1 /* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details 3 */ 4 5 /* this file has an amazingly stupid 6 name, yura please fix it to be 7 reiserfs.h, and merge all the rest 8 of our .h files that are in this 9 directory into it. */ 10 11 #ifndef _LINUX_REISER_FS_H 12 #define _LINUX_REISER_FS_H 13 14 #include <linux/types.h> 15 #include <linux/magic.h> 16 17 18 struct fid; 19 20 /* 21 * include/linux/reiser_fs.h 22 * 23 * Reiser File System constants and structures 24 * 25 */ 26 27 /* in reading the #defines, it may help to understand that they employ 28 the following abbreviations: 29 30 B = Buffer 31 I = Item header 32 H = Height within the tree (should be changed to LEV) 33 N = Number of the item in the node 34 STAT = stat data 35 DEH = Directory Entry Header 36 EC = Entry Count 37 E = Entry number 38 UL = Unsigned Long 39 BLKH = BLocK Header 40 UNFM = UNForMatted node 41 DC = Disk Child 42 P = Path 43 44 These #defines are named by concatenating these abbreviations, 45 where first comes the arguments, and last comes the return value, 46 of the macro. 47 48 */ 49 50 #define USE_INODE_GENERATION_COUNTER 51 52 #define REISERFS_PREALLOCATE 53 #define DISPLACE_NEW_PACKING_LOCALITIES 54 #define PREALLOCATION_SIZE 9 55 56 /* n must be power of 2 */ 57 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 58 59 // to be ok for alpha and others we have to align structures to 8 byte 60 // boundary. 61 // FIXME: do not change 4 by anything else: there is code which relies on that 62 #define ROUND_UP(x) _ROUND_UP(x,8LL) 63 64 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 65 ** messages. 66 */ 67 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 68 69 void reiserfs_warning(struct super_block *s, const char *fmt, ...); 70 /* assertions handling */ 71 72 /** always check a condition and panic if it's false. */ 73 #define __RASSERT( cond, scond, format, args... ) \ 74 if( !( cond ) ) \ 75 reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at " \ 76 __FILE__ ":%i:%s: " format "\n", \ 77 in_interrupt() ? -1 : task_pid_nr(current), __LINE__ , __FUNCTION__ , ##args ) 78 79 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 80 81 #if defined( CONFIG_REISERFS_CHECK ) 82 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 83 #else 84 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 85 #endif 86 87 #define CONSTF 88 /* 89 * Disk Data Structures 90 */ 91 92 /***************************************************************************/ 93 /* SUPER BLOCK */ 94 /***************************************************************************/ 95 96 /* 97 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs 98 * the version in RAM is part of a larger structure containing fields never written to disk. 99 */ 100 #define UNSET_HASH 0 // read_super will guess about, what hash names 101 // in directories were sorted with 102 #define TEA_HASH 1 103 #define YURA_HASH 2 104 #define R5_HASH 3 105 #define DEFAULT_HASH R5_HASH 106 107 struct journal_params { 108 __le32 jp_journal_1st_block; /* where does journal start from on its 109 * device */ 110 __le32 jp_journal_dev; /* journal device st_rdev */ 111 __le32 jp_journal_size; /* size of the journal */ 112 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ 113 __le32 jp_journal_magic; /* random value made on fs creation (this 114 * was sb_journal_block_count) */ 115 __le32 jp_journal_max_batch; /* max number of blocks to batch into a 116 * trans */ 117 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async 118 * commit be */ 119 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction 120 * be */ 121 }; 122 123 /* this is the super from 3.5.X, where X >= 10 */ 124 struct reiserfs_super_block_v1 { 125 __le32 s_block_count; /* blocks count */ 126 __le32 s_free_blocks; /* free blocks count */ 127 __le32 s_root_block; /* root block number */ 128 struct journal_params s_journal; 129 __le16 s_blocksize; /* block size */ 130 __le16 s_oid_maxsize; /* max size of object id array, see 131 * get_objectid() commentary */ 132 __le16 s_oid_cursize; /* current size of object id array */ 133 __le16 s_umount_state; /* this is set to 1 when filesystem was 134 * umounted, to 2 - when not */ 135 char s_magic[10]; /* reiserfs magic string indicates that 136 * file system is reiserfs: 137 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ 138 __le16 s_fs_state; /* it is set to used by fsck to mark which 139 * phase of rebuilding is done */ 140 __le32 s_hash_function_code; /* indicate, what hash function is being use 141 * to sort names in a directory*/ 142 __le16 s_tree_height; /* height of disk tree */ 143 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address 144 * each block of file system */ 145 __le16 s_version; /* this field is only reliable on filesystem 146 * with non-standard journal */ 147 __le16 s_reserved_for_journal; /* size in blocks of journal area on main 148 * device, we need to keep after 149 * making fs with non-standard journal */ 150 } __attribute__ ((__packed__)); 151 152 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 153 154 /* this is the on disk super block */ 155 struct reiserfs_super_block { 156 struct reiserfs_super_block_v1 s_v1; 157 __le32 s_inode_generation; 158 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ 159 unsigned char s_uuid[16]; /* filesystem unique identifier */ 160 unsigned char s_label[16]; /* filesystem volume label */ 161 char s_unused[88]; /* zero filled by mkreiserfs and 162 * reiserfs_convert_objectid_map_v1() 163 * so any additions must be updated 164 * there as well. */ 165 } __attribute__ ((__packed__)); 166 167 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 168 169 #define REISERFS_VERSION_1 0 170 #define REISERFS_VERSION_2 2 171 172 // on-disk super block fields converted to cpu form 173 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 174 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 175 #define SB_BLOCKSIZE(s) \ 176 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 177 #define SB_BLOCK_COUNT(s) \ 178 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 179 #define SB_FREE_BLOCKS(s) \ 180 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 181 #define SB_REISERFS_MAGIC(s) \ 182 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 183 #define SB_ROOT_BLOCK(s) \ 184 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 185 #define SB_TREE_HEIGHT(s) \ 186 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 187 #define SB_REISERFS_STATE(s) \ 188 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 189 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 190 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 191 192 #define PUT_SB_BLOCK_COUNT(s, val) \ 193 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 194 #define PUT_SB_FREE_BLOCKS(s, val) \ 195 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 196 #define PUT_SB_ROOT_BLOCK(s, val) \ 197 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 198 #define PUT_SB_TREE_HEIGHT(s, val) \ 199 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 200 #define PUT_SB_REISERFS_STATE(s, val) \ 201 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 202 #define PUT_SB_VERSION(s, val) \ 203 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 204 #define PUT_SB_BMAP_NR(s, val) \ 205 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 206 207 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 208 #define SB_ONDISK_JOURNAL_SIZE(s) \ 209 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 210 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 211 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 212 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 213 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 214 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 215 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 216 217 #define is_block_in_log_or_reserved_area(s, block) \ 218 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 219 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 220 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 221 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 222 223 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 224 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 225 int is_reiserfs_jr(struct reiserfs_super_block *rs); 226 227 /* ReiserFS leaves the first 64k unused, so that partition labels have 228 enough space. If someone wants to write a fancy bootloader that 229 needs more than 64k, let us know, and this will be increased in size. 230 This number must be larger than than the largest block size on any 231 platform, or code will break. -Hans */ 232 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 233 #define REISERFS_FIRST_BLOCK unused_define 234 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 235 236 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 237 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 238 239 // reiserfs internal error code (used by search_by_key adn fix_nodes)) 240 #define CARRY_ON 0 241 #define REPEAT_SEARCH -1 242 #define IO_ERROR -2 243 #define NO_DISK_SPACE -3 244 #define NO_BALANCING_NEEDED (-4) 245 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 246 #define QUOTA_EXCEEDED -6 247 248 typedef __u32 b_blocknr_t; 249 typedef __le32 unp_t; 250 251 struct unfm_nodeinfo { 252 unp_t unfm_nodenum; 253 unsigned short unfm_freespace; 254 }; 255 256 /* there are two formats of keys: 3.5 and 3.6 257 */ 258 #define KEY_FORMAT_3_5 0 259 #define KEY_FORMAT_3_6 1 260 261 /* there are two stat datas */ 262 #define STAT_DATA_V1 0 263 #define STAT_DATA_V2 1 264 265 static __inline__ struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 266 { 267 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 268 } 269 270 static __inline__ struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 271 { 272 return sb->s_fs_info; 273 } 274 275 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 276 * which overflows on large file systems. */ 277 static __inline__ u32 reiserfs_bmap_count(struct super_block *sb) 278 { 279 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 280 } 281 282 static __inline__ int bmap_would_wrap(unsigned bmap_nr) 283 { 284 return bmap_nr > ((1LL << 16) - 1); 285 } 286 287 /** this says about version of key of all items (but stat data) the 288 object consists of */ 289 #define get_inode_item_key_version( inode ) \ 290 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 291 292 #define set_inode_item_key_version( inode, version ) \ 293 ({ if((version)==KEY_FORMAT_3_6) \ 294 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 295 else \ 296 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 297 298 #define get_inode_sd_version(inode) \ 299 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 300 301 #define set_inode_sd_version(inode, version) \ 302 ({ if((version)==STAT_DATA_V2) \ 303 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 304 else \ 305 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 306 307 /* This is an aggressive tail suppression policy, I am hoping it 308 improves our benchmarks. The principle behind it is that percentage 309 space saving is what matters, not absolute space saving. This is 310 non-intuitive, but it helps to understand it if you consider that the 311 cost to access 4 blocks is not much more than the cost to access 1 312 block, if you have to do a seek and rotate. A tail risks a 313 non-linear disk access that is significant as a percentage of total 314 time cost for a 4 block file and saves an amount of space that is 315 less significant as a percentage of space, or so goes the hypothesis. 316 -Hans */ 317 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 318 (\ 319 (!(n_tail_size)) || \ 320 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 321 ( (n_file_size) >= (n_block_size) * 4 ) || \ 322 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 323 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 324 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 325 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 326 ( ( (n_file_size) >= (n_block_size) ) && \ 327 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 328 ) 329 330 /* Another strategy for tails, this one means only create a tail if all the 331 file would fit into one DIRECT item. 332 Primary intention for this one is to increase performance by decreasing 333 seeking. 334 */ 335 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 336 (\ 337 (!(n_tail_size)) || \ 338 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 339 ) 340 341 /* 342 * values for s_umount_state field 343 */ 344 #define REISERFS_VALID_FS 1 345 #define REISERFS_ERROR_FS 2 346 347 // 348 // there are 5 item types currently 349 // 350 #define TYPE_STAT_DATA 0 351 #define TYPE_INDIRECT 1 352 #define TYPE_DIRECT 2 353 #define TYPE_DIRENTRY 3 354 #define TYPE_MAXTYPE 3 355 #define TYPE_ANY 15 // FIXME: comment is required 356 357 /***************************************************************************/ 358 /* KEY & ITEM HEAD */ 359 /***************************************************************************/ 360 361 // 362 // directories use this key as well as old files 363 // 364 struct offset_v1 { 365 __le32 k_offset; 366 __le32 k_uniqueness; 367 } __attribute__ ((__packed__)); 368 369 struct offset_v2 { 370 __le64 v; 371 } __attribute__ ((__packed__)); 372 373 static __inline__ __u16 offset_v2_k_type(const struct offset_v2 *v2) 374 { 375 __u8 type = le64_to_cpu(v2->v) >> 60; 376 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 377 } 378 379 static __inline__ void set_offset_v2_k_type(struct offset_v2 *v2, int type) 380 { 381 v2->v = 382 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 383 } 384 385 static __inline__ loff_t offset_v2_k_offset(const struct offset_v2 *v2) 386 { 387 return le64_to_cpu(v2->v) & (~0ULL >> 4); 388 } 389 390 static __inline__ void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 391 { 392 offset &= (~0ULL >> 4); 393 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 394 } 395 396 /* Key of an item determines its location in the S+tree, and 397 is composed of 4 components */ 398 struct reiserfs_key { 399 __le32 k_dir_id; /* packing locality: by default parent 400 directory object id */ 401 __le32 k_objectid; /* object identifier */ 402 union { 403 struct offset_v1 k_offset_v1; 404 struct offset_v2 k_offset_v2; 405 } __attribute__ ((__packed__)) u; 406 } __attribute__ ((__packed__)); 407 408 struct in_core_key { 409 __u32 k_dir_id; /* packing locality: by default parent 410 directory object id */ 411 __u32 k_objectid; /* object identifier */ 412 __u64 k_offset; 413 __u8 k_type; 414 }; 415 416 struct cpu_key { 417 struct in_core_key on_disk_key; 418 int version; 419 int key_length; /* 3 in all cases but direct2indirect and 420 indirect2direct conversion */ 421 }; 422 423 /* Our function for comparing keys can compare keys of different 424 lengths. It takes as a parameter the length of the keys it is to 425 compare. These defines are used in determining what is to be passed 426 to it as that parameter. */ 427 #define REISERFS_FULL_KEY_LEN 4 428 #define REISERFS_SHORT_KEY_LEN 2 429 430 /* The result of the key compare */ 431 #define FIRST_GREATER 1 432 #define SECOND_GREATER -1 433 #define KEYS_IDENTICAL 0 434 #define KEY_FOUND 1 435 #define KEY_NOT_FOUND 0 436 437 #define KEY_SIZE (sizeof(struct reiserfs_key)) 438 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 439 440 /* return values for search_by_key and clones */ 441 #define ITEM_FOUND 1 442 #define ITEM_NOT_FOUND 0 443 #define ENTRY_FOUND 1 444 #define ENTRY_NOT_FOUND 0 445 #define DIRECTORY_NOT_FOUND -1 446 #define REGULAR_FILE_FOUND -2 447 #define DIRECTORY_FOUND -3 448 #define BYTE_FOUND 1 449 #define BYTE_NOT_FOUND 0 450 #define FILE_NOT_FOUND -1 451 452 #define POSITION_FOUND 1 453 #define POSITION_NOT_FOUND 0 454 455 // return values for reiserfs_find_entry and search_by_entry_key 456 #define NAME_FOUND 1 457 #define NAME_NOT_FOUND 0 458 #define GOTO_PREVIOUS_ITEM 2 459 #define NAME_FOUND_INVISIBLE 3 460 461 /* Everything in the filesystem is stored as a set of items. The 462 item head contains the key of the item, its free space (for 463 indirect items) and specifies the location of the item itself 464 within the block. */ 465 466 struct item_head { 467 /* Everything in the tree is found by searching for it based on 468 * its key.*/ 469 struct reiserfs_key ih_key; 470 union { 471 /* The free space in the last unformatted node of an 472 indirect item if this is an indirect item. This 473 equals 0xFFFF iff this is a direct item or stat data 474 item. Note that the key, not this field, is used to 475 determine the item type, and thus which field this 476 union contains. */ 477 __le16 ih_free_space_reserved; 478 /* Iff this is a directory item, this field equals the 479 number of directory entries in the directory item. */ 480 __le16 ih_entry_count; 481 } __attribute__ ((__packed__)) u; 482 __le16 ih_item_len; /* total size of the item body */ 483 __le16 ih_item_location; /* an offset to the item body 484 * within the block */ 485 __le16 ih_version; /* 0 for all old items, 2 for new 486 ones. Highest bit is set by fsck 487 temporary, cleaned after all 488 done */ 489 } __attribute__ ((__packed__)); 490 /* size of item header */ 491 #define IH_SIZE (sizeof(struct item_head)) 492 493 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 494 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 495 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 496 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 497 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 498 499 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 500 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 501 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 502 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 503 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 504 505 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 506 507 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 508 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 509 510 /* these operate on indirect items, where you've got an array of ints 511 ** at a possibly unaligned location. These are a noop on ia32 512 ** 513 ** p is the array of __u32, i is the index into the array, v is the value 514 ** to store there. 515 */ 516 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i))) 517 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i)) 518 519 // 520 // in old version uniqueness field shows key type 521 // 522 #define V1_SD_UNIQUENESS 0 523 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 524 #define V1_DIRECT_UNIQUENESS 0xffffffff 525 #define V1_DIRENTRY_UNIQUENESS 500 526 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required 527 528 // 529 // here are conversion routines 530 // 531 static __inline__ int uniqueness2type(__u32 uniqueness) CONSTF; 532 static __inline__ int uniqueness2type(__u32 uniqueness) 533 { 534 switch ((int)uniqueness) { 535 case V1_SD_UNIQUENESS: 536 return TYPE_STAT_DATA; 537 case V1_INDIRECT_UNIQUENESS: 538 return TYPE_INDIRECT; 539 case V1_DIRECT_UNIQUENESS: 540 return TYPE_DIRECT; 541 case V1_DIRENTRY_UNIQUENESS: 542 return TYPE_DIRENTRY; 543 default: 544 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d", 545 uniqueness); 546 case V1_ANY_UNIQUENESS: 547 return TYPE_ANY; 548 } 549 } 550 551 static __inline__ __u32 type2uniqueness(int type) CONSTF; 552 static __inline__ __u32 type2uniqueness(int type) 553 { 554 switch (type) { 555 case TYPE_STAT_DATA: 556 return V1_SD_UNIQUENESS; 557 case TYPE_INDIRECT: 558 return V1_INDIRECT_UNIQUENESS; 559 case TYPE_DIRECT: 560 return V1_DIRECT_UNIQUENESS; 561 case TYPE_DIRENTRY: 562 return V1_DIRENTRY_UNIQUENESS; 563 default: 564 reiserfs_warning(NULL, "vs-501: unknown type %d", type); 565 case TYPE_ANY: 566 return V1_ANY_UNIQUENESS; 567 } 568 } 569 570 // 571 // key is pointer to on disk key which is stored in le, result is cpu, 572 // there is no way to get version of object from key, so, provide 573 // version to these defines 574 // 575 static __inline__ loff_t le_key_k_offset(int version, 576 const struct reiserfs_key *key) 577 { 578 return (version == KEY_FORMAT_3_5) ? 579 le32_to_cpu(key->u.k_offset_v1.k_offset) : 580 offset_v2_k_offset(&(key->u.k_offset_v2)); 581 } 582 583 static __inline__ loff_t le_ih_k_offset(const struct item_head *ih) 584 { 585 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 586 } 587 588 static __inline__ loff_t le_key_k_type(int version, const struct reiserfs_key *key) 589 { 590 return (version == KEY_FORMAT_3_5) ? 591 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : 592 offset_v2_k_type(&(key->u.k_offset_v2)); 593 } 594 595 static __inline__ loff_t le_ih_k_type(const struct item_head *ih) 596 { 597 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 598 } 599 600 static __inline__ void set_le_key_k_offset(int version, struct reiserfs_key *key, 601 loff_t offset) 602 { 603 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ 604 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); 605 } 606 607 static __inline__ void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 608 { 609 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 610 } 611 612 static __inline__ void set_le_key_k_type(int version, struct reiserfs_key *key, 613 int type) 614 { 615 (version == KEY_FORMAT_3_5) ? 616 (void)(key->u.k_offset_v1.k_uniqueness = 617 cpu_to_le32(type2uniqueness(type))) 618 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); 619 } 620 static __inline__ void set_le_ih_k_type(struct item_head *ih, int type) 621 { 622 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 623 } 624 625 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY) 626 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT) 627 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT) 628 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA) 629 630 // 631 // item header has version. 632 // 633 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key)) 634 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key)) 635 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key)) 636 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key)) 637 638 // 639 // key is pointer to cpu key, result is cpu 640 // 641 static __inline__ loff_t cpu_key_k_offset(const struct cpu_key *key) 642 { 643 return key->on_disk_key.k_offset; 644 } 645 646 static __inline__ loff_t cpu_key_k_type(const struct cpu_key *key) 647 { 648 return key->on_disk_key.k_type; 649 } 650 651 static __inline__ void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 652 { 653 key->on_disk_key.k_offset = offset; 654 } 655 656 static __inline__ void set_cpu_key_k_type(struct cpu_key *key, int type) 657 { 658 key->on_disk_key.k_type = type; 659 } 660 661 static __inline__ void cpu_key_k_offset_dec(struct cpu_key *key) 662 { 663 key->on_disk_key.k_offset--; 664 } 665 666 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 667 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 668 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 669 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 670 671 /* are these used ? */ 672 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 673 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 674 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 675 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 676 677 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \ 678 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \ 679 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) ) 680 681 /* maximal length of item */ 682 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 683 #define MIN_ITEM_LEN 1 684 685 /* object identifier for root dir */ 686 #define REISERFS_ROOT_OBJECTID 2 687 #define REISERFS_ROOT_PARENT_OBJECTID 1 688 extern struct reiserfs_key root_key; 689 690 /* 691 * Picture represents a leaf of the S+tree 692 * ______________________________________________________ 693 * | | Array of | | | 694 * |Block | Object-Item | F r e e | Objects- | 695 * | head | Headers | S p a c e | Items | 696 * |______|_______________|___________________|___________| 697 */ 698 699 /* Header of a disk block. More precisely, header of a formatted leaf 700 or internal node, and not the header of an unformatted node. */ 701 struct block_head { 702 __le16 blk_level; /* Level of a block in the tree. */ 703 __le16 blk_nr_item; /* Number of keys/items in a block. */ 704 __le16 blk_free_space; /* Block free space in bytes. */ 705 __le16 blk_reserved; 706 /* dump this in v4/planA */ 707 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ 708 }; 709 710 #define BLKH_SIZE (sizeof(struct block_head)) 711 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 712 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 713 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 714 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 715 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 716 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 717 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 718 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 719 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 720 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 721 722 /* 723 * values for blk_level field of the struct block_head 724 */ 725 726 #define FREE_LEVEL 0 /* when node gets removed from the tree its 727 blk_level is set to FREE_LEVEL. It is then 728 used to see whether the node is still in the 729 tree */ 730 731 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 732 733 /* Given the buffer head of a formatted node, resolve to the block head of that node. */ 734 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data)) 735 /* Number of items that are in buffer. */ 736 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh))) 737 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh))) 738 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh))) 739 740 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0) 741 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0) 742 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0) 743 744 /* Get right delimiting key. -- little endian */ 745 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh)))) 746 747 /* Does the buffer contain a disk leaf. */ 748 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL) 749 750 /* Does the buffer contain a disk internal node */ 751 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \ 752 && B_LEVEL(p_s_bh) <= MAX_HEIGHT) 753 754 /***************************************************************************/ 755 /* STAT DATA */ 756 /***************************************************************************/ 757 758 // 759 // old stat data is 32 bytes long. We are going to distinguish new one by 760 // different size 761 // 762 struct stat_data_v1 { 763 __le16 sd_mode; /* file type, permissions */ 764 __le16 sd_nlink; /* number of hard links */ 765 __le16 sd_uid; /* owner */ 766 __le16 sd_gid; /* group */ 767 __le32 sd_size; /* file size */ 768 __le32 sd_atime; /* time of last access */ 769 __le32 sd_mtime; /* time file was last modified */ 770 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 771 union { 772 __le32 sd_rdev; 773 __le32 sd_blocks; /* number of blocks file uses */ 774 } __attribute__ ((__packed__)) u; 775 __le32 sd_first_direct_byte; /* first byte of file which is stored 776 in a direct item: except that if it 777 equals 1 it is a symlink and if it 778 equals ~(__u32)0 there is no 779 direct item. The existence of this 780 field really grates on me. Let's 781 replace it with a macro based on 782 sd_size and our tail suppression 783 policy. Someday. -Hans */ 784 } __attribute__ ((__packed__)); 785 786 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 787 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 788 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 789 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 790 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 791 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 792 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 793 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 794 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 795 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 796 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 797 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 798 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 799 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 800 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 801 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 802 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 803 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 804 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 805 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 806 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 807 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 808 #define sd_v1_first_direct_byte(sdp) \ 809 (le32_to_cpu((sdp)->sd_first_direct_byte)) 810 #define set_sd_v1_first_direct_byte(sdp,v) \ 811 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 812 813 /* inode flags stored in sd_attrs (nee sd_reserved) */ 814 815 /* we want common flags to have the same values as in ext2, 816 so chattr(1) will work without problems */ 817 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 818 #define REISERFS_APPEND_FL FS_APPEND_FL 819 #define REISERFS_SYNC_FL FS_SYNC_FL 820 #define REISERFS_NOATIME_FL FS_NOATIME_FL 821 #define REISERFS_NODUMP_FL FS_NODUMP_FL 822 #define REISERFS_SECRM_FL FS_SECRM_FL 823 #define REISERFS_UNRM_FL FS_UNRM_FL 824 #define REISERFS_COMPR_FL FS_COMPR_FL 825 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 826 827 /* persistent flags that file inherits from the parent directory */ 828 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 829 REISERFS_SYNC_FL | \ 830 REISERFS_NOATIME_FL | \ 831 REISERFS_NODUMP_FL | \ 832 REISERFS_SECRM_FL | \ 833 REISERFS_COMPR_FL | \ 834 REISERFS_NOTAIL_FL ) 835 836 /* Stat Data on disk (reiserfs version of UFS disk inode minus the 837 address blocks) */ 838 struct stat_data { 839 __le16 sd_mode; /* file type, permissions */ 840 __le16 sd_attrs; /* persistent inode flags */ 841 __le32 sd_nlink; /* number of hard links */ 842 __le64 sd_size; /* file size */ 843 __le32 sd_uid; /* owner */ 844 __le32 sd_gid; /* group */ 845 __le32 sd_atime; /* time of last access */ 846 __le32 sd_mtime; /* time file was last modified */ 847 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 848 __le32 sd_blocks; 849 union { 850 __le32 sd_rdev; 851 __le32 sd_generation; 852 //__le32 sd_first_direct_byte; 853 /* first byte of file which is stored in a 854 direct item: except that if it equals 1 855 it is a symlink and if it equals 856 ~(__u32)0 there is no direct item. The 857 existence of this field really grates 858 on me. Let's replace it with a macro 859 based on sd_size and our tail 860 suppression policy? */ 861 } __attribute__ ((__packed__)) u; 862 } __attribute__ ((__packed__)); 863 // 864 // this is 44 bytes long 865 // 866 #define SD_SIZE (sizeof(struct stat_data)) 867 #define SD_V2_SIZE SD_SIZE 868 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 869 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 870 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 871 /* sd_reserved */ 872 /* set_sd_reserved */ 873 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 874 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 875 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 876 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 877 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 878 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 879 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 880 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 881 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 882 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 883 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 884 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 885 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 886 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 887 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 888 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 889 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 890 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 891 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 892 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 893 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 894 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 895 896 /***************************************************************************/ 897 /* DIRECTORY STRUCTURE */ 898 /***************************************************************************/ 899 /* 900 Picture represents the structure of directory items 901 ________________________________________________ 902 | Array of | | | | | | 903 | directory |N-1| N-2 | .... | 1st |0th| 904 | entry headers | | | | | | 905 |_______________|___|_____|________|_______|___| 906 <---- directory entries ------> 907 908 First directory item has k_offset component 1. We store "." and ".." 909 in one item, always, we never split "." and ".." into differing 910 items. This makes, among other things, the code for removing 911 directories simpler. */ 912 #define SD_OFFSET 0 913 #define SD_UNIQUENESS 0 914 #define DOT_OFFSET 1 915 #define DOT_DOT_OFFSET 2 916 #define DIRENTRY_UNIQUENESS 500 917 918 /* */ 919 #define FIRST_ITEM_OFFSET 1 920 921 /* 922 Q: How to get key of object pointed to by entry from entry? 923 924 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key 925 of object, entry points to */ 926 927 /* NOT IMPLEMENTED: 928 Directory will someday contain stat data of object */ 929 930 struct reiserfs_de_head { 931 __le32 deh_offset; /* third component of the directory entry key */ 932 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced 933 by directory entry */ 934 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ 935 __le16 deh_location; /* offset of name in the whole item */ 936 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether 937 entry is hidden (unlinked) */ 938 } __attribute__ ((__packed__)); 939 #define DEH_SIZE sizeof(struct reiserfs_de_head) 940 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 941 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 942 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 943 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 944 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 945 946 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 947 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 948 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 949 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 950 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 951 952 /* empty directory contains two entries "." and ".." and their headers */ 953 #define EMPTY_DIR_SIZE \ 954 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 955 956 /* old format directories have this size when empty */ 957 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 958 959 #define DEH_Statdata 0 /* not used now */ 960 #define DEH_Visible 2 961 962 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 963 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 964 # define ADDR_UNALIGNED_BITS (3) 965 #endif 966 967 /* These are only used to manipulate deh_state. 968 * Because of this, we'll use the ext2_ bit routines, 969 * since they are little endian */ 970 #ifdef ADDR_UNALIGNED_BITS 971 972 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 973 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 974 975 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 976 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 977 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 978 979 #else 980 981 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr) 982 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr) 983 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr) 984 985 #endif 986 987 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 988 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 989 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 990 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 991 992 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 993 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 994 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 995 996 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 997 __le32 par_dirid, __le32 par_objid); 998 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 999 __le32 par_dirid, __le32 par_objid); 1000 1001 /* array of the entry headers */ 1002 /* get item body */ 1003 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) 1004 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) 1005 1006 /* length of the directory entry in directory item. This define 1007 calculates length of i-th directory entry using directory entry 1008 locations from dir entry head. When it calculates length of 0-th 1009 directory entry, it uses length of whole item in place of entry 1010 location of the non-existent following entry in the calculation. 1011 See picture above.*/ 1012 /* 1013 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ 1014 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) 1015 */ 1016 static __inline__ int entry_length(const struct buffer_head *bh, 1017 const struct item_head *ih, int pos_in_item) 1018 { 1019 struct reiserfs_de_head *deh; 1020 1021 deh = B_I_DEH(bh, ih) + pos_in_item; 1022 if (pos_in_item) 1023 return deh_location(deh - 1) - deh_location(deh); 1024 1025 return ih_item_len(ih) - deh_location(deh); 1026 } 1027 1028 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ 1029 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) 1030 1031 /* name by bh, ih and entry_num */ 1032 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) 1033 1034 // two entries per block (at least) 1035 #define REISERFS_MAX_NAME(block_size) 255 1036 1037 /* this structure is used for operations on directory entries. It is 1038 not a disk structure. */ 1039 /* When reiserfs_find_entry or search_by_entry_key find directory 1040 entry, they return filled reiserfs_dir_entry structure */ 1041 struct reiserfs_dir_entry { 1042 struct buffer_head *de_bh; 1043 int de_item_num; 1044 struct item_head *de_ih; 1045 int de_entry_num; 1046 struct reiserfs_de_head *de_deh; 1047 int de_entrylen; 1048 int de_namelen; 1049 char *de_name; 1050 unsigned long *de_gen_number_bit_string; 1051 1052 __u32 de_dir_id; 1053 __u32 de_objectid; 1054 1055 struct cpu_key de_entry_key; 1056 }; 1057 1058 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ 1059 1060 /* pointer to file name, stored in entry */ 1061 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) 1062 1063 /* length of name */ 1064 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 1065 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 1066 1067 /* hash value occupies bits from 7 up to 30 */ 1068 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 1069 /* generation number occupies 7 bits starting from 0 up to 6 */ 1070 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 1071 #define MAX_GENERATION_NUMBER 127 1072 1073 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 1074 1075 /* 1076 * Picture represents an internal node of the reiserfs tree 1077 * ______________________________________________________ 1078 * | | Array of | Array of | Free | 1079 * |block | keys | pointers | space | 1080 * | head | N | N+1 | | 1081 * |______|_______________|___________________|___________| 1082 */ 1083 1084 /***************************************************************************/ 1085 /* DISK CHILD */ 1086 /***************************************************************************/ 1087 /* Disk child pointer: The pointer from an internal node of the tree 1088 to a node that is on disk. */ 1089 struct disk_child { 1090 __le32 dc_block_number; /* Disk child's block number. */ 1091 __le16 dc_size; /* Disk child's used space. */ 1092 __le16 dc_reserved; 1093 }; 1094 1095 #define DC_SIZE (sizeof(struct disk_child)) 1096 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 1097 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 1098 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 1099 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 1100 1101 /* Get disk child by buffer header and position in the tree node. */ 1102 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\ 1103 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos))) 1104 1105 /* Get disk child number by buffer header and position in the tree node. */ 1106 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos))) 1107 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val )) 1108 1109 /* maximal value of field child_size in structure disk_child */ 1110 /* child size is the combined size of all items and their headers */ 1111 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 1112 1113 /* amount of used space in buffer (not including block head) */ 1114 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 1115 1116 /* max and min number of keys in internal node */ 1117 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 1118 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 1119 1120 /***************************************************************************/ 1121 /* PATH STRUCTURES AND DEFINES */ 1122 /***************************************************************************/ 1123 1124 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the 1125 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it 1126 does not find them in the cache it reads them from disk. For each node search_by_key finds using 1127 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the 1128 position of the block_number of the next node if it is looking through an internal node. If it 1129 is looking through a leaf node bin_search will find the position of the item which has key either 1130 equal to given key, or which is the maximal key less than the given key. */ 1131 1132 struct path_element { 1133 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ 1134 int pe_position; /* Position in the tree node which is placed in the */ 1135 /* buffer above. */ 1136 }; 1137 1138 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ 1139 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 1140 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ 1141 1142 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 1143 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 1144 1145 /* We need to keep track of who the ancestors of nodes are. When we 1146 perform a search we record which nodes were visited while 1147 descending the tree looking for the node we searched for. This list 1148 of nodes is called the path. This information is used while 1149 performing balancing. Note that this path information may become 1150 invalid, and this means we must check it when using it to see if it 1151 is still valid. You'll need to read search_by_key and the comments 1152 in it, especially about decrement_counters_in_path(), to understand 1153 this structure. 1154 1155 Paths make the code so much harder to work with and debug.... An 1156 enormous number of bugs are due to them, and trying to write or modify 1157 code that uses them just makes my head hurt. They are based on an 1158 excessive effort to avoid disturbing the precious VFS code.:-( The 1159 gods only know how we are going to SMP the code that uses them. 1160 znodes are the way! */ 1161 1162 #define PATH_READA 0x1 /* do read ahead */ 1163 #define PATH_READA_BACK 0x2 /* read backwards */ 1164 1165 struct treepath { 1166 int path_length; /* Length of the array above. */ 1167 int reada; 1168 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ 1169 int pos_in_item; 1170 }; 1171 1172 #define pos_in_item(path) ((path)->pos_in_item) 1173 1174 #define INITIALIZE_PATH(var) \ 1175 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 1176 1177 /* Get path element by path and path position. */ 1178 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset)) 1179 1180 /* Get buffer header at the path by path and path position. */ 1181 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer) 1182 1183 /* Get position in the element at the path by path and path position. */ 1184 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position) 1185 1186 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length)) 1187 /* you know, to the person who didn't 1188 write this the macro name does not 1189 at first suggest what it does. 1190 Maybe POSITION_FROM_PATH_END? Or 1191 maybe we should just focus on 1192 dumping paths... -Hans */ 1193 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length)) 1194 1195 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path)) 1196 1197 /* in do_balance leaf has h == 0 in contrast with path structure, 1198 where root has level == 0. That is why we need these defines */ 1199 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */ 1200 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ 1201 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) 1202 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ 1203 1204 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h)) 1205 1206 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 1207 #define get_ih(path) PATH_PITEM_HEAD(path) 1208 #define get_item_pos(path) PATH_LAST_POSITION(path) 1209 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) 1210 #define item_moved(ih,path) comp_items(ih, path) 1211 #define path_changed(ih,path) comp_items (ih, path) 1212 1213 /***************************************************************************/ 1214 /* MISC */ 1215 /***************************************************************************/ 1216 1217 /* Size of pointer to the unformatted node. */ 1218 #define UNFM_P_SIZE (sizeof(unp_t)) 1219 #define UNFM_P_SHIFT 2 1220 1221 // in in-core inode key is stored on le form 1222 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 1223 1224 #define MAX_UL_INT 0xffffffff 1225 #define MAX_INT 0x7ffffff 1226 #define MAX_US_INT 0xffff 1227 1228 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 1229 #define U32_MAX (~(__u32)0) 1230 1231 static __inline__ loff_t max_reiserfs_offset(struct inode *inode) 1232 { 1233 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 1234 return (loff_t) U32_MAX; 1235 1236 return (loff_t) ((~(__u64) 0) >> 4); 1237 } 1238 1239 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ 1240 #define MAX_KEY_OBJECTID MAX_UL_INT 1241 1242 #define MAX_B_NUM MAX_UL_INT 1243 #define MAX_FC_NUM MAX_US_INT 1244 1245 /* the purpose is to detect overflow of an unsigned short */ 1246 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 1247 1248 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ 1249 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ 1250 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ 1251 1252 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 1253 #define get_generation(s) atomic_read (&fs_generation(s)) 1254 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 1255 #define __fs_changed(gen,s) (gen != get_generation (s)) 1256 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);}) 1257 1258 /***************************************************************************/ 1259 /* FIXATE NODES */ 1260 /***************************************************************************/ 1261 1262 #define VI_TYPE_LEFT_MERGEABLE 1 1263 #define VI_TYPE_RIGHT_MERGEABLE 2 1264 1265 /* To make any changes in the tree we always first find node, that 1266 contains item to be changed/deleted or place to insert a new 1267 item. We call this node S. To do balancing we need to decide what 1268 we will shift to left/right neighbor, or to a new node, where new 1269 item will be etc. To make this analysis simpler we build virtual 1270 node. Virtual node is an array of items, that will replace items of 1271 node S. (For instance if we are going to delete an item, virtual 1272 node does not contain it). Virtual node keeps information about 1273 item sizes and types, mergeability of first and last items, sizes 1274 of all entries in directory item. We use this array of items when 1275 calculating what we can shift to neighbors and how many nodes we 1276 have to have if we do not any shiftings, if we shift to left/right 1277 neighbor or to both. */ 1278 struct virtual_item { 1279 int vi_index; // index in the array of item operations 1280 unsigned short vi_type; // left/right mergeability 1281 unsigned short vi_item_len; /* length of item that it will have after balancing */ 1282 struct item_head *vi_ih; 1283 const char *vi_item; // body of item (old or new) 1284 const void *vi_new_data; // 0 always but paste mode 1285 void *vi_uarea; // item specific area 1286 }; 1287 1288 struct virtual_node { 1289 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ 1290 unsigned short vn_nr_item; /* number of items in virtual node */ 1291 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ 1292 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ 1293 short vn_affected_item_num; 1294 short vn_pos_in_item; 1295 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ 1296 const void *vn_data; 1297 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ 1298 }; 1299 1300 /* used by directory items when creating virtual nodes */ 1301 struct direntry_uarea { 1302 int flags; 1303 __u16 entry_count; 1304 __u16 entry_sizes[1]; 1305 } __attribute__ ((__packed__)); 1306 1307 /***************************************************************************/ 1308 /* TREE BALANCE */ 1309 /***************************************************************************/ 1310 1311 /* This temporary structure is used in tree balance algorithms, and 1312 constructed as we go to the extent that its various parts are 1313 needed. It contains arrays of nodes that can potentially be 1314 involved in the balancing of node S, and parameters that define how 1315 each of the nodes must be balanced. Note that in these algorithms 1316 for balancing the worst case is to need to balance the current node 1317 S and the left and right neighbors and all of their parents plus 1318 create a new node. We implement S1 balancing for the leaf nodes 1319 and S0 balancing for the internal nodes (S1 and S0 are defined in 1320 our papers.)*/ 1321 1322 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ 1323 1324 /* maximum number of FEB blocknrs on a single level */ 1325 #define MAX_AMOUNT_NEEDED 2 1326 1327 /* someday somebody will prefix every field in this struct with tb_ */ 1328 struct tree_balance { 1329 int tb_mode; 1330 int need_balance_dirty; 1331 struct super_block *tb_sb; 1332 struct reiserfs_transaction_handle *transaction_handle; 1333 struct treepath *tb_path; 1334 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ 1335 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ 1336 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ 1337 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ 1338 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ 1339 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ 1340 1341 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals 1342 cur_blknum. */ 1343 struct buffer_head *used[MAX_FEB_SIZE]; 1344 struct buffer_head *thrown[MAX_FEB_SIZE]; 1345 int lnum[MAX_HEIGHT]; /* array of number of items which must be 1346 shifted to the left in order to balance the 1347 current node; for leaves includes item that 1348 will be partially shifted; for internal 1349 nodes, it is the number of child pointers 1350 rather than items. It includes the new item 1351 being created. The code sometimes subtracts 1352 one to get the number of wholly shifted 1353 items for other purposes. */ 1354 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ 1355 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and 1356 S[h] to its item number within the node CFL[h] */ 1357 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ 1358 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from 1359 S[h]. A negative value means removing. */ 1360 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after 1361 balancing on the level h of the tree. If 0 then S is 1362 being deleted, if 1 then S is remaining and no new nodes 1363 are being created, if 2 or 3 then 1 or 2 new nodes is 1364 being created */ 1365 1366 /* fields that are used only for balancing leaves of the tree */ 1367 int cur_blknum; /* number of empty blocks having been already allocated */ 1368 int s0num; /* number of items that fall into left most node when S[0] splits */ 1369 int s1num; /* number of items that fall into first new node when S[0] splits */ 1370 int s2num; /* number of items that fall into second new node when S[0] splits */ 1371 int lbytes; /* number of bytes which can flow to the left neighbor from the left */ 1372 /* most liquid item that cannot be shifted from S[0] entirely */ 1373 /* if -1 then nothing will be partially shifted */ 1374 int rbytes; /* number of bytes which will flow to the right neighbor from the right */ 1375 /* most liquid item that cannot be shifted from S[0] entirely */ 1376 /* if -1 then nothing will be partially shifted */ 1377 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ 1378 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ 1379 int s2bytes; 1380 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ 1381 char *vn_buf; /* kmalloced memory. Used to create 1382 virtual node and keep map of 1383 dirtied bitmap blocks */ 1384 int vn_buf_size; /* size of the vn_buf */ 1385 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ 1386 1387 int fs_gen; /* saved value of `reiserfs_generation' counter 1388 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ 1389 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1390 struct in_core_key key; /* key pointer, to pass to block allocator or 1391 another low-level subsystem */ 1392 #endif 1393 }; 1394 1395 /* These are modes of balancing */ 1396 1397 /* When inserting an item. */ 1398 #define M_INSERT 'i' 1399 /* When inserting into (directories only) or appending onto an already 1400 existant item. */ 1401 #define M_PASTE 'p' 1402 /* When deleting an item. */ 1403 #define M_DELETE 'd' 1404 /* When truncating an item or removing an entry from a (directory) item. */ 1405 #define M_CUT 'c' 1406 1407 /* used when balancing on leaf level skipped (in reiserfsck) */ 1408 #define M_INTERNAL 'n' 1409 1410 /* When further balancing is not needed, then do_balance does not need 1411 to be called. */ 1412 #define M_SKIP_BALANCING 's' 1413 #define M_CONVERT 'v' 1414 1415 /* modes of leaf_move_items */ 1416 #define LEAF_FROM_S_TO_L 0 1417 #define LEAF_FROM_S_TO_R 1 1418 #define LEAF_FROM_R_TO_L 2 1419 #define LEAF_FROM_L_TO_R 3 1420 #define LEAF_FROM_S_TO_SNEW 4 1421 1422 #define FIRST_TO_LAST 0 1423 #define LAST_TO_FIRST 1 1424 1425 /* used in do_balance for passing parent of node information that has 1426 been gotten from tb struct */ 1427 struct buffer_info { 1428 struct tree_balance *tb; 1429 struct buffer_head *bi_bh; 1430 struct buffer_head *bi_parent; 1431 int bi_position; 1432 }; 1433 1434 /* there are 4 types of items: stat data, directory item, indirect, direct. 1435 +-------------------+------------+--------------+------------+ 1436 | | k_offset | k_uniqueness | mergeable? | 1437 +-------------------+------------+--------------+------------+ 1438 | stat data | 0 | 0 | no | 1439 +-------------------+------------+--------------+------------+ 1440 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | 1441 | non 1st directory | hash value | | yes | 1442 | item | | | | 1443 +-------------------+------------+--------------+------------+ 1444 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object 1445 +-------------------+------------+--------------+------------+ 1446 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object 1447 +-------------------+------------+--------------+------------+ 1448 */ 1449 1450 struct item_operations { 1451 int (*bytes_number) (struct item_head * ih, int block_size); 1452 void (*decrement_key) (struct cpu_key *); 1453 int (*is_left_mergeable) (struct reiserfs_key * ih, 1454 unsigned long bsize); 1455 void (*print_item) (struct item_head *, char *item); 1456 void (*check_item) (struct item_head *, char *item); 1457 1458 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 1459 int is_affected, int insert_size); 1460 int (*check_left) (struct virtual_item * vi, int free, 1461 int start_skip, int end_skip); 1462 int (*check_right) (struct virtual_item * vi, int free); 1463 int (*part_size) (struct virtual_item * vi, int from, int to); 1464 int (*unit_num) (struct virtual_item * vi); 1465 void (*print_vi) (struct virtual_item * vi); 1466 }; 1467 1468 extern struct item_operations *item_ops[TYPE_ANY + 1]; 1469 1470 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 1471 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 1472 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 1473 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 1474 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 1475 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 1476 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 1477 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 1478 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 1479 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 1480 1481 #define COMP_SHORT_KEYS comp_short_keys 1482 1483 /* number of blocks pointed to by the indirect item */ 1484 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE ) 1485 1486 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ 1487 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 1488 1489 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ 1490 1491 /* get the item header */ 1492 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1493 1494 /* get key */ 1495 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1496 1497 /* get the key */ 1498 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) 1499 1500 /* get item body */ 1501 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) 1502 1503 /* get the stat data by the buffer header and the item order */ 1504 #define B_N_STAT_DATA(bh,nr) \ 1505 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) 1506 1507 /* following defines use reiserfs buffer header and item header */ 1508 1509 /* get stat-data */ 1510 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 1511 1512 // this is 3976 for size==4096 1513 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 1514 1515 /* indirect items consist of entries which contain blocknrs, pos 1516 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 1517 blocknr contained by the entry pos points to */ 1518 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) 1519 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) 1520 1521 struct reiserfs_iget_args { 1522 __u32 objectid; 1523 __u32 dirid; 1524 }; 1525 1526 /***************************************************************************/ 1527 /* FUNCTION DECLARATIONS */ 1528 /***************************************************************************/ 1529 1530 /*#ifdef __KERNEL__*/ 1531 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 1532 1533 #define journal_trans_half(blocksize) \ 1534 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 1535 1536 /* journal.c see journal.c for all the comments here */ 1537 1538 /* first block written in a commit. */ 1539 struct reiserfs_journal_desc { 1540 __le32 j_trans_id; /* id of commit */ 1541 __le32 j_len; /* length of commit. len +1 is the commit block */ 1542 __le32 j_mount_id; /* mount id of this trans */ 1543 __le32 j_realblock[1]; /* real locations for each block */ 1544 }; 1545 1546 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 1547 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 1548 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 1549 1550 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 1551 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 1552 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 1553 1554 /* last block written in a commit */ 1555 struct reiserfs_journal_commit { 1556 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 1557 __le32 j_len; /* ditto */ 1558 __le32 j_realblock[1]; /* real locations for each block */ 1559 }; 1560 1561 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 1562 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 1563 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 1564 1565 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 1566 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 1567 1568 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the 1569 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, 1570 ** and this transaction does not need to be replayed. 1571 */ 1572 struct reiserfs_journal_header { 1573 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ 1574 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ 1575 __le32 j_mount_id; 1576 /* 12 */ struct journal_params jh_journal; 1577 }; 1578 1579 /* biggest tunable defines are right here */ 1580 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 1581 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ 1582 #define JOURNAL_TRANS_MIN_DEFAULT 256 1583 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ 1584 #define JOURNAL_MIN_RATIO 2 1585 #define JOURNAL_MAX_COMMIT_AGE 30 1586 #define JOURNAL_MAX_TRANS_AGE 30 1587 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 1588 #ifdef CONFIG_QUOTA 1589 /* We need to update data and inode (atime) */ 1590 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0) 1591 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 1592 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1593 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 1594 /* same as with INIT */ 1595 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1596 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 1597 #else 1598 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 1599 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 1600 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 1601 #endif 1602 1603 /* both of these can be as low as 1, or as high as you want. The min is the 1604 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated 1605 ** as needed, and released when transactions are committed. On release, if 1606 ** the current number of nodes is > max, the node is freed, otherwise, 1607 ** it is put on a free list for faster use later. 1608 */ 1609 #define REISERFS_MIN_BITMAP_NODES 10 1610 #define REISERFS_MAX_BITMAP_NODES 100 1611 1612 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ 1613 #define JBH_HASH_MASK 8191 1614 1615 #define _jhashfn(sb,block) \ 1616 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 1617 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 1618 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 1619 1620 // We need these to make journal.c code more readable 1621 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1622 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1623 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1624 1625 enum reiserfs_bh_state_bits { 1626 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 1627 BH_JDirty_wait, 1628 BH_JNew, /* disk block was taken off free list before 1629 * being in a finished transaction, or 1630 * written to disk. Can be reused immed. */ 1631 BH_JPrepared, 1632 BH_JRestore_dirty, 1633 BH_JTest, // debugging only will go away 1634 }; 1635 1636 BUFFER_FNS(JDirty, journaled); 1637 TAS_BUFFER_FNS(JDirty, journaled); 1638 BUFFER_FNS(JDirty_wait, journal_dirty); 1639 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 1640 BUFFER_FNS(JNew, journal_new); 1641 TAS_BUFFER_FNS(JNew, journal_new); 1642 BUFFER_FNS(JPrepared, journal_prepared); 1643 TAS_BUFFER_FNS(JPrepared, journal_prepared); 1644 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1645 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1646 BUFFER_FNS(JTest, journal_test); 1647 TAS_BUFFER_FNS(JTest, journal_test); 1648 1649 /* 1650 ** transaction handle which is passed around for all journal calls 1651 */ 1652 struct reiserfs_transaction_handle { 1653 struct super_block *t_super; /* super for this FS when journal_begin was 1654 called. saves calls to reiserfs_get_super 1655 also used by nested transactions to make 1656 sure they are nesting on the right FS 1657 _must_ be first in the handle 1658 */ 1659 int t_refcount; 1660 int t_blocks_logged; /* number of blocks this writer has logged */ 1661 int t_blocks_allocated; /* number of blocks this writer allocated */ 1662 unsigned long t_trans_id; /* sanity check, equals the current trans id */ 1663 void *t_handle_save; /* save existing current->journal_info */ 1664 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block 1665 should be displaced from others */ 1666 struct list_head t_list; 1667 }; 1668 1669 /* used to keep track of ordered and tail writes, attached to the buffer 1670 * head through b_journal_head. 1671 */ 1672 struct reiserfs_jh { 1673 struct reiserfs_journal_list *jl; 1674 struct buffer_head *bh; 1675 struct list_head list; 1676 }; 1677 1678 void reiserfs_free_jh(struct buffer_head *bh); 1679 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 1680 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 1681 int journal_mark_dirty(struct reiserfs_transaction_handle *, 1682 struct super_block *, struct buffer_head *bh); 1683 1684 static __inline__ int reiserfs_file_data_log(struct inode *inode) 1685 { 1686 if (reiserfs_data_log(inode->i_sb) || 1687 (REISERFS_I(inode)->i_flags & i_data_log)) 1688 return 1; 1689 return 0; 1690 } 1691 1692 static __inline__ int reiserfs_transaction_running(struct super_block *s) 1693 { 1694 struct reiserfs_transaction_handle *th = current->journal_info; 1695 if (th && th->t_super == s) 1696 return 1; 1697 if (th && th->t_super == NULL) 1698 BUG(); 1699 return 0; 1700 } 1701 1702 static __inline__ int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 1703 { 1704 return th->t_blocks_allocated - th->t_blocks_logged; 1705 } 1706 1707 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 1708 super_block 1709 *, 1710 int count); 1711 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 1712 int reiserfs_commit_page(struct inode *inode, struct page *page, 1713 unsigned from, unsigned to); 1714 int reiserfs_flush_old_commits(struct super_block *); 1715 int reiserfs_commit_for_inode(struct inode *); 1716 int reiserfs_inode_needs_commit(struct inode *); 1717 void reiserfs_update_inode_transaction(struct inode *); 1718 void reiserfs_wait_on_write_block(struct super_block *s); 1719 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 1720 void reiserfs_allow_writes(struct super_block *s); 1721 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 1722 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 1723 int wait); 1724 void reiserfs_restore_prepared_buffer(struct super_block *, 1725 struct buffer_head *bh); 1726 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 1727 unsigned int); 1728 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 1729 int journal_release_error(struct reiserfs_transaction_handle *, 1730 struct super_block *); 1731 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, 1732 unsigned long); 1733 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, 1734 unsigned long); 1735 int journal_mark_freed(struct reiserfs_transaction_handle *, 1736 struct super_block *, b_blocknr_t blocknr); 1737 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 1738 int reiserfs_in_journal(struct super_block *p_s_sb, unsigned int bmap_nr, 1739 int bit_nr, int searchall, b_blocknr_t *next); 1740 int journal_begin(struct reiserfs_transaction_handle *, 1741 struct super_block *p_s_sb, unsigned long); 1742 int journal_join_abort(struct reiserfs_transaction_handle *, 1743 struct super_block *p_s_sb, unsigned long); 1744 void reiserfs_journal_abort(struct super_block *sb, int errno); 1745 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 1746 int reiserfs_allocate_list_bitmaps(struct super_block *s, 1747 struct reiserfs_list_bitmap *, unsigned int); 1748 1749 void add_save_link(struct reiserfs_transaction_handle *th, 1750 struct inode *inode, int truncate); 1751 int remove_save_link(struct inode *inode, int truncate); 1752 1753 /* objectid.c */ 1754 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 1755 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 1756 __u32 objectid_to_release); 1757 int reiserfs_convert_objectid_map_v1(struct super_block *); 1758 1759 /* stree.c */ 1760 int B_IS_IN_TREE(const struct buffer_head *); 1761 extern void copy_item_head(struct item_head *p_v_to, 1762 const struct item_head *p_v_from); 1763 1764 // first key is in cpu form, second - le 1765 extern int comp_short_keys(const struct reiserfs_key *le_key, 1766 const struct cpu_key *cpu_key); 1767 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 1768 1769 // both are in le form 1770 extern int comp_le_keys(const struct reiserfs_key *, 1771 const struct reiserfs_key *); 1772 extern int comp_short_le_keys(const struct reiserfs_key *, 1773 const struct reiserfs_key *); 1774 1775 // 1776 // get key version from on disk key - kludge 1777 // 1778 static __inline__ int le_key_version(const struct reiserfs_key *key) 1779 { 1780 int type; 1781 1782 type = offset_v2_k_type(&(key->u.k_offset_v2)); 1783 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 1784 && type != TYPE_DIRENTRY) 1785 return KEY_FORMAT_3_5; 1786 1787 return KEY_FORMAT_3_6; 1788 1789 } 1790 1791 static __inline__ void copy_key(struct reiserfs_key *to, 1792 const struct reiserfs_key *from) 1793 { 1794 memcpy(to, from, KEY_SIZE); 1795 } 1796 1797 int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path); 1798 const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path, 1799 const struct super_block *p_s_sb); 1800 int search_by_key(struct super_block *, const struct cpu_key *, 1801 struct treepath *, int); 1802 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 1803 int search_for_position_by_key(struct super_block *p_s_sb, 1804 const struct cpu_key *p_s_cpu_key, 1805 struct treepath *p_s_search_path); 1806 extern void decrement_bcount(struct buffer_head *p_s_bh); 1807 void decrement_counters_in_path(struct treepath *p_s_search_path); 1808 void pathrelse(struct treepath *p_s_search_path); 1809 int reiserfs_check_path(struct treepath *p); 1810 void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path); 1811 1812 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 1813 struct treepath *path, 1814 const struct cpu_key *key, 1815 struct item_head *ih, 1816 struct inode *inode, const char *body); 1817 1818 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 1819 struct treepath *path, 1820 const struct cpu_key *key, 1821 struct inode *inode, 1822 const char *body, int paste_size); 1823 1824 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1825 struct treepath *path, 1826 struct cpu_key *key, 1827 struct inode *inode, 1828 struct page *page, loff_t new_file_size); 1829 1830 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1831 struct treepath *path, 1832 const struct cpu_key *key, 1833 struct inode *inode, struct buffer_head *p_s_un_bh); 1834 1835 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1836 struct inode *inode, struct reiserfs_key *key); 1837 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1838 struct inode *p_s_inode); 1839 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1840 struct inode *p_s_inode, struct page *, 1841 int update_timestamps); 1842 1843 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 1844 #define file_size(inode) ((inode)->i_size) 1845 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 1846 1847 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 1848 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 1849 1850 void padd_item(char *item, int total_length, int length); 1851 1852 /* inode.c */ 1853 /* args for the create parameter of reiserfs_get_block */ 1854 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 1855 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 1856 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 1857 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 1858 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 1859 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 1860 1861 void reiserfs_read_locked_inode(struct inode *inode, 1862 struct reiserfs_iget_args *args); 1863 int reiserfs_find_actor(struct inode *inode, void *p); 1864 int reiserfs_init_locked_inode(struct inode *inode, void *p); 1865 void reiserfs_delete_inode(struct inode *inode); 1866 int reiserfs_write_inode(struct inode *inode, int); 1867 int reiserfs_get_block(struct inode *inode, sector_t block, 1868 struct buffer_head *bh_result, int create); 1869 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1870 int fh_len, int fh_type); 1871 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1872 int fh_len, int fh_type); 1873 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1874 int connectable); 1875 1876 int reiserfs_truncate_file(struct inode *, int update_timestamps); 1877 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 1878 int type, int key_length); 1879 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 1880 int version, 1881 loff_t offset, int type, int length, int entry_count); 1882 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 1883 1884 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1885 struct inode *dir, int mode, 1886 const char *symname, loff_t i_size, 1887 struct dentry *dentry, struct inode *inode); 1888 1889 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1890 struct inode *inode, loff_t size); 1891 1892 static __inline__ void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 1893 struct inode *inode) 1894 { 1895 reiserfs_update_sd_size(th, inode, inode->i_size); 1896 } 1897 1898 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 1899 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 1900 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 1901 1902 /* namei.c */ 1903 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 1904 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 1905 struct treepath *path, struct reiserfs_dir_entry *de); 1906 struct dentry *reiserfs_get_parent(struct dentry *); 1907 /* procfs.c */ 1908 1909 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 1910 #define REISERFS_PROC_INFO 1911 #else 1912 #undef REISERFS_PROC_INFO 1913 #endif 1914 1915 int reiserfs_proc_info_init(struct super_block *sb); 1916 int reiserfs_proc_info_done(struct super_block *sb); 1917 struct proc_dir_entry *reiserfs_proc_register_global(char *name, 1918 read_proc_t * func); 1919 void reiserfs_proc_unregister_global(const char *name); 1920 int reiserfs_proc_info_global_init(void); 1921 int reiserfs_proc_info_global_done(void); 1922 int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset, 1923 int count, int *eof, void *data); 1924 1925 #if defined( REISERFS_PROC_INFO ) 1926 1927 #define PROC_EXP( e ) e 1928 1929 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 1930 #define PROC_INFO_MAX( sb, field, value ) \ 1931 __PINFO( sb ).field = \ 1932 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 1933 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 1934 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 1935 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 1936 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 1937 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 1938 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 1939 #else 1940 #define PROC_EXP( e ) 1941 #define VOID_V ( ( void ) 0 ) 1942 #define PROC_INFO_MAX( sb, field, value ) VOID_V 1943 #define PROC_INFO_INC( sb, field ) VOID_V 1944 #define PROC_INFO_ADD( sb, field, val ) VOID_V 1945 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V 1946 #endif 1947 1948 /* dir.c */ 1949 extern const struct inode_operations reiserfs_dir_inode_operations; 1950 extern const struct inode_operations reiserfs_symlink_inode_operations; 1951 extern const struct inode_operations reiserfs_special_inode_operations; 1952 extern const struct file_operations reiserfs_dir_operations; 1953 1954 /* tail_conversion.c */ 1955 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 1956 struct treepath *, struct buffer_head *, loff_t); 1957 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 1958 struct page *, struct treepath *, const struct cpu_key *, 1959 loff_t, char *); 1960 void reiserfs_unmap_buffer(struct buffer_head *); 1961 1962 /* file.c */ 1963 extern const struct inode_operations reiserfs_file_inode_operations; 1964 extern const struct file_operations reiserfs_file_operations; 1965 extern const struct address_space_operations reiserfs_address_space_operations; 1966 1967 /* fix_nodes.c */ 1968 1969 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, 1970 struct item_head *p_s_ins_ih, const void *); 1971 void unfix_nodes(struct tree_balance *); 1972 1973 /* prints.c */ 1974 void reiserfs_panic(struct super_block *s, const char *fmt, ...) 1975 __attribute__ ((noreturn)); 1976 void reiserfs_info(struct super_block *s, const char *fmt, ...); 1977 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 1978 void print_indirect_item(struct buffer_head *bh, int item_num); 1979 void store_print_tb(struct tree_balance *tb); 1980 void print_cur_tb(char *mes); 1981 void print_de(struct reiserfs_dir_entry *de); 1982 void print_bi(struct buffer_info *bi, char *mes); 1983 #define PRINT_LEAF_ITEMS 1 /* print all items */ 1984 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 1985 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 1986 void print_block(struct buffer_head *bh, ...); 1987 void print_bmap(struct super_block *s, int silent); 1988 void print_bmap_block(int i, char *data, int size, int silent); 1989 /*void print_super_block (struct super_block * s, char * mes);*/ 1990 void print_objectid_map(struct super_block *s); 1991 void print_block_head(struct buffer_head *bh, char *mes); 1992 void check_leaf(struct buffer_head *bh); 1993 void check_internal(struct buffer_head *bh); 1994 void print_statistics(struct super_block *s); 1995 char *reiserfs_hashname(int code); 1996 1997 /* lbalance.c */ 1998 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 1999 int mov_bytes, struct buffer_head *Snew); 2000 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 2001 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 2002 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 2003 int del_num, int del_bytes); 2004 void leaf_insert_into_buf(struct buffer_info *bi, int before, 2005 struct item_head *inserted_item_ih, 2006 const char *inserted_item_body, int zeros_number); 2007 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 2008 int pos_in_item, int paste_size, const char *body, 2009 int zeros_number); 2010 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 2011 int pos_in_item, int cut_size); 2012 void leaf_paste_entries(struct buffer_head *bh, int item_num, int before, 2013 int new_entry_count, struct reiserfs_de_head *new_dehs, 2014 const char *records, int paste_size); 2015 /* ibalance.c */ 2016 int balance_internal(struct tree_balance *, int, int, struct item_head *, 2017 struct buffer_head **); 2018 2019 /* do_balance.c */ 2020 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 2021 struct buffer_head *bh, int flag); 2022 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 2023 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 2024 2025 void do_balance(struct tree_balance *tb, struct item_head *ih, 2026 const char *body, int flag); 2027 void reiserfs_invalidate_buffer(struct tree_balance *tb, 2028 struct buffer_head *bh); 2029 2030 int get_left_neighbor_position(struct tree_balance *tb, int h); 2031 int get_right_neighbor_position(struct tree_balance *tb, int h); 2032 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 2033 struct buffer_head *, int); 2034 void make_empty_node(struct buffer_info *); 2035 struct buffer_head *get_FEB(struct tree_balance *); 2036 2037 /* bitmap.c */ 2038 2039 /* structure contains hints for block allocator, and it is a container for 2040 * arguments, such as node, search path, transaction_handle, etc. */ 2041 struct __reiserfs_blocknr_hint { 2042 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ 2043 sector_t block; /* file offset, in blocks */ 2044 struct in_core_key key; 2045 struct treepath *path; /* search path, used by allocator to deternine search_start by 2046 * various ways */ 2047 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and 2048 * bitmap blocks changes */ 2049 b_blocknr_t beg, end; 2050 b_blocknr_t search_start; /* a field used to transfer search start value (block number) 2051 * between different block allocator procedures 2052 * (determine_search_start() and others) */ 2053 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed 2054 * function that do actual allocation */ 2055 2056 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for 2057 * formatted/unformatted blocks with/without preallocation */ 2058 unsigned preallocate:1; 2059 }; 2060 2061 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 2062 2063 int reiserfs_parse_alloc_options(struct super_block *, char *); 2064 void reiserfs_init_alloc_options(struct super_block *s); 2065 2066 /* 2067 * given a directory, this will tell you what packing locality 2068 * to use for a new object underneat it. The locality is returned 2069 * in disk byte order (le). 2070 */ 2071 __le32 reiserfs_choose_packing(struct inode *dir); 2072 2073 int reiserfs_init_bitmap_cache(struct super_block *sb); 2074 void reiserfs_free_bitmap_cache(struct super_block *sb); 2075 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 2076 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 2077 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 2078 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 2079 b_blocknr_t, int for_unformatted); 2080 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 2081 int); 2082 static __inline__ int reiserfs_new_form_blocknrs(struct tree_balance *tb, 2083 b_blocknr_t * new_blocknrs, 2084 int amount_needed) 2085 { 2086 reiserfs_blocknr_hint_t hint = { 2087 .th = tb->transaction_handle, 2088 .path = tb->tb_path, 2089 .inode = NULL, 2090 .key = tb->key, 2091 .block = 0, 2092 .formatted_node = 1 2093 }; 2094 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 2095 0); 2096 } 2097 2098 static __inline__ int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 2099 *th, struct inode *inode, 2100 b_blocknr_t * new_blocknrs, 2101 struct treepath *path, 2102 sector_t block) 2103 { 2104 reiserfs_blocknr_hint_t hint = { 2105 .th = th, 2106 .path = path, 2107 .inode = inode, 2108 .block = block, 2109 .formatted_node = 0, 2110 .preallocate = 0 2111 }; 2112 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2113 } 2114 2115 #ifdef REISERFS_PREALLOCATE 2116 static __inline__ int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 2117 *th, struct inode *inode, 2118 b_blocknr_t * new_blocknrs, 2119 struct treepath *path, 2120 sector_t block) 2121 { 2122 reiserfs_blocknr_hint_t hint = { 2123 .th = th, 2124 .path = path, 2125 .inode = inode, 2126 .block = block, 2127 .formatted_node = 0, 2128 .preallocate = 1 2129 }; 2130 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2131 } 2132 2133 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 2134 struct inode *inode); 2135 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 2136 #endif 2137 2138 /* hashes.c */ 2139 __u32 keyed_hash(const signed char *msg, int len); 2140 __u32 yura_hash(const signed char *msg, int len); 2141 __u32 r5_hash(const signed char *msg, int len); 2142 2143 /* the ext2 bit routines adjust for big or little endian as 2144 ** appropriate for the arch, so in our laziness we use them rather 2145 ** than using the bit routines they call more directly. These 2146 ** routines must be used when changing on disk bitmaps. */ 2147 #define reiserfs_test_and_set_le_bit ext2_set_bit 2148 #define reiserfs_test_and_clear_le_bit ext2_clear_bit 2149 #define reiserfs_test_le_bit ext2_test_bit 2150 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit 2151 2152 /* sometimes reiserfs_truncate may require to allocate few new blocks 2153 to perform indirect2direct conversion. People probably used to 2154 think, that truncate should work without problems on a filesystem 2155 without free disk space. They may complain that they can not 2156 truncate due to lack of free disk space. This spare space allows us 2157 to not worry about it. 500 is probably too much, but it should be 2158 absolutely safe */ 2159 #define SPARE_SPACE 500 2160 2161 /* prototypes from ioctl.c */ 2162 int reiserfs_ioctl(struct inode *inode, struct file *filp, 2163 unsigned int cmd, unsigned long arg); 2164 long reiserfs_compat_ioctl(struct file *filp, 2165 unsigned int cmd, unsigned long arg); 2166 2167 /* ioctl's command */ 2168 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long) 2169 /* define following flags to be the same as in ext2, so that chattr(1), 2170 lsattr(1) will work with us. */ 2171 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS 2172 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS 2173 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION 2174 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION 2175 2176 /* the 32 bit compat definitions with int argument */ 2177 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 2178 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 2179 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 2180 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 2181 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 2182 2183 /* Locking primitives */ 2184 /* Right now we are still falling back to (un)lock_kernel, but eventually that 2185 would evolve into real per-fs locks */ 2186 #define reiserfs_write_lock( sb ) lock_kernel() 2187 #define reiserfs_write_unlock( sb ) unlock_kernel() 2188 2189 /* xattr stuff */ 2190 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem) 2191 2192 #endif /* _LINUX_REISER_FS_H */ 2193