Home | History | Annotate | Download | only in Analysis
      1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an analysis that determines, for a given memory
     11 // operation, what preceding memory operations it depends on.  It builds on
     12 // alias analysis information, and tries to provide a lazy, caching interface to
     13 // a common kind of alias information query.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "memdep"
     18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/LLVMContext.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Analysis/PHITransAddr.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/Support/PredIteratorCache.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Target/TargetData.h"
     35 using namespace llvm;
     36 
     37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
     38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
     39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
     40 
     41 STATISTIC(NumCacheNonLocalPtr,
     42           "Number of fully cached non-local ptr responses");
     43 STATISTIC(NumCacheDirtyNonLocalPtr,
     44           "Number of cached, but dirty, non-local ptr responses");
     45 STATISTIC(NumUncacheNonLocalPtr,
     46           "Number of uncached non-local ptr responses");
     47 STATISTIC(NumCacheCompleteNonLocalPtr,
     48           "Number of block queries that were completely cached");
     49 
     50 // Limit for the number of instructions to scan in a block.
     51 // FIXME: Figure out what a sane value is for this.
     52 //        (500 is relatively insane.)
     53 static const int BlockScanLimit = 500;
     54 
     55 char MemoryDependenceAnalysis::ID = 0;
     56 
     57 // Register this pass...
     58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
     59                 "Memory Dependence Analysis", false, true)
     60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
     62                       "Memory Dependence Analysis", false, true)
     63 
     64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
     65 : FunctionPass(ID), PredCache(0) {
     66   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
     67 }
     68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
     69 }
     70 
     71 /// Clean up memory in between runs
     72 void MemoryDependenceAnalysis::releaseMemory() {
     73   LocalDeps.clear();
     74   NonLocalDeps.clear();
     75   NonLocalPointerDeps.clear();
     76   ReverseLocalDeps.clear();
     77   ReverseNonLocalDeps.clear();
     78   ReverseNonLocalPtrDeps.clear();
     79   PredCache->clear();
     80 }
     81 
     82 
     83 
     84 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
     85 ///
     86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     87   AU.setPreservesAll();
     88   AU.addRequiredTransitive<AliasAnalysis>();
     89 }
     90 
     91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
     92   AA = &getAnalysis<AliasAnalysis>();
     93   TD = getAnalysisIfAvailable<TargetData>();
     94   if (PredCache == 0)
     95     PredCache.reset(new PredIteratorCache());
     96   return false;
     97 }
     98 
     99 /// RemoveFromReverseMap - This is a helper function that removes Val from
    100 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
    101 template <typename KeyTy>
    102 static void RemoveFromReverseMap(DenseMap<Instruction*,
    103                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
    104                                  Instruction *Inst, KeyTy Val) {
    105   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
    106   InstIt = ReverseMap.find(Inst);
    107   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
    108   bool Found = InstIt->second.erase(Val);
    109   assert(Found && "Invalid reverse map!"); (void)Found;
    110   if (InstIt->second.empty())
    111     ReverseMap.erase(InstIt);
    112 }
    113 
    114 /// GetLocation - If the given instruction references a specific memory
    115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
    116 /// Return a ModRefInfo value describing the general behavior of the
    117 /// instruction.
    118 static
    119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
    120                                         AliasAnalysis::Location &Loc,
    121                                         AliasAnalysis *AA) {
    122   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    123     if (LI->isVolatile()) {
    124       Loc = AliasAnalysis::Location();
    125       return AliasAnalysis::ModRef;
    126     }
    127     Loc = AA->getLocation(LI);
    128     return AliasAnalysis::Ref;
    129   }
    130 
    131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    132     if (SI->isVolatile()) {
    133       Loc = AliasAnalysis::Location();
    134       return AliasAnalysis::ModRef;
    135     }
    136     Loc = AA->getLocation(SI);
    137     return AliasAnalysis::Mod;
    138   }
    139 
    140   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
    141     Loc = AA->getLocation(V);
    142     return AliasAnalysis::ModRef;
    143   }
    144 
    145   if (const CallInst *CI = isFreeCall(Inst)) {
    146     // calls to free() deallocate the entire structure
    147     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
    148     return AliasAnalysis::Mod;
    149   }
    150 
    151   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
    152     switch (II->getIntrinsicID()) {
    153     case Intrinsic::lifetime_start:
    154     case Intrinsic::lifetime_end:
    155     case Intrinsic::invariant_start:
    156       Loc = AliasAnalysis::Location(II->getArgOperand(1),
    157                                     cast<ConstantInt>(II->getArgOperand(0))
    158                                       ->getZExtValue(),
    159                                     II->getMetadata(LLVMContext::MD_tbaa));
    160       // These intrinsics don't really modify the memory, but returning Mod
    161       // will allow them to be handled conservatively.
    162       return AliasAnalysis::Mod;
    163     case Intrinsic::invariant_end:
    164       Loc = AliasAnalysis::Location(II->getArgOperand(2),
    165                                     cast<ConstantInt>(II->getArgOperand(1))
    166                                       ->getZExtValue(),
    167                                     II->getMetadata(LLVMContext::MD_tbaa));
    168       // These intrinsics don't really modify the memory, but returning Mod
    169       // will allow them to be handled conservatively.
    170       return AliasAnalysis::Mod;
    171     default:
    172       break;
    173     }
    174 
    175   // Otherwise, just do the coarse-grained thing that always works.
    176   if (Inst->mayWriteToMemory())
    177     return AliasAnalysis::ModRef;
    178   if (Inst->mayReadFromMemory())
    179     return AliasAnalysis::Ref;
    180   return AliasAnalysis::NoModRef;
    181 }
    182 
    183 /// getCallSiteDependencyFrom - Private helper for finding the local
    184 /// dependencies of a call site.
    185 MemDepResult MemoryDependenceAnalysis::
    186 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
    187                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
    188   unsigned Limit = BlockScanLimit;
    189 
    190   // Walk backwards through the block, looking for dependencies
    191   while (ScanIt != BB->begin()) {
    192     // Limit the amount of scanning we do so we don't end up with quadratic
    193     // running time on extreme testcases.
    194     --Limit;
    195     if (!Limit)
    196       return MemDepResult::getUnknown();
    197 
    198     Instruction *Inst = --ScanIt;
    199 
    200     // If this inst is a memory op, get the pointer it accessed
    201     AliasAnalysis::Location Loc;
    202     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
    203     if (Loc.Ptr) {
    204       // A simple instruction.
    205       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
    206         return MemDepResult::getClobber(Inst);
    207       continue;
    208     }
    209 
    210     if (CallSite InstCS = cast<Value>(Inst)) {
    211       // Debug intrinsics don't cause dependences.
    212       if (isa<DbgInfoIntrinsic>(Inst)) continue;
    213       // If these two calls do not interfere, look past it.
    214       switch (AA->getModRefInfo(CS, InstCS)) {
    215       case AliasAnalysis::NoModRef:
    216         // If the two calls are the same, return InstCS as a Def, so that
    217         // CS can be found redundant and eliminated.
    218         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
    219             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
    220           return MemDepResult::getDef(Inst);
    221 
    222         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
    223         // keep scanning.
    224         break;
    225       default:
    226         return MemDepResult::getClobber(Inst);
    227       }
    228     }
    229   }
    230 
    231   // No dependence found.  If this is the entry block of the function, it is
    232   // unknown, otherwise it is non-local.
    233   if (BB != &BB->getParent()->getEntryBlock())
    234     return MemDepResult::getNonLocal();
    235   return MemDepResult::getUnknown();
    236 }
    237 
    238 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
    239 /// would fully overlap MemLoc if done as a wider legal integer load.
    240 ///
    241 /// MemLocBase, MemLocOffset are lazily computed here the first time the
    242 /// base/offs of memloc is needed.
    243 static bool
    244 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
    245                                        const Value *&MemLocBase,
    246                                        int64_t &MemLocOffs,
    247                                        const LoadInst *LI,
    248                                        const TargetData *TD) {
    249   // If we have no target data, we can't do this.
    250   if (TD == 0) return false;
    251 
    252   // If we haven't already computed the base/offset of MemLoc, do so now.
    253   if (MemLocBase == 0)
    254     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
    255 
    256   unsigned Size = MemoryDependenceAnalysis::
    257     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
    258                                     LI, *TD);
    259   return Size != 0;
    260 }
    261 
    262 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
    263 /// looks at a memory location for a load (specified by MemLocBase, Offs,
    264 /// and Size) and compares it against a load.  If the specified load could
    265 /// be safely widened to a larger integer load that is 1) still efficient,
    266 /// 2) safe for the target, and 3) would provide the specified memory
    267 /// location value, then this function returns the size in bytes of the
    268 /// load width to use.  If not, this returns zero.
    269 unsigned MemoryDependenceAnalysis::
    270 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
    271                                 unsigned MemLocSize, const LoadInst *LI,
    272                                 const TargetData &TD) {
    273   // We can only extend non-volatile integer loads.
    274   if (!isa<IntegerType>(LI->getType()) || LI->isVolatile()) return 0;
    275 
    276   // Get the base of this load.
    277   int64_t LIOffs = 0;
    278   const Value *LIBase =
    279     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
    280 
    281   // If the two pointers are not based on the same pointer, we can't tell that
    282   // they are related.
    283   if (LIBase != MemLocBase) return 0;
    284 
    285   // Okay, the two values are based on the same pointer, but returned as
    286   // no-alias.  This happens when we have things like two byte loads at "P+1"
    287   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
    288   // alignment (or the largest native integer type) will allow us to load all
    289   // the bits required by MemLoc.
    290 
    291   // If MemLoc is before LI, then no widening of LI will help us out.
    292   if (MemLocOffs < LIOffs) return 0;
    293 
    294   // Get the alignment of the load in bytes.  We assume that it is safe to load
    295   // any legal integer up to this size without a problem.  For example, if we're
    296   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
    297   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
    298   // to i16.
    299   unsigned LoadAlign = LI->getAlignment();
    300 
    301   int64_t MemLocEnd = MemLocOffs+MemLocSize;
    302 
    303   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
    304   if (LIOffs+LoadAlign < MemLocEnd) return 0;
    305 
    306   // This is the size of the load to try.  Start with the next larger power of
    307   // two.
    308   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
    309   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
    310 
    311   while (1) {
    312     // If this load size is bigger than our known alignment or would not fit
    313     // into a native integer register, then we fail.
    314     if (NewLoadByteSize > LoadAlign ||
    315         !TD.fitsInLegalInteger(NewLoadByteSize*8))
    316       return 0;
    317 
    318     // If a load of this width would include all of MemLoc, then we succeed.
    319     if (LIOffs+NewLoadByteSize >= MemLocEnd)
    320       return NewLoadByteSize;
    321 
    322     NewLoadByteSize <<= 1;
    323   }
    324 
    325   return 0;
    326 }
    327 
    328 /// getPointerDependencyFrom - Return the instruction on which a memory
    329 /// location depends.  If isLoad is true, this routine ignores may-aliases with
    330 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
    331 /// with reads from read-only locations.
    332 MemDepResult MemoryDependenceAnalysis::
    333 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
    334                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
    335 
    336   const Value *MemLocBase = 0;
    337   int64_t MemLocOffset = 0;
    338 
    339   unsigned Limit = BlockScanLimit;
    340 
    341   // Walk backwards through the basic block, looking for dependencies.
    342   while (ScanIt != BB->begin()) {
    343     // Limit the amount of scanning we do so we don't end up with quadratic
    344     // running time on extreme testcases.
    345     --Limit;
    346     if (!Limit)
    347       return MemDepResult::getUnknown();
    348 
    349     Instruction *Inst = --ScanIt;
    350 
    351     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    352       // Debug intrinsics don't (and can't) cause dependences.
    353       if (isa<DbgInfoIntrinsic>(II)) continue;
    354 
    355       // If we reach a lifetime begin or end marker, then the query ends here
    356       // because the value is undefined.
    357       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
    358         // FIXME: This only considers queries directly on the invariant-tagged
    359         // pointer, not on query pointers that are indexed off of them.  It'd
    360         // be nice to handle that at some point (the right approach is to use
    361         // GetPointerBaseWithConstantOffset).
    362         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
    363                             MemLoc))
    364           return MemDepResult::getDef(II);
    365         continue;
    366       }
    367     }
    368 
    369     // Values depend on loads if the pointers are must aliased.  This means that
    370     // a load depends on another must aliased load from the same value.
    371     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    372       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
    373 
    374       // If we found a pointer, check if it could be the same as our pointer.
    375       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
    376 
    377       if (isLoad) {
    378         if (R == AliasAnalysis::NoAlias) {
    379           // If this is an over-aligned integer load (for example,
    380           // "load i8* %P, align 4") see if it would obviously overlap with the
    381           // queried location if widened to a larger load (e.g. if the queried
    382           // location is 1 byte at P+1).  If so, return it as a load/load
    383           // clobber result, allowing the client to decide to widen the load if
    384           // it wants to.
    385           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
    386             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
    387                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
    388                                                        MemLocOffset, LI, TD))
    389               return MemDepResult::getClobber(Inst);
    390 
    391           continue;
    392         }
    393 
    394         // Must aliased loads are defs of each other.
    395         if (R == AliasAnalysis::MustAlias)
    396           return MemDepResult::getDef(Inst);
    397 
    398 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
    399       // in terms of clobbering loads, but since it does this by looking
    400       // at the clobbering load directly, it doesn't know about any
    401       // phi translation that may have happened along the way.
    402 
    403         // If we have a partial alias, then return this as a clobber for the
    404         // client to handle.
    405         if (R == AliasAnalysis::PartialAlias)
    406           return MemDepResult::getClobber(Inst);
    407 #endif
    408 
    409         // Random may-alias loads don't depend on each other without a
    410         // dependence.
    411         continue;
    412       }
    413 
    414       // Stores don't depend on other no-aliased accesses.
    415       if (R == AliasAnalysis::NoAlias)
    416         continue;
    417 
    418       // Stores don't alias loads from read-only memory.
    419       if (AA->pointsToConstantMemory(LoadLoc))
    420         continue;
    421 
    422       // Stores depend on may/must aliased loads.
    423       return MemDepResult::getDef(Inst);
    424     }
    425 
    426     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    427       // If alias analysis can tell that this store is guaranteed to not modify
    428       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
    429       // the query pointer points to constant memory etc.
    430       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
    431         continue;
    432 
    433       // Ok, this store might clobber the query pointer.  Check to see if it is
    434       // a must alias: in this case, we want to return this as a def.
    435       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
    436 
    437       // If we found a pointer, check if it could be the same as our pointer.
    438       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
    439 
    440       if (R == AliasAnalysis::NoAlias)
    441         continue;
    442       if (R == AliasAnalysis::MustAlias)
    443         return MemDepResult::getDef(Inst);
    444       return MemDepResult::getClobber(Inst);
    445     }
    446 
    447     // If this is an allocation, and if we know that the accessed pointer is to
    448     // the allocation, return Def.  This means that there is no dependence and
    449     // the access can be optimized based on that.  For example, a load could
    450     // turn into undef.
    451     // Note: Only determine this to be a malloc if Inst is the malloc call, not
    452     // a subsequent bitcast of the malloc call result.  There can be stores to
    453     // the malloced memory between the malloc call and its bitcast uses, and we
    454     // need to continue scanning until the malloc call.
    455     if (isa<AllocaInst>(Inst) ||
    456         (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
    457       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
    458 
    459       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
    460         return MemDepResult::getDef(Inst);
    461       continue;
    462     }
    463 
    464     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
    465     switch (AA->getModRefInfo(Inst, MemLoc)) {
    466     case AliasAnalysis::NoModRef:
    467       // If the call has no effect on the queried pointer, just ignore it.
    468       continue;
    469     case AliasAnalysis::Mod:
    470       return MemDepResult::getClobber(Inst);
    471     case AliasAnalysis::Ref:
    472       // If the call is known to never store to the pointer, and if this is a
    473       // load query, we can safely ignore it (scan past it).
    474       if (isLoad)
    475         continue;
    476     default:
    477       // Otherwise, there is a potential dependence.  Return a clobber.
    478       return MemDepResult::getClobber(Inst);
    479     }
    480   }
    481 
    482   // No dependence found.  If this is the entry block of the function, it is
    483   // unknown, otherwise it is non-local.
    484   if (BB != &BB->getParent()->getEntryBlock())
    485     return MemDepResult::getNonLocal();
    486   return MemDepResult::getUnknown();
    487 }
    488 
    489 /// getDependency - Return the instruction on which a memory operation
    490 /// depends.
    491 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
    492   Instruction *ScanPos = QueryInst;
    493 
    494   // Check for a cached result
    495   MemDepResult &LocalCache = LocalDeps[QueryInst];
    496 
    497   // If the cached entry is non-dirty, just return it.  Note that this depends
    498   // on MemDepResult's default constructing to 'dirty'.
    499   if (!LocalCache.isDirty())
    500     return LocalCache;
    501 
    502   // Otherwise, if we have a dirty entry, we know we can start the scan at that
    503   // instruction, which may save us some work.
    504   if (Instruction *Inst = LocalCache.getInst()) {
    505     ScanPos = Inst;
    506 
    507     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
    508   }
    509 
    510   BasicBlock *QueryParent = QueryInst->getParent();
    511 
    512   // Do the scan.
    513   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
    514     // No dependence found.  If this is the entry block of the function, it is
    515     // unknown, otherwise it is non-local.
    516     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
    517       LocalCache = MemDepResult::getNonLocal();
    518     else
    519       LocalCache = MemDepResult::getUnknown();
    520   } else {
    521     AliasAnalysis::Location MemLoc;
    522     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
    523     if (MemLoc.Ptr) {
    524       // If we can do a pointer scan, make it happen.
    525       bool isLoad = !(MR & AliasAnalysis::Mod);
    526       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
    527         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
    528 
    529       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
    530                                             QueryParent);
    531     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
    532       CallSite QueryCS(QueryInst);
    533       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
    534       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
    535                                              QueryParent);
    536     } else
    537       // Non-memory instruction.
    538       LocalCache = MemDepResult::getUnknown();
    539   }
    540 
    541   // Remember the result!
    542   if (Instruction *I = LocalCache.getInst())
    543     ReverseLocalDeps[I].insert(QueryInst);
    544 
    545   return LocalCache;
    546 }
    547 
    548 #ifndef NDEBUG
    549 /// AssertSorted - This method is used when -debug is specified to verify that
    550 /// cache arrays are properly kept sorted.
    551 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    552                          int Count = -1) {
    553   if (Count == -1) Count = Cache.size();
    554   if (Count == 0) return;
    555 
    556   for (unsigned i = 1; i != unsigned(Count); ++i)
    557     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
    558 }
    559 #endif
    560 
    561 /// getNonLocalCallDependency - Perform a full dependency query for the
    562 /// specified call, returning the set of blocks that the value is
    563 /// potentially live across.  The returned set of results will include a
    564 /// "NonLocal" result for all blocks where the value is live across.
    565 ///
    566 /// This method assumes the instruction returns a "NonLocal" dependency
    567 /// within its own block.
    568 ///
    569 /// This returns a reference to an internal data structure that may be
    570 /// invalidated on the next non-local query or when an instruction is
    571 /// removed.  Clients must copy this data if they want it around longer than
    572 /// that.
    573 const MemoryDependenceAnalysis::NonLocalDepInfo &
    574 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
    575   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
    576  "getNonLocalCallDependency should only be used on calls with non-local deps!");
    577   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
    578   NonLocalDepInfo &Cache = CacheP.first;
    579 
    580   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
    581   /// the cached case, this can happen due to instructions being deleted etc. In
    582   /// the uncached case, this starts out as the set of predecessors we care
    583   /// about.
    584   SmallVector<BasicBlock*, 32> DirtyBlocks;
    585 
    586   if (!Cache.empty()) {
    587     // Okay, we have a cache entry.  If we know it is not dirty, just return it
    588     // with no computation.
    589     if (!CacheP.second) {
    590       ++NumCacheNonLocal;
    591       return Cache;
    592     }
    593 
    594     // If we already have a partially computed set of results, scan them to
    595     // determine what is dirty, seeding our initial DirtyBlocks worklist.
    596     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
    597        I != E; ++I)
    598       if (I->getResult().isDirty())
    599         DirtyBlocks.push_back(I->getBB());
    600 
    601     // Sort the cache so that we can do fast binary search lookups below.
    602     std::sort(Cache.begin(), Cache.end());
    603 
    604     ++NumCacheDirtyNonLocal;
    605     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
    606     //     << Cache.size() << " cached: " << *QueryInst;
    607   } else {
    608     // Seed DirtyBlocks with each of the preds of QueryInst's block.
    609     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
    610     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
    611       DirtyBlocks.push_back(*PI);
    612     ++NumUncacheNonLocal;
    613   }
    614 
    615   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
    616   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
    617 
    618   SmallPtrSet<BasicBlock*, 64> Visited;
    619 
    620   unsigned NumSortedEntries = Cache.size();
    621   DEBUG(AssertSorted(Cache));
    622 
    623   // Iterate while we still have blocks to update.
    624   while (!DirtyBlocks.empty()) {
    625     BasicBlock *DirtyBB = DirtyBlocks.back();
    626     DirtyBlocks.pop_back();
    627 
    628     // Already processed this block?
    629     if (!Visited.insert(DirtyBB))
    630       continue;
    631 
    632     // Do a binary search to see if we already have an entry for this block in
    633     // the cache set.  If so, find it.
    634     DEBUG(AssertSorted(Cache, NumSortedEntries));
    635     NonLocalDepInfo::iterator Entry =
    636       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
    637                        NonLocalDepEntry(DirtyBB));
    638     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
    639       --Entry;
    640 
    641     NonLocalDepEntry *ExistingResult = 0;
    642     if (Entry != Cache.begin()+NumSortedEntries &&
    643         Entry->getBB() == DirtyBB) {
    644       // If we already have an entry, and if it isn't already dirty, the block
    645       // is done.
    646       if (!Entry->getResult().isDirty())
    647         continue;
    648 
    649       // Otherwise, remember this slot so we can update the value.
    650       ExistingResult = &*Entry;
    651     }
    652 
    653     // If the dirty entry has a pointer, start scanning from it so we don't have
    654     // to rescan the entire block.
    655     BasicBlock::iterator ScanPos = DirtyBB->end();
    656     if (ExistingResult) {
    657       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
    658         ScanPos = Inst;
    659         // We're removing QueryInst's use of Inst.
    660         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
    661                              QueryCS.getInstruction());
    662       }
    663     }
    664 
    665     // Find out if this block has a local dependency for QueryInst.
    666     MemDepResult Dep;
    667 
    668     if (ScanPos != DirtyBB->begin()) {
    669       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
    670     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
    671       // No dependence found.  If this is the entry block of the function, it is
    672       // a clobber, otherwise it is unknown.
    673       Dep = MemDepResult::getNonLocal();
    674     } else {
    675       Dep = MemDepResult::getUnknown();
    676     }
    677 
    678     // If we had a dirty entry for the block, update it.  Otherwise, just add
    679     // a new entry.
    680     if (ExistingResult)
    681       ExistingResult->setResult(Dep);
    682     else
    683       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
    684 
    685     // If the block has a dependency (i.e. it isn't completely transparent to
    686     // the value), remember the association!
    687     if (!Dep.isNonLocal()) {
    688       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
    689       // update this when we remove instructions.
    690       if (Instruction *Inst = Dep.getInst())
    691         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
    692     } else {
    693 
    694       // If the block *is* completely transparent to the load, we need to check
    695       // the predecessors of this block.  Add them to our worklist.
    696       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
    697         DirtyBlocks.push_back(*PI);
    698     }
    699   }
    700 
    701   return Cache;
    702 }
    703 
    704 /// getNonLocalPointerDependency - Perform a full dependency query for an
    705 /// access to the specified (non-volatile) memory location, returning the
    706 /// set of instructions that either define or clobber the value.
    707 ///
    708 /// This method assumes the pointer has a "NonLocal" dependency within its
    709 /// own block.
    710 ///
    711 void MemoryDependenceAnalysis::
    712 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
    713                              BasicBlock *FromBB,
    714                              SmallVectorImpl<NonLocalDepResult> &Result) {
    715   assert(Loc.Ptr->getType()->isPointerTy() &&
    716          "Can't get pointer deps of a non-pointer!");
    717   Result.clear();
    718 
    719   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
    720 
    721   // This is the set of blocks we've inspected, and the pointer we consider in
    722   // each block.  Because of critical edges, we currently bail out if querying
    723   // a block with multiple different pointers.  This can happen during PHI
    724   // translation.
    725   DenseMap<BasicBlock*, Value*> Visited;
    726   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
    727                                    Result, Visited, true))
    728     return;
    729   Result.clear();
    730   Result.push_back(NonLocalDepResult(FromBB,
    731                                      MemDepResult::getUnknown(),
    732                                      const_cast<Value *>(Loc.Ptr)));
    733 }
    734 
    735 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
    736 /// Pointer/PointeeSize using either cached information in Cache or by doing a
    737 /// lookup (which may use dirty cache info if available).  If we do a lookup,
    738 /// add the result to the cache.
    739 MemDepResult MemoryDependenceAnalysis::
    740 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
    741                         bool isLoad, BasicBlock *BB,
    742                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
    743 
    744   // Do a binary search to see if we already have an entry for this block in
    745   // the cache set.  If so, find it.
    746   NonLocalDepInfo::iterator Entry =
    747     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
    748                      NonLocalDepEntry(BB));
    749   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
    750     --Entry;
    751 
    752   NonLocalDepEntry *ExistingResult = 0;
    753   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
    754     ExistingResult = &*Entry;
    755 
    756   // If we have a cached entry, and it is non-dirty, use it as the value for
    757   // this dependency.
    758   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
    759     ++NumCacheNonLocalPtr;
    760     return ExistingResult->getResult();
    761   }
    762 
    763   // Otherwise, we have to scan for the value.  If we have a dirty cache
    764   // entry, start scanning from its position, otherwise we scan from the end
    765   // of the block.
    766   BasicBlock::iterator ScanPos = BB->end();
    767   if (ExistingResult && ExistingResult->getResult().getInst()) {
    768     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
    769            "Instruction invalidated?");
    770     ++NumCacheDirtyNonLocalPtr;
    771     ScanPos = ExistingResult->getResult().getInst();
    772 
    773     // Eliminating the dirty entry from 'Cache', so update the reverse info.
    774     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    775     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
    776   } else {
    777     ++NumUncacheNonLocalPtr;
    778   }
    779 
    780   // Scan the block for the dependency.
    781   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
    782 
    783   // If we had a dirty entry for the block, update it.  Otherwise, just add
    784   // a new entry.
    785   if (ExistingResult)
    786     ExistingResult->setResult(Dep);
    787   else
    788     Cache->push_back(NonLocalDepEntry(BB, Dep));
    789 
    790   // If the block has a dependency (i.e. it isn't completely transparent to
    791   // the value), remember the reverse association because we just added it
    792   // to Cache!
    793   if (Dep.isNonLocal() || Dep.isUnknown())
    794     return Dep;
    795 
    796   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
    797   // update MemDep when we remove instructions.
    798   Instruction *Inst = Dep.getInst();
    799   assert(Inst && "Didn't depend on anything?");
    800   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    801   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
    802   return Dep;
    803 }
    804 
    805 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
    806 /// number of elements in the array that are already properly ordered.  This is
    807 /// optimized for the case when only a few entries are added.
    808 static void
    809 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    810                          unsigned NumSortedEntries) {
    811   switch (Cache.size() - NumSortedEntries) {
    812   case 0:
    813     // done, no new entries.
    814     break;
    815   case 2: {
    816     // Two new entries, insert the last one into place.
    817     NonLocalDepEntry Val = Cache.back();
    818     Cache.pop_back();
    819     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    820       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
    821     Cache.insert(Entry, Val);
    822     // FALL THROUGH.
    823   }
    824   case 1:
    825     // One new entry, Just insert the new value at the appropriate position.
    826     if (Cache.size() != 1) {
    827       NonLocalDepEntry Val = Cache.back();
    828       Cache.pop_back();
    829       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    830         std::upper_bound(Cache.begin(), Cache.end(), Val);
    831       Cache.insert(Entry, Val);
    832     }
    833     break;
    834   default:
    835     // Added many values, do a full scale sort.
    836     std::sort(Cache.begin(), Cache.end());
    837     break;
    838   }
    839 }
    840 
    841 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
    842 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
    843 /// results to the results vector and keep track of which blocks are visited in
    844 /// 'Visited'.
    845 ///
    846 /// This has special behavior for the first block queries (when SkipFirstBlock
    847 /// is true).  In this special case, it ignores the contents of the specified
    848 /// block and starts returning dependence info for its predecessors.
    849 ///
    850 /// This function returns false on success, or true to indicate that it could
    851 /// not compute dependence information for some reason.  This should be treated
    852 /// as a clobber dependence on the first instruction in the predecessor block.
    853 bool MemoryDependenceAnalysis::
    854 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
    855                             const AliasAnalysis::Location &Loc,
    856                             bool isLoad, BasicBlock *StartBB,
    857                             SmallVectorImpl<NonLocalDepResult> &Result,
    858                             DenseMap<BasicBlock*, Value*> &Visited,
    859                             bool SkipFirstBlock) {
    860 
    861   // Look up the cached info for Pointer.
    862   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
    863 
    864   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
    865   // CacheKey, this value will be inserted as the associated value. Otherwise,
    866   // it'll be ignored, and we'll have to check to see if the cached size and
    867   // tbaa tag are consistent with the current query.
    868   NonLocalPointerInfo InitialNLPI;
    869   InitialNLPI.Size = Loc.Size;
    870   InitialNLPI.TBAATag = Loc.TBAATag;
    871 
    872   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
    873   // already have one.
    874   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
    875     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
    876   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
    877 
    878   // If we already have a cache entry for this CacheKey, we may need to do some
    879   // work to reconcile the cache entry and the current query.
    880   if (!Pair.second) {
    881     if (CacheInfo->Size < Loc.Size) {
    882       // The query's Size is greater than the cached one. Throw out the
    883       // cached data and procede with the query at the greater size.
    884       CacheInfo->Pair = BBSkipFirstBlockPair();
    885       CacheInfo->Size = Loc.Size;
    886       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
    887            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
    888         if (Instruction *Inst = DI->getResult().getInst())
    889           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
    890       CacheInfo->NonLocalDeps.clear();
    891     } else if (CacheInfo->Size > Loc.Size) {
    892       // This query's Size is less than the cached one. Conservatively restart
    893       // the query using the greater size.
    894       return getNonLocalPointerDepFromBB(Pointer,
    895                                          Loc.getWithNewSize(CacheInfo->Size),
    896                                          isLoad, StartBB, Result, Visited,
    897                                          SkipFirstBlock);
    898     }
    899 
    900     // If the query's TBAATag is inconsistent with the cached one,
    901     // conservatively throw out the cached data and restart the query with
    902     // no tag if needed.
    903     if (CacheInfo->TBAATag != Loc.TBAATag) {
    904       if (CacheInfo->TBAATag) {
    905         CacheInfo->Pair = BBSkipFirstBlockPair();
    906         CacheInfo->TBAATag = 0;
    907         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
    908              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
    909           if (Instruction *Inst = DI->getResult().getInst())
    910             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
    911         CacheInfo->NonLocalDeps.clear();
    912       }
    913       if (Loc.TBAATag)
    914         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
    915                                            isLoad, StartBB, Result, Visited,
    916                                            SkipFirstBlock);
    917     }
    918   }
    919 
    920   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
    921 
    922   // If we have valid cached information for exactly the block we are
    923   // investigating, just return it with no recomputation.
    924   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
    925     // We have a fully cached result for this query then we can just return the
    926     // cached results and populate the visited set.  However, we have to verify
    927     // that we don't already have conflicting results for these blocks.  Check
    928     // to ensure that if a block in the results set is in the visited set that
    929     // it was for the same pointer query.
    930     if (!Visited.empty()) {
    931       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
    932            I != E; ++I) {
    933         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
    934         if (VI == Visited.end() || VI->second == Pointer.getAddr())
    935           continue;
    936 
    937         // We have a pointer mismatch in a block.  Just return clobber, saying
    938         // that something was clobbered in this result.  We could also do a
    939         // non-fully cached query, but there is little point in doing this.
    940         return true;
    941       }
    942     }
    943 
    944     Value *Addr = Pointer.getAddr();
    945     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
    946          I != E; ++I) {
    947       Visited.insert(std::make_pair(I->getBB(), Addr));
    948       if (!I->getResult().isNonLocal())
    949         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
    950     }
    951     ++NumCacheCompleteNonLocalPtr;
    952     return false;
    953   }
    954 
    955   // Otherwise, either this is a new block, a block with an invalid cache
    956   // pointer or one that we're about to invalidate by putting more info into it
    957   // than its valid cache info.  If empty, the result will be valid cache info,
    958   // otherwise it isn't.
    959   if (Cache->empty())
    960     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
    961   else
    962     CacheInfo->Pair = BBSkipFirstBlockPair();
    963 
    964   SmallVector<BasicBlock*, 32> Worklist;
    965   Worklist.push_back(StartBB);
    966 
    967   // PredList used inside loop.
    968   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
    969 
    970   // Keep track of the entries that we know are sorted.  Previously cached
    971   // entries will all be sorted.  The entries we add we only sort on demand (we
    972   // don't insert every element into its sorted position).  We know that we
    973   // won't get any reuse from currently inserted values, because we don't
    974   // revisit blocks after we insert info for them.
    975   unsigned NumSortedEntries = Cache->size();
    976   DEBUG(AssertSorted(*Cache));
    977 
    978   while (!Worklist.empty()) {
    979     BasicBlock *BB = Worklist.pop_back_val();
    980 
    981     // Skip the first block if we have it.
    982     if (!SkipFirstBlock) {
    983       // Analyze the dependency of *Pointer in FromBB.  See if we already have
    984       // been here.
    985       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
    986 
    987       // Get the dependency info for Pointer in BB.  If we have cached
    988       // information, we will use it, otherwise we compute it.
    989       DEBUG(AssertSorted(*Cache, NumSortedEntries));
    990       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
    991                                                  NumSortedEntries);
    992 
    993       // If we got a Def or Clobber, add this to the list of results.
    994       if (!Dep.isNonLocal()) {
    995         Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
    996         continue;
    997       }
    998     }
    999 
   1000     // If 'Pointer' is an instruction defined in this block, then we need to do
   1001     // phi translation to change it into a value live in the predecessor block.
   1002     // If not, we just add the predecessors to the worklist and scan them with
   1003     // the same Pointer.
   1004     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
   1005       SkipFirstBlock = false;
   1006       SmallVector<BasicBlock*, 16> NewBlocks;
   1007       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1008         // Verify that we haven't looked at this block yet.
   1009         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1010           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
   1011         if (InsertRes.second) {
   1012           // First time we've looked at *PI.
   1013           NewBlocks.push_back(*PI);
   1014           continue;
   1015         }
   1016 
   1017         // If we have seen this block before, but it was with a different
   1018         // pointer then we have a phi translation failure and we have to treat
   1019         // this as a clobber.
   1020         if (InsertRes.first->second != Pointer.getAddr()) {
   1021           // Make sure to clean up the Visited map before continuing on to
   1022           // PredTranslationFailure.
   1023           for (unsigned i = 0; i < NewBlocks.size(); i++)
   1024             Visited.erase(NewBlocks[i]);
   1025           goto PredTranslationFailure;
   1026         }
   1027       }
   1028       Worklist.append(NewBlocks.begin(), NewBlocks.end());
   1029       continue;
   1030     }
   1031 
   1032     // We do need to do phi translation, if we know ahead of time we can't phi
   1033     // translate this value, don't even try.
   1034     if (!Pointer.IsPotentiallyPHITranslatable())
   1035       goto PredTranslationFailure;
   1036 
   1037     // We may have added values to the cache list before this PHI translation.
   1038     // If so, we haven't done anything to ensure that the cache remains sorted.
   1039     // Sort it now (if needed) so that recursive invocations of
   1040     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
   1041     // value will only see properly sorted cache arrays.
   1042     if (Cache && NumSortedEntries != Cache->size()) {
   1043       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1044       NumSortedEntries = Cache->size();
   1045     }
   1046     Cache = 0;
   1047 
   1048     PredList.clear();
   1049     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1050       BasicBlock *Pred = *PI;
   1051       PredList.push_back(std::make_pair(Pred, Pointer));
   1052 
   1053       // Get the PHI translated pointer in this predecessor.  This can fail if
   1054       // not translatable, in which case the getAddr() returns null.
   1055       PHITransAddr &PredPointer = PredList.back().second;
   1056       PredPointer.PHITranslateValue(BB, Pred, 0);
   1057 
   1058       Value *PredPtrVal = PredPointer.getAddr();
   1059 
   1060       // Check to see if we have already visited this pred block with another
   1061       // pointer.  If so, we can't do this lookup.  This failure can occur
   1062       // with PHI translation when a critical edge exists and the PHI node in
   1063       // the successor translates to a pointer value different than the
   1064       // pointer the block was first analyzed with.
   1065       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1066         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
   1067 
   1068       if (!InsertRes.second) {
   1069         // We found the pred; take it off the list of preds to visit.
   1070         PredList.pop_back();
   1071 
   1072         // If the predecessor was visited with PredPtr, then we already did
   1073         // the analysis and can ignore it.
   1074         if (InsertRes.first->second == PredPtrVal)
   1075           continue;
   1076 
   1077         // Otherwise, the block was previously analyzed with a different
   1078         // pointer.  We can't represent the result of this case, so we just
   1079         // treat this as a phi translation failure.
   1080 
   1081         // Make sure to clean up the Visited map before continuing on to
   1082         // PredTranslationFailure.
   1083         for (unsigned i = 0; i < PredList.size(); i++)
   1084           Visited.erase(PredList[i].first);
   1085 
   1086         goto PredTranslationFailure;
   1087       }
   1088     }
   1089 
   1090     // Actually process results here; this need to be a separate loop to avoid
   1091     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
   1092     // any results for.  (getNonLocalPointerDepFromBB will modify our
   1093     // datastructures in ways the code after the PredTranslationFailure label
   1094     // doesn't expect.)
   1095     for (unsigned i = 0; i < PredList.size(); i++) {
   1096       BasicBlock *Pred = PredList[i].first;
   1097       PHITransAddr &PredPointer = PredList[i].second;
   1098       Value *PredPtrVal = PredPointer.getAddr();
   1099 
   1100       bool CanTranslate = true;
   1101       // If PHI translation was unable to find an available pointer in this
   1102       // predecessor, then we have to assume that the pointer is clobbered in
   1103       // that predecessor.  We can still do PRE of the load, which would insert
   1104       // a computation of the pointer in this predecessor.
   1105       if (PredPtrVal == 0)
   1106         CanTranslate = false;
   1107 
   1108       // FIXME: it is entirely possible that PHI translating will end up with
   1109       // the same value.  Consider PHI translating something like:
   1110       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
   1111       // to recurse here, pedantically speaking.
   1112 
   1113       // If getNonLocalPointerDepFromBB fails here, that means the cached
   1114       // result conflicted with the Visited list; we have to conservatively
   1115       // assume it is unknown, but this also does not block PRE of the load.
   1116       if (!CanTranslate ||
   1117           getNonLocalPointerDepFromBB(PredPointer,
   1118                                       Loc.getWithNewPtr(PredPtrVal),
   1119                                       isLoad, Pred,
   1120                                       Result, Visited)) {
   1121         // Add the entry to the Result list.
   1122         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
   1123         Result.push_back(Entry);
   1124 
   1125         // Since we had a phi translation failure, the cache for CacheKey won't
   1126         // include all of the entries that we need to immediately satisfy future
   1127         // queries.  Mark this in NonLocalPointerDeps by setting the
   1128         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
   1129         // cached value to do more work but not miss the phi trans failure.
   1130         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
   1131         NLPI.Pair = BBSkipFirstBlockPair();
   1132         continue;
   1133       }
   1134     }
   1135 
   1136     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
   1137     CacheInfo = &NonLocalPointerDeps[CacheKey];
   1138     Cache = &CacheInfo->NonLocalDeps;
   1139     NumSortedEntries = Cache->size();
   1140 
   1141     // Since we did phi translation, the "Cache" set won't contain all of the
   1142     // results for the query.  This is ok (we can still use it to accelerate
   1143     // specific block queries) but we can't do the fastpath "return all
   1144     // results from the set"  Clear out the indicator for this.
   1145     CacheInfo->Pair = BBSkipFirstBlockPair();
   1146     SkipFirstBlock = false;
   1147     continue;
   1148 
   1149   PredTranslationFailure:
   1150     // The following code is "failure"; we can't produce a sane translation
   1151     // for the given block.  It assumes that we haven't modified any of
   1152     // our datastructures while processing the current block.
   1153 
   1154     if (Cache == 0) {
   1155       // Refresh the CacheInfo/Cache pointer if it got invalidated.
   1156       CacheInfo = &NonLocalPointerDeps[CacheKey];
   1157       Cache = &CacheInfo->NonLocalDeps;
   1158       NumSortedEntries = Cache->size();
   1159     }
   1160 
   1161     // Since we failed phi translation, the "Cache" set won't contain all of the
   1162     // results for the query.  This is ok (we can still use it to accelerate
   1163     // specific block queries) but we can't do the fastpath "return all
   1164     // results from the set".  Clear out the indicator for this.
   1165     CacheInfo->Pair = BBSkipFirstBlockPair();
   1166 
   1167     // If *nothing* works, mark the pointer as unknown.
   1168     //
   1169     // If this is the magic first block, return this as a clobber of the whole
   1170     // incoming value.  Since we can't phi translate to one of the predecessors,
   1171     // we have to bail out.
   1172     if (SkipFirstBlock)
   1173       return true;
   1174 
   1175     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
   1176       assert(I != Cache->rend() && "Didn't find current block??");
   1177       if (I->getBB() != BB)
   1178         continue;
   1179 
   1180       assert(I->getResult().isNonLocal() &&
   1181              "Should only be here with transparent block");
   1182       I->setResult(MemDepResult::getUnknown());
   1183       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
   1184                                          Pointer.getAddr()));
   1185       break;
   1186     }
   1187   }
   1188 
   1189   // Okay, we're done now.  If we added new values to the cache, re-sort it.
   1190   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1191   DEBUG(AssertSorted(*Cache));
   1192   return false;
   1193 }
   1194 
   1195 /// RemoveCachedNonLocalPointerDependencies - If P exists in
   1196 /// CachedNonLocalPointerInfo, remove it.
   1197 void MemoryDependenceAnalysis::
   1198 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
   1199   CachedNonLocalPointerInfo::iterator It =
   1200     NonLocalPointerDeps.find(P);
   1201   if (It == NonLocalPointerDeps.end()) return;
   1202 
   1203   // Remove all of the entries in the BB->val map.  This involves removing
   1204   // instructions from the reverse map.
   1205   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
   1206 
   1207   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
   1208     Instruction *Target = PInfo[i].getResult().getInst();
   1209     if (Target == 0) continue;  // Ignore non-local dep results.
   1210     assert(Target->getParent() == PInfo[i].getBB());
   1211 
   1212     // Eliminating the dirty entry from 'Cache', so update the reverse info.
   1213     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
   1214   }
   1215 
   1216   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
   1217   NonLocalPointerDeps.erase(It);
   1218 }
   1219 
   1220 
   1221 /// invalidateCachedPointerInfo - This method is used to invalidate cached
   1222 /// information about the specified pointer, because it may be too
   1223 /// conservative in memdep.  This is an optional call that can be used when
   1224 /// the client detects an equivalence between the pointer and some other
   1225 /// value and replaces the other value with ptr. This can make Ptr available
   1226 /// in more places that cached info does not necessarily keep.
   1227 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
   1228   // If Ptr isn't really a pointer, just ignore it.
   1229   if (!Ptr->getType()->isPointerTy()) return;
   1230   // Flush store info for the pointer.
   1231   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
   1232   // Flush load info for the pointer.
   1233   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
   1234 }
   1235 
   1236 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
   1237 /// This needs to be done when the CFG changes, e.g., due to splitting
   1238 /// critical edges.
   1239 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
   1240   PredCache->clear();
   1241 }
   1242 
   1243 /// removeInstruction - Remove an instruction from the dependence analysis,
   1244 /// updating the dependence of instructions that previously depended on it.
   1245 /// This method attempts to keep the cache coherent using the reverse map.
   1246 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
   1247   // Walk through the Non-local dependencies, removing this one as the value
   1248   // for any cached queries.
   1249   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
   1250   if (NLDI != NonLocalDeps.end()) {
   1251     NonLocalDepInfo &BlockMap = NLDI->second.first;
   1252     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
   1253          DI != DE; ++DI)
   1254       if (Instruction *Inst = DI->getResult().getInst())
   1255         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
   1256     NonLocalDeps.erase(NLDI);
   1257   }
   1258 
   1259   // If we have a cached local dependence query for this instruction, remove it.
   1260   //
   1261   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
   1262   if (LocalDepEntry != LocalDeps.end()) {
   1263     // Remove us from DepInst's reverse set now that the local dep info is gone.
   1264     if (Instruction *Inst = LocalDepEntry->second.getInst())
   1265       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
   1266 
   1267     // Remove this local dependency info.
   1268     LocalDeps.erase(LocalDepEntry);
   1269   }
   1270 
   1271   // If we have any cached pointer dependencies on this instruction, remove
   1272   // them.  If the instruction has non-pointer type, then it can't be a pointer
   1273   // base.
   1274 
   1275   // Remove it from both the load info and the store info.  The instruction
   1276   // can't be in either of these maps if it is non-pointer.
   1277   if (RemInst->getType()->isPointerTy()) {
   1278     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
   1279     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
   1280   }
   1281 
   1282   // Loop over all of the things that depend on the instruction we're removing.
   1283   //
   1284   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
   1285 
   1286   // If we find RemInst as a clobber or Def in any of the maps for other values,
   1287   // we need to replace its entry with a dirty version of the instruction after
   1288   // it.  If RemInst is a terminator, we use a null dirty value.
   1289   //
   1290   // Using a dirty version of the instruction after RemInst saves having to scan
   1291   // the entire block to get to this point.
   1292   MemDepResult NewDirtyVal;
   1293   if (!RemInst->isTerminator())
   1294     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
   1295 
   1296   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
   1297   if (ReverseDepIt != ReverseLocalDeps.end()) {
   1298     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
   1299     // RemInst can't be the terminator if it has local stuff depending on it.
   1300     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
   1301            "Nothing can locally depend on a terminator");
   1302 
   1303     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
   1304          E = ReverseDeps.end(); I != E; ++I) {
   1305       Instruction *InstDependingOnRemInst = *I;
   1306       assert(InstDependingOnRemInst != RemInst &&
   1307              "Already removed our local dep info");
   1308 
   1309       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
   1310 
   1311       // Make sure to remember that new things depend on NewDepInst.
   1312       assert(NewDirtyVal.getInst() && "There is no way something else can have "
   1313              "a local dep on this if it is a terminator!");
   1314       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
   1315                                                 InstDependingOnRemInst));
   1316     }
   1317 
   1318     ReverseLocalDeps.erase(ReverseDepIt);
   1319 
   1320     // Add new reverse deps after scanning the set, to avoid invalidating the
   1321     // 'ReverseDeps' reference.
   1322     while (!ReverseDepsToAdd.empty()) {
   1323       ReverseLocalDeps[ReverseDepsToAdd.back().first]
   1324         .insert(ReverseDepsToAdd.back().second);
   1325       ReverseDepsToAdd.pop_back();
   1326     }
   1327   }
   1328 
   1329   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
   1330   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
   1331     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
   1332     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
   1333          I != E; ++I) {
   1334       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
   1335 
   1336       PerInstNLInfo &INLD = NonLocalDeps[*I];
   1337       // The information is now dirty!
   1338       INLD.second = true;
   1339 
   1340       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
   1341            DE = INLD.first.end(); DI != DE; ++DI) {
   1342         if (DI->getResult().getInst() != RemInst) continue;
   1343 
   1344         // Convert to a dirty entry for the subsequent instruction.
   1345         DI->setResult(NewDirtyVal);
   1346 
   1347         if (Instruction *NextI = NewDirtyVal.getInst())
   1348           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
   1349       }
   1350     }
   1351 
   1352     ReverseNonLocalDeps.erase(ReverseDepIt);
   1353 
   1354     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
   1355     while (!ReverseDepsToAdd.empty()) {
   1356       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
   1357         .insert(ReverseDepsToAdd.back().second);
   1358       ReverseDepsToAdd.pop_back();
   1359     }
   1360   }
   1361 
   1362   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
   1363   // value in the NonLocalPointerDeps info.
   1364   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
   1365     ReverseNonLocalPtrDeps.find(RemInst);
   1366   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
   1367     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
   1368     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
   1369 
   1370     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
   1371          E = Set.end(); I != E; ++I) {
   1372       ValueIsLoadPair P = *I;
   1373       assert(P.getPointer() != RemInst &&
   1374              "Already removed NonLocalPointerDeps info for RemInst");
   1375 
   1376       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
   1377 
   1378       // The cache is not valid for any specific block anymore.
   1379       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
   1380 
   1381       // Update any entries for RemInst to use the instruction after it.
   1382       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
   1383            DI != DE; ++DI) {
   1384         if (DI->getResult().getInst() != RemInst) continue;
   1385 
   1386         // Convert to a dirty entry for the subsequent instruction.
   1387         DI->setResult(NewDirtyVal);
   1388 
   1389         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
   1390           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
   1391       }
   1392 
   1393       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
   1394       // subsequent value may invalidate the sortedness.
   1395       std::sort(NLPDI.begin(), NLPDI.end());
   1396     }
   1397 
   1398     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
   1399 
   1400     while (!ReversePtrDepsToAdd.empty()) {
   1401       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
   1402         .insert(ReversePtrDepsToAdd.back().second);
   1403       ReversePtrDepsToAdd.pop_back();
   1404     }
   1405   }
   1406 
   1407 
   1408   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
   1409   AA->deleteValue(RemInst);
   1410   DEBUG(verifyRemoved(RemInst));
   1411 }
   1412 /// verifyRemoved - Verify that the specified instruction does not occur
   1413 /// in our internal data structures.
   1414 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
   1415   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
   1416        E = LocalDeps.end(); I != E; ++I) {
   1417     assert(I->first != D && "Inst occurs in data structures");
   1418     assert(I->second.getInst() != D &&
   1419            "Inst occurs in data structures");
   1420   }
   1421 
   1422   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
   1423        E = NonLocalPointerDeps.end(); I != E; ++I) {
   1424     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
   1425     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
   1426     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
   1427          II != E; ++II)
   1428       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
   1429   }
   1430 
   1431   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
   1432        E = NonLocalDeps.end(); I != E; ++I) {
   1433     assert(I->first != D && "Inst occurs in data structures");
   1434     const PerInstNLInfo &INLD = I->second;
   1435     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
   1436          EE = INLD.first.end(); II  != EE; ++II)
   1437       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
   1438   }
   1439 
   1440   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
   1441        E = ReverseLocalDeps.end(); I != E; ++I) {
   1442     assert(I->first != D && "Inst occurs in data structures");
   1443     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1444          EE = I->second.end(); II != EE; ++II)
   1445       assert(*II != D && "Inst occurs in data structures");
   1446   }
   1447 
   1448   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
   1449        E = ReverseNonLocalDeps.end();
   1450        I != E; ++I) {
   1451     assert(I->first != D && "Inst occurs in data structures");
   1452     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1453          EE = I->second.end(); II != EE; ++II)
   1454       assert(*II != D && "Inst occurs in data structures");
   1455   }
   1456 
   1457   for (ReverseNonLocalPtrDepTy::const_iterator
   1458        I = ReverseNonLocalPtrDeps.begin(),
   1459        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
   1460     assert(I->first != D && "Inst occurs in rev NLPD map");
   1461 
   1462     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
   1463          E = I->second.end(); II != E; ++II)
   1464       assert(*II != ValueIsLoadPair(D, false) &&
   1465              *II != ValueIsLoadPair(D, true) &&
   1466              "Inst occurs in ReverseNonLocalPtrDeps map");
   1467   }
   1468 
   1469 }
   1470