1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Support/CFG.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DebugInfo.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include <map> 31 using namespace llvm; 32 33 // CloneBasicBlock - See comments in Cloning.h 34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 35 ValueToValueMapTy &VMap, 36 const Twine &NameSuffix, Function *F, 37 ClonedCodeInfo *CodeInfo) { 38 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 39 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 40 41 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 42 43 // Loop over all instructions, and copy them over. 44 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 45 II != IE; ++II) { 46 Instruction *NewInst = II->clone(); 47 if (II->hasName()) 48 NewInst->setName(II->getName()+NameSuffix); 49 NewBB->getInstList().push_back(NewInst); 50 VMap[II] = NewInst; // Add instruction map to value. 51 52 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 53 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 54 if (isa<ConstantInt>(AI->getArraySize())) 55 hasStaticAllocas = true; 56 else 57 hasDynamicAllocas = true; 58 } 59 } 60 61 if (CodeInfo) { 62 CodeInfo->ContainsCalls |= hasCalls; 63 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator()); 64 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 65 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 66 BB != &BB->getParent()->getEntryBlock(); 67 } 68 return NewBB; 69 } 70 71 // Clone OldFunc into NewFunc, transforming the old arguments into references to 72 // VMap values. 73 // 74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 75 ValueToValueMapTy &VMap, 76 bool ModuleLevelChanges, 77 SmallVectorImpl<ReturnInst*> &Returns, 78 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 79 assert(NameSuffix && "NameSuffix cannot be null!"); 80 81 #ifndef NDEBUG 82 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 83 E = OldFunc->arg_end(); I != E; ++I) 84 assert(VMap.count(I) && "No mapping from source argument specified!"); 85 #endif 86 87 // Clone any attributes. 88 if (NewFunc->arg_size() == OldFunc->arg_size()) 89 NewFunc->copyAttributesFrom(OldFunc); 90 else { 91 //Some arguments were deleted with the VMap. Copy arguments one by one 92 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 93 E = OldFunc->arg_end(); I != E; ++I) 94 if (Argument* Anew = dyn_cast<Argument>(VMap[I])) 95 Anew->addAttr( OldFunc->getAttributes() 96 .getParamAttributes(I->getArgNo() + 1)); 97 NewFunc->setAttributes(NewFunc->getAttributes() 98 .addAttr(0, OldFunc->getAttributes() 99 .getRetAttributes())); 100 NewFunc->setAttributes(NewFunc->getAttributes() 101 .addAttr(~0, OldFunc->getAttributes() 102 .getFnAttributes())); 103 104 } 105 106 // Loop over all of the basic blocks in the function, cloning them as 107 // appropriate. Note that we save BE this way in order to handle cloning of 108 // recursive functions into themselves. 109 // 110 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 111 BI != BE; ++BI) { 112 const BasicBlock &BB = *BI; 113 114 // Create a new basic block and copy instructions into it! 115 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 116 VMap[&BB] = CBB; // Add basic block mapping. 117 118 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 119 Returns.push_back(RI); 120 } 121 122 // Loop over all of the instructions in the function, fixing up operand 123 // references as we go. This uses VMap to do all the hard work. 124 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 125 BE = NewFunc->end(); BB != BE; ++BB) 126 // Loop over all instructions, fixing each one as we find it... 127 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 128 RemapInstruction(II, VMap, 129 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 130 } 131 132 /// CloneFunction - Return a copy of the specified function, but without 133 /// embedding the function into another module. Also, any references specified 134 /// in the VMap are changed to refer to their mapped value instead of the 135 /// original one. If any of the arguments to the function are in the VMap, 136 /// the arguments are deleted from the resultant function. The VMap is 137 /// updated to include mappings from all of the instructions and basicblocks in 138 /// the function from their old to new values. 139 /// 140 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 141 bool ModuleLevelChanges, 142 ClonedCodeInfo *CodeInfo) { 143 std::vector<Type*> ArgTypes; 144 145 // The user might be deleting arguments to the function by specifying them in 146 // the VMap. If so, we need to not add the arguments to the arg ty vector 147 // 148 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 149 I != E; ++I) 150 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 151 ArgTypes.push_back(I->getType()); 152 153 // Create a new function type... 154 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 155 ArgTypes, F->getFunctionType()->isVarArg()); 156 157 // Create the new function... 158 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 159 160 // Loop over the arguments, copying the names of the mapped arguments over... 161 Function::arg_iterator DestI = NewF->arg_begin(); 162 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 163 I != E; ++I) 164 if (VMap.count(I) == 0) { // Is this argument preserved? 165 DestI->setName(I->getName()); // Copy the name over... 166 VMap[I] = DestI++; // Add mapping to VMap 167 } 168 169 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 170 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 171 return NewF; 172 } 173 174 175 176 namespace { 177 /// PruningFunctionCloner - This class is a private class used to implement 178 /// the CloneAndPruneFunctionInto method. 179 struct PruningFunctionCloner { 180 Function *NewFunc; 181 const Function *OldFunc; 182 ValueToValueMapTy &VMap; 183 bool ModuleLevelChanges; 184 SmallVectorImpl<ReturnInst*> &Returns; 185 const char *NameSuffix; 186 ClonedCodeInfo *CodeInfo; 187 const TargetData *TD; 188 public: 189 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 190 ValueToValueMapTy &valueMap, 191 bool moduleLevelChanges, 192 SmallVectorImpl<ReturnInst*> &returns, 193 const char *nameSuffix, 194 ClonedCodeInfo *codeInfo, 195 const TargetData *td) 196 : NewFunc(newFunc), OldFunc(oldFunc), 197 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), 198 Returns(returns), NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) { 199 } 200 201 /// CloneBlock - The specified block is found to be reachable, clone it and 202 /// anything that it can reach. 203 void CloneBlock(const BasicBlock *BB, 204 std::vector<const BasicBlock*> &ToClone); 205 206 public: 207 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 208 /// mapping its operands through VMap if they are available. 209 Constant *ConstantFoldMappedInstruction(const Instruction *I); 210 }; 211 } 212 213 /// CloneBlock - The specified block is found to be reachable, clone it and 214 /// anything that it can reach. 215 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 216 std::vector<const BasicBlock*> &ToClone){ 217 TrackingVH<Value> &BBEntry = VMap[BB]; 218 219 // Have we already cloned this block? 220 if (BBEntry) return; 221 222 // Nope, clone it now. 223 BasicBlock *NewBB; 224 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 225 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 226 227 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 228 229 // Loop over all instructions, and copy them over, DCE'ing as we go. This 230 // loop doesn't include the terminator. 231 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); 232 II != IE; ++II) { 233 // If this instruction constant folds, don't bother cloning the instruction, 234 // instead, just add the constant to the value map. 235 if (Constant *C = ConstantFoldMappedInstruction(II)) { 236 VMap[II] = C; 237 continue; 238 } 239 240 Instruction *NewInst = II->clone(); 241 if (II->hasName()) 242 NewInst->setName(II->getName()+NameSuffix); 243 NewBB->getInstList().push_back(NewInst); 244 VMap[II] = NewInst; // Add instruction map to value. 245 246 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 247 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 248 if (isa<ConstantInt>(AI->getArraySize())) 249 hasStaticAllocas = true; 250 else 251 hasDynamicAllocas = true; 252 } 253 } 254 255 // Finally, clone over the terminator. 256 const TerminatorInst *OldTI = BB->getTerminator(); 257 bool TerminatorDone = false; 258 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 259 if (BI->isConditional()) { 260 // If the condition was a known constant in the callee... 261 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 262 // Or is a known constant in the caller... 263 if (Cond == 0) { 264 Value *V = VMap[BI->getCondition()]; 265 Cond = dyn_cast_or_null<ConstantInt>(V); 266 } 267 268 // Constant fold to uncond branch! 269 if (Cond) { 270 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 271 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 272 ToClone.push_back(Dest); 273 TerminatorDone = true; 274 } 275 } 276 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 277 // If switching on a value known constant in the caller. 278 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 279 if (Cond == 0) { // Or known constant after constant prop in the callee... 280 Value *V = VMap[SI->getCondition()]; 281 Cond = dyn_cast_or_null<ConstantInt>(V); 282 } 283 if (Cond) { // Constant fold to uncond branch! 284 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond)); 285 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 286 ToClone.push_back(Dest); 287 TerminatorDone = true; 288 } 289 } 290 291 if (!TerminatorDone) { 292 Instruction *NewInst = OldTI->clone(); 293 if (OldTI->hasName()) 294 NewInst->setName(OldTI->getName()+NameSuffix); 295 NewBB->getInstList().push_back(NewInst); 296 VMap[OldTI] = NewInst; // Add instruction map to value. 297 298 // Recursively clone any reachable successor blocks. 299 const TerminatorInst *TI = BB->getTerminator(); 300 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 301 ToClone.push_back(TI->getSuccessor(i)); 302 } 303 304 if (CodeInfo) { 305 CodeInfo->ContainsCalls |= hasCalls; 306 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI); 307 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 308 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 309 BB != &BB->getParent()->front(); 310 } 311 312 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator())) 313 Returns.push_back(RI); 314 } 315 316 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 317 /// mapping its operands through VMap if they are available. 318 Constant *PruningFunctionCloner:: 319 ConstantFoldMappedInstruction(const Instruction *I) { 320 SmallVector<Constant*, 8> Ops; 321 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 322 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i), 323 VMap, 324 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges))) 325 Ops.push_back(Op); 326 else 327 return 0; // All operands not constant! 328 329 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 330 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 331 TD); 332 333 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) 335 if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr) 336 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 337 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 338 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), 339 CE); 340 341 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD); 342 } 343 344 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 345 /// except that it does some simple constant prop and DCE on the fly. The 346 /// effect of this is to copy significantly less code in cases where (for 347 /// example) a function call with constant arguments is inlined, and those 348 /// constant arguments cause a significant amount of code in the callee to be 349 /// dead. Since this doesn't produce an exact copy of the input, it can't be 350 /// used for things like CloneFunction or CloneModule. 351 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 352 ValueToValueMapTy &VMap, 353 bool ModuleLevelChanges, 354 SmallVectorImpl<ReturnInst*> &Returns, 355 const char *NameSuffix, 356 ClonedCodeInfo *CodeInfo, 357 const TargetData *TD, 358 Instruction *TheCall) { 359 assert(NameSuffix && "NameSuffix cannot be null!"); 360 361 #ifndef NDEBUG 362 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 363 E = OldFunc->arg_end(); II != E; ++II) 364 assert(VMap.count(II) && "No mapping from source argument specified!"); 365 #endif 366 367 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 368 Returns, NameSuffix, CodeInfo, TD); 369 370 // Clone the entry block, and anything recursively reachable from it. 371 std::vector<const BasicBlock*> CloneWorklist; 372 CloneWorklist.push_back(&OldFunc->getEntryBlock()); 373 while (!CloneWorklist.empty()) { 374 const BasicBlock *BB = CloneWorklist.back(); 375 CloneWorklist.pop_back(); 376 PFC.CloneBlock(BB, CloneWorklist); 377 } 378 379 // Loop over all of the basic blocks in the old function. If the block was 380 // reachable, we have cloned it and the old block is now in the value map: 381 // insert it into the new function in the right order. If not, ignore it. 382 // 383 // Defer PHI resolution until rest of function is resolved. 384 SmallVector<const PHINode*, 16> PHIToResolve; 385 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 386 BI != BE; ++BI) { 387 Value *V = VMap[BI]; 388 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 389 if (NewBB == 0) continue; // Dead block. 390 391 // Add the new block to the new function. 392 NewFunc->getBasicBlockList().push_back(NewBB); 393 394 // Loop over all of the instructions in the block, fixing up operand 395 // references as we go. This uses VMap to do all the hard work. 396 // 397 BasicBlock::iterator I = NewBB->begin(); 398 399 DebugLoc TheCallDL; 400 if (TheCall) 401 TheCallDL = TheCall->getDebugLoc(); 402 403 // Handle PHI nodes specially, as we have to remove references to dead 404 // blocks. 405 if (PHINode *PN = dyn_cast<PHINode>(I)) { 406 // Skip over all PHI nodes, remembering them for later. 407 BasicBlock::const_iterator OldI = BI->begin(); 408 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) 409 PHIToResolve.push_back(cast<PHINode>(OldI)); 410 } 411 412 // Otherwise, remap the rest of the instructions normally. 413 for (; I != NewBB->end(); ++I) 414 RemapInstruction(I, VMap, 415 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 416 } 417 418 // Defer PHI resolution until rest of function is resolved, PHI resolution 419 // requires the CFG to be up-to-date. 420 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 421 const PHINode *OPN = PHIToResolve[phino]; 422 unsigned NumPreds = OPN->getNumIncomingValues(); 423 const BasicBlock *OldBB = OPN->getParent(); 424 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 425 426 // Map operands for blocks that are live and remove operands for blocks 427 // that are dead. 428 for (; phino != PHIToResolve.size() && 429 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 430 OPN = PHIToResolve[phino]; 431 PHINode *PN = cast<PHINode>(VMap[OPN]); 432 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 433 Value *V = VMap[PN->getIncomingBlock(pred)]; 434 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 435 Value *InVal = MapValue(PN->getIncomingValue(pred), 436 VMap, 437 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 438 assert(InVal && "Unknown input value?"); 439 PN->setIncomingValue(pred, InVal); 440 PN->setIncomingBlock(pred, MappedBlock); 441 } else { 442 PN->removeIncomingValue(pred, false); 443 --pred, --e; // Revisit the next entry. 444 } 445 } 446 } 447 448 // The loop above has removed PHI entries for those blocks that are dead 449 // and has updated others. However, if a block is live (i.e. copied over) 450 // but its terminator has been changed to not go to this block, then our 451 // phi nodes will have invalid entries. Update the PHI nodes in this 452 // case. 453 PHINode *PN = cast<PHINode>(NewBB->begin()); 454 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 455 if (NumPreds != PN->getNumIncomingValues()) { 456 assert(NumPreds < PN->getNumIncomingValues()); 457 // Count how many times each predecessor comes to this block. 458 std::map<BasicBlock*, unsigned> PredCount; 459 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 460 PI != E; ++PI) 461 --PredCount[*PI]; 462 463 // Figure out how many entries to remove from each PHI. 464 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 465 ++PredCount[PN->getIncomingBlock(i)]; 466 467 // At this point, the excess predecessor entries are positive in the 468 // map. Loop over all of the PHIs and remove excess predecessor 469 // entries. 470 BasicBlock::iterator I = NewBB->begin(); 471 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 472 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 473 E = PredCount.end(); PCI != E; ++PCI) { 474 BasicBlock *Pred = PCI->first; 475 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 476 PN->removeIncomingValue(Pred, false); 477 } 478 } 479 } 480 481 // If the loops above have made these phi nodes have 0 or 1 operand, 482 // replace them with undef or the input value. We must do this for 483 // correctness, because 0-operand phis are not valid. 484 PN = cast<PHINode>(NewBB->begin()); 485 if (PN->getNumIncomingValues() == 0) { 486 BasicBlock::iterator I = NewBB->begin(); 487 BasicBlock::const_iterator OldI = OldBB->begin(); 488 while ((PN = dyn_cast<PHINode>(I++))) { 489 Value *NV = UndefValue::get(PN->getType()); 490 PN->replaceAllUsesWith(NV); 491 assert(VMap[OldI] == PN && "VMap mismatch"); 492 VMap[OldI] = NV; 493 PN->eraseFromParent(); 494 ++OldI; 495 } 496 } 497 // NOTE: We cannot eliminate single entry phi nodes here, because of 498 // VMap. Single entry phi nodes can have multiple VMap entries 499 // pointing at them. Thus, deleting one would require scanning the VMap 500 // to update any entries in it that would require that. This would be 501 // really slow. 502 } 503 504 // Now that the inlined function body has been fully constructed, go through 505 // and zap unconditional fall-through branches. This happen all the time when 506 // specializing code: code specialization turns conditional branches into 507 // uncond branches, and this code folds them. 508 Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]); 509 while (I != NewFunc->end()) { 510 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 511 if (!BI || BI->isConditional()) { ++I; continue; } 512 513 // Note that we can't eliminate uncond branches if the destination has 514 // single-entry PHI nodes. Eliminating the single-entry phi nodes would 515 // require scanning the VMap to update any entries that point to the phi 516 // node. 517 BasicBlock *Dest = BI->getSuccessor(0); 518 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) { 519 ++I; continue; 520 } 521 522 // We know all single-entry PHI nodes in the inlined function have been 523 // removed, so we just need to splice the blocks. 524 BI->eraseFromParent(); 525 526 // Make all PHI nodes that referred to Dest now refer to I as their source. 527 Dest->replaceAllUsesWith(I); 528 529 // Move all the instructions in the succ to the pred. 530 I->getInstList().splice(I->end(), Dest->getInstList()); 531 532 // Remove the dest block. 533 Dest->eraseFromParent(); 534 535 // Do not increment I, iteratively merge all things this block branches to. 536 } 537 } 538