Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "gtest/gtest.h"
     11 #include "llvm/ADT/OwningPtr.h"
     12 #include "llvm/ADT/SmallPtrSet.h"
     13 #include "llvm/Assembly/Parser.h"
     14 #include "llvm/BasicBlock.h"
     15 #include "llvm/Bitcode/ReaderWriter.h"
     16 #include "llvm/Constant.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/ExecutionEngine/JIT.h"
     20 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalValue.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/LLVMContext.h"
     25 #include "llvm/Module.h"
     26 #include "llvm/Support/IRBuilder.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/SourceMgr.h"
     29 #include "llvm/Support/TypeBuilder.h"
     30 #include "llvm/Target/TargetSelect.h"
     31 #include "llvm/Type.h"
     32 
     33 #include <vector>
     34 
     35 using namespace llvm;
     36 
     37 namespace {
     38 
     39 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     40   std::vector<Type*> params;
     41   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     42                                               params, false);
     43   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     44   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     45   IRBuilder<> builder(Entry);
     46   Value *Load = builder.CreateLoad(G);
     47   Type *GTy = G->getType()->getElementType();
     48   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     49   builder.CreateStore(Add, G);
     50   builder.CreateRet(Add);
     51   return F;
     52 }
     53 
     54 std::string DumpFunction(const Function *F) {
     55   std::string Result;
     56   raw_string_ostream(Result) << "" << *F;
     57   return Result;
     58 }
     59 
     60 class RecordingJITMemoryManager : public JITMemoryManager {
     61   const OwningPtr<JITMemoryManager> Base;
     62 public:
     63   RecordingJITMemoryManager()
     64     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     65     stubsAllocated = 0;
     66   }
     67 
     68   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     69   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     70   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     71   virtual void AllocateGOT() { Base->AllocateGOT(); }
     72   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     73   struct StartFunctionBodyCall {
     74     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     75                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     76       : Result(Result), F(F), F_dump(DumpFunction(F)),
     77         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
     78     uint8_t *Result;
     79     const Function *F;
     80     std::string F_dump;
     81     uintptr_t ActualSize;
     82     uintptr_t ActualSizeResult;
     83   };
     84   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
     85   virtual uint8_t *startFunctionBody(const Function *F,
     86                                      uintptr_t &ActualSize) {
     87     uintptr_t InitialActualSize = ActualSize;
     88     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
     89     startFunctionBodyCalls.push_back(
     90       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
     91     return Result;
     92   }
     93   int stubsAllocated;
     94   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
     95                                 unsigned Alignment) {
     96     stubsAllocated++;
     97     return Base->allocateStub(F, StubSize, Alignment);
     98   }
     99   struct EndFunctionBodyCall {
    100     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    101                         uint8_t *FunctionEnd)
    102       : F(F), F_dump(DumpFunction(F)),
    103         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    104     const Function *F;
    105     std::string F_dump;
    106     uint8_t *FunctionStart;
    107     uint8_t *FunctionEnd;
    108   };
    109   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    110   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    111                                uint8_t *FunctionEnd) {
    112     endFunctionBodyCalls.push_back(
    113       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    114     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    115   }
    116   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    117     return Base->allocateSpace(Size, Alignment);
    118   }
    119   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    120     return Base->allocateGlobal(Size, Alignment);
    121   }
    122   struct DeallocateFunctionBodyCall {
    123     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    124     const void *Body;
    125   };
    126   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    127   virtual void deallocateFunctionBody(void *Body) {
    128     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    129     Base->deallocateFunctionBody(Body);
    130   }
    131   struct DeallocateExceptionTableCall {
    132     DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
    133     const void *ET;
    134   };
    135   std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
    136   virtual void deallocateExceptionTable(void *ET) {
    137     deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
    138     Base->deallocateExceptionTable(ET);
    139   }
    140   struct StartExceptionTableCall {
    141     StartExceptionTableCall(uint8_t *Result, const Function *F,
    142                             uintptr_t ActualSize, uintptr_t ActualSizeResult)
    143       : Result(Result), F(F), F_dump(DumpFunction(F)),
    144         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    145     uint8_t *Result;
    146     const Function *F;
    147     std::string F_dump;
    148     uintptr_t ActualSize;
    149     uintptr_t ActualSizeResult;
    150   };
    151   std::vector<StartExceptionTableCall> startExceptionTableCalls;
    152   virtual uint8_t* startExceptionTable(const Function* F,
    153                                        uintptr_t &ActualSize) {
    154     uintptr_t InitialActualSize = ActualSize;
    155     uint8_t *Result = Base->startExceptionTable(F, ActualSize);
    156     startExceptionTableCalls.push_back(
    157       StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
    158     return Result;
    159   }
    160   struct EndExceptionTableCall {
    161     EndExceptionTableCall(const Function *F, uint8_t *TableStart,
    162                           uint8_t *TableEnd, uint8_t* FrameRegister)
    163       : F(F), F_dump(DumpFunction(F)),
    164         TableStart(TableStart), TableEnd(TableEnd),
    165         FrameRegister(FrameRegister) {}
    166     const Function *F;
    167     std::string F_dump;
    168     uint8_t *TableStart;
    169     uint8_t *TableEnd;
    170     uint8_t *FrameRegister;
    171   };
    172   std::vector<EndExceptionTableCall> endExceptionTableCalls;
    173   virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
    174                                  uint8_t *TableEnd, uint8_t* FrameRegister) {
    175       endExceptionTableCalls.push_back(
    176           EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
    177     return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
    178   }
    179 };
    180 
    181 bool LoadAssemblyInto(Module *M, const char *assembly) {
    182   SMDiagnostic Error;
    183   bool success =
    184     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
    185   std::string errMsg;
    186   raw_string_ostream os(errMsg);
    187   Error.Print("", os);
    188   EXPECT_TRUE(success) << os.str();
    189   return success;
    190 }
    191 
    192 class JITTest : public testing::Test {
    193  protected:
    194   virtual void SetUp() {
    195     M = new Module("<main>", Context);
    196     RJMM = new RecordingJITMemoryManager;
    197     RJMM->setPoisonMemory(true);
    198     std::string Error;
    199     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    200                  .setJITMemoryManager(RJMM)
    201                  .setErrorStr(&Error).create());
    202     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
    203   }
    204 
    205   void LoadAssembly(const char *assembly) {
    206     LoadAssemblyInto(M, assembly);
    207   }
    208 
    209   LLVMContext Context;
    210   Module *M;  // Owned by ExecutionEngine.
    211   RecordingJITMemoryManager *RJMM;
    212   OwningPtr<ExecutionEngine> TheJIT;
    213 };
    214 
    215 // Regression test for a bug.  The JIT used to allocate globals inside the same
    216 // memory block used for the function, and when the function code was freed,
    217 // the global was left in the same place.  This test allocates a function
    218 // that uses and global, deallocates it, and then makes sure that the global
    219 // stays alive after that.
    220 TEST(JIT, GlobalInFunction) {
    221   LLVMContext context;
    222   Module *M = new Module("<main>", context);
    223 
    224   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    225   // Tell the memory manager to poison freed memory so that accessing freed
    226   // memory is more easily tested.
    227   MemMgr->setPoisonMemory(true);
    228   std::string Error;
    229   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
    230                                  .setEngineKind(EngineKind::JIT)
    231                                  .setErrorStr(&Error)
    232                                  .setJITMemoryManager(MemMgr)
    233                                  // The next line enables the fix:
    234                                  .setAllocateGVsWithCode(false)
    235                                  .create());
    236   ASSERT_EQ(Error, "");
    237 
    238   // Create a global variable.
    239   Type *GTy = Type::getInt32Ty(context);
    240   GlobalVariable *G = new GlobalVariable(
    241       *M,
    242       GTy,
    243       false,  // Not constant.
    244       GlobalValue::InternalLinkage,
    245       Constant::getNullValue(GTy),
    246       "myglobal");
    247 
    248   // Make a function that points to a global.
    249   Function *F1 = makeReturnGlobal("F1", G, M);
    250 
    251   // Get the pointer to the native code to force it to JIT the function and
    252   // allocate space for the global.
    253   void (*F1Ptr)() =
    254       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    255 
    256   // Since F1 was codegen'd, a pointer to G should be available.
    257   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    258   ASSERT_NE((int32_t*)NULL, GPtr);
    259   EXPECT_EQ(0, *GPtr);
    260 
    261   // F1() should increment G.
    262   F1Ptr();
    263   EXPECT_EQ(1, *GPtr);
    264 
    265   // Make a second function identical to the first, referring to the same
    266   // global.
    267   Function *F2 = makeReturnGlobal("F2", G, M);
    268   void (*F2Ptr)() =
    269       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    270 
    271   // F2() should increment G.
    272   F2Ptr();
    273   EXPECT_EQ(2, *GPtr);
    274 
    275   // Deallocate F1.
    276   JIT->freeMachineCodeForFunction(F1);
    277 
    278   // F2() should *still* increment G.
    279   F2Ptr();
    280   EXPECT_EQ(3, *GPtr);
    281 }
    282 
    283 int PlusOne(int arg) {
    284   return arg + 1;
    285 }
    286 
    287 TEST_F(JITTest, FarCallToKnownFunction) {
    288   // x86-64 can only make direct calls to functions within 32 bits of
    289   // the current PC.  To call anything farther away, we have to load
    290   // the address into a register and call through the register.  The
    291   // current JIT does this by allocating a stub for any far call.
    292   // There was a bug in which the JIT tried to emit a direct call when
    293   // the target was already in the JIT's global mappings and lazy
    294   // compilation was disabled.
    295 
    296   Function *KnownFunction = Function::Create(
    297       TypeBuilder<int(int), false>::get(Context),
    298       GlobalValue::ExternalLinkage, "known", M);
    299   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    300 
    301   // int test() { return known(7); }
    302   Function *TestFunction = Function::Create(
    303       TypeBuilder<int(), false>::get(Context),
    304       GlobalValue::ExternalLinkage, "test", M);
    305   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    306   IRBuilder<> Builder(Entry);
    307   Value *result = Builder.CreateCall(
    308       KnownFunction,
    309       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    310   Builder.CreateRet(result);
    311 
    312   TheJIT->DisableLazyCompilation(true);
    313   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    314       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    315   // This used to crash in trying to call PlusOne().
    316   EXPECT_EQ(8, TestFunctionPtr());
    317 }
    318 
    319 // Test a function C which calls A and B which call each other.
    320 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    321   TheJIT->DisableLazyCompilation(true);
    322 
    323   FunctionType *Func1Ty =
    324       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    325   std::vector<Type*> arg_types;
    326   arg_types.push_back(Type::getInt1Ty(Context));
    327   FunctionType *FuncTy = FunctionType::get(
    328       Type::getVoidTy(Context), arg_types, false);
    329   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    330                                      "func1", M);
    331   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    332                                      "func2", M);
    333   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    334                                      "func3", M);
    335   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    336   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    337   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    338   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    339   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    340   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    341   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    342 
    343   // Make Func1 call Func2(0) and Func3(0).
    344   IRBuilder<> Builder(Block1);
    345   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    346   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    347   Builder.CreateRetVoid();
    348 
    349   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    350   Builder.SetInsertPoint(Block2);
    351   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    352   Builder.SetInsertPoint(True2);
    353   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    354   Builder.CreateRetVoid();
    355   Builder.SetInsertPoint(False2);
    356   Builder.CreateRetVoid();
    357 
    358   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    359   Builder.SetInsertPoint(Block3);
    360   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    361   Builder.SetInsertPoint(True3);
    362   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    363   Builder.CreateRetVoid();
    364   Builder.SetInsertPoint(False3);
    365   Builder.CreateRetVoid();
    366 
    367   // Compile the function to native code
    368   void (*F1Ptr)() =
    369      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    370 
    371   F1Ptr();
    372 }
    373 
    374 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    375 // JIT's Function to stub mapping.
    376 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    377   TheJIT->DisableLazyCompilation(true);
    378 
    379   // Create two functions with a single basic block each.
    380   FunctionType *FuncTy =
    381       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    382   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    383                                      "func1", M);
    384   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    385                                      "func2", M);
    386   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    387   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    388 
    389   // The first function calls the second and returns the result
    390   IRBuilder<> Builder(Block1);
    391   Value *Result = Builder.CreateCall(Func2);
    392   Builder.CreateRet(Result);
    393 
    394   // The second function just returns a constant
    395   Builder.SetInsertPoint(Block2);
    396   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    397 
    398   // Compile the function to native code
    399   (void)TheJIT->getPointerToFunction(Func1);
    400 
    401   // Free the JIT state for the functions
    402   TheJIT->freeMachineCodeForFunction(Func1);
    403   TheJIT->freeMachineCodeForFunction(Func2);
    404 
    405   // Delete the first function (and show that is has no users)
    406   EXPECT_EQ(Func1->getNumUses(), 0u);
    407   Func1->eraseFromParent();
    408 
    409   // Delete the second function (and show that it has no users - it had one,
    410   // func1 but that's gone now)
    411   EXPECT_EQ(Func2->getNumUses(), 0u);
    412   Func2->eraseFromParent();
    413 }
    414 
    415 TEST_F(JITTest, ModuleDeletion) {
    416   TheJIT->DisableLazyCompilation(false);
    417   LoadAssembly("define void @main() { "
    418                "  call i32 @computeVal() "
    419                "  ret void "
    420                "} "
    421                " "
    422                "define internal i32 @computeVal()  { "
    423                "  ret i32 0 "
    424                "} ");
    425   Function *func = M->getFunction("main");
    426   TheJIT->getPointerToFunction(func);
    427   TheJIT->removeModule(M);
    428   delete M;
    429 
    430   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    431   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    432        i != e; ++i) {
    433     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    434   }
    435   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    436     EXPECT_TRUE(FunctionsDeallocated.count(
    437                   RJMM->startFunctionBodyCalls[i].Result))
    438       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    439   }
    440   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    441             RJMM->deallocateFunctionBodyCalls.size());
    442 
    443   SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
    444   unsigned NumTablesDeallocated = 0;
    445   for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
    446        i != e; ++i) {
    447     ExceptionTablesDeallocated.insert(
    448         RJMM->deallocateExceptionTableCalls[i].ET);
    449     if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
    450         // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
    451         // appear in startExceptionTableCalls.
    452         NumTablesDeallocated++;
    453     }
    454   }
    455   for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
    456     EXPECT_TRUE(ExceptionTablesDeallocated.count(
    457                   RJMM->startExceptionTableCalls[i].Result))
    458       << "Function's exception table leaked: \n"
    459       << RJMM->startExceptionTableCalls[i].F_dump;
    460   }
    461   EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
    462             NumTablesDeallocated);
    463 }
    464 
    465 // ARM and PPC still emit stubs for calls since the target may be too far away
    466 // to call directly.  This #if can probably be removed when
    467 // http://llvm.org/PR5201 is fixed.
    468 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
    469 typedef int (*FooPtr) ();
    470 
    471 TEST_F(JITTest, NoStubs) {
    472   LoadAssembly("define void @bar() {"
    473 	       "entry: "
    474 	       "ret void"
    475 	       "}"
    476 	       " "
    477 	       "define i32 @foo() {"
    478 	       "entry:"
    479 	       "call void @bar()"
    480 	       "ret i32 undef"
    481 	       "}"
    482 	       " "
    483 	       "define i32 @main() {"
    484 	       "entry:"
    485 	       "%0 = call i32 @foo()"
    486 	       "call void @bar()"
    487 	       "ret i32 undef"
    488 	       "}");
    489   Function *foo = M->getFunction("foo");
    490   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    491   FooPtr ptr = (FooPtr)(tmp);
    492 
    493   (ptr)();
    494 
    495   // We should now allocate no more stubs, we have the code to foo
    496   // and the existing stub for bar.
    497   int stubsBefore = RJMM->stubsAllocated;
    498   Function *func = M->getFunction("main");
    499   TheJIT->getPointerToFunction(func);
    500 
    501   Function *bar = M->getFunction("bar");
    502   TheJIT->getPointerToFunction(bar);
    503 
    504   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    505 }
    506 #endif  // !ARM && !PPC
    507 
    508 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    509   TheJIT->DisableLazyCompilation(true);
    510   LoadAssembly("define i8()* @get_foo_addr() { "
    511                "  ret i8()* @foo "
    512                "} "
    513                " "
    514                "define i8 @foo() { "
    515                "  ret i8 42 "
    516                "} ");
    517   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    518 
    519   typedef char(*fooT)();
    520   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    521       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    522   fooT foo_addr = get_foo_addr();
    523 
    524   // Now free get_foo_addr.  This should not free the machine code for foo or
    525   // any call stub returned as foo's canonical address.
    526   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    527 
    528   // Check by calling the reported address of foo.
    529   EXPECT_EQ(42, foo_addr());
    530 
    531   // The reported address should also be the same as the result of a subsequent
    532   // getPointerToFunction(foo).
    533 #if 0
    534   // Fails until PR5126 is fixed:
    535   Function *F_foo = M->getFunction("foo");
    536   fooT foo = reinterpret_cast<fooT>(
    537       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    538   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    539 #endif
    540 }
    541 
    542 // ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
    543 // recompileAndRelinkFunction doesn't work.
    544 #if !defined(__arm__)
    545 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    546   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    547                                  GlobalValue::ExternalLinkage, "test", M);
    548   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    549   IRBuilder<> Builder(Entry);
    550   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    551   Builder.CreateRet(Val);
    552 
    553   TheJIT->DisableLazyCompilation(true);
    554   // Compile the function once, and make sure it works.
    555   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    556     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    557   EXPECT_EQ(1, OrigFPtr());
    558 
    559   // Now change the function to return a different value.
    560   Entry->eraseFromParent();
    561   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    562   Builder.SetInsertPoint(NewEntry);
    563   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    564   Builder.CreateRet(Val);
    565   // Recompile it, which should produce a new function pointer _and_ update the
    566   // old one.
    567   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    568     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    569 
    570   EXPECT_EQ(2, NewFPtr())
    571     << "The new pointer should call the new version of the function";
    572   EXPECT_EQ(2, OrigFPtr())
    573     << "The old pointer's target should now jump to the new version";
    574 }
    575 #endif  // !defined(__arm__)
    576 
    577 }  // anonymous namespace
    578 // This variable is intentionally defined differently in the statically-compiled
    579 // program from the IR input to the JIT to assert that the JIT doesn't use its
    580 // definition.
    581 extern "C" int32_t JITTest_AvailableExternallyGlobal;
    582 int32_t JITTest_AvailableExternallyGlobal = 42;
    583 namespace {
    584 
    585 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    586   TheJIT->DisableLazyCompilation(true);
    587   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    588                "  available_externally global i32 7 "
    589                " "
    590                "define i32 @loader() { "
    591                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    592                "  ret i32 %result "
    593                "} ");
    594   Function *loaderIR = M->getFunction("loader");
    595 
    596   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    597     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    598   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    599                           << " not 7 from the IR version.";
    600 }
    601 
    602 }  // anonymous namespace
    603 // This function is intentionally defined differently in the statically-compiled
    604 // program from the IR input to the JIT to assert that the JIT doesn't use its
    605 // definition.
    606 extern "C" int32_t JITTest_AvailableExternallyFunction() {
    607   return 42;
    608 }
    609 namespace {
    610 
    611 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    612   TheJIT->DisableLazyCompilation(true);
    613   LoadAssembly("define available_externally i32 "
    614                "    @JITTest_AvailableExternallyFunction() { "
    615                "  ret i32 7 "
    616                "} "
    617                " "
    618                "define i32 @func() { "
    619                "  %result = tail call i32 "
    620                "    @JITTest_AvailableExternallyFunction() "
    621                "  ret i32 %result "
    622                "} ");
    623   Function *funcIR = M->getFunction("func");
    624 
    625   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    626     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    627   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    628                         << " not 7 from the IR version.";
    629 }
    630 
    631 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    632   TheJIT->DisableLazyCompilation(false);
    633   LoadAssembly("define internal i32 @stubbed() { "
    634                "  ret i32 42 "
    635                "} "
    636                " "
    637                "define i32()* @get_stub() { "
    638                "  ret i32()* @stubbed "
    639                "} ");
    640   typedef int32_t(*StubTy)();
    641 
    642   // Call get_stub() to get the address of @stubbed without actually JITting it.
    643   Function *get_stubIR = M->getFunction("get_stub");
    644   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    645     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    646   StubTy stubbed = get_stub();
    647   // Now get_stubIR is the only reference to stubbed's stub.
    648   get_stubIR->eraseFromParent();
    649   // Now there are no references inside the JIT, but we've got a pointer outside
    650   // it.  The stub should be callable and return the right value.
    651   EXPECT_EQ(42, stubbed());
    652 }
    653 
    654 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    655 // empty string indicates an error.
    656 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    657   Module TempModule("TempModule", Context);
    658   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    659     return "";
    660   }
    661 
    662   std::string Result;
    663   raw_string_ostream OS(Result);
    664   WriteBitcodeToFile(&TempModule, OS);
    665   OS.flush();
    666   return Result;
    667 }
    668 
    669 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    670 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    671 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    672 // ExecutionEngine.
    673 ExecutionEngine *getJITFromBitcode(
    674   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    675   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    676   MemoryBuffer *BitcodeBuffer =
    677     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    678   std::string errMsg;
    679   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
    680   if (M == NULL) {
    681     ADD_FAILURE() << errMsg;
    682     delete BitcodeBuffer;
    683     return NULL;
    684   }
    685   ExecutionEngine *TheJIT = EngineBuilder(M)
    686     .setEngineKind(EngineKind::JIT)
    687     .setErrorStr(&errMsg)
    688     .create();
    689   if (TheJIT == NULL) {
    690     ADD_FAILURE() << errMsg;
    691     delete M;
    692     M = NULL;
    693     return NULL;
    694   }
    695   return TheJIT;
    696 }
    697 
    698 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    699   LLVMContext Context;
    700   const std::string Bitcode =
    701     AssembleToBitcode(Context,
    702                       "define available_externally i32 "
    703                       "    @JITTest_AvailableExternallyFunction() { "
    704                       "  ret i32 7 "
    705                       "} "
    706                       " "
    707                       "define i32 @func() { "
    708                       "  %result = tail call i32 "
    709                       "    @JITTest_AvailableExternallyFunction() "
    710                       "  ret i32 %result "
    711                       "} ");
    712   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    713   Module *M;
    714   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    715   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    716   TheJIT->DisableLazyCompilation(true);
    717 
    718   Function *funcIR = M->getFunction("func");
    719   Function *availableFunctionIR =
    720     M->getFunction("JITTest_AvailableExternallyFunction");
    721 
    722   // Double-check that the available_externally function is still unmaterialized
    723   // when getPointerToFunction needs to find out if it's available_externally.
    724   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    725 
    726   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    727     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    728   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    729                         << " not 7 from the IR version.";
    730 }
    731 
    732 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    733   LLVMContext Context;
    734   const std::string Bitcode =
    735     AssembleToBitcode(Context,
    736                       "define i32 @recur1(i32 %a) { "
    737                       "  %zero = icmp eq i32 %a, 0 "
    738                       "  br i1 %zero, label %done, label %notdone "
    739                       "done: "
    740                       "  ret i32 3 "
    741                       "notdone: "
    742                       "  %am1 = sub i32 %a, 1 "
    743                       "  %result = call i32 @recur2(i32 %am1) "
    744                       "  ret i32 %result "
    745                       "} "
    746                       " "
    747                       "define i32 @recur2(i32 %b) { "
    748                       "  %result = call i32 @recur1(i32 %b) "
    749                       "  ret i32 %result "
    750                       "} ");
    751   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    752   Module *M;
    753   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    754   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    755   TheJIT->DisableLazyCompilation(true);
    756 
    757   Function *recur1IR = M->getFunction("recur1");
    758   Function *recur2IR = M->getFunction("recur2");
    759   EXPECT_TRUE(recur1IR->isMaterializable());
    760   EXPECT_TRUE(recur2IR->isMaterializable());
    761 
    762   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    763     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    764   EXPECT_EQ(3, recur1(4));
    765 }
    766 
    767 // This code is copied from JITEventListenerTest, but it only runs once for all
    768 // the tests in this directory.  Everything seems fine, but that's strange
    769 // behavior.
    770 class JITEnvironment : public testing::Environment {
    771   virtual void SetUp() {
    772     // Required to create a JIT.
    773     InitializeNativeTarget();
    774   }
    775 };
    776 testing::Environment* const jit_env =
    777   testing::AddGlobalTestEnvironment(new JITEnvironment);
    778 
    779 }
    780