */ 703 if (prep_data_fs()) { 704 return -1; 705 } 706 707 /* startup service classes main and late_start */ 708 property_set("vold.decrypt", "trigger_restart_framework"); 709 SLOGD("Just triggered restart_framework\n"); 710 711 /* Give it a few moments to get started */ 712 sleep(1); 713 } 714 } 715 716 if (rc == 0) { 717 restart_successful = 1; 718 } 719 720 return rc; 721 } 722 723 static int do_crypto_complete(char *mount_point) 724 { 725 struct crypt_mnt_ftr crypt_ftr; 726 unsigned char encrypted_master_key[32]; 727 unsigned char salt[SALT_LEN]; 728 char real_blkdev[MAXPATHLEN]; 729 char fs_type[PROPERTY_VALUE_MAX]; 730 char fs_options[PROPERTY_VALUE_MAX]; 731 unsigned long mnt_flags; 732 char encrypted_state[PROPERTY_VALUE_MAX]; 733 734 property_get("ro.crypto.state", encrypted_state, ""); 735 if (strcmp(encrypted_state, "encrypted") ) { 736 SLOGE("not running with encryption, aborting"); 737 return 1; 738 } 739 740 if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { 741 SLOGE("Error reading original mount parms for mount point %s\n", mount_point); 742 return -1; 743 } 744 745 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { 746 SLOGE("Error getting crypt footer and key\n"); 747 return -1; 748 } 749 750 if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) { 751 SLOGE("Encryption process didn't finish successfully\n"); 752 return -2; /* -2 is the clue to the UI that there is no usable data on the disk, 753 * and give the user an option to wipe the disk */ 754 } 755 756 /* We passed the test! We shall diminish, and return to the west */ 757 return 0; 758 } 759 760 static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label) 761 { 762 struct crypt_mnt_ftr crypt_ftr; 763 /* Allocate enough space for a 256 bit key, but we may use less */ 764 unsigned char encrypted_master_key[32], decrypted_master_key[32]; 765 unsigned char salt[SALT_LEN]; 766 char crypto_blkdev[MAXPATHLEN]; 767 char real_blkdev[MAXPATHLEN]; 768 char fs_type[PROPERTY_VALUE_MAX]; 769 char fs_options[PROPERTY_VALUE_MAX]; 770 char tmp_mount_point[64]; 771 unsigned long mnt_flags; 772 unsigned int orig_failed_decrypt_count; 773 char encrypted_state[PROPERTY_VALUE_MAX]; 774 int rc; 775 776 property_get("ro.crypto.state", encrypted_state, ""); 777 if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { 778 SLOGE("encrypted fs already validated or not running with encryption, aborting"); 779 return -1; 780 } 781 782 if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { 783 SLOGE("Error reading original mount parms for mount point %s\n", mount_point); 784 return -1; 785 } 786 787 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { 788 SLOGE("Error getting crypt footer and key\n"); 789 return -1; 790 } 791 792 SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size); 793 orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; 794 795 if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { 796 decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); 797 } 798 799 if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, 800 real_blkdev, crypto_blkdev, label)) { 801 SLOGE("Error creating decrypted block device\n"); 802 return -1; 803 } 804 805 /* If init detects an encrypted filesystme, it writes a file for each such 806 * encrypted fs into the tmpfs /data filesystem, and then the framework finds those 807 * files and passes that data to me */ 808 /* Create a tmp mount point to try mounting the decryptd fs 809 * Since we're here, the mount_point should be a tmpfs filesystem, so make 810 * a directory in it to test mount the decrypted filesystem. 811 */ 812 sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); 813 mkdir(tmp_mount_point, 0755); 814 if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) { 815 SLOGE("Error temp mounting decrypted block device\n"); 816 delete_crypto_blk_dev(label); 817 crypt_ftr.failed_decrypt_count++; 818 } else { 819 /* Success, so just umount and we'll mount it properly when we restart 820 * the framework. 821 */ 822 umount(tmp_mount_point); 823 crypt_ftr.failed_decrypt_count = 0; 824 } 825 826 if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { 827 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0); 828 } 829 830 if (crypt_ftr.failed_decrypt_count) { 831 /* We failed to mount the device, so return an error */ 832 rc = crypt_ftr.failed_decrypt_count; 833 834 } else { 835 /* Woot! Success! Save the name of the crypto block device 836 * so we can mount it when restarting the framework. 837 */ 838 property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); 839 840 /* Also save a the master key so we can reencrypted the key 841 * the key when we want to change the password on it. 842 */ 843 memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); 844 saved_data_blkdev = strdup(real_blkdev); 845 saved_mount_point = strdup(mount_point); 846 master_key_saved = 1; 847 rc = 0; 848 } 849 850 return rc; 851 } 852 853 /* Called by vold when it wants to undo the crypto mapping of a volume it 854 * manages. This is usually in response to a factory reset, when we want 855 * to undo the crypto mapping so the volume is formatted in the clear. 856 */ 857 int cryptfs_revert_volume(const char *label) 858 { 859 return delete_crypto_blk_dev((char *)label); 860 } 861 862 /* 863 * Called by vold when it's asked to mount an encrypted, nonremovable volume. 864 * Setup a dm-crypt mapping, use the saved master key from 865 * setting up the /data mapping, and return the new device path. 866 */ 867 int cryptfs_setup_volume(const char *label, int major, int minor, 868 char *crypto_sys_path, unsigned int max_path, 869 int *new_major, int *new_minor) 870 { 871 char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN]; 872 struct crypt_mnt_ftr sd_crypt_ftr; 873 unsigned char key[32], salt[32]; 874 struct stat statbuf; 875 int nr_sec, fd; 876 877 sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor); 878 879 /* Just want the footer, but gotta get it all */ 880 get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt); 881 882 /* Update the fs_size field to be the size of the volume */ 883 fd = open(real_blkdev, O_RDONLY); 884 nr_sec = get_blkdev_size(fd); 885 close(fd); 886 if (nr_sec == 0) { 887 SLOGE("Cannot get size of volume %s\n", real_blkdev); 888 return -1; 889 } 890 891 sd_crypt_ftr.fs_size = nr_sec; 892 create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, 893 crypto_blkdev, label); 894 895 stat(crypto_blkdev, &statbuf); 896 *new_major = MAJOR(statbuf.st_rdev); 897 *new_minor = MINOR(statbuf.st_rdev); 898 899 /* Create path to sys entry for this block device */ 900 snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1); 901 902 return 0; 903 } 904 905 int cryptfs_crypto_complete(void) 906 { 907 return do_crypto_complete("/data"); 908 } 909 910 int cryptfs_check_passwd(char *passwd) 911 { 912 int rc = -1; 913 914 rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata"); 915 916 return rc; 917 } 918 919 int cryptfs_verify_passwd(char *passwd) 920 { 921 struct crypt_mnt_ftr crypt_ftr; 922 /* Allocate enough space for a 256 bit key, but we may use less */ 923 unsigned char encrypted_master_key[32], decrypted_master_key[32]; 924 unsigned char salt[SALT_LEN]; 925 char real_blkdev[MAXPATHLEN]; 926 char fs_type[PROPERTY_VALUE_MAX]; 927 char fs_options[PROPERTY_VALUE_MAX]; 928 unsigned long mnt_flags; 929 char encrypted_state[PROPERTY_VALUE_MAX]; 930 int rc; 931 932 property_get("ro.crypto.state", encrypted_state, ""); 933 if (strcmp(encrypted_state, "encrypted") ) { 934 SLOGE("device not encrypted, aborting"); 935 return -2; 936 } 937 938 if (!master_key_saved) { 939 SLOGE("encrypted fs not yet mounted, aborting"); 940 return -1; 941 } 942 943 if (!saved_mount_point) { 944 SLOGE("encrypted fs failed to save mount point, aborting"); 945 return -1; 946 } 947 948 if (get_orig_mount_parms(saved_mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { 949 SLOGE("Error reading original mount parms for mount point %s\n", saved_mount_point); 950 return -1; 951 } 952 953 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { 954 SLOGE("Error getting crypt footer and key\n"); 955 return -1; 956 } 957 958 if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { 959 /* If the device has no password, then just say the password is valid */ 960 rc = 0; 961 } else { 962 decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); 963 if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { 964 /* They match, the password is correct */ 965 rc = 0; 966 } else { 967 /* If incorrect, sleep for a bit to prevent dictionary attacks */ 968 sleep(1); 969 rc = 1; 970 } 971 } 972 973 return rc; 974 } 975 976 /* Initialize a crypt_mnt_ftr structure. The keysize is 977 * defaulted to 16 bytes, and the filesystem size to 0. 978 * Presumably, at a minimum, the caller will update the 979 * filesystem size and crypto_type_name after calling this function. 980 */ 981 static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) 982 { 983 ftr->magic = CRYPT_MNT_MAGIC; 984 ftr->major_version = 1; 985 ftr->minor_version = 0; 986 ftr->ftr_size = sizeof(struct crypt_mnt_ftr); 987 ftr->flags = 0; 988 ftr->keysize = KEY_LEN_BYTES; 989 ftr->spare1 = 0; 990 ftr->fs_size = 0; 991 ftr->failed_decrypt_count = 0; 992 ftr->crypto_type_name[0] = '\0'; 993 } 994 995 static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) 996 { 997 char cmdline[256]; 998 int rc = -1; 999 1000 if (type == EXT4_FS) { 1001 snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s", 1002 size * 512, crypto_blkdev); 1003 SLOGI("Making empty filesystem with command %s\n", cmdline); 1004 } else if (type== FAT_FS) { 1005 snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s", 1006 size, crypto_blkdev); 1007 SLOGI("Making empty filesystem with command %s\n", cmdline); 1008 } else { 1009 SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); 1010 return -1; 1011 } 1012 1013 if (system(cmdline)) { 1014 SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev); 1015 } else { 1016 SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev); 1017 rc = 0; 1018 } 1019 1020 return rc; 1021 } 1022 1023 static inline int unix_read(int fd, void* buff, int len) 1024 { 1025 int ret; 1026 do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR); 1027 return ret; 1028 } 1029 1030 static inline int unix_write(int fd, const void* buff, int len) 1031 { 1032 int ret; 1033 do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR); 1034 return ret; 1035 } 1036 1037 #define CRYPT_INPLACE_BUFSIZE 4096 1038 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) 1039 static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size, 1040 off64_t *size_already_done, off64_t tot_size) 1041 { 1042 int realfd, cryptofd; 1043 char *buf[CRYPT_INPLACE_BUFSIZE]; 1044 int rc = -1; 1045 off64_t numblocks, i, remainder; 1046 off64_t one_pct, cur_pct, new_pct; 1047 off64_t blocks_already_done, tot_numblocks; 1048 1049 if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { 1050 SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); 1051 return -1; 1052 } 1053 1054 if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { 1055 SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); 1056 close(realfd); 1057 return -1; 1058 } 1059 1060 /* This is pretty much a simple loop of reading 4K, and writing 4K. 1061 * The size passed in is the number of 512 byte sectors in the filesystem. 1062 * So compute the number of whole 4K blocks we should read/write, 1063 * and the remainder. 1064 */ 1065 numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; 1066 remainder = size % CRYPT_SECTORS_PER_BUFSIZE; 1067 tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; 1068 blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; 1069 1070 SLOGE("Encrypting filesystem in place..."); 1071 1072 one_pct = tot_numblocks / 100; 1073 cur_pct = 0; 1074 /* process the majority of the filesystem in blocks */ 1075 for (i=0; i<numblocks; i++) { 1076 new_pct = (i + blocks_already_done) / one_pct; 1077 if (new_pct > cur_pct) { 1078 char buf[8]; 1079 1080 cur_pct = new_pct; 1081 snprintf(buf, sizeof(buf), "%lld", cur_pct); 1082 property_set("vold.encrypt_progress", buf); 1083 } 1084 if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { 1085 SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); 1086 goto errout; 1087 } 1088 if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { 1089 SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); 1090 goto errout; 1091 } 1092 } 1093 1094 /* Do any remaining sectors */ 1095 for (i=0; i<remainder; i++) { 1096 if (unix_read(realfd, buf, 512) <= 0) { 1097 SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev); 1098 goto errout; 1099 } 1100 if (unix_write(cryptofd, buf, 512) <= 0) { 1101 SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); 1102 goto errout; 1103 } 1104 } 1105 1106 *size_already_done += size; 1107 rc = 0; 1108 1109 errout: 1110 close(realfd); 1111 close(cryptofd); 1112 1113 return rc; 1114 } 1115 1116 #define CRYPTO_ENABLE_WIPE 1 1117 #define CRYPTO_ENABLE_INPLACE 2 1118 1119 #define FRAMEWORK_BOOT_WAIT 60 1120 1121 static inline int should_encrypt(struct volume_info *volume) 1122 { 1123 return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) == 1124 (VOL_ENCRYPTABLE | VOL_NONREMOVABLE); 1125 } 1126 1127 int cryptfs_enable(char *howarg, char *passwd) 1128 { 1129 int how = 0; 1130 char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN]; 1131 char fs_type[PROPERTY_VALUE_MAX], fs_options[PROPERTY_VALUE_MAX], 1132 mount_point[PROPERTY_VALUE_MAX]; 1133 unsigned long mnt_flags, nr_sec; 1134 unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES]; 1135 unsigned char salt[SALT_LEN]; 1136 int rc=-1, fd, i, ret; 1137 struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;; 1138 char tmpfs_options[PROPERTY_VALUE_MAX]; 1139 char encrypted_state[PROPERTY_VALUE_MAX]; 1140 char lockid[32] = { 0 }; 1141 char key_loc[PROPERTY_VALUE_MAX]; 1142 char fuse_sdcard[PROPERTY_VALUE_MAX]; 1143 char *sd_mnt_point; 1144 char sd_blk_dev[256] = { 0 }; 1145 int num_vols; 1146 struct volume_info *vol_list = 0; 1147 off64_t cur_encryption_done=0, tot_encryption_size=0; 1148 1149 property_get("ro.crypto.state", encrypted_state, ""); 1150 if (strcmp(encrypted_state, "unencrypted")) { 1151 SLOGE("Device is already running encrypted, aborting"); 1152 goto error_unencrypted; 1153 } 1154 1155 property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); 1156 1157 if (!strcmp(howarg, "wipe")) { 1158 how = CRYPTO_ENABLE_WIPE; 1159 } else if (! strcmp(howarg, "inplace")) { 1160 how = CRYPTO_ENABLE_INPLACE; 1161 } else { 1162 /* Shouldn't happen, as CommandListener vets the args */ 1163 goto error_unencrypted; 1164 } 1165 1166 get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options); 1167 1168 /* Get the size of the real block device */ 1169 fd = open(real_blkdev, O_RDONLY); 1170 if ( (nr_sec = get_blkdev_size(fd)) == 0) { 1171 SLOGE("Cannot get size of block device %s\n", real_blkdev); 1172 goto error_unencrypted; 1173 } 1174 close(fd); 1175 1176 /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ 1177 if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) { 1178 unsigned int fs_size_sec, max_fs_size_sec; 1179 1180 fs_size_sec = get_fs_size(real_blkdev); 1181 max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512); 1182 1183 if (fs_size_sec > max_fs_size_sec) { 1184 SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); 1185 goto error_unencrypted; 1186 } 1187 } 1188 1189 /* Get a wakelock as this may take a while, and we don't want the 1190 * device to sleep on us. We'll grab a partial wakelock, and if the UI 1191 * wants to keep the screen on, it can grab a full wakelock. 1192 */ 1193 snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid()); 1194 acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid); 1195 1196 /* Get the sdcard mount point */ 1197 sd_mnt_point = getenv("EXTERNAL_STORAGE"); 1198 if (! sd_mnt_point) { 1199 sd_mnt_point = "/mnt/sdcard"; 1200 } 1201 1202 num_vols=vold_getNumDirectVolumes(); 1203 vol_list = malloc(sizeof(struct volume_info) * num_vols); 1204 vold_getDirectVolumeList(vol_list); 1205 1206 for (i=0; i<num_vols; i++) { 1207 if (should_encrypt(&vol_list[i])) { 1208 fd = open(vol_list[i].blk_dev, O_RDONLY); 1209 if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) { 1210 SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev); 1211 goto error_unencrypted; 1212 } 1213 close(fd); 1214 1215 ret=vold_disableVol(vol_list[i].label); 1216 if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) { 1217 /* -2 is returned when the device exists but is not currently mounted. 1218 * ignore the error and continue. */ 1219 SLOGE("Failed to unmount volume %s\n", vol_list[i].label); 1220 goto error_unencrypted; 1221 } 1222 } 1223 } 1224 1225 /* The init files are setup to stop the class main and late start when 1226 * vold sets trigger_shutdown_framework. 1227 */ 1228 property_set("vold.decrypt", "trigger_shutdown_framework"); 1229 SLOGD("Just asked init to shut down class main\n"); 1230 1231 property_get("ro.crypto.fuse_sdcard", fuse_sdcard, ""); 1232 if (!strcmp(fuse_sdcard, "true")) { 1233 /* This is a device using the fuse layer to emulate the sdcard semantics 1234 * on top of the userdata partition. vold does not manage it, it is managed 1235 * by the sdcard service. The sdcard service was killed by the property trigger 1236 * above, so just unmount it now. We must do this _AFTER_ killing the framework, 1237 * unlike the case for vold managed devices above. 1238 */ 1239 if (wait_and_unmount(sd_mnt_point)) { 1240 goto error_shutting_down; 1241 } 1242 } 1243 1244 /* Now unmount the /data partition. */ 1245 if (wait_and_unmount(DATA_MNT_POINT)) { 1246 goto error_shutting_down; 1247 } 1248 1249 /* Do extra work for a better UX when doing the long inplace encryption */ 1250 if (how == CRYPTO_ENABLE_INPLACE) { 1251 /* Now that /data is unmounted, we need to mount a tmpfs 1252 * /data, set a property saying we're doing inplace encryption, 1253 * and restart the framework. 1254 */ 1255 property_get("ro.crypto.tmpfs_options", tmpfs_options, ""); 1256 if (mount("tmpfs", DATA_MNT_POINT, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV, 1257 tmpfs_options) < 0) { 1258 goto error_shutting_down; 1259 } 1260 /* Tells the framework that inplace encryption is starting */ 1261 property_set("vold.encrypt_progress", "0"); 1262 1263 /* restart the framework. */ 1264 /* Create necessary paths on /data */ 1265 if (prep_data_fs()) { 1266 goto error_shutting_down; 1267 } 1268 1269 /* startup service classes main and late_start */ 1270 property_set("vold.decrypt", "trigger_restart_min_framework"); 1271 SLOGD("Just triggered restart_min_framework\n"); 1272 1273 /* OK, the framework is restarted and will soon be showing a 1274 * progress bar. Time to setup an encrypted mapping, and 1275 * either write a new filesystem, or encrypt in place updating 1276 * the progress bar as we work. 1277 */ 1278 } 1279 1280 /* Start the actual work of making an encrypted filesystem */ 1281 /* Initialize a crypt_mnt_ftr for the partition */ 1282 cryptfs_init_crypt_mnt_ftr(&crypt_ftr); 1283 if (!strcmp(key_loc, KEY_IN_FOOTER)) { 1284 crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512); 1285 } else { 1286 crypt_ftr.fs_size = nr_sec; 1287 } 1288 crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS; 1289 strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256"); 1290 1291 /* Make an encrypted master key */ 1292 if (create_encrypted_random_key(passwd, master_key, salt)) { 1293 SLOGE("Cannot create encrypted master key\n"); 1294 goto error_unencrypted; 1295 } 1296 1297 /* Write the key to the end of the partition */ 1298 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt); 1299 1300 decrypt_master_key(passwd, salt, master_key, decrypted_master_key); 1301 create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, 1302 "userdata"); 1303 1304 /* The size of the userdata partition, and add in the vold volumes below */ 1305 tot_encryption_size = crypt_ftr.fs_size; 1306 1307 /* setup crypto mapping for all encryptable volumes handled by vold */ 1308 for (i=0; i<num_vols; i++) { 1309 if (should_encrypt(&vol_list[i])) { 1310 vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */ 1311 vol_list[i].crypt_ftr.fs_size = vol_list[i].size; 1312 create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key, 1313 vol_list[i].blk_dev, vol_list[i].crypto_blkdev, 1314 vol_list[i].label); 1315 tot_encryption_size += vol_list[i].size; 1316 } 1317 } 1318 1319 if (how == CRYPTO_ENABLE_WIPE) { 1320 rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS); 1321 /* Encrypt all encryptable volumes handled by vold */ 1322 if (!rc) { 1323 for (i=0; i<num_vols; i++) { 1324 if (should_encrypt(&vol_list[i])) { 1325 rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev, 1326 vol_list[i].crypt_ftr.fs_size, FAT_FS); 1327 } 1328 } 1329 } 1330 } else if (how == CRYPTO_ENABLE_INPLACE) { 1331 rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size, 1332 &cur_encryption_done, tot_encryption_size); 1333 /* Encrypt all encryptable volumes handled by vold */ 1334 if (!rc) { 1335 for (i=0; i<num_vols; i++) { 1336 if (should_encrypt(&vol_list[i])) { 1337 rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev, 1338 vol_list[i].blk_dev, 1339 vol_list[i].crypt_ftr.fs_size, 1340 &cur_encryption_done, tot_encryption_size); 1341 } 1342 } 1343 } 1344 if (!rc) { 1345 /* The inplace routine never actually sets the progress to 100% 1346 * due to the round down nature of integer division, so set it here */ 1347 property_set("vold.encrypt_progress", "100"); 1348 } 1349 } else { 1350 /* Shouldn't happen */ 1351 SLOGE("cryptfs_enable: internal error, unknown option\n"); 1352 goto error_unencrypted; 1353 } 1354 1355 /* Undo the dm-crypt mapping whether we succeed or not */ 1356 delete_crypto_blk_dev("userdata"); 1357 for (i=0; i<num_vols; i++) { 1358 if (should_encrypt(&vol_list[i])) { 1359 delete_crypto_blk_dev(vol_list[i].label); 1360 } 1361 } 1362 1363 free(vol_list); 1364 1365 if (! rc) { 1366 /* Success */ 1367 1368 /* Clear the encryption in progres flag in the footer */ 1369 crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS; 1370 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0); 1371 1372 sleep(2); /* Give the UI a chance to show 100% progress */ 1373 android_reboot(ANDROID_RB_RESTART, 0, 0); 1374 } else { 1375 property_set("vold.encrypt_progress", "error_partially_encrypted"); 1376 release_wake_lock(lockid); 1377 return -1; 1378 } 1379 1380 /* hrm, the encrypt step claims success, but the reboot failed. 1381 * This should not happen. 1382 * Set the property and return. Hope the framework can deal with it. 1383 */ 1384 property_set("vold.encrypt_progress", "error_reboot_failed"); 1385 release_wake_lock(lockid); 1386 return rc; 1387 1388 error_unencrypted: 1389 free(vol_list); 1390 property_set("vold.encrypt_progress", "error_not_encrypted"); 1391 if (lockid[0]) { 1392 release_wake_lock(lockid); 1393 } 1394 return -1; 1395 1396 error_shutting_down: 1397 /* we failed, and have not encrypted anthing, so the users's data is still intact, 1398 * but the framework is stopped and not restarted to show the error, so it's up to 1399 * vold to restart the system. 1400 */ 1401 SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system"); 1402 android_reboot(ANDROID_RB_RESTART, 0, 0); 1403 1404 /* shouldn't get here */ 1405 property_set("vold.encrypt_progress", "error_shutting_down"); 1406 free(vol_list); 1407 if (lockid[0]) { 1408 release_wake_lock(lockid); 1409 } 1410 return -1; 1411 } 1412 1413 int cryptfs_changepw(char *newpw) 1414 { 1415 struct crypt_mnt_ftr crypt_ftr; 1416 unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES]; 1417 unsigned char salt[SALT_LEN]; 1418 char real_blkdev[MAXPATHLEN]; 1419 1420 /* This is only allowed after we've successfully decrypted the master key */ 1421 if (! master_key_saved) { 1422 SLOGE("Key not saved, aborting"); 1423 return -1; 1424 } 1425 1426 property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); 1427 if (strlen(real_blkdev) == 0) { 1428 SLOGE("Can't find real blkdev"); 1429 return -1; 1430 } 1431 1432 /* get key */ 1433 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { 1434 SLOGE("Error getting crypt footer and key"); 1435 return -1; 1436 } 1437 1438 encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key); 1439 1440 /* save the key */ 1441 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt); 1442 1443 return 0; 1444 } 1445