Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
     11 // post order iterator.  This should work over any graph type that has a
     12 // GraphTraits specialization.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
     17 #define LLVM_ADT_POSTORDERITERATOR_H
     18 
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include <set>
     22 #include <vector>
     23 
     24 namespace llvm {
     25 
     26 template<class SetType, bool External>   // Non-external set
     27 class po_iterator_storage {
     28 public:
     29   SetType Visited;
     30 };
     31 
     32 template<class SetType>
     33 class po_iterator_storage<SetType, true> {
     34 public:
     35   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
     36   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
     37   SetType &Visited;
     38 };
     39 
     40 template<class GraphT,
     41   class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
     42   bool ExtStorage = false,
     43   class GT = GraphTraits<GraphT> >
     44 class po_iterator : public std::iterator<std::forward_iterator_tag,
     45                                          typename GT::NodeType, ptrdiff_t>,
     46                     public po_iterator_storage<SetType, ExtStorage> {
     47   typedef std::iterator<std::forward_iterator_tag,
     48                         typename GT::NodeType, ptrdiff_t> super;
     49   typedef typename GT::NodeType          NodeType;
     50   typedef typename GT::ChildIteratorType ChildItTy;
     51 
     52   // VisitStack - Used to maintain the ordering.  Top = current block
     53   // First element is basic block pointer, second is the 'next child' to visit
     54   std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
     55 
     56   void traverseChild() {
     57     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
     58       NodeType *BB = *VisitStack.back().second++;
     59       if (this->Visited.insert(BB)) {  // If the block is not visited...
     60         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
     61       }
     62     }
     63   }
     64 
     65   inline po_iterator(NodeType *BB) {
     66     this->Visited.insert(BB);
     67     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
     68     traverseChild();
     69   }
     70   inline po_iterator() {} // End is when stack is empty.
     71 
     72   inline po_iterator(NodeType *BB, SetType &S) :
     73     po_iterator_storage<SetType, ExtStorage>(S) {
     74     if (this->Visited.insert(BB)) {
     75       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
     76       traverseChild();
     77     }
     78   }
     79 
     80   inline po_iterator(SetType &S) :
     81       po_iterator_storage<SetType, ExtStorage>(S) {
     82   } // End is when stack is empty.
     83 public:
     84   typedef typename super::pointer pointer;
     85   typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
     86 
     87   // Provide static "constructors"...
     88   static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
     89   static inline _Self end  (GraphT G) { return _Self(); }
     90 
     91   static inline _Self begin(GraphT G, SetType &S) {
     92     return _Self(GT::getEntryNode(G), S);
     93   }
     94   static inline _Self end  (GraphT G, SetType &S) { return _Self(S); }
     95 
     96   inline bool operator==(const _Self& x) const {
     97     return VisitStack == x.VisitStack;
     98   }
     99   inline bool operator!=(const _Self& x) const { return !operator==(x); }
    100 
    101   inline pointer operator*() const {
    102     return VisitStack.back().first;
    103   }
    104 
    105   // This is a nonstandard operator-> that dereferences the pointer an extra
    106   // time... so that you can actually call methods ON the BasicBlock, because
    107   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
    108   //
    109   inline NodeType *operator->() const { return operator*(); }
    110 
    111   inline _Self& operator++() {   // Preincrement
    112     VisitStack.pop_back();
    113     if (!VisitStack.empty())
    114       traverseChild();
    115     return *this;
    116   }
    117 
    118   inline _Self operator++(int) { // Postincrement
    119     _Self tmp = *this; ++*this; return tmp;
    120   }
    121 };
    122 
    123 // Provide global constructors that automatically figure out correct types...
    124 //
    125 template <class T>
    126 po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
    127 template <class T>
    128 po_iterator<T> po_end  (T G) { return po_iterator<T>::end(G); }
    129 
    130 // Provide global definitions of external postorder iterators...
    131 template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
    132 struct po_ext_iterator : public po_iterator<T, SetType, true> {
    133   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
    134   po_iterator<T, SetType, true>(V) {}
    135 };
    136 
    137 template<class T, class SetType>
    138 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
    139   return po_ext_iterator<T, SetType>::begin(G, S);
    140 }
    141 
    142 template<class T, class SetType>
    143 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
    144   return po_ext_iterator<T, SetType>::end(G, S);
    145 }
    146 
    147 // Provide global definitions of inverse post order iterators...
    148 template <class T,
    149           class SetType = std::set<typename GraphTraits<T>::NodeType*>,
    150           bool External = false>
    151 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
    152   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
    153      po_iterator<Inverse<T>, SetType, External> (V) {}
    154 };
    155 
    156 template <class T>
    157 ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
    158   return ipo_iterator<T>::begin(G, Reverse);
    159 }
    160 
    161 template <class T>
    162 ipo_iterator<T> ipo_end(T G){
    163   return ipo_iterator<T>::end(G);
    164 }
    165 
    166 //Provide global definitions of external inverse postorder iterators...
    167 template <class T,
    168           class SetType = std::set<typename GraphTraits<T>::NodeType*> >
    169 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
    170   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
    171     ipo_iterator<T, SetType, true>(&V) {}
    172   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
    173     ipo_iterator<T, SetType, true>(&V) {}
    174 };
    175 
    176 template <class T, class SetType>
    177 ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
    178   return ipo_ext_iterator<T, SetType>::begin(G, S);
    179 }
    180 
    181 template <class T, class SetType>
    182 ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
    183   return ipo_ext_iterator<T, SetType>::end(G, S);
    184 }
    185 
    186 //===--------------------------------------------------------------------===//
    187 // Reverse Post Order CFG iterator code
    188 //===--------------------------------------------------------------------===//
    189 //
    190 // This is used to visit basic blocks in a method in reverse post order.  This
    191 // class is awkward to use because I don't know a good incremental algorithm to
    192 // computer RPO from a graph.  Because of this, the construction of the
    193 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
    194 // with a postorder iterator to build the data structures).  The moral of this
    195 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
    196 //
    197 // This class should be used like this:
    198 // {
    199 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
    200 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    201 //      ...
    202 //   }
    203 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    204 //      ...
    205 //   }
    206 // }
    207 //
    208 
    209 template<class GraphT, class GT = GraphTraits<GraphT> >
    210 class ReversePostOrderTraversal {
    211   typedef typename GT::NodeType NodeType;
    212   std::vector<NodeType*> Blocks;       // Block list in normal PO order
    213   inline void Initialize(NodeType *BB) {
    214     copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
    215   }
    216 public:
    217   typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
    218 
    219   inline ReversePostOrderTraversal(GraphT G) {
    220     Initialize(GT::getEntryNode(G));
    221   }
    222 
    223   // Because we want a reverse post order, use reverse iterators from the vector
    224   inline rpo_iterator begin() { return Blocks.rbegin(); }
    225   inline rpo_iterator end()   { return Blocks.rend(); }
    226 };
    227 
    228 } // End llvm namespace
    229 
    230 #endif
    231