Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "deadargelim"
     21 #include "llvm/Transforms/IPO.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/Constant.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/IntrinsicInst.h"
     27 #include "llvm/LLVMContext.h"
     28 #include "llvm/Module.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Support/CallSite.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/ADT/StringExtras.h"
     36 #include <map>
     37 #include <set>
     38 using namespace llvm;
     39 
     40 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     41 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     42 STATISTIC(NumArgumentsReplacedWithUndef,
     43           "Number of unread args replaced with undef");
     44 namespace {
     45   /// DAE - The dead argument elimination pass.
     46   ///
     47   class DAE : public ModulePass {
     48   public:
     49 
     50     /// Struct that represents (part of) either a return value or a function
     51     /// argument.  Used so that arguments and return values can be used
     52     /// interchangeably.
     53     struct RetOrArg {
     54       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
     55                IsArg(IsArg) {}
     56       const Function *F;
     57       unsigned Idx;
     58       bool IsArg;
     59 
     60       /// Make RetOrArg comparable, so we can put it into a map.
     61       bool operator<(const RetOrArg &O) const {
     62         if (F != O.F)
     63           return F < O.F;
     64         else if (Idx != O.Idx)
     65           return Idx < O.Idx;
     66         else
     67           return IsArg < O.IsArg;
     68       }
     69 
     70       /// Make RetOrArg comparable, so we can easily iterate the multimap.
     71       bool operator==(const RetOrArg &O) const {
     72         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
     73       }
     74 
     75       std::string getDescription() const {
     76         return std::string((IsArg ? "Argument #" : "Return value #"))
     77                + utostr(Idx) + " of function " + F->getNameStr();
     78       }
     79     };
     80 
     81     /// Liveness enum - During our initial pass over the program, we determine
     82     /// that things are either alive or maybe alive. We don't mark anything
     83     /// explicitly dead (even if we know they are), since anything not alive
     84     /// with no registered uses (in Uses) will never be marked alive and will
     85     /// thus become dead in the end.
     86     enum Liveness { Live, MaybeLive };
     87 
     88     /// Convenience wrapper
     89     RetOrArg CreateRet(const Function *F, unsigned Idx) {
     90       return RetOrArg(F, Idx, false);
     91     }
     92     /// Convenience wrapper
     93     RetOrArg CreateArg(const Function *F, unsigned Idx) {
     94       return RetOrArg(F, Idx, true);
     95     }
     96 
     97     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
     98     /// This maps a return value or argument to any MaybeLive return values or
     99     /// arguments it uses. This allows the MaybeLive values to be marked live
    100     /// when any of its users is marked live.
    101     /// For example (indices are left out for clarity):
    102     ///  - Uses[ret F] = ret G
    103     ///    This means that F calls G, and F returns the value returned by G.
    104     ///  - Uses[arg F] = ret G
    105     ///    This means that some function calls G and passes its result as an
    106     ///    argument to F.
    107     ///  - Uses[ret F] = arg F
    108     ///    This means that F returns one of its own arguments.
    109     ///  - Uses[arg F] = arg G
    110     ///    This means that G calls F and passes one of its own (G's) arguments
    111     ///    directly to F.
    112     UseMap Uses;
    113 
    114     typedef std::set<RetOrArg> LiveSet;
    115     typedef std::set<const Function*> LiveFuncSet;
    116 
    117     /// This set contains all values that have been determined to be live.
    118     LiveSet LiveValues;
    119     /// This set contains all values that are cannot be changed in any way.
    120     LiveFuncSet LiveFunctions;
    121 
    122     typedef SmallVector<RetOrArg, 5> UseVector;
    123 
    124   protected:
    125     // DAH uses this to specify a different ID.
    126     explicit DAE(char &ID) : ModulePass(ID) {}
    127 
    128   public:
    129     static char ID; // Pass identification, replacement for typeid
    130     DAE() : ModulePass(ID) {
    131       initializeDAEPass(*PassRegistry::getPassRegistry());
    132     }
    133 
    134     bool runOnModule(Module &M);
    135 
    136     virtual bool ShouldHackArguments() const { return false; }
    137 
    138   private:
    139     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    140     Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
    141                        unsigned RetValNum = 0);
    142     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
    143 
    144     void SurveyFunction(const Function &F);
    145     void MarkValue(const RetOrArg &RA, Liveness L,
    146                    const UseVector &MaybeLiveUses);
    147     void MarkLive(const RetOrArg &RA);
    148     void MarkLive(const Function &F);
    149     void PropagateLiveness(const RetOrArg &RA);
    150     bool RemoveDeadStuffFromFunction(Function *F);
    151     bool DeleteDeadVarargs(Function &Fn);
    152     bool RemoveDeadArgumentsFromCallers(Function &Fn);
    153   };
    154 }
    155 
    156 
    157 char DAE::ID = 0;
    158 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
    159 
    160 namespace {
    161   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
    162   /// deletes arguments to functions which are external.  This is only for use
    163   /// by bugpoint.
    164   struct DAH : public DAE {
    165     static char ID;
    166     DAH() : DAE(ID) {}
    167 
    168     virtual bool ShouldHackArguments() const { return true; }
    169   };
    170 }
    171 
    172 char DAH::ID = 0;
    173 INITIALIZE_PASS(DAH, "deadarghaX0r",
    174                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    175                 false, false)
    176 
    177 /// createDeadArgEliminationPass - This pass removes arguments from functions
    178 /// which are not used by the body of the function.
    179 ///
    180 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    181 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    182 
    183 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    184 /// llvm.vastart is never called, the varargs list is dead for the function.
    185 bool DAE::DeleteDeadVarargs(Function &Fn) {
    186   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    187   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    188 
    189   // Ensure that the function is only directly called.
    190   if (Fn.hasAddressTaken())
    191     return false;
    192 
    193   // Okay, we know we can transform this function if safe.  Scan its body
    194   // looking for calls to llvm.vastart.
    195   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    196     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    197       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    198         if (II->getIntrinsicID() == Intrinsic::vastart)
    199           return false;
    200       }
    201     }
    202   }
    203 
    204   // If we get here, there are no calls to llvm.vastart in the function body,
    205   // remove the "..." and adjust all the calls.
    206 
    207   // Start by computing a new prototype for the function, which is the same as
    208   // the old function, but doesn't have isVarArg set.
    209   FunctionType *FTy = Fn.getFunctionType();
    210 
    211   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    212   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    213                                                 Params, false);
    214   unsigned NumArgs = Params.size();
    215 
    216   // Create the new function body and insert it into the module...
    217   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    218   NF->copyAttributesFrom(&Fn);
    219   Fn.getParent()->getFunctionList().insert(&Fn, NF);
    220   NF->takeName(&Fn);
    221 
    222   // Loop over all of the callers of the function, transforming the call sites
    223   // to pass in a smaller number of arguments into the new function.
    224   //
    225   std::vector<Value*> Args;
    226   while (!Fn.use_empty()) {
    227     CallSite CS(Fn.use_back());
    228     Instruction *Call = CS.getInstruction();
    229 
    230     // Pass all the same arguments.
    231     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    232 
    233     // Drop any attributes that were on the vararg arguments.
    234     AttrListPtr PAL = CS.getAttributes();
    235     if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
    236       SmallVector<AttributeWithIndex, 8> AttributesVec;
    237       for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
    238         AttributesVec.push_back(PAL.getSlot(i));
    239       if (Attributes FnAttrs = PAL.getFnAttributes())
    240         AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
    241       PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
    242     }
    243 
    244     Instruction *New;
    245     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    246       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    247                                Args, "", Call);
    248       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    249       cast<InvokeInst>(New)->setAttributes(PAL);
    250     } else {
    251       New = CallInst::Create(NF, Args, "", Call);
    252       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    253       cast<CallInst>(New)->setAttributes(PAL);
    254       if (cast<CallInst>(Call)->isTailCall())
    255         cast<CallInst>(New)->setTailCall();
    256     }
    257     New->setDebugLoc(Call->getDebugLoc());
    258 
    259     Args.clear();
    260 
    261     if (!Call->use_empty())
    262       Call->replaceAllUsesWith(New);
    263 
    264     New->takeName(Call);
    265 
    266     // Finally, remove the old call from the program, reducing the use-count of
    267     // F.
    268     Call->eraseFromParent();
    269   }
    270 
    271   // Since we have now created the new function, splice the body of the old
    272   // function right into the new function, leaving the old rotting hulk of the
    273   // function empty.
    274   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    275 
    276   // Loop over the argument list, transferring uses of the old arguments over to
    277   // the new arguments, also transferring over the names as well.  While we're at
    278   // it, remove the dead arguments from the DeadArguments list.
    279   //
    280   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    281        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    282     // Move the name and users over to the new version.
    283     I->replaceAllUsesWith(I2);
    284     I2->takeName(I);
    285   }
    286 
    287   // Finally, nuke the old function.
    288   Fn.eraseFromParent();
    289   return true;
    290 }
    291 
    292 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    293 /// arguments that are unused, and changes the caller parameters to be undefined
    294 /// instead.
    295 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
    296 {
    297   if (Fn.isDeclaration() || Fn.mayBeOverridden())
    298     return false;
    299 
    300   // Functions with local linkage should already have been handled.
    301   if (Fn.hasLocalLinkage())
    302     return false;
    303 
    304   if (Fn.use_empty())
    305     return false;
    306 
    307   llvm::SmallVector<unsigned, 8> UnusedArgs;
    308   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
    309        I != E; ++I) {
    310     Argument *Arg = I;
    311 
    312     if (Arg->use_empty() && !Arg->hasByValAttr())
    313       UnusedArgs.push_back(Arg->getArgNo());
    314   }
    315 
    316   if (UnusedArgs.empty())
    317     return false;
    318 
    319   bool Changed = false;
    320 
    321   for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
    322        I != E; ++I) {
    323     CallSite CS(*I);
    324     if (!CS || !CS.isCallee(I))
    325       continue;
    326 
    327     // Now go through all unused args and replace them with "undef".
    328     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    329       unsigned ArgNo = UnusedArgs[I];
    330 
    331       Value *Arg = CS.getArgument(ArgNo);
    332       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    333       ++NumArgumentsReplacedWithUndef;
    334       Changed = true;
    335     }
    336   }
    337 
    338   return Changed;
    339 }
    340 
    341 /// Convenience function that returns the number of return values. It returns 0
    342 /// for void functions and 1 for functions not returning a struct. It returns
    343 /// the number of struct elements for functions returning a struct.
    344 static unsigned NumRetVals(const Function *F) {
    345   if (F->getReturnType()->isVoidTy())
    346     return 0;
    347   else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    348     return STy->getNumElements();
    349   else
    350     return 1;
    351 }
    352 
    353 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    354 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    355 /// liveness of Use.
    356 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
    357   // We're live if our use or its Function is already marked as live.
    358   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    359     return Live;
    360 
    361   // We're maybe live otherwise, but remember that we must become live if
    362   // Use becomes live.
    363   MaybeLiveUses.push_back(Use);
    364   return MaybeLive;
    365 }
    366 
    367 
    368 /// SurveyUse - This looks at a single use of an argument or return value
    369 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    370 /// if it causes the used value to become MaybeLive.
    371 ///
    372 /// RetValNum is the return value number to use when this use is used in a
    373 /// return instruction. This is used in the recursion, you should always leave
    374 /// it at 0.
    375 DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
    376                              UseVector &MaybeLiveUses, unsigned RetValNum) {
    377     const User *V = *U;
    378     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    379       // The value is returned from a function. It's only live when the
    380       // function's return value is live. We use RetValNum here, for the case
    381       // that U is really a use of an insertvalue instruction that uses the
    382       // original Use.
    383       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
    384       // We might be live, depending on the liveness of Use.
    385       return MarkIfNotLive(Use, MaybeLiveUses);
    386     }
    387     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    388       if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    389           && IV->hasIndices())
    390         // The use we are examining is inserted into an aggregate. Our liveness
    391         // depends on all uses of that aggregate, but if it is used as a return
    392         // value, only index at which we were inserted counts.
    393         RetValNum = *IV->idx_begin();
    394 
    395       // Note that if we are used as the aggregate operand to the insertvalue,
    396       // we don't change RetValNum, but do survey all our uses.
    397 
    398       Liveness Result = MaybeLive;
    399       for (Value::const_use_iterator I = IV->use_begin(),
    400            E = V->use_end(); I != E; ++I) {
    401         Result = SurveyUse(I, MaybeLiveUses, RetValNum);
    402         if (Result == Live)
    403           break;
    404       }
    405       return Result;
    406     }
    407 
    408     if (ImmutableCallSite CS = V) {
    409       const Function *F = CS.getCalledFunction();
    410       if (F) {
    411         // Used in a direct call.
    412 
    413         // Find the argument number. We know for sure that this use is an
    414         // argument, since if it was the function argument this would be an
    415         // indirect call and the we know can't be looking at a value of the
    416         // label type (for the invoke instruction).
    417         unsigned ArgNo = CS.getArgumentNo(U);
    418 
    419         if (ArgNo >= F->getFunctionType()->getNumParams())
    420           // The value is passed in through a vararg! Must be live.
    421           return Live;
    422 
    423         assert(CS.getArgument(ArgNo)
    424                == CS->getOperand(U.getOperandNo())
    425                && "Argument is not where we expected it");
    426 
    427         // Value passed to a normal call. It's only live when the corresponding
    428         // argument to the called function turns out live.
    429         RetOrArg Use = CreateArg(F, ArgNo);
    430         return MarkIfNotLive(Use, MaybeLiveUses);
    431       }
    432     }
    433     // Used in any other way? Value must be live.
    434     return Live;
    435 }
    436 
    437 /// SurveyUses - This looks at all the uses of the given value
    438 /// Returns the Liveness deduced from the uses of this value.
    439 ///
    440 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    441 /// the result is Live, MaybeLiveUses might be modified but its content should
    442 /// be ignored (since it might not be complete).
    443 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
    444   // Assume it's dead (which will only hold if there are no uses at all..).
    445   Liveness Result = MaybeLive;
    446   // Check each use.
    447   for (Value::const_use_iterator I = V->use_begin(),
    448        E = V->use_end(); I != E; ++I) {
    449     Result = SurveyUse(I, MaybeLiveUses);
    450     if (Result == Live)
    451       break;
    452   }
    453   return Result;
    454 }
    455 
    456 // SurveyFunction - This performs the initial survey of the specified function,
    457 // checking out whether or not it uses any of its incoming arguments or whether
    458 // any callers use the return value.  This fills in the LiveValues set and Uses
    459 // map.
    460 //
    461 // We consider arguments of non-internal functions to be intrinsically alive as
    462 // well as arguments to functions which have their "address taken".
    463 //
    464 void DAE::SurveyFunction(const Function &F) {
    465   unsigned RetCount = NumRetVals(&F);
    466   // Assume all return values are dead
    467   typedef SmallVector<Liveness, 5> RetVals;
    468   RetVals RetValLiveness(RetCount, MaybeLive);
    469 
    470   typedef SmallVector<UseVector, 5> RetUses;
    471   // These vectors map each return value to the uses that make it MaybeLive, so
    472   // we can add those to the Uses map if the return value really turns out to be
    473   // MaybeLive. Initialized to a list of RetCount empty lists.
    474   RetUses MaybeLiveRetUses(RetCount);
    475 
    476   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    477     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    478       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    479           != F.getFunctionType()->getReturnType()) {
    480         // We don't support old style multiple return values.
    481         MarkLive(F);
    482         return;
    483       }
    484 
    485   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    486     MarkLive(F);
    487     return;
    488   }
    489 
    490   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
    491   // Keep track of the number of live retvals, so we can skip checks once all
    492   // of them turn out to be live.
    493   unsigned NumLiveRetVals = 0;
    494   Type *STy = dyn_cast<StructType>(F.getReturnType());
    495   // Loop all uses of the function.
    496   for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
    497        I != E; ++I) {
    498     // If the function is PASSED IN as an argument, its address has been
    499     // taken.
    500     ImmutableCallSite CS(*I);
    501     if (!CS || !CS.isCallee(I)) {
    502       MarkLive(F);
    503       return;
    504     }
    505 
    506     // If this use is anything other than a call site, the function is alive.
    507     const Instruction *TheCall = CS.getInstruction();
    508     if (!TheCall) {   // Not a direct call site?
    509       MarkLive(F);
    510       return;
    511     }
    512 
    513     // If we end up here, we are looking at a direct call to our function.
    514 
    515     // Now, check how our return value(s) is/are used in this caller. Don't
    516     // bother checking return values if all of them are live already.
    517     if (NumLiveRetVals != RetCount) {
    518       if (STy) {
    519         // Check all uses of the return value.
    520         for (Value::const_use_iterator I = TheCall->use_begin(),
    521              E = TheCall->use_end(); I != E; ++I) {
    522           const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
    523           if (Ext && Ext->hasIndices()) {
    524             // This use uses a part of our return value, survey the uses of
    525             // that part and store the results for this index only.
    526             unsigned Idx = *Ext->idx_begin();
    527             if (RetValLiveness[Idx] != Live) {
    528               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    529               if (RetValLiveness[Idx] == Live)
    530                 NumLiveRetVals++;
    531             }
    532           } else {
    533             // Used by something else than extractvalue. Mark all return
    534             // values as live.
    535             for (unsigned i = 0; i != RetCount; ++i )
    536               RetValLiveness[i] = Live;
    537             NumLiveRetVals = RetCount;
    538             break;
    539           }
    540         }
    541       } else {
    542         // Single return value
    543         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
    544         if (RetValLiveness[0] == Live)
    545           NumLiveRetVals = RetCount;
    546       }
    547     }
    548   }
    549 
    550   // Now we've inspected all callers, record the liveness of our return values.
    551   for (unsigned i = 0; i != RetCount; ++i)
    552     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    553 
    554   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
    555 
    556   // Now, check all of our arguments.
    557   unsigned i = 0;
    558   UseVector MaybeLiveArgUses;
    559   for (Function::const_arg_iterator AI = F.arg_begin(),
    560        E = F.arg_end(); AI != E; ++AI, ++i) {
    561     // See what the effect of this use is (recording any uses that cause
    562     // MaybeLive in MaybeLiveArgUses).
    563     Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
    564     // Mark the result.
    565     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    566     // Clear the vector again for the next iteration.
    567     MaybeLiveArgUses.clear();
    568   }
    569 }
    570 
    571 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    572 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    573 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    574 /// live later on.
    575 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
    576                     const UseVector &MaybeLiveUses) {
    577   switch (L) {
    578     case Live: MarkLive(RA); break;
    579     case MaybeLive:
    580     {
    581       // Note any uses of this value, so this return value can be
    582       // marked live whenever one of the uses becomes live.
    583       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
    584            UE = MaybeLiveUses.end(); UI != UE; ++UI)
    585         Uses.insert(std::make_pair(*UI, RA));
    586       break;
    587     }
    588   }
    589 }
    590 
    591 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    592 /// changed in any way. Additionally,
    593 /// mark any values that are used as this function's parameters or by its return
    594 /// values (according to Uses) live as well.
    595 void DAE::MarkLive(const Function &F) {
    596   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
    597   // Mark the function as live.
    598   LiveFunctions.insert(&F);
    599   // Mark all arguments as live.
    600   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    601     PropagateLiveness(CreateArg(&F, i));
    602   // Mark all return values as live.
    603   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    604     PropagateLiveness(CreateRet(&F, i));
    605 }
    606 
    607 /// MarkLive - Mark the given return value or argument as live. Additionally,
    608 /// mark any values that are used by this value (according to Uses) live as
    609 /// well.
    610 void DAE::MarkLive(const RetOrArg &RA) {
    611   if (LiveFunctions.count(RA.F))
    612     return; // Function was already marked Live.
    613 
    614   if (!LiveValues.insert(RA).second)
    615     return; // We were already marked Live.
    616 
    617   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
    618   PropagateLiveness(RA);
    619 }
    620 
    621 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    622 /// to any other values it uses (according to Uses).
    623 void DAE::PropagateLiveness(const RetOrArg &RA) {
    624   // We don't use upper_bound (or equal_range) here, because our recursive call
    625   // to ourselves is likely to cause the upper_bound (which is the first value
    626   // not belonging to RA) to become erased and the iterator invalidated.
    627   UseMap::iterator Begin = Uses.lower_bound(RA);
    628   UseMap::iterator E = Uses.end();
    629   UseMap::iterator I;
    630   for (I = Begin; I != E && I->first == RA; ++I)
    631     MarkLive(I->second);
    632 
    633   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    634   // after the loop).
    635   Uses.erase(Begin, I);
    636 }
    637 
    638 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    639 // that are not in LiveValues. Transform the function and all of the callees of
    640 // the function to not have these arguments and return values.
    641 //
    642 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
    643   // Don't modify fully live functions
    644   if (LiveFunctions.count(F))
    645     return false;
    646 
    647   // Start by computing a new prototype for the function, which is the same as
    648   // the old function, but has fewer arguments and a different return type.
    649   FunctionType *FTy = F->getFunctionType();
    650   std::vector<Type*> Params;
    651 
    652   // Set up to build a new list of parameter attributes.
    653   SmallVector<AttributeWithIndex, 8> AttributesVec;
    654   const AttrListPtr &PAL = F->getAttributes();
    655 
    656   // The existing function return attributes.
    657   Attributes RAttrs = PAL.getRetAttributes();
    658   Attributes FnAttrs = PAL.getFnAttributes();
    659 
    660   // Find out the new return value.
    661 
    662   Type *RetTy = FTy->getReturnType();
    663   Type *NRetTy = NULL;
    664   unsigned RetCount = NumRetVals(F);
    665 
    666   // -1 means unused, other numbers are the new index
    667   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    668   std::vector<Type*> RetTypes;
    669   if (RetTy->isVoidTy()) {
    670     NRetTy = RetTy;
    671   } else {
    672     StructType *STy = dyn_cast<StructType>(RetTy);
    673     if (STy)
    674       // Look at each of the original return values individually.
    675       for (unsigned i = 0; i != RetCount; ++i) {
    676         RetOrArg Ret = CreateRet(F, i);
    677         if (LiveValues.erase(Ret)) {
    678           RetTypes.push_back(STy->getElementType(i));
    679           NewRetIdxs[i] = RetTypes.size() - 1;
    680         } else {
    681           ++NumRetValsEliminated;
    682           DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
    683                 << F->getName() << "\n");
    684         }
    685       }
    686     else
    687       // We used to return a single value.
    688       if (LiveValues.erase(CreateRet(F, 0))) {
    689         RetTypes.push_back(RetTy);
    690         NewRetIdxs[0] = 0;
    691       } else {
    692         DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
    693               << "\n");
    694         ++NumRetValsEliminated;
    695       }
    696     if (RetTypes.size() > 1)
    697       // More than one return type? Return a struct with them. Also, if we used
    698       // to return a struct and didn't change the number of return values,
    699       // return a struct again. This prevents changing {something} into
    700       // something and {} into void.
    701       // Make the new struct packed if we used to return a packed struct
    702       // already.
    703       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    704     else if (RetTypes.size() == 1)
    705       // One return type? Just a simple value then, but only if we didn't use to
    706       // return a struct with that simple value before.
    707       NRetTy = RetTypes.front();
    708     else if (RetTypes.size() == 0)
    709       // No return types? Make it void, but only if we didn't use to return {}.
    710       NRetTy = Type::getVoidTy(F->getContext());
    711   }
    712 
    713   assert(NRetTy && "No new return type found?");
    714 
    715   // Remove any incompatible attributes, but only if we removed all return
    716   // values. Otherwise, ensure that we don't have any conflicting attributes
    717   // here. Currently, this should not be possible, but special handling might be
    718   // required when new return value attributes are added.
    719   if (NRetTy->isVoidTy())
    720     RAttrs &= ~Attribute::typeIncompatible(NRetTy);
    721   else
    722     assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
    723            && "Return attributes no longer compatible?");
    724 
    725   if (RAttrs)
    726     AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
    727 
    728   // Remember which arguments are still alive.
    729   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    730   // Construct the new parameter list from non-dead arguments. Also construct
    731   // a new set of parameter attributes to correspond. Skip the first parameter
    732   // attribute, since that belongs to the return value.
    733   unsigned i = 0;
    734   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    735        I != E; ++I, ++i) {
    736     RetOrArg Arg = CreateArg(F, i);
    737     if (LiveValues.erase(Arg)) {
    738       Params.push_back(I->getType());
    739       ArgAlive[i] = true;
    740 
    741       // Get the original parameter attributes (skipping the first one, that is
    742       // for the return value.
    743       if (Attributes Attrs = PAL.getParamAttributes(i + 1))
    744         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
    745     } else {
    746       ++NumArgumentsEliminated;
    747       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
    748             << ") from " << F->getName() << "\n");
    749     }
    750   }
    751 
    752   if (FnAttrs != Attribute::None)
    753     AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
    754 
    755   // Reconstruct the AttributesList based on the vector we constructed.
    756   AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
    757                                         AttributesVec.end());
    758 
    759   // Create the new function type based on the recomputed parameters.
    760   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    761 
    762   // No change?
    763   if (NFTy == FTy)
    764     return false;
    765 
    766   // Create the new function body and insert it into the module...
    767   Function *NF = Function::Create(NFTy, F->getLinkage());
    768   NF->copyAttributesFrom(F);
    769   NF->setAttributes(NewPAL);
    770   // Insert the new function before the old function, so we won't be processing
    771   // it again.
    772   F->getParent()->getFunctionList().insert(F, NF);
    773   NF->takeName(F);
    774 
    775   // Loop over all of the callers of the function, transforming the call sites
    776   // to pass in a smaller number of arguments into the new function.
    777   //
    778   std::vector<Value*> Args;
    779   while (!F->use_empty()) {
    780     CallSite CS(F->use_back());
    781     Instruction *Call = CS.getInstruction();
    782 
    783     AttributesVec.clear();
    784     const AttrListPtr &CallPAL = CS.getAttributes();
    785 
    786     // The call return attributes.
    787     Attributes RAttrs = CallPAL.getRetAttributes();
    788     Attributes FnAttrs = CallPAL.getFnAttributes();
    789     // Adjust in case the function was changed to return void.
    790     RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
    791     if (RAttrs)
    792       AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
    793 
    794     // Declare these outside of the loops, so we can reuse them for the second
    795     // loop, which loops the varargs.
    796     CallSite::arg_iterator I = CS.arg_begin();
    797     unsigned i = 0;
    798     // Loop over those operands, corresponding to the normal arguments to the
    799     // original function, and add those that are still alive.
    800     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    801       if (ArgAlive[i]) {
    802         Args.push_back(*I);
    803         // Get original parameter attributes, but skip return attributes.
    804         if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
    805           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    806       }
    807 
    808     // Push any varargs arguments on the list. Don't forget their attributes.
    809     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    810       Args.push_back(*I);
    811       if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
    812         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    813     }
    814 
    815     if (FnAttrs != Attribute::None)
    816       AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
    817 
    818     // Reconstruct the AttributesList based on the vector we constructed.
    819     AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
    820                                               AttributesVec.end());
    821 
    822     Instruction *New;
    823     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    824       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    825                                Args, "", Call);
    826       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    827       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    828     } else {
    829       New = CallInst::Create(NF, Args, "", Call);
    830       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    831       cast<CallInst>(New)->setAttributes(NewCallPAL);
    832       if (cast<CallInst>(Call)->isTailCall())
    833         cast<CallInst>(New)->setTailCall();
    834     }
    835     New->setDebugLoc(Call->getDebugLoc());
    836 
    837     Args.clear();
    838 
    839     if (!Call->use_empty()) {
    840       if (New->getType() == Call->getType()) {
    841         // Return type not changed? Just replace users then.
    842         Call->replaceAllUsesWith(New);
    843         New->takeName(Call);
    844       } else if (New->getType()->isVoidTy()) {
    845         // Our return value has uses, but they will get removed later on.
    846         // Replace by null for now.
    847         if (!Call->getType()->isX86_MMXTy())
    848           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    849       } else {
    850         assert(RetTy->isStructTy() &&
    851                "Return type changed, but not into a void. The old return type"
    852                " must have been a struct!");
    853         Instruction *InsertPt = Call;
    854         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    855           BasicBlock::iterator IP = II->getNormalDest()->begin();
    856           while (isa<PHINode>(IP)) ++IP;
    857           InsertPt = IP;
    858         }
    859 
    860         // We used to return a struct. Instead of doing smart stuff with all the
    861         // uses of this struct, we will just rebuild it using
    862         // extract/insertvalue chaining and let instcombine clean that up.
    863         //
    864         // Start out building up our return value from undef
    865         Value *RetVal = UndefValue::get(RetTy);
    866         for (unsigned i = 0; i != RetCount; ++i)
    867           if (NewRetIdxs[i] != -1) {
    868             Value *V;
    869             if (RetTypes.size() > 1)
    870               // We are still returning a struct, so extract the value from our
    871               // return value
    872               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    873                                            InsertPt);
    874             else
    875               // We are now returning a single element, so just insert that
    876               V = New;
    877             // Insert the value at the old position
    878             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    879           }
    880         // Now, replace all uses of the old call instruction with the return
    881         // struct we built
    882         Call->replaceAllUsesWith(RetVal);
    883         New->takeName(Call);
    884       }
    885     }
    886 
    887     // Finally, remove the old call from the program, reducing the use-count of
    888     // F.
    889     Call->eraseFromParent();
    890   }
    891 
    892   // Since we have now created the new function, splice the body of the old
    893   // function right into the new function, leaving the old rotting hulk of the
    894   // function empty.
    895   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    896 
    897   // Loop over the argument list, transferring uses of the old arguments over to
    898   // the new arguments, also transferring over the names as well.
    899   i = 0;
    900   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    901        I2 = NF->arg_begin(); I != E; ++I, ++i)
    902     if (ArgAlive[i]) {
    903       // If this is a live argument, move the name and users over to the new
    904       // version.
    905       I->replaceAllUsesWith(I2);
    906       I2->takeName(I);
    907       ++I2;
    908     } else {
    909       // If this argument is dead, replace any uses of it with null constants
    910       // (these are guaranteed to become unused later on).
    911       if (!I->getType()->isX86_MMXTy())
    912         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
    913     }
    914 
    915   // If we change the return value of the function we must rewrite any return
    916   // instructions.  Check this now.
    917   if (F->getReturnType() != NF->getReturnType())
    918     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
    919       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    920         Value *RetVal;
    921 
    922         if (NFTy->getReturnType()->isVoidTy()) {
    923           RetVal = 0;
    924         } else {
    925           assert (RetTy->isStructTy());
    926           // The original return value was a struct, insert
    927           // extractvalue/insertvalue chains to extract only the values we need
    928           // to return and insert them into our new result.
    929           // This does generate messy code, but we'll let it to instcombine to
    930           // clean that up.
    931           Value *OldRet = RI->getOperand(0);
    932           // Start out building up our return value from undef
    933           RetVal = UndefValue::get(NRetTy);
    934           for (unsigned i = 0; i != RetCount; ++i)
    935             if (NewRetIdxs[i] != -1) {
    936               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
    937                                                               "oldret", RI);
    938               if (RetTypes.size() > 1) {
    939                 // We're still returning a struct, so reinsert the value into
    940                 // our new return value at the new index
    941 
    942                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
    943                                                  "newret", RI);
    944               } else {
    945                 // We are now only returning a simple value, so just return the
    946                 // extracted value.
    947                 RetVal = EV;
    948               }
    949             }
    950         }
    951         // Replace the return instruction with one returning the new return
    952         // value (possibly 0 if we became void).
    953         ReturnInst::Create(F->getContext(), RetVal, RI);
    954         BB->getInstList().erase(RI);
    955       }
    956 
    957   // Now that the old function is dead, delete it.
    958   F->eraseFromParent();
    959 
    960   return true;
    961 }
    962 
    963 bool DAE::runOnModule(Module &M) {
    964   bool Changed = false;
    965 
    966   // First pass: Do a simple check to see if any functions can have their "..."
    967   // removed.  We can do this if they never call va_start.  This loop cannot be
    968   // fused with the next loop, because deleting a function invalidates
    969   // information computed while surveying other functions.
    970   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
    971   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    972     Function &F = *I++;
    973     if (F.getFunctionType()->isVarArg())
    974       Changed |= DeleteDeadVarargs(F);
    975   }
    976 
    977   // Second phase:loop through the module, determining which arguments are live.
    978   // We assume all arguments are dead unless proven otherwise (allowing us to
    979   // determine that dead arguments passed into recursive functions are dead).
    980   //
    981   DEBUG(dbgs() << "DAE - Determining liveness\n");
    982   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    983     SurveyFunction(*I);
    984 
    985   // Now, remove all dead arguments and return values from each function in
    986   // turn.
    987   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    988     // Increment now, because the function will probably get removed (ie.
    989     // replaced by a new one).
    990     Function *F = I++;
    991     Changed |= RemoveDeadStuffFromFunction(F);
    992   }
    993 
    994   // Finally, look for any unused parameters in functions with non-local
    995   // linkage and replace the passed in parameters with undef.
    996   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    997     Function& F = *I;
    998 
    999     Changed |= RemoveDeadArgumentsFromCallers(F);
   1000   }
   1001 
   1002   return Changed;
   1003 }
   1004