1 // Copyright 2011 Google Inc. 2 // 3 // This code is licensed under the same terms as WebM: 4 // Software License Agreement: http://www.webmproject.org/license/software/ 5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ 6 // ----------------------------------------------------------------------------- 7 // 8 // Quantization 9 // 10 // Author: Skal (pascal.massimino (at) gmail.com) 11 12 #include <assert.h> 13 #include <math.h> 14 15 #include "vp8enci.h" 16 #include "cost.h" 17 18 #define DO_TRELLIS_I4 1 19 #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. 20 #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. 21 #define USE_TDISTO 1 22 23 #define MID_ALPHA 64 // neutral value for susceptibility 24 #define MIN_ALPHA 30 // lowest usable value for susceptibility 25 #define MAX_ALPHA 100 // higher meaninful value for susceptibility 26 27 #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP 28 // power-law modulation. Must be strictly less than 1. 29 30 #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) 31 32 #if defined(__cplusplus) || defined(c_plusplus) 33 extern "C" { 34 #endif 35 36 //----------------------------------------------------------------------------- 37 38 static inline int clip(int v, int m, int M) { 39 return v < m ? m : v > M ? M : v; 40 } 41 42 const uint8_t VP8Zigzag[16] = { 43 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 44 }; 45 46 static const uint8_t kDcTable[128] = { 47 4, 5, 6, 7, 8, 9, 10, 10, 48 11, 12, 13, 14, 15, 16, 17, 17, 49 18, 19, 20, 20, 21, 21, 22, 22, 50 23, 23, 24, 25, 25, 26, 27, 28, 51 29, 30, 31, 32, 33, 34, 35, 36, 52 37, 37, 38, 39, 40, 41, 42, 43, 53 44, 45, 46, 46, 47, 48, 49, 50, 54 51, 52, 53, 54, 55, 56, 57, 58, 55 59, 60, 61, 62, 63, 64, 65, 66, 56 67, 68, 69, 70, 71, 72, 73, 74, 57 75, 76, 76, 77, 78, 79, 80, 81, 58 82, 83, 84, 85, 86, 87, 88, 89, 59 91, 93, 95, 96, 98, 100, 101, 102, 60 104, 106, 108, 110, 112, 114, 116, 118, 61 122, 124, 126, 128, 130, 132, 134, 136, 62 138, 140, 143, 145, 148, 151, 154, 157 63 }; 64 65 static const uint16_t kAcTable[128] = { 66 4, 5, 6, 7, 8, 9, 10, 11, 67 12, 13, 14, 15, 16, 17, 18, 19, 68 20, 21, 22, 23, 24, 25, 26, 27, 69 28, 29, 30, 31, 32, 33, 34, 35, 70 36, 37, 38, 39, 40, 41, 42, 43, 71 44, 45, 46, 47, 48, 49, 50, 51, 72 52, 53, 54, 55, 56, 57, 58, 60, 73 62, 64, 66, 68, 70, 72, 74, 76, 74 78, 80, 82, 84, 86, 88, 90, 92, 75 94, 96, 98, 100, 102, 104, 106, 108, 76 110, 112, 114, 116, 119, 122, 125, 128, 77 131, 134, 137, 140, 143, 146, 149, 152, 78 155, 158, 161, 164, 167, 170, 173, 177, 79 181, 185, 189, 193, 197, 201, 205, 209, 80 213, 217, 221, 225, 229, 234, 239, 245, 81 249, 254, 259, 264, 269, 274, 279, 284 82 }; 83 84 static const uint16_t kAcTable2[128] = { 85 8, 8, 9, 10, 12, 13, 15, 17, 86 18, 20, 21, 23, 24, 26, 27, 29, 87 31, 32, 34, 35, 37, 38, 40, 41, 88 43, 44, 46, 48, 49, 51, 52, 54, 89 55, 57, 58, 60, 62, 63, 65, 66, 90 68, 69, 71, 72, 74, 75, 77, 79, 91 80, 82, 83, 85, 86, 88, 89, 93, 92 96, 99, 102, 105, 108, 111, 114, 117, 93 120, 124, 127, 130, 133, 136, 139, 142, 94 145, 148, 151, 155, 158, 161, 164, 167, 95 170, 173, 176, 179, 184, 189, 193, 198, 96 203, 207, 212, 217, 221, 226, 230, 235, 97 240, 244, 249, 254, 258, 263, 268, 274, 98 280, 286, 292, 299, 305, 311, 317, 323, 99 330, 336, 342, 348, 354, 362, 370, 379, 100 385, 393, 401, 409, 416, 424, 432, 440 101 }; 102 103 static const uint16_t kCoeffThresh[16] = { 104 0, 10, 20, 30, 105 10, 20, 30, 30, 106 20, 30, 30, 30, 107 30, 30, 30, 30 108 }; 109 110 // TODO(skal): tune more. Coeff thresholding? 111 static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma] 112 { 96, 96, 96, 96, 113 96, 96, 96, 96, 114 96, 96, 96, 96, 115 96, 96, 96, 96 }, 116 { 96, 96, 96, 96, 117 96, 96, 96, 96, 118 96, 96, 96, 96, 119 96, 96, 96, 96 }, 120 { 96, 96, 96, 96, 121 96, 96, 96, 96, 122 96, 96, 96, 96, 123 96, 96, 96, 96 } 124 }; 125 126 // Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis). 127 // Hack-ish but helpful for mid-bitrate range. Use with care. 128 static const uint8_t kFreqSharpening[16] = { 129 0, 30, 60, 90, 130 30, 60, 90, 90, 131 60, 90, 90, 90, 132 90, 90, 90, 90 133 }; 134 135 //----------------------------------------------------------------------------- 136 // Initialize quantization parameters in VP8Matrix 137 138 // Returns the average quantizer 139 static int ExpandMatrix(VP8Matrix* const m, int type) { 140 int i; 141 int sum = 0; 142 for (i = 2; i < 16; ++i) { 143 m->q_[i] = m->q_[1]; 144 } 145 for (i = 0; i < 16; ++i) { 146 const int j = VP8Zigzag[i]; 147 const int bias = kBiasMatrices[type][j]; 148 m->iq_[j] = (1 << QFIX) / m->q_[j]; 149 m->bias_[j] = BIAS(bias); 150 // TODO(skal): tune kCoeffThresh[] 151 m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8; 152 m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11; 153 sum += m->q_[j]; 154 } 155 return (sum + 8) >> 4; 156 } 157 158 static void SetupMatrices(VP8Encoder* enc) { 159 int i; 160 const int tlambda_scale = 161 (enc->method_ >= 4) ? enc->config_->sns_strength 162 : 0; 163 const int num_segments = enc->segment_hdr_.num_segments_; 164 for (i = 0; i < num_segments; ++i) { 165 VP8SegmentInfo* const m = &enc->dqm_[i]; 166 const int q = m->quant_; 167 int q4, q16, quv; 168 m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; 169 m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; 170 171 m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; 172 m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; 173 174 m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; 175 m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; 176 177 q4 = ExpandMatrix(&m->y1_, 0); 178 q16 = ExpandMatrix(&m->y2_, 1); 179 quv = ExpandMatrix(&m->uv_, 2); 180 181 // TODO: Switch to kLambda*[] tables? 182 { 183 m->lambda_i4_ = (3 * q4 * q4) >> 7; 184 m->lambda_i16_ = (3 * q16 * q16); 185 m->lambda_uv_ = (3 * quv * quv) >> 6; 186 m->lambda_mode_ = (1 * q4 * q4) >> 7; 187 m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; 188 m->lambda_trellis_i16_ = (q16 * q16) >> 2; 189 m->lambda_trellis_uv_ = (quv *quv) << 1; 190 m->tlambda_ = (tlambda_scale * q4) >> 5; 191 } 192 } 193 } 194 195 //----------------------------------------------------------------------------- 196 // Initialize filtering parameters 197 198 // Very small filter-strength values have close to no visual effect. So we can 199 // save a little decoding-CPU by turning filtering off for these. 200 #define FSTRENGTH_CUTOFF 3 201 202 static void SetupFilterStrength(VP8Encoder* const enc) { 203 int i; 204 const int level0 = enc->config_->filter_strength; 205 for (i = 0; i < NUM_MB_SEGMENTS; ++i) { 206 // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS) 207 const int level = level0 * 256 * enc->dqm_[i].quant_ / 128; 208 const int f = level / (256 + enc->dqm_[i].beta_); 209 enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; 210 } 211 // We record the initial strength (mainly for the case of 1-segment only). 212 enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; 213 enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); 214 enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; 215 } 216 217 //----------------------------------------------------------------------------- 218 219 // Note: if you change the values below, remember that the max range 220 // allowed by the syntax for DQ_UV is [-16,16]. 221 #define MAX_DQ_UV (6) 222 #define MIN_DQ_UV (-4) 223 224 // We want to emulate jpeg-like behaviour where the expected "good" quality 225 // is around q=75. Internally, our "good" middle is around c=50. So we 226 // map accordingly using linear piece-wise function 227 static double QualityToCompression(double q) { 228 const double c = q / 100.; 229 return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; 230 } 231 232 void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { 233 int i; 234 int dq_uv_ac, dq_uv_dc; 235 const int num_segments = enc->config_->segments; 236 const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; 237 const double c_base = QualityToCompression(quality); 238 for (i = 0; i < num_segments; ++i) { 239 // The file size roughly scales as pow(quantizer, 3.). Actually, the 240 // exponent is somewhere between 2.8 and 3.2, but we're mostly interested 241 // in the mid-quant range. So we scale the compressibility inversely to 242 // this power-law: quant ~= compression ^ 1/3. This law holds well for 243 // low quant. Finer modelling for high-quant would make use of kAcTable[] 244 // more explicitely. 245 // Additionally, we modulate the base exponent 1/3 to accommodate for the 246 // quantization susceptibility and allow denser segments to be quantized 247 // more. 248 const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.; 249 const double c = pow(c_base, expn); 250 const int q = (int)(127. * (1. - c)); 251 assert(expn > 0.); 252 enc->dqm_[i].quant_ = clip(q, 0, 127); 253 } 254 255 // purely indicative in the bitstream (except for the 1-segment case) 256 enc->base_quant_ = enc->dqm_[0].quant_; 257 258 // fill-in values for the unused segments (required by the syntax) 259 for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { 260 enc->dqm_[i].quant_ = enc->base_quant_; 261 } 262 263 // uv_alpha_ is normally spread around ~60. The useful range is 264 // typically ~30 (quite bad) to ~100 (ok to decimate UV more). 265 // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. 266 dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) 267 / (MAX_ALPHA - MIN_ALPHA); 268 // we rescale by the user-defined strength of adaptation 269 dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; 270 // and make it safe. 271 dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); 272 // We also boost the dc-uv-quant a little, based on sns-strength, since 273 // U/V channels are quite more reactive to high quants (flat DC-blocks 274 // tend to appear, and are displeasant). 275 dq_uv_dc = -4 * enc->config_->sns_strength / 100; 276 dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed 277 278 enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum 279 enc->dq_y2_dc_ = 0; 280 enc->dq_y2_ac_ = 0; 281 enc->dq_uv_dc_ = dq_uv_dc; 282 enc->dq_uv_ac_ = dq_uv_ac; 283 284 SetupMatrices(enc); 285 286 SetupFilterStrength(enc); // initialize segments' filtering, eventually 287 } 288 289 //----------------------------------------------------------------------------- 290 // Form the predictions in cache 291 292 // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index 293 const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; 294 const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; 295 296 // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index 297 const int VP8I4ModeOffsets[NUM_BMODES] = { 298 I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 299 }; 300 301 void VP8MakeLuma16Preds(const VP8EncIterator* const it) { 302 VP8Encoder* const enc = it->enc_; 303 const uint8_t* left = it->x_ ? enc->y_left_ : NULL; 304 const uint8_t* top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL; 305 VP8EncPredLuma16(it->yuv_p_, left, top); 306 } 307 308 void VP8MakeChroma8Preds(const VP8EncIterator* const it) { 309 VP8Encoder* const enc = it->enc_; 310 const uint8_t* left = it->x_ ? enc->u_left_ : NULL; 311 const uint8_t* top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL; 312 VP8EncPredChroma8(it->yuv_p_, left, top); 313 } 314 315 void VP8MakeIntra4Preds(const VP8EncIterator* const it) { 316 VP8EncPredLuma4(it->yuv_p_, it->i4_top_); 317 } 318 319 //----------------------------------------------------------------------------- 320 // Quantize 321 322 // Layout: 323 // +----+ 324 // |YYYY| 0 325 // |YYYY| 4 326 // |YYYY| 8 327 // |YYYY| 12 328 // +----+ 329 // |UUVV| 16 330 // |UUVV| 20 331 // +----+ 332 333 const int VP8Scan[16 + 4 + 4] = { 334 // Luma 335 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 336 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 337 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 338 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, 339 340 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U 341 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V 342 }; 343 344 //----------------------------------------------------------------------------- 345 // Distortion measurement 346 347 static const uint16_t kWeightY[16] = { 348 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 349 }; 350 351 static const uint16_t kWeightTrellis[16] = { 352 #if USE_TDISTO == 0 353 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 354 #else 355 30, 27, 19, 11, 356 27, 24, 17, 10, 357 19, 17, 12, 8, 358 11, 10, 8, 6 359 #endif 360 }; 361 362 // Init/Copy the common fields in score. 363 static void InitScore(VP8ModeScore* const rd) { 364 rd->D = 0; 365 rd->SD = 0; 366 rd->R = 0; 367 rd->nz = 0; 368 rd->score = MAX_COST; 369 } 370 371 static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { 372 dst->D = src->D; 373 dst->SD = src->SD; 374 dst->R = src->R; 375 dst->nz = src->nz; // note that nz is not accumulated, but just copied. 376 dst->score = src->score; 377 } 378 379 static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { 380 dst->D += src->D; 381 dst->SD += src->SD; 382 dst->R += src->R; 383 dst->nz |= src->nz; // here, new nz bits are accumulated. 384 dst->score += src->score; 385 } 386 387 //----------------------------------------------------------------------------- 388 // Performs trellis-optimized quantization. 389 390 // Trellis 391 392 typedef struct { 393 int prev; // best previous 394 int level; // level 395 int sign; // sign of coeff_i 396 score_t cost; // bit cost 397 score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2 398 int ctx; // context (only depends on 'level'. Could be spared.) 399 } Node; 400 401 // If a coefficient was quantized to a value Q (using a neutral bias), 402 // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] 403 // We don't test negative values though. 404 #define MIN_DELTA 0 // how much lower level to try 405 #define MAX_DELTA 1 // how much higher 406 #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) 407 #define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA]) 408 409 static inline void SetRDScore(int lambda, VP8ModeScore* const rd) { 410 // TODO: incorporate the "* 256" in the tables? 411 rd->score = rd->R * lambda + 256 * (rd->D + rd->SD); 412 } 413 414 static inline score_t RDScoreTrellis(int lambda, score_t rate, 415 score_t distortion) { 416 return rate * lambda + 256 * distortion; 417 } 418 419 static int TrellisQuantizeBlock(const VP8EncIterator* const it, 420 int16_t in[16], int16_t out[16], 421 int ctx0, int coeff_type, 422 const VP8Matrix* const mtx, 423 int lambda) { 424 ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type]; 425 CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type]; 426 const int first = (coeff_type == 0) ? 1 : 0; 427 Node nodes[17][NUM_NODES]; 428 int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous 429 score_t best_score; 430 int best_node; 431 int last = first - 1; 432 int n, m, p, nz; 433 434 { 435 score_t cost; 436 score_t max_error; 437 const int thresh = mtx->q_[1] * mtx->q_[1] / 4; 438 const int last_proba = last_costs[VP8EncBands[first]][ctx0][0]; 439 440 // compute maximal distortion. 441 max_error = 0; 442 for (n = first; n < 16; ++n) { 443 const int j = VP8Zigzag[n]; 444 const int err = in[j] * in[j]; 445 max_error += kWeightTrellis[j] * err; 446 if (err > thresh) last = n; 447 } 448 // we don't need to go inspect up to n = 16 coeffs. We can just go up 449 // to last + 1 (inclusive) without losing much. 450 if (last < 15) ++last; 451 452 // compute 'skip' score. This is the max score one can do. 453 cost = VP8BitCost(0, last_proba); 454 best_score = RDScoreTrellis(lambda, cost, max_error); 455 456 // initialize source node. 457 n = first - 1; 458 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { 459 NODE(n, m).cost = 0; 460 NODE(n, m).error = max_error; 461 NODE(n, m).ctx = ctx0; 462 } 463 } 464 465 // traverse trellis. 466 for (n = first; n <= last; ++n) { 467 const int j = VP8Zigzag[n]; 468 const int Q = mtx->q_[j]; 469 const int iQ = mtx->iq_[j]; 470 const int B = BIAS(0x00); // neutral bias 471 // note: it's important to take sign of the _original_ coeff, 472 // so we don't have to consider level < 0 afterward. 473 const int sign = (in[j] < 0); 474 int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; 475 int level0; 476 if (coeff0 > 2047) coeff0 = 2047; 477 478 level0 = QUANTDIV(coeff0, iQ, B); 479 // test all alternate level values around level0. 480 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { 481 Node* const cur = &NODE(n, m); 482 int delta_error, new_error; 483 score_t cur_score = MAX_COST; 484 int level = level0 + m; 485 int last_proba; 486 487 cur->sign = sign; 488 cur->level = level; 489 cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2; 490 if (level >= 2048 || level < 0) { // node is dead? 491 cur->cost = MAX_COST; 492 continue; 493 } 494 last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0]; 495 496 // Compute delta_error = how much coding this level will 497 // subtract as distortion to max_error 498 new_error = coeff0 - level * Q; 499 delta_error = 500 kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error); 501 502 // Inspect all possible non-dead predecessors. Retain only the best one. 503 for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { 504 const Node* const prev = &NODE(n - 1, p); 505 const int prev_ctx = prev->ctx; 506 const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx]; 507 const score_t total_error = prev->error - delta_error; 508 score_t cost, base_cost, score; 509 510 if (prev->cost >= MAX_COST) { // dead node? 511 continue; 512 } 513 514 // Base cost of both terminal/non-terminal 515 base_cost = prev->cost + VP8LevelCost(tcost, level); 516 517 // Examine node assuming it's a non-terminal one. 518 cost = base_cost; 519 if (level && n < 15) { 520 cost += VP8BitCost(1, last_proba); 521 } 522 score = RDScoreTrellis(lambda, cost, total_error); 523 if (score < cur_score) { 524 cur_score = score; 525 cur->cost = cost; 526 cur->error = total_error; 527 cur->prev = p; 528 } 529 530 // Now, record best terminal node (and thus best entry in the graph). 531 if (level) { 532 cost = base_cost; 533 if (n < 15) cost += VP8BitCost(0, last_proba); 534 score = RDScoreTrellis(lambda, cost, total_error); 535 if (score < best_score) { 536 best_score = score; 537 best_path[0] = n; // best eob position 538 best_path[1] = m; // best level 539 best_path[2] = p; // best predecessor 540 } 541 } 542 } 543 } 544 } 545 546 // Fresh start 547 memset(in + first, 0, (16 - first) * sizeof(*in)); 548 memset(out + first, 0, (16 - first) * sizeof(*out)); 549 if (best_path[0] == -1) { 550 return 0; // skip! 551 } 552 553 // Unwind the best path. 554 // Note: best-prev on terminal node is not necessarily equal to the 555 // best_prev for non-terminal. So we patch best_path[2] in. 556 n = best_path[0]; 557 best_node = best_path[1]; 558 NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal 559 nz = 0; 560 561 for (; n >= first; --n) { 562 const Node* const node = &NODE(n, best_node); 563 const int j = VP8Zigzag[n]; 564 out[n] = node->sign ? -node->level : node->level; 565 nz |= (node->level != 0); 566 in[j] = out[n] * mtx->q_[j]; 567 best_node = node->prev; 568 } 569 return nz; 570 } 571 572 #undef NODE 573 574 //----------------------------------------------------------------------------- 575 // Performs: difference, transform, quantize, back-transform, add 576 // all at once. Output is the reconstructed block in *yuv_out, and the 577 // quantized levels in *levels. 578 579 static int ReconstructIntra16(VP8EncIterator* const it, 580 VP8ModeScore* const rd, 581 uint8_t* const yuv_out, 582 int mode) { 583 const VP8Encoder* const enc = it->enc_; 584 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; 585 const uint8_t* const src = it->yuv_in_ + Y_OFF; 586 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 587 int nz = 0; 588 int n; 589 int16_t tmp[16][16], dc_tmp[16]; 590 591 for (n = 0; n < 16; ++n) { 592 VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); 593 } 594 VP8FTransformWHT(tmp[0], dc_tmp); 595 nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24; 596 597 if (DO_TRELLIS_I16 && it->do_trellis_) { 598 int x, y; 599 VP8IteratorNzToBytes(it); 600 for (y = 0, n = 0; y < 4; ++y) { 601 for (x = 0; x < 4; ++x, ++n) { 602 const int ctx = it->top_nz_[x] + it->left_nz_[y]; 603 const int non_zero = 604 TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0, 605 &dqm->y1_, dqm->lambda_trellis_i16_); 606 it->top_nz_[x] = it->left_nz_[y] = non_zero; 607 nz |= non_zero << n; 608 } 609 } 610 } else { 611 for (n = 0; n < 16; ++n) { 612 nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n; 613 } 614 } 615 616 // Transform back 617 VP8ITransformWHT(dc_tmp, tmp[0]); 618 for (n = 0; n < 16; n += 2) { 619 VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); 620 } 621 622 return nz; 623 } 624 625 static int ReconstructIntra4(VP8EncIterator* const it, 626 int16_t levels[16], 627 const uint8_t* const src, 628 uint8_t* const yuv_out, 629 int mode) { 630 const VP8Encoder* const enc = it->enc_; 631 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; 632 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 633 int nz = 0; 634 int16_t tmp[16]; 635 636 VP8FTransform(src, ref, tmp); 637 if (DO_TRELLIS_I4 && it->do_trellis_) { 638 const int x = it->i4_ & 3, y = it->i4_ >> 2; 639 const int ctx = it->top_nz_[x] + it->left_nz_[y]; 640 nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_, 641 dqm->lambda_trellis_i4_); 642 } else { 643 nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_); 644 } 645 VP8ITransform(ref, tmp, yuv_out, 0); 646 return nz; 647 } 648 649 static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, 650 uint8_t* const yuv_out, int mode) { 651 const VP8Encoder* const enc = it->enc_; 652 const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; 653 const uint8_t* const src = it->yuv_in_ + U_OFF; 654 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 655 int nz = 0; 656 int n; 657 int16_t tmp[8][16]; 658 659 for (n = 0; n < 8; ++n) { 660 VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]); 661 } 662 if (DO_TRELLIS_UV && it->do_trellis_) { 663 int ch, x, y; 664 for (ch = 0, n = 0; ch <= 2; ch += 2) { 665 for (y = 0; y < 2; ++y) { 666 for (x = 0; x < 2; ++x, ++n) { 667 const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; 668 const int non_zero = 669 TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2, 670 &dqm->uv_, dqm->lambda_trellis_uv_); 671 it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; 672 nz |= non_zero << n; 673 } 674 } 675 } 676 } else { 677 for (n = 0; n < 8; ++n) { 678 nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n; 679 } 680 } 681 682 for (n = 0; n < 8; n += 2) { 683 VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1); 684 } 685 return (nz << 16); 686 } 687 688 //----------------------------------------------------------------------------- 689 // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. 690 // Pick the mode is lower RD-cost = Rate + lamba * Distortion. 691 692 static void SwapPtr(uint8_t** a, uint8_t** b) { 693 uint8_t* const tmp = *a; 694 *a = *b; 695 *b = tmp; 696 } 697 698 static void SwapOut(VP8EncIterator* const it) { 699 SwapPtr(&it->yuv_out_, &it->yuv_out2_); 700 } 701 702 static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { 703 VP8Encoder* const enc = it->enc_; 704 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 705 const int lambda = dqm->lambda_i16_; 706 const int tlambda = dqm->tlambda_; 707 const uint8_t* const src = it->yuv_in_ + Y_OFF; 708 VP8ModeScore rd16; 709 int mode; 710 711 rd->mode_i16 = -1; 712 for (mode = 0; mode < 4; ++mode) { 713 uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer 714 int nz; 715 716 // Reconstruct 717 nz = ReconstructIntra16(it, &rd16, tmp_dst, mode); 718 719 // Measure RD-score 720 rd16.D = VP8SSE16x16(src, tmp_dst); 721 rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) 722 : 0; 723 rd16.R = VP8GetCostLuma16(it, &rd16); 724 rd16.R += VP8FixedCostsI16[mode]; 725 726 // Since we always examine Intra16 first, we can overwrite *rd directly. 727 SetRDScore(lambda, &rd16); 728 if (mode == 0 || rd16.score < rd->score) { 729 CopyScore(rd, &rd16); 730 rd->mode_i16 = mode; 731 rd->nz = nz; 732 memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels)); 733 memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels)); 734 SwapOut(it); 735 } 736 } 737 SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. 738 VP8SetIntra16Mode(it, rd->mode_i16); 739 } 740 741 //----------------------------------------------------------------------------- 742 743 // return the cost array corresponding to the surrounding prediction modes. 744 static const uint16_t* GetCostModeI4(VP8EncIterator* const it, 745 const int modes[16]) { 746 const int preds_w = it->enc_->preds_w_; 747 const int x = (it->i4_ & 3), y = it->i4_ >> 2; 748 const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; 749 const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; 750 return VP8FixedCostsI4[top][left]; 751 } 752 753 static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { 754 VP8Encoder* const enc = it->enc_; 755 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 756 const int lambda = dqm->lambda_i4_; 757 const int tlambda = dqm->tlambda_; 758 const uint8_t* const src0 = it->yuv_in_ + Y_OFF; 759 uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF; 760 VP8ModeScore rd_best; 761 762 InitScore(&rd_best); 763 rd_best.score = 0; 764 VP8IteratorStartI4(it); 765 do { 766 VP8ModeScore rd_i4; 767 int mode; 768 int best_mode = -1; 769 const uint8_t* const src = src0 + VP8Scan[it->i4_]; 770 const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); 771 uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; 772 uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. 773 774 InitScore(&rd_i4); 775 VP8MakeIntra4Preds(it); 776 for (mode = 0; mode < NUM_BMODES; ++mode) { 777 VP8ModeScore rd_tmp; 778 int16_t tmp_levels[16]; 779 780 // Reconstruct 781 rd_tmp.nz = 782 ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; 783 784 // Compute RD-score 785 rd_tmp.D = VP8SSE4x4(src, tmp_dst); 786 rd_tmp.SD = 787 tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) 788 : 0; 789 rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); 790 rd_tmp.R += mode_costs[mode]; 791 792 SetRDScore(lambda, &rd_tmp); 793 if (best_mode < 0 || rd_tmp.score < rd_i4.score) { 794 CopyScore(&rd_i4, &rd_tmp); 795 best_mode = mode; 796 SwapPtr(&tmp_dst, &best_block); 797 memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels)); 798 } 799 } 800 SetRDScore(dqm->lambda_mode_, &rd_i4); 801 AddScore(&rd_best, &rd_i4); 802 if (rd_best.score >= rd->score) { 803 return 0; 804 } 805 // Copy selected samples if not in the right place already. 806 if (best_block != best_blocks + VP8Scan[it->i4_]) 807 VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); 808 rd->modes_i4[it->i4_] = best_mode; 809 it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); 810 } while (VP8IteratorRotateI4(it, best_blocks)); 811 812 // finalize state 813 CopyScore(rd, &rd_best); 814 VP8SetIntra4Mode(it, rd->modes_i4); 815 SwapOut(it); 816 memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); 817 return 1; // select intra4x4 over intra16x16 818 } 819 820 //----------------------------------------------------------------------------- 821 822 static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { 823 VP8Encoder* const enc = it->enc_; 824 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; 825 const int lambda = dqm->lambda_uv_; 826 const uint8_t* const src = it->yuv_in_ + U_OFF; 827 uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer 828 uint8_t* const dst0 = it->yuv_out_ + U_OFF; 829 VP8ModeScore rd_best; 830 int mode; 831 832 rd->mode_uv = -1; 833 InitScore(&rd_best); 834 for (mode = 0; mode < 4; ++mode) { 835 VP8ModeScore rd_uv; 836 837 // Reconstruct 838 rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); 839 840 // Compute RD-score 841 rd_uv.D = VP8SSE16x8(src, tmp_dst); 842 rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. 843 rd_uv.R = VP8GetCostUV(it, &rd_uv); 844 rd_uv.R += VP8FixedCostsUV[mode]; 845 846 SetRDScore(lambda, &rd_uv); 847 if (mode == 0 || rd_uv.score < rd_best.score) { 848 CopyScore(&rd_best, &rd_uv); 849 rd->mode_uv = mode; 850 memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); 851 memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ? 852 } 853 } 854 VP8SetIntraUVMode(it, rd->mode_uv); 855 AddScore(rd, &rd_best); 856 } 857 858 //----------------------------------------------------------------------------- 859 // Final reconstruction and quantization. 860 861 static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { 862 const VP8Encoder* const enc = it->enc_; 863 const int i16 = (it->mb_->type_ == 1); 864 int nz = 0; 865 866 if (i16) { 867 nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); 868 } else { 869 VP8IteratorStartI4(it); 870 do { 871 const int mode = 872 it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; 873 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; 874 uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_]; 875 VP8MakeIntra4Preds(it); 876 nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], 877 src, dst, mode) << it->i4_; 878 } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF)); 879 } 880 881 nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_); 882 rd->nz = nz; 883 } 884 885 //----------------------------------------------------------------------------- 886 // Entry point 887 888 int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { 889 int is_skipped; 890 891 InitScore(rd); 892 893 // We can perform predictions for Luma16x16 and Chroma8x8 already. 894 // Luma4x4 predictions needs to be done as-we-go. 895 VP8MakeLuma16Preds(it); 896 VP8MakeChroma8Preds(it); 897 898 // for rd_opt = 2, we perform trellis-quant on the final decision only. 899 // for rd_opt > 2, we use it for every scoring (=much slower). 900 if (rd_opt > 0) { 901 it->do_trellis_ = (rd_opt > 2); 902 PickBestIntra16(it, rd); 903 if (it->enc_->method_ >= 2) { 904 PickBestIntra4(it, rd); 905 } 906 PickBestUV(it, rd); 907 if (rd_opt == 2) { 908 it->do_trellis_ = 1; 909 SimpleQuantize(it, rd); 910 } 911 } else { 912 // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE 913 it->do_trellis_ = (it->enc_->method_ == 2); 914 SimpleQuantize(it, rd); 915 } 916 is_skipped = (rd->nz == 0); 917 VP8SetSkip(it, is_skipped); 918 return is_skipped; 919 } 920 921 #if defined(__cplusplus) || defined(c_plusplus) 922 } // extern "C" 923 #endif 924